






spatial envelope modulated by an oscillatory component with a fre-

quency slightly higher than theta, and averaging the correlation

between such pairs of place cells over all straight paths crossing the

area of overlap between the place fields. The analysis shows that

place cells with high field overlap present no average phase difference

with respect to theta, while cells with less but substantially over-

lapping fields have an average half a cycle phase difference. In other

words, minutes-long cross-correlations filtered at theta frequency are

positive around zero time lag for cells with nearby fields while they

are negative for those with fields further apart. In the following, we

refer to this effect as the phase-distance relationship. In the same

study, it was shown that this relationship could be instrumental in the

emergence of grid fields in the entorhinal cortex. Briefly, this phase-

distance relationship in the cross-correlations, combined with spike-

timing-dependent plasticity in projections from place cells to a model

grid cell, was shown to induce effective Mexican-hat like interactions

between the projections from place cells which then leads to a hexag-

onal pattern.

The aim of this article is to see whether the main theoretical pre-

dictions about the pair-wise cross-correlations, in particular their rela-

tionship to the spatial overlap between the fields holds in real data

during natural foraging. To do this, we analyzed several electrophysio-

logical recordings of hippocampal place cells. We found that the quali-

tative features predicted about the cross-correlation holds in the CA1

datasets that we analyzed. The relationship also persists during

remapping experiments in CA1 as well as in data analyzed from CA3.

To further look into the relationship between the phase-distance

effect and the timing of spikes with respect to theta, we also analyzed

data from Fmr1-null knockout mice in which place fields appear to be

normal but their activities appear to be less organized with respect to

theta. We found that in these cells, the cross-correlations remain sym-

metric, but the relationship between the cross-correlations and the

spatial overlap of place fields is largely lost.

2 | METHODS

2.1 | Predictions of the model

We model the activity of a population of CA1 place cells for an animal

engaged in an open field exploratory task. A place cell is strongly mod-

ulated both in space and time, firing within a localized area of the

environment (its place field), and only periodically in time in accor-

dance with phase precession. We model this as a Gaussian envelope

modulated by an oscillatory component. Mathematically, this is done

by writing the firing rate, Hn(t) of neuron n at time t and when the ani-

mal is at position x(t) as

Hn tð Þ= ae− x tð Þ−xnð Þ2
2σ2 cos ωt+φnð Þ+1½ �=2, ð1Þ

where ω/(2π) is the single neuron oscillatory frequency, xn is the cen-

ter of the place field of neuron n, ϕn is the oscillation phase, σ controls

the size of the place field, while a determines the maximum firing rate.

Theta phase precession naturally arises by taking the oscillation fre-

quency ω/(2π) in Equation (1) to be slightly higher than the theta oscil-

lation frequency of 8 Hz.

The cross-correlation function of the activity of two cells n and n0

is defined as

Cnn0 sð Þ≔
ð∞
−∞

dtHn tð ÞHn0 t−sð Þ: ð2Þ

The cells' activities contribute the most to the correlation for paths

crossing a region of high place field overlap. To compute the cross-correla-

tions, Cnn0 , (Monsalve-Mercado & Leibold, 2017) assumed that the

time integral in Equation (2) could be rewritten as an average over

straight paths of all possible orientations traversing the midpoint

between the centers of the place fields of neurons n and n0. They

showed that for cells with equal peak firing rate and place field size,

and for constant speed and small time lags s, the cross-correlation can

be approximated as

Cnn0 sð Þ= a
ffiffiffi
π

p
e− r2 + v2 s2

4σ2

4v= aσð Þ 1+
1
2
J0

πr
R

� �
cos ωsð Þ

� �
, ð3Þ

where r = xn−xn0j j is the distance between the place field centers, v is

the speed of the animal, R is the distance from the place field center

at which the firing rate has decreased to 10%, and J0 is the Bessel

function of the first kind.

Two important predictions can be inferred from the expression

for the correlation function in Equation (3) that is a direct conse-

quence of the 2D symmetry of open field exploration:

2.1.1 | The correlation is symmetric in the time
domain

This can be easily seen by the fact that changing s to −s in Equa-

tion (3) does not change anything. An important implication is that

the oscillatory component of the correlation around time lag zero

must be in either a peak or a valley. In other words, when filtered in

the theta range, cells can be strongly positively or negatively corre-

lated. This organization is not arbitrary, but results in the second

prediction.

2.1.2 | Distance is reflected in the phase of the
correlation at time lag zero

Cells whose place fields are close together (have high overlap) are

positively correlated in the theta range (their correlation is near a

peak), while cells whose fields are further away from each other (little

overlap, but still significant) are negatively correlated in the theta

range (their correlation is near a valley).
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2.2 | Analysis

For each recording session, we computed spike train correlations

between all cell pairs for the entire duration of the recording. Only

cells with more than a 100 spikes were included in the analysis. Spike

trains were considered isolated events with a 1 ms accuracy, for

which the correlation measures the number of coincident spikes for

each time lag with a resolution of 1 ms within a 300 ms range. The

correlation is filtered in the theta band (5–12 Hz) and the analytical

signal is obtained from its Hilbert transform. We identify each cell pair

with the instantaneous phase γ of its analytical signal at zero time lag.

Only cell pairs were included in the analysis for which the instanta-

neous envelope of its analytical signal (not the value of the oscillation)

at zero time lag was above a 0.2 threshold in absolute value.

We define a measure to evaluate the symmetry of the filtered

cross-correlation Ĉ sð Þ. The symmetry index (SI) is defined as the nor-

malized square integral of the symmetric part of Ĉ sð Þ for a specific

interval ±τ around zero time lag:

SI =
1
4

ðτ
−τ

Ĉ sð Þ+Ĉ −sð Þ
� �2

ds=
ðτ
−τ
Ĉ
2
sð Þds ð4Þ

With this definition, the SI ranges from 0 reflecting total anti-

symmetry to 1, representing total symmetry, thus quantifying the

degree of symmetry in the filtered cross-correlation.

The distance d between two place fields was computed using the

2D Kolmogorov–Smirnov probability distance directly from the distri-

butions of spike locations (Peacock, 1983). The Wasserstein distance

w is used to compare the marginal distance distributions, it corre-

sponds to the area between the cumulative probability distributions.

The circular Wasserstein distance Δ is used to compare the distribu-

tion of phases to another distribution with circular symmetry, it corre-

sponds to the minimal distance from all linear Wasserstein distances

on an unfolded circle for all possible starting points on the circle

(Rabin et al., 2011). Circular and circular-linear kernel density estima-

tions (CLKDEs) use von Mises and Gaussian kernels with adaptive

concentration and smoothing parameters (Garcıa-Portugues,

Crujeiras, & Gonzalez-Manteiga, 2013).

3 | RESULTS

We examined several published datasets of extracellular recordings in

hippocampal areas CA1 and CA3 during open field exploratory forag-

ing. The following datasets were included in the analysis: two CA1 ses-

sions from a teleportation experiment reported in Jezek, Henriksen,

Treves, Moser, and Moser (2011), five CA1 sessions recorded in

the Buzsaki lab (Mizuseki et al., 2013; Mizuseki et al., 2014; Mizuseki,

Sirota, Pastalkova, & Buzsaki, 2009) (specifically session ec14.215,

ec14.277, ec14.333, ec14.260, and ec15.047 from the openly available

hc-3 dataset), 16 CA1 sessions from wild-type mice, and 16 CA1 ses-

sions from Fmr1-null mice recorded from Sparks, Talbot, Dvorak, and

Fenton (2017), Talbot et al. (2018), and Dvorak, Radwan, Sparks,

Talbot, and Fenton (2018), also taken from the openly available hc-16

dataset, 28 CA1 sessions in three rats from a remapping experiment

reported in Schlesiger et al. (2015) and Schlesiger et al. (2018)

and, finally, 178 CA3 sessions from seven rats in 11 rooms reported in

Alme et al. (2014). Details about the recordings and the experimental

settings can be found in the respective references.

Figure 1a,b shows an example illustrating the two theoretical pre-

dictions. Figure 1a shows the firing rate map of 3 simultaneously

recorded CA1 place cells from Jezek et al. (2011). Two possible pairs

are shown in the top and bottom rows for comparison, and to the

right of each row, we show the respective cross-correlations of their

spike times (Figure 1b). The distributions of spike locations for the top

pair are significantly closer than those of their bottom counterpart

(Kolmogorov–Smirnov distance d = 0.3 and d = 0.6, respectively). The

corresponding cross-correlations, averaged over approximately

10 min of free foraging, exhibit a high degree of symmetry around

zero time lag, with symmetry indices SI = 0.95 and 0.98, respectively;

see Equation (4) for the definition of SI which ranges from 0 (total

antisymmetry) and 1 (total symmetry). In addition, the filtered correla-

tions in the theta band (blue traces) show that the top neurons are

positively correlated in theta with the phase of the peak γ = −9�, while

the bottom neurons are negatively correlated with γ = 179�. In the fol-

lowing sections, we explore these properties for different cells and

experiments from CA1 and CA3.

3.1 | CA1 spike-time correlations present a high
degree of symmetry

At the population level, we found that 5,652 cell pairs (about 47% of

total pairs) passed the criteria to be included in the analysis of CA1

datasets. Overall, we observe a qualitative high degree of symmetry in

the filtered cross-correlations in the theta band, even for ranges of a

whole theta cycle (Figure 1c,d). For each cell pair, we computed the SI

for intervals between 2 and 60 ms centered at zero time lag, which are

relevant timescales to trigger spike-timing dependent plasticity rules

(Markram et al., 1997). We observe that a majority of cell pairs present a

high degree of symmetry in their correlations (Figure 1d), especially for

ranges close to zero time lag. Both the average of SI values and the frac-

tion of cell pairs with an SI higher than 0.9 decrease when the SI is com-

puted for increasingly larger time lag intervals, with the average SI

leveling off to 0.6 for intervals up to 600 ms. We additionally computed

a circular kernel density estimation (CKDE) for the distribution of phases

from all cell pairs. Since identity reversal of cell pairs is equivalent to a

mirror transformation in the correlation function, to avoid ambiguity in

the choice of cell-pair phase, we include both possible phases for each

cell pair in the computation of the CKDE. This is justified by the high

degree of symmetry of a majority of correlations, and randomly choosing

one of the two phases produces qualitatively similar results (not shown).

As a result, the CKDE displays a mirror symmetry with respect to the

horizontal axis (Figure 1e).

We found the distribution of phases to be significantly different

from uniform (Hermans–Rasson, Ajne, and Watson tests: p < .001 by
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bootstrapping with replacement). Next, we wanted to characterize

how the distribution of phases concentrate around 0 and 180� . For

this, we computed the circular Wasserstein distance between the dis-

tribution of phases and a family of biased bimodal delta distributions

oriented on the 0–180� axis,�	 (� ) + (1 � � )	 (� � 180� ), where the bias

parameter � , taking values from 0 to 1, measures how strongly the

distribution is inclined toward 0 � . We select from the family the distri-

bution that minimizes the distance, corresponding to a specific value

of � . For the CA1 dataset, we obtained a bias value of� = .54, consis-

tent with a 55% of the population of phases tending toward 0 � (up-

phase group), that is the proportion of phases in the interval from� 90

to 90 � counterclockwise. The circular Wasserstein distance from the

biased bimodal distribution � B = 0.08 is a useful measure to compare

the bimodality of the distribution of phases across sessions, animals,

brain regions, and experiments.

3.2 | The binary phase of the correlation tells apart
high- from low-overlapping fields

The second prediction of the model is concerned with the relationship

between the phase associated to a cell pair and the corresponding dis-

tance of their place fields, that is, a phase-distance relationship. As a

measure of place field distance, we compute the Kolmogorov–Smirnov

distance between the distributions of spike locations of both fields. This

measure takes values between 0 and 1, and for a pair of 2D Gaussians

of equal size increases linearly with the distance between their peaks

and saturates quickly after the overlap is minimal. The KS distance has

the advantage of highlighting regions of substantial overlap while being a

more robust measure of distance than the spatial correlation, distance

between the firing rate peaks, and amount of field overlap, all of which

result in qualitatively similar resultsat the population level (not shown).

We obtained the KS distance for all cell pairs in the CA1 datasets

and computed a CLKDE for the distribution of phases and distances

(Figure 2a). The CLKDE shows a qualitative preference for small and large

distances to be clustered around phases of 0 and 180� , respectively. To

quantify how well the theoretical prediction explains the observed distri-

bution, we fit a step function with values at 0 and 180 � to determine the

critical distance dc that minimizes the circular distance from the data to

the step function. We found that a critical distance of dc = 0.6(1) explains

best the distribution. The marginal phase distributions for small (d < dc)

and large (d > dc) distances (Figure 2b) show a preference for 0 and 180� ,

with bias parameters of � = .60 (59% of up-phases) and� = .44 (44% of

up-phases), respectively. In addition, the marginal phase distributions

show similar circular Wasserstein distances from a bimodal distribution

(� B = 0.08 for both) as the complete CA1 dataset.

We can gain a different perspective on the separation of dis-

tances by their corresponding phases by examining the marginal distri-

butions of distances for up- and down-phases (blue and orange

distance distributions in Figure 2a,c). We compute the Wasserstein

distance between the marginal distributions of distances, which mea-

sures the area between the corresponding cumulative probability dis-

tributions (Figure 2c). It highlights differences in the concentration of

horizontal mass, setting apart distributions mostly representing differ-

ent regions in the horizontal axis (distances). We found the two mar-

ginal distributions to be significantly different from each other

(p < .001), with a Wasserstein distance ofw = 0.11.

To test the robustness of the phase-distance relationship we

introduce Gaussian noise with SD � into the spike times of a single

recording session with 30 place cells (from Jezek et al. (2011)). Cell

pairs range from 212 to 100 depending on the noise level, since the

theta amplitude of correlations are typically reduced with the jitter,

and the threshold for inclusion of a pair is fixed. In Figure 2d, we show

examples of phase distributions for different noise levels. Except for

the case without jitter ( � = 0), each distribution is obtained by averag-

ing 30 iterations of noise with the specified � value. Because we

expect the bimodality to be lost with noise, in this panel, we only

show the phase distributions without symmetrization with respect to

the horizontal axis. For increasing level of the jitter, � , we also com-

puted the Wasserstein distances between the marginal distributions

of place field distances w, and the circular Wasserstein distance of

phase distributions from uniformity � U. They are computed for �

between 0 and 100 ms in steps of 1 ms, and traces are smoothed

afterward with a Gaussian kernel of 5 msSD. w and � U are normal-

ized to the case where no jitter is present. The relationship is robust

to spike jitter up to standard deviations of around a quarter of a theta

cycle. For this range, cell pairs still present strong phase bimodality

and high w. For higher noise amplitudes, phases tend to become more

uniformly distributed as measured by decreasing� U. More impor-

tantly, phases become disentangled from place field distance as the

difference w between the marginal distribution of distances drops

below significant levels. For this jitter amplitudes, the firing rate maps

and thus place field distances remain mostly unchanged, implying that

the drop in w is a result of phases and place field distances becoming

disentangled. Since highw values could in principle be present for uni-

form phase distributions, this result suggests that bimodal phase dis-

tributions are required at the mechanistic level for the organization of

place field distances into two independent clusters.

We examined several individual examples from the CA1 dataset

to probe the consistency of the phase-distance relationship among

datasets (Figure 3). We found the relationship to be present in individ-

ual recording sessions. As an example we present the ec14.215 ses-

sion of the hc-3 dataset, which has the most cells simultaneously

recorded (60) and yielded the highest number of cell pairs (1239) (top

row in Figure 3). Data from two of the rats from the hc-13 dataset,

namely ec16 (1,061 cell pairs) and ec13 (865 cell pairs), were some-

how outliers, which is why they were left out of the collection of CA1

datasets reported in Section 3.1. They presented a strong bias in the

distribution of phases toward 0� , with 72% (� = .72) and 76% (� = .75)

of phases belonging to the up-phase group respectively. To see the

effects more clearly in Section 3.1, we therefore did not include them.

However, we checked that in these two datasets the phases were still

well represented by a bimodal distribution (� B = 0.09 and 0.10) and

the phase-distance relationship was present, although weaker than

the rest of the CA1 dataset (w = 0.06 and 0.08, p < .001). The relation-

ship was present as well for individual sessions of the data from Jezek
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