Assignment 1

1. Classify each of the following differential equations as either linear or nonlinear, and as either autonomous or non-autonomous:
 a) \(\frac{dx}{dt} = a(b - x) + c(t) \)
 b) \(\frac{dy}{dt} = y(1 - y) \)
 c) \(\tau \frac{dV}{dt} = g_1(E_1 - V) + g_2(E_2 - V) \)

2. Consider the following differential equation:

 \[
 \frac{dx}{dt} = -3t^2 x, \quad x(0) = 1.
 \]

 This equation is linear in \(x \), but the coefficient depends on \(t \). Use separation of variables to solve the equation. Observe that the decay is more rapid than for the constant coefficient case.

3. Consider the following differential equation and initial condition:

 \[
 \frac{dx}{dt} = -\frac{1}{2} x + 1 + \sin 3t, \quad x(0) = 5.
 \]

 a) Integrate the equation numerically from \(t = 0 \) to \(t = 5 \) with a step size of \(\Delta t = 0.5 \) and \(\Delta t = 0.01 \) using Euler integration. Plot the two curves on a single graph.

 b) Now do the integration with the exponential integration scheme we discussed in class and \(\Delta t = 0.5 \). Plot the result on the same graph as in (a). Observe that the solution is more accurate than Euler integration with the same step size.

4. For a neuron with a surface area of 0.025 mm\(^2\), a specific membrane capacitance of \(c_m = 10 \) nF/mm\(^2\), a specific membrane resistance of \(r_m = 1 \) M\(\Omega\)-mm\(^2\), and a resting membrane potential \(E = -70 \) mV:
 a) What is the total membrane capacitance \(C_m \)?
 b) What is the total membrane resistance \(R_m \)?
 c) What is the membrane time constant \(\tau_m \)?
 d) How much external electrode current would be required to hold the neuron at a membrane potential of -65 mV?
 e) If this amount of current is turned on at time \(t = 0 \), with the cell initially at -70 mV, and held constant at this value, at what time \(t \) will the neuron reach a membrane potential of -67 mV?
5. Build an integrate-and-fire model neuron,

\[
\tau_m \frac{dV}{dt} = V_{\text{rest}} - V + R_m I.
\]

With \(V_{\text{rest}} = V_{\text{reset}} = -65 \text{ mV}, V_{\text{th}} = -50 \text{ mV}, \tau_m = 10 \text{ ms}, \text{ and } R_m = 10 \text{ M}\Omega \). Reset the potential to \(V = V_{\text{reset}} \) whenever it goes to or above \(V_{\text{th}} \), and then the neuron fires an action potential. Apply different levels of constant current \(I \) and illustrate that your model is working properly.

6. **Optional Problem:** Apply different levels of current \(I \) to your integrate-and-fire model and count spikes over a suitable period of time to compute firing rates. Plot these rate as a function of \(R_m I_e \) and compare your results to the analytic formula

\[
r = \left(\tau_m \ln \left(\frac{R_m I_e + V_{\text{rest}} - V_{\text{reset}}}{R_m I_e + V_{\text{rest}} - V_{\text{th}}} \right) \right)^{-1}.
\]