
Assignment 4

G4360 Introduction to Theoretical Neuroscience

DUE: October 20

I tend to write long problem sets, but most of it is informational, there is not

that much for you to actually do. So please don’t be put off by the length; in

the long problems, things you actually have to do are indicated in red.

Notation: boldface small letters, like r, represent column vectors; rT is a row vector, the

transpose of r; boldface capital letters, like W, represent matrices; WT is the transpose of

W; non-boldface letters represent numbers, either scalars or the individual elements of

vectors or matrices.

Problem 1: A little linear algebra.

a. Show that any matrix M that has a complete basis of eigenvectors can be written

M =
∑

i λiril
T
i where ri and li are the ith right and left eigenvectors of M,

respectively, and λi is the corresponding eigenvalue. To show this, express an

arbitrary vector v in the eigenvector basis, apply M to it, and apply
∑

i λiril
T
i to it,

and show they give the same result.1

b. Show that lTj Mri = λiδij. When the eigenvectors are orthonormal, this means

rTi Mri = λi.

Don’t forget that left eigenvectors and right eigenvectors satisfy lTi rj = δij.

Problem 2: The inhibition-stabilized network (ISN). First we’ll do an extensive

setup. The problem will be to demonstrate the paradoxical effect using nullclines.

Consider a two-population model of firing-rate neurons: one excitatory (E) population and

one inhibitory (I) population. rE and rI are the firing rates of the excitatory and inhibitory

populations, respectively, represented by the vector r =

(
rE
rI

)
. The matrix of

connections between them is W =

(
wEE −wEI

wIE −wII

)
, where wXY represents the (positive)

strength of the connection from Y to X. We let the vector of external inputs to the two

populations be i. We let f(v) be a nonlinear function applied element-wise to the elements

of the vector v, i.e. f(v) is a vector with ith element f(v)i ≡ f(vi). We assume the

1We’re assuming eigenvalues and eigenvectors are real here. For the general case where they may be

complex, you simply replace the transpose, vT or MT , with the adjoint or conjugate transpose, v† or M†,

meaning take the complex conjugate of every element and then take the transpose. This ensures the length-

squared of a vector, v · v = v†v, is real and positive and equal to
∑

i |vi|2. Then everything goes through

exactly as before. For example, if E is the matrix whose columns are the eigenvectors, then we define the

ith row of E−1 to be l†i , the adjoint of the ith left eigenvector, and the above expression becomes λiril
†
i .
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steady-state firing rate rSS for a given input is given by f applied to each unit’s input:

rSS = f(Wr+ i). We assume the network approaches its instantaneous steady state with

first-order dynamics: letting T =

(
τE 0

0 τI

)
be the diagonal matrix of E and I time

constants, we have

T
d

dt
r = −r+ f(Wr+ i) (1)

Suppose rSS is a stable fixed point; we will linearize the dynamics about this fixed point.

You know that, letting f ′
E and f ′

I be the derivative of f evaluated at the E and I

components of WrSS + i, respectively, the linearized weights are(
∂fE/∂rE ∂fE/∂rI
∂fI/∂rE ∂fI/∂rI

)
=

(
f ′
EwEE f ′

EwEI

f ′
IwIE f ′

IwII

)
; to make notation simpler, let’s define this

to be J =

(
jEE −jEI

jIE −jII

)
(we’ll assume f(x) is a monotonically increasing function of x,

so that all the f ′
X ’s are positive and hence all the jXY ’s are positive). Let iSS be the

steady-state input that yields the fixed point rSS. If there is a deviation ∆i from iSS, in the

linearized equation this becomes δi ≡

(
f ′
E∆iE
f ′
I∆iI

)
. Define small deviations in response

from the steady state by r = rSS + δr. Then the equation for the dynamics linearized

about the fixed point is

T
d

dt
δr = −δr+ Jδr+ δi = −(1− J)δr+ δi (2)

where 1 is the identity matrix. Note that, since δr is multiplied by J− 1, both eigenvalues

of J− 1 must have negative real part for the fixed point to be stable, meaning both

eigenvalues of 1− J must have positive real part. This should all be familiar to you, but if

it’s not, satisfy yourself that this is all true.

Recall what we did in class to show the ISN paradoxical response: for a steady-state input

perturbation δi, we wrote down the equation for the steady-state response δr:

δr = (1− J)−1δi. For a 2× 2 matrix M =

(
a b

c d

)
, the inverse is given by

M−1 = 1
DetM

(
d −b

−c a

)
. So (1− J)−1 = 1

Det (1−J)

(
1 + jII −jEI

jIE 1− jEE

)
. Recall that the

determinant is the product of the eigenvalues, for the fixed point to be stable, we must

have Det (1− J) > 0. Thus, for a stable fixed point, if and only if jEE > 1 (which means

the E population alone would be unstable if I firing was frozen at its fixed point level; look

at the equation for rE with rI fixed, to see why jEE > 1 implies excitatory instability), the

I cells show a “paradoxical” response. This means that, if an input is given only to I cells

(δi ∝

(
0

1

)
), the steady-state response of the I cells is of opposite sign to the input, so
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that adding excitation to I cells paradoxically lowers their firing rate in the new steady

state.

Now show the same things using nullclines. Again assume that the function f(x) is a

monotonically increasing function of x. The equations for the E and I nullclines are the E

and I components of the fixed-point equation: r = f(Wr+ i). We will draw the nullclines

with rE on the x axis and rI on the y axis. The point where the nullclines cross – where

both nullcline equations are satisfied – is the fixed point. Our linearization only applies in

the vicinity of the fixed point; but we’ll continue to use jXY to mean f ′
XwXY at any point.

The derivatives and thus the j’s will have different values from point to point.

a For the I nullcline, compute its slope, drI/drE; you should find that it is given by
jIE

1+jII
. This means that the nullcline always has positive slope.

b Now for the E nullcline, compute the inverse of its slope, drE/drI ; you should find

that this inverse slope is jEI

jEE−1
. This means that the slope is positive if the E

subnetwork is unstable, and negative if the E subnetwork is stable.

c Show that the condition that Det (J− 1) > 0 at the fixed point, which is necessary

for stability of the fixed point, is equivalent to the I nullcline having a larger slope

than the E nullcline at the fixed point. (Recall that the determinant of a 2× 2 matrix(
a b

c d

)
is (ad− bc)). So for a fixed point to be stable, it is necessary that the I

nullcline have a larger slope than the E nullcline at their crossing that defines the

fixed point.

d So, we’ll draw two versions of the nullclines: one that is an ISN, one that is not.

We’re not going to quantitatively determine the nullclines for particular parameter

values, just qualitatively draw the structure of the nullclines, as follows: First draw

the I nullcline, which will be the same for both versions. Imagine that, for rE small,

the I-nullcline solution for rI should be small (i.e., the I nullcline starts at the bottom

left), while for rE large, rI is large (ends at top right); so the nullcline starts toward

the bottom left, ends up at the top right, and always has a positive slope, for

example it could have a sigmoidal shape.

e Now, draw the E nullclines, assuming a stable fixed point. Imagine that when rI is

high, rE is low, so the nullcline starts in the upper left corner; while when rI is low,

rE is high, so it ends up in the lower right corner. In the non-ISN version, it has a

negative slope all the way. In the ISN version, it has a positive slope in a middle

portion, so the nullcline looks like a sideways S (i.e. it goes down, then up, then down

3



again); and the fixed point is on the positive-sloping middle portion (and the

necessary condition for stability on E and I nullcline slopes is obeyed).

f Draw the arrows indicating the direction of flow in the different regions of the

nullcline plane. To do this, consider: if you are to the left or the right of the I

nullcline (lower or greater rE compared to the value that gives an rI derivative of 0),

is rI going up or down? Similarly, if you are above or below the E nullcline (greater

or lower rI compared to the value that gives an rE-derivative of 0), is rE increasing or

decreasing? The nullclines divide the plane into four regions, and based on these, you

can determine the direction of flow in each region (e.g., down & left, down & right,

up & left, up & right), so draw an arrow in each region corresponding to the direction

of flow. Show (by drawing arrows) that, in negative-sloping regions of the E nullcline,

if rI is kept fixed, small perturbations of rE off the E nullcline will flow back to the

nullcline; while in positive-sloping regions, it will flow away. This also tells you that

in positive-sloping regions, the E subnetwork alone is unstable, while in

negative-sloping regions it is stable.

g Now, suppose you add a positive input to the I cells. Show (using the equation for

the I nullcline) that the resulting change in the I nullcline is to reduce rE by the same

amount for any given rI , that is, to move the I nullcline leftward. There is no change

in the E nullcline. Draw, as a dashed line, the new I nullcline after an input is added

to I. Show (again, using drawings) that, for a stable fixed point, if the network is an

ISN, then in moving from the old fixed point to the new fixed point, both rE and rI
are decreased; while for a non-ISN, the result is to decrease rE but increase rI . (For

the ISN, assume that the new fixed point, like the old one, is on the positive-sloping

portion of the E nullcline.)

h In the ISN case, draw the dynamical path followed by rE, rI from the old fixed point

to the new fixed point after adding the positive input to I. This addition of input

instantaneously moves the I nullcline; the resulting derivative at the old fixed point

(which is no longer on the I nullcline and so no longer a fixed point) has an upward

component (it will go in the direction of the flow for the region it’s in, given the new

I nullcline), becoming horizontal as the flow crosses the I nullcline, and then going

downward to the new fixed point (it might spiral into the fixed point if there are

complex eigenvalues, or go straight down to it if eigenvalues are real). Note, regarding

the old fixed point as a perturbation from the new fixed point, that, even though the

new fixed point is stable, the dynamics move further away from the new fixed point

(the upward movement) before ultimately flowing back to it; and that, after the

addition of excitatory input to the I neuron, rI transiently goes up before going down
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in the new steady state. These are effects of non-normal dynamics. (Recall that

biological weight matrices, of the form J =

(
jEE −jEI

jIE −jII

)
with all jXY ’s positive,

are non-normal, meaning that their eigenvectors are not orthogonal, because

JJT ̸= JTJ, which is the necessary and sufficient condition for non-normality.)

Problem 3: Non-normal dynamics.

We consider a linear equation with constant input i, obtained as a linearization about a

fixed point as in Eq. 2. For simplicity, we’ll use r, W, and i in place of δr, f ′W, and f ′i,

respectively, so we’ll study the linear equation:

τ
dr

dt
= −r+Wr+ i (3)

(Note we’re assuming the same τ for E and I.)

To further simplify, we’re going to restrict to a class of connection matrices that has

(
1

1

)

as one of its eigenvectors: W =

(
w1 −(w1 + x)

w2 −(w2 + x)

)
where x > 0.

(1) Verify that the (unnormalized) eigenvectors are

(
1

1

)
with eigenvalue λ1 = −x, and(

w1+x
w2

1

)
with eigenvalue λ2 = w1 − w2.

We assume the system is stable, that is λ1 < 1 and λ2 < 1. Note that the two eigenvectors

are not orthogonal to each other, and that they are similar to one another in that both

have all-positive entries, i.e. both point into the upper right quadrant.

We’re going to use the Schur transformation, which is a transform to an orthogonal basis

that makes the weight matrix as simple as possible for an orthogonal transform, namely

upper triangular – all zeros below the diagonal (with a transformation to the

non-orthogonal basis of the eigenvectors, the matrix can be made even simpler – diagonal;

but upper triangular is as simple as we can make it with a transformation to an orthogonal

basis). To do this, we choose one eigenvector as the first Schur basis vector, and choose the

other vector orthogonal to this one (more generally, in higher dimensions, you take some

ordering of the eigenvectors and then do Gram-Schmidt orthonormalization to produce an

orthogonal Schur basis; the transformation is not unique, because each ordering produces a

different Schur basis). We’ll choose our (normalized) Schur basis vectors to be

s1 =
1√
2

(
1

1

)
, and a vector orthogonal to it, s2 =

1√
2

(
1

−1

)
. Recall that the component

of a vector along an orthonormal basis vector is just given by the dot product of the vector

with the basis vector.
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(2) Show that r has components

(
r1

r2

)
=

(
rE+rI√

2
rE−rI√

2

)
in the s1, s2 basis, that is, the

components r1 and r2 represent the sum and difference of E and I activities, respectively.

You already know that Ws1 = −xs1.

(3) Show that in the s1, s2 basis, W takes the form

(
λ1 wFF

0 λ2

)
where the “feedforward

weight” wFF is given by wFF = w1 + w2 + x. You can do this in one or both of two ways.

First, you can show that Ws2 = (w1 + w2 + x)s1 + (w1 − w2)s2, which along with

Ws1 = λ1s1 gives the form of the matrix.2 Second, you can explicitly transform to the new

basis: compute STWS where S is the orthogonal matrix whose columns are s1 and s2.

We call wFF a feedforward weight because it is an effective feedforward weight between

activity patterns; the pattern s2 projects to s1 with strength wFF , and there is no

projection back, it is a strictly feedforward connectivity between patterns, without loops.

In addition, there are the self-loops s1 → s1 with strength λ1 and s2 → s2 with strength λ2.

(4) Show that W is non-normal if and only if wFF ̸= 0, in two ways. First, show this in the

s1, s2 basis, by showing that WWT = WTW if and only if wFF = 0. Second, show this in

the rE, rI basis: if and only if wFF = w1 + w2 + x = 0, then the matrix W in this basis

becomes a symmetric matrix, W = WT, and therefore is normal; and the eigenvectors

become orthogonal, i.e. the second eigenvector becomes

(
−1

1

)
. Note that, for the

matrix to be normal, the upper right entry of W in the original basis becomes positive and

equal to w2, so the matrix no longer describes an excitatory unit and an inhibitory unit.

(5) Solve the linear dynamics, Eq. 3, in the s1, s2 basis.

a. First, suppose i2(t) is time dependent. Show that the i2-dependent part of the

2If this being the form of the matrix representation isn’t clear to you: in a given basis of vectors b1,b2,

we can write any vector v as v = v1b1 + v2b2 =

(
v1
v2

)
. Suppose Wb1 = w11b1 + w21b2 and Wb2 =

w12b1+w22b2. Then Wv = (w11v1+w12v2)b1+(w21v1+w22v2)b2 =

(
w11v1 + w12v2
w21v1 + w22v2

)
. This is what you

get from applying

(
w11 w12

w21 w22

)
to

(
v1
v2

)
. Since this is true for an arbitrary vector v,

(
w11 w12

w21 w22

)
is the representation of W in the b1,b2 basis.

A simpler way to see this is just to note that, in the b1,b2 basis, b1 = (1, 0)T and b2 = (0, 1)T . Given

this and Wb1 = w11b1 + w21b2 and Wb2 = w12b1 + w22b2, you can see that W =

(
w11 w12

w21 w22

)
.
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response is

r2(t) = . . .+
1

τ

∫ t

0

dt′ e−(1−λ2)(t−t′)/τ i2(t
′) (4)

r1(t) = . . .+
wFF

τ

∫ t

0

dt′ e−(1−λ1)(t−t′)/τr2(t
′) (5)

= . . .+
wFF

τ 2

∫ t

0

dt′
∫ t′

0

dt′′ e−(1−λ1)(t−t′)/τe−(1−λ2)(t
′−t′′)/τ i2(t

′′) (6)

By using
∫ t

0
dt′
∫ t′

0
dt′′ =

∫ t

0
dt′′

∫ t

t′′
dt′ (show this; hint, draw the two-dimensional

t′/t′′ plane and sketch the region covered by the first double integral, and show that it

is the same as the region covered by the second double integral) do the dt′ integral to

show that the double integral term becomes wFF

τ

∫ t

0
dt′′ gλ1,λ2

(t− t′′)i2(t
′′) where

gλ1,λ2
(t) = e−(1−λ1)t/τ−e−(1−λ2)t/τ

λ1−λ2
. This shows that, when i2 is constant, the response at

time t after its onset is just the integral from 0 to t of gλ1,λ2
(t− t′). This shows that g

is the “impulse response function” telling the response of r1 to an input to r2; that is,

if you give a δ pulse of input to r2 at time 0, i2(t) = δ(t),3 then the response of r1 at

time t is proportional to
∫ t

0
gλ1,λ2

(t− t′)δ(t′) = gλ1,λ2
(t). If the integral of g is

increased by becoming a pulse (rather than by becoming a slowed exponential, as in

Hebbian amplification), this can give amplification without slowing (the amplification

also arises from wFF being large).

b. Now let’s return to taking i to be constant, not varying in time. You will have to first

solve for r2(t), then solve for r1(t) with wFF r2(t) as one of the inputs. You should find

r2(t) = r2(0)e
−(1−λ2)t/τ +

i2
1− λ2

(
1− e−(1−λ2)t/τ

)
(7)

r1(t) = r1(0)e
−(1−λ1)t/τ +

i1 + wFF i2/(1− λ2)

1− λ1

(
1− e−(1−λ1)t/τ

)
+wFF

(
r2(0)−

i2
1− λ2

)
gλ1,λ2

(t) (8)

(6) Graph the function gλ1,λ2
(t) = e−(1−λ1)t/τ−e−(1−λ2)t/τ

λ1−λ2
for some choices of λ1 and λ2 as real

numbers less than 1. (You can take τ = 1; this just sets the units of time.) Consider both

positive, one positive and one negative, or both negative. How does this affect the time

3δ(t) is the Dirac delta function, defined by δ(t) = 0 for t ̸= 0 and
∫ ϵ

−ϵ
δ(t) = 1 for any ϵ > 0. It has

the property that
∫
dt′f(t′)δ(t′ − t) = f(t) so long as t is within the integral limits. It is the continuous

analogue of the discrete Kronecker delta function, δij = 1, i = j; = 0, otherwise, which satisfies the discrete

analogue of that integral equation,
∑

j xjδij = xi. Examples of instantiations of the Dirac delta function

include the limit, as dt → 0, of a function equal to 1/dt on −dt/2 ≤ x ≤ dt/2 and equal to 0 otherwise; or

limσ→0
1√

2πσ2
e−t2/(2σ2).
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course and height of the function?. Note that this is a transient pulse that rises with time

constant min
(

τ
1−λ1

, τ
1−λ2

)
and then falls with time constant given by the max of the two

time constants. It can be quite large because it is multiplied by wFF = w1 + w2 + x, which

will be large if the weights are large. It is this transient that can cause the dynamics to

transiently move far from the steady-state fixed point, although as t → ∞ the dynamics

will approach the fixed point.

(7) (a) For the case of both λ’s negative, plot gλ1,λ2
(t), te−t/τ and e−t/τ on the same plot,

normalizing them all so (say) their peak is 1. How does the time course of g compare to

the others? Note, te−t/τ is the value of gλ1,λ2
(t) for λ1 = λ2 = 0,4 while e−t/τ is the time

course of decay in the absence of any recurrent connections.

(b) For the same choice of λ’s: starting from the initial condition rE = 1, rI = 0 (translate

this into r1(0) and r2(0)), with no external input, compare the time course of r1(t) (Eq. 8,

with i1 = i2 = 0) to the exponential time course r1(0)e
−t/τ that would result just from the

individual cell leaks in the absence of any recurrent connections. Also plot the timecourse

of r2, rE, and rI on the same plot. You can use (say) wFF = 10. Make sure you understand

why r1 and r2 behave as they do, in terms of the Schur weight matrix; and why this

translates as it does into the behavior of rE and rI . Make the same graph starting from the

initial condition of rE = 0, rI = 1 (note, this is a linear model, which arises from linearizing

about a fixed point, so negative rates can arise and indicate rates that are negative relative

to the fixed point firing rates).

(8) Now focus on the case of nonzero input.

(a) Let the initial condition be r1(0) = r2(0) = 0 and the steady input starting at time 0 be

iE = 1, iI = 0. For the same parameters as in (7), plot the time course of response (over a

long enough time to reach steady state by eye) of rE. Also plot the response in the absence

of recurrent connections, rE(t) =
iE
τ

∫ t

0
dt′ e−(t−t′)/τ = iE(1− e−t/τ ). Also plot the latter

curve scaled up to have the same steady state value as the former. How do their time

courses compare? Can you get amplified response due to recurrence with time course faster

than the time course without recurrence?

(b) Now consider the steady state for nonzero input, r2 =
i2

1−λ2
, r1 =

i1+wFF i2/(1−λ2)
1−λ1

(from

Eqs. 7-8). Note that small inputs i2 to the difference of E and I can, for large wFF , cause

large steady state response of the sum of E and I, r1. This is the effect underlying the

paradoxical response: if i2 is negative, representing tilting of the difference towards I, the

result can be that I as well as E decreases in the new steady state. We’ll study when

precisely this occurs.

Consider an input only to I. Show that this corresponds to i2 = −i1, with the input to I

4To see this, compute gλ1,λ1
(t) by letting λ2 = λ1 + ϵ and evaluate limϵ→0 gλ1,λ2

(t) =

limϵ→0
e−(1−λ1)t/τ(1−eϵt/τ)

−ϵ = limϵ→0
e−(1−λ1)t/τ(1−(1+ϵt/τ+O(ϵ2)))

−ϵ = t
τ e

(1−λ1)t/τ .
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positive or negative according to whether i1 is positive or negative. Show that for this case

(i2 = −i1), the steady-state I response is rI =
1√
2
(r1 − r2) =

i1((1−λ1)+(1−λ2)−wFF )√
2(1−λ1)(1−λ2)

. Note that

the nonnormal effect – the effect involving wFF – has sign opposite to i1; this represents a

paradoxical effect (adding positive input to I cells causes their firing rates to decrease in

the new steady state). The remaining terms represent the normal effect – the effect in a

normal matrix in which the eigenvectors are the Schur basis vectors and are orthogonal, so

wFF = 0; these terms have the same sign as i1, representing a non-paradoxical effect. Thus

the paradoxical effect arises precisely when the effect of nonnormality exceeds the remaining

effects. Intuitively, if you give negative input to r2 and an equal but opposite positive input

to r1, this pushes r2 down and pushes r1 up, both representing a nonparadoxical increase in

inhibition; but since r2 has a feedforward connection to r1, the pushing down of r2 also

pushes down r1 by the nonnormal effect (the feedforward connection). When the

nonnormal effect exceeds the normal effects, the result is a paradoxical change.

(9) Finally, show that the rI response is paradoxical – negative for positive i1 – if and only

if w1 > 1, which means if and only if the excitatory subnetwork by itself is unstable. To

show this, you’ll need to use the facts that λ2 < 1 and λ1 < 1.

In the general case – a weight matrix

(
wEE −wEI

wIE −wII

)
– if the eigenvectors and

eigenvalues are real, the results are similar: each eigenvector has both of its entries of the

same sign (which you can take to be positive), so they both represent weighted sums of E

and I; and, taking one of them to be the first Schur vector, the 2nd Schur vector, which will

make a feedforward connection to the first, must have its two entries of opposite signs,

representing a weighted difference of E and I. So it remains true that differences in E and I

are amplified, via wFF , into sums of E and I. When the eigenvectors and eigenvalues are

complex, it gets a little more complicated, but there is a sense in which the same picture

continues to be true.
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