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Summary

We model the development of the functional circuit of layer 4, the input-recipient layer, of

cat primary visual cortex. The observed thalamocortical and intracortical circuitry code-

velop under Hebb-like synaptic plasticity. Hebbian development yields opponent inhibition:

inhibition evoked by stimuli anticorrelated with those that excite a cell. Strong opponent

inhibition enables recognition of stimulus orientation in a manner invariant to stimulus con-

trast. These principles may apply to cortex more generally: Hebb-like plasticity can guide

layer 4 of any piece of cortex to create opposition between anticorrelated stimulus pairs,

and this enables recognition of specific stimulus patterns in a manner invariant to stimu-

lus magnitude. Properties that are invariant across a cortical column are predicted to be

those shared by opponent stimulus pairs; this contrasts with the common idea that a column

represents cells with similar response properties.
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One of the remarkable properties of the cerebral cortex is its division into functional

columns of cells (Hubel and Wiesel, 1962; Mountcastle, 1957): cells sharing certain functional

response properties are grouped vertically through the depth of cortex. In the primary visual

cortex (V1) of the cat, preference for the orientation of a light/dark contrast edge and for

stimulation through one or the other eye are two of the most notable response properties that

show columnar organization. These properties vary continuously across the two tangential

directions of cortex, giving rise to the well-known orientation and ocular dominance maps.

This 2-dimensional tangential organization has been extensively investigated, and numerous

modeling studies have examined its development (reviewed in Erwin et al., 1995; Miller,

1996). However, not all functional response properties show columnar organization, as we

shall discuss. Few if any models have addressed the question of which functional response

properties should show columnar organization.

Here we will examine a restricted version of this question, focusing on layer 4 (the input-

recipient layer) of cat V1. We address the question of why some response properties, and

not others, are invariant among the cells in a local region of layer 4. To be invariant across

the depth of cortex, properties must be invariant in particular in layer 4; and conversely,

properties that vary among nearby cells in layer 4 cannot show columnar invariance. Further-

more, given the strong vertical connections carrying information from layer 4 to the other

layers (Callaway, 1998; Gilbert, 1983; Lübke et al., 2000), it seems likely that properties

established in layer 4 will be shared by the other layers. Thus, we believe insight into the

origins of columnar organization can be obtained by understanding layer 4. At the same

time, we also address another question: how can we account for the development of the

full, functional mature circuitry of layer 4? We will suggest that the answers to these two

questions are closely intertwined.

Layer 4 of cat V1 consists largely of simple cells (Gilbert, 1983), cells whose receptive fields

consist of separate ON (light-preferring) and OFF (dark-preferring) subregions (Fig. 1). The Place

Fig. 1

about here
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alignment in visual space of these subregions confers upon the cell a preferred orientation.

As suggested by Hubel and Wiesel (Hubel and Wiesel, 1962) and later confirmed (Ferster

et al., 1996; Reid and Alonso, 1995; Tanaka, 1983), the orientation selectivity of simple cells

originates in the arrangement of their inputs from the lateral geniculate nucleus (LGN):

ON-subregions receive input from overlying ON-center LGN cells, and OFF-subregions from

overlying OFF-center cells. We refer to this arrangement as “Hubel-Wiesel” connectivity.

In addition to a preferred orientation, simple cells have a preferred spatial phase (Fig. 1A).

We distinguish between relative spatial phase, which refers to the position of the ON and

OFF subregions with respect to the receptive field (RF) center, and absolute spatial phase,

which refers to the position of the subregions with respect to the visual world. Neurons

isolated on the same electrode (and presumably within the same cortical column) within cat

V1 tend to have similar preferred orientations, but vary in both relative and absolute spatial

phases (DeAngelis et al., 1999; Liu et al., 1992; Pollen and Ronner, 1981) (see Discussion).

Importantly, then, some properties within a column, and within a local region of layer 4,

are invariant (e.g. orientation) but others are not (e.g. relative and absolute spatial phases).

Accounting for this organization constitutes one goal of our developmental model.

A second goal of our model is to reproduce the connectivity of the mature functional

circuit of cat V1 layer 4. Reproducing the Hubel-Wiesel arrangement of geniculocortical

connections is one component of this goal. The other component is to reproduce the intra-

cortical connectivity of layer 4, about which less is known. Two key constraints are that the

input to simple cells, both excitatory and inhibitory, comes primarily from other neurons

with similar orientation tuning (Anderson et al., 2000a; Ferster, 1986), and that the excita-

tion and inhibition are opponent (Anderson et al., 2000a; Ferster, 1988; Hirsch et al., 1998):

a dark stimulus over an OFF subregion elicits synaptic excitation, whereas a light stimulus

in the same position evokes synaptic inhibition. Figure 1B shows a cartoon of a model circuit

that meets these requirements and that reproduces a wide range of experimental observa-
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tions (Ferster and Miller, 2000; Kayser et al., 2001; Krukowski and Miller, 2001; Lauritzen

et al., 2001; Troyer et al., 1998), including such functional response properties as the invari-

ance of orientation tuning to stimulus contrast (Anderson et al., 2000b; Sclar and Freeman,

1982; Skottun et al., 1987; Troyer et al., 1998) and the temporal tuning properties of V1

cells (Krukowski and Miller, 2001). The model is also consistent with a number of recent

experimental results suggesting that the orientation tuning of voltage responses in cat layer

4 simple cells is largely determined by the pattern of thalamic input they receive (Chung and

Ferster, 1998; Ferster et al., 1996; Gillespie et al., 2001). Accounting for the simultaneous

development of this model circuit and Hubel-Wiesel geniculocortical connectivity constitutes

the second goal of our model.

To address the development of the layer 4 columnar circuit, we are guided by our previous

results (Miller, 1994). We showed that a simple correlation structure in the LGN activity

patterns, which could plausibly exist in the spontaneous (or dark) activity of LGN cells

in the absence of vision, can give rise under Hebbian or “correlation-based” development

to the Hubel-Wiesel pattern of LGN inputs to simple cells. This correlation structure is

described in Fig. 2A. This scenario of Hebbian development guided by spontaneous activity Place

Fig. 2

about here

is consistent with findings that the initial development of orientation selectivity in V1 does

not depend on vision (Crair et al., 1998; Fregnac and Imbert, 1984), but can be prevented

by alteration of input activities (Chapman and Gödecke, 2000). We argued (Miller, 1994)

that the postulated correlation structure is a plausible one because it would naturally arise

if spontaneous quantal noise in photoreceptors were the source of spontaneous LGN activity

(as it is for spontaneous retinal activity in adult cats, Mastronarde (1989)), and we showed

that the correlations expected under this scenario accurately predicted the preferred spatial

frequencies of cortical cells. (Another commonly discussed source of correlated activity is the

spontaneous “waves” of retinal activity that exist in very young animals, Wong (1999); these

disappear just before the development of orientation selectivity and so are unlikely to play
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a role in that development, see discussion in Miller (1994) and Erwin and Miller (1998).)

Accordingly, we posit that this correlation structure exists in cat LGN when the layer 4

circuit is developing, which constitutes one key prediction of our model (see Discussion).

Thus, the patterns of LGN activity in the present model are noise that has been filtered to

have the postulated correlation structure (an example is in Fig. 2B). We now ask whether

these LGN activity correlations are sufficient to account for the development of the layer 4

columnar unit of cat V1, i.e., for the simultaneous development of the Hubel-Wiesel patterns

of LGN inputs, the postulated intracortical connectivity, and local invariance of orientation

but not spatial phase.

Results

The initial condition for the model is illustrated in Fig. 3A, left. We model a “column” of Place

Fig. 3

about here

layer 4 cells as a group of 10 cells, 4 inhibitory and 6 excitatory. (We use 10 cells for com-

putational speed and ease of presentation; simulations of up to 100 cells, and/or in which

only 20% of cells are inhibitory, yield similar results.) Each cortical neuron initially receives

unstructured geniculate input, with roughly equal strengths of ON and OFF inputs from

each location. Initial intracortical connections are weak and all-to-all: i.e. every cell in each

column is connected to every other cell in the column, excluding self-connections. These

promiscuous initial connections are meant to simulate two ideas. First, initial connections

are largely unstructured: very few cat layer 4 V1 neurons (approximately 15%) are orienta-

tion selective at 6-9 days of age (Albus and Wolf, 1984), modeled here by the unstructured

projections from LGN; and layer 4→layer 4 connections are sparse at 5 days, but of adult

complexity by 20 days (Callaway and Katz, 1992). Second, all possible connections among

a local set of neurons are potentially available to the network, with selection of appropriate

connections occurring by developmental rules described below. The cortex, of course, ex-
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plores its possible connections through a process of sprouting-and-retraction, rather than by

making all possible connections at once. We model this for simplicity by initially connect-

ing all cells and allowing the network to prune connections over time, but models involving

sprouting and retraction of connections will yield similar results if the developmental rules

for selecting surviving synapses are similar (Miller, 1998). The two methods yield similar re-

sults because both involve an exploration of the space of possible connections, with retention

or loss of connections determined by Hebbian rules.

The network then develops under simple rules. Excitatory connections, both geniculo-

cortical and intracortical, develop based on a Hebbian covariance rule; neurons that “fire

together, wire together”. Inhibitory connections learn based on a rule derived from the ex-

perimental work of Komatsu and colleagues (Komatsu, 1994, 1996; Komatsu and Iwakiri,

1993): when the presynaptic inhibitory neuron is active, the inhibitory synapse is strength-

ened if it is coactivated with other inhibitory inputs to the same postsynaptic cell, and

weakened if the postsynaptic cell is simultaneously active (see Methods). As with most de-

velopmental models, some form of synaptic competition must be introduced to ensure that

each cell maintains a reasonable level of received weights and of projected weights. One

could design dynamical negative feedback loops to attain this, perhaps expressed in terms

of biological elements such as neurotrophins, but if such feedback is strong the main effect

would be to constrain the Hebbian dynamics to explore only a subspace of weights (the sub-

space in which all cells maintain their summed received and projected weights) (Miller and

MacKay, 1994). Given our current ignorance of the actual biological dynamics that achieve

competition (Turrigiano and Nelson, 2000), we feel it is simplest to directly constrain the

Hebbian dynamics, thus modeling the fact of competition but not its mechanism. Thus, we

demand that each cortical cell must maintain constant sums of projected weights and of each

type (thalamocortical, intracortical excitatory, intracortical inhibitory) of received weight.

The final column resulting from this development (Fig. 3A, middle) demonstrates five
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key points. First, each of the cells has developed a Hubel-Wiesel pattern of LGN inputs.

Second, all of the cells develop the same preferred orientation. Third, the cortical connections

are phase-appropriate: excitatory cells project to cells of the same absolute spatial phase,

while inhibitory cells project to cells of the opposite absolute spatial phase. Fourth, two

absolute spatial phases develop, because inhibitory cells become anticorrelated with the cells

to which they project. Fifth, the circuit replicates a key function (Troyer et al., 1998) of

the cat V1 layer 4 circuit in showing contrast-invariant orientation tuning (Fig. 3A, right).

With different initial conditions, the detailed connections and preferred orientation change,

but the results are always identical in these five respects.

A simple intuition lies behind these results. The development of Hubel-Wiesel RF struc-

ture in the geniculocortical afferents is driven by the correlation structure in the LGN, along

with Hebbian rules by which “neurons that fire together wire together”, as described above

and in Miller (1994). The alignment of the orientations of the simple cell RFs of differ-

ent cortical cells is driven by the intracortical connections. Hebbian dynamics lead to a

final state in which excitatory connections link cells that have strongly correlated recep-

tive fields, while inhibitory connections link cells that have strongly anticorrelated receptive

fields. Consider two cortical cells, A and B. Suppose A and B share correlated LGN inputs.

As a consequence they will tend to be coactive, so that under Hebbian rules an excitatory

intracortical synapse between them would grow stronger, while an inhibitory synapse would

grow weaker. Alternatively, if A and B have anticorrelated LGN inputs, they will tend not

to be coactive, so that an excitatory intracortical synapse between them would grow weaker,

while an inhibitory synapse would, if coactive with other inhibitory inputs, grow stronger.

Thus, receiving correlated or anticorrelated LGN inputs promotes development of excita-

tory or inhibitory connections, respectively. Conversely, excitatory or inhibitory connections

promote development of correlated or anticorrelated LGN inputs, respectively. Suppose A

sends an excitatory connection to B. Then when cell A fires, cell B will tend to fire as well,
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so that A and B will tend to reinforce the same input patterns by Hebbian rules and so

develop correlated LGN inputs. If instead cell A sends an inhibitory connection to cell B,

when cell A fires cell B will tend not to fire. Cell B will thus tend to respond to, and to

reinforce under Hebbian rules, input patterns anticorrelated with those that excite A. Thus,

there is a strong positive feedback mechanism leading to a state in which cells connected by

strong excitatory connections receive correlated sets of LGN inputs, and cells connected by

strong inhibitory connections receive anticorrelated LGN inputs.

Strongly correlated receptive fields are those of similar preferred orientation and similar

absolute spatial phase, while strongly anticorrelated receptive fields are those of similar

preferred orientation and roughly opposite spatial phase. Thus, maximizing correlation

between cells connected by excitatory synapses, and maximizing anticorrelation between

cells connected by inhibitory synapses, leads the network as a whole to align in orientation,

but to vary in spatial phase. This result is apparent in Fig. 3. In Fig. 3A, note that only

two relative spatial phases develop. A diversity of relative spatial phases and receptive field

structures will develop if the initial LGN input projections show more retinotopic scatter

between cortical cells (Fig. 3B), though again only two absolute phases develop.

Each of these results is quite robust to variation in the parameters of the model (see

Methods), as expected from the simple and general intuition underlying the results. The

results also robustly arise across different networks run with identical parameters but begin-

ning from different random initial conditions. Figure 4 summarizes the connectivity across Place

Fig. 4

about here

128 such simulations, 64 without retinotopic scatter (Fig. 4A) and 64 with random retino-

topic scatter (Fig. 4B). In both cases, excitatory connections arose predominantly between

neurons of the same preferred orientation and phase, while inhibitory connections predomi-

nantly connected neurons of the same orientation but opposite phase; these tendencies were

slightly weaker with retinotopic scatter than without. To characterize the degree to which

cells became orientation selective, we defined an orientation selectivity index or OSI (see
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Methods); for calibration, the OSI was .51± .01 (mean ± stdev) for the cells in Fig. 3A and

.51± .06 for the cells in Fig. 3B, and cells with OSI≥ 0.18 look well-tuned to the eye. Across

the 64 simulations without scatter, the OSI was .43± .09, while with scatter it was .41± .13;

thus cells robustly showed strong orientation selectivity. To characterize the tendency of

preferred orientations to line up across the ten cells in a simulation, for each simulation we

computed the standard deviation of the distribution of preferred orientations observed across

the ten cells (see Methods). Across the 64 simulations, this standard deviation had a mean

of 2.1 degrees, median of 0.51 degrees for the cases without retinotopic scatter, and a mean

of 15.2 degrees, median of 9.2 degrees, for the cases with retinotopic scatter (for comparison,

the standard deviation was 3.6 degrees for the cells of Fig. 3A and 9.5 degrees for Fig. 3B,

and a uniform distribution of orientations would have standard deviation 52 degrees). Thus

there was a very strong tendency for orientations to be aligned.

Extensions to Multiple Columns and Maps

We have experimented with simulations of multiple columns, with weak all-to-all coupling

between neighboring columns. We have found that multiple columns will simultaneously

develop as just described, and that adjacent columns will tend to develop similar orientation

tuning. Furthermore, adjacent columns can differ in their absolute spatial phases, which

could contribute to a greater diversity of absolute phases of cells recorded on the same

electrode. While this coupling produces some continuity of preferred orientation, it does

not produce a truly periodic map of orientations. Because excitatory connections tend to

connect correlated RFs and inhibitory connections anticorrelated RFs, and because both

correlated and anticorrelated RFs share the same preferred orientation (but have the same

or opposite absolute spatial phase, respectively), it seems unlikely that any simple between-

column wiring scheme would produce periodicity; periodicity of orientation requires that

an uncorrelated RF, representing the orthogonal orientation, be preferred at some distance.
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A similar problem appeared in our previous modeling of development of geniculocortical

synapses (Miller, 1994), for similar reasons. In that work, maps that appeared periodic to

the eye developed, but Fourier analysis showed that the maps often tended to be low-pass

(having similar power at all frequencies below some cutoff) rather than band-pass or periodic

(having a peak of power at some nonzero frequency). We expect the present model would

develop maps similar to those in Miller (1994), if we could simulate at higher resolution (we

have thus far been limited computationally to small networks – 12 x 12 columns – with only

nearest-neighbor coupling between columns).

There seem to be at least two ways that genuinely periodic maps might be produced.

First, periodicity of orientation tuning might be established by horizontal interactions among

complex cells in other layers, which respond to stimuli of any phase; the results could then

propagate back to layer 4. Horizontal interactions among complex cells that are excitatory

at short range and inhibitory at longer range, or that otherwise yield spatially periodic

activity patterns (Chiu and Weliky, 2001), can suffice to organize a periodic pattern of ori-

entations (von der Malsburg, 1973). Second, plasticity rules that might decorrelate RFs

of connected cells, by weakening connections between coactive cells, have recently been de-

scribed in layer 4 (Egger et al., 1999). If such rules operated preferentially in the horizontal

direction while the rules modeled here operated vertically, this could also lead to periodic

organization. Alternatively, perhaps V1 has specialized structures built in that ensure peri-

odicity. It is interesting that, when visual inputs are induced to innervate auditory thalamus,

orientation maps develop in auditory cortex that show continuity but do not show obvious

periodicity and appear to be low-pass rather than band-pass (Sharma et al., 2000); perhaps

this is the result expected from generic Hebbian mechanisms without V1-specific specializa-

tions.
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Discussion

These simulations for the first time address the development of a complete, functional local

circuit from unstructured initial conditions, demonstrating how the key elements of the cat

V1 layer 4 circuit can simultaneously arise. In so doing, they also address for the first time

the origins of columnar invariance: the reasons why some properties are locally invariant

in layer 4 and thus candidates for columnar invariance, while others vary locally in layer

4 and thus cannot show columnar invariance. The key elements of the cat V1 layer 4

circuit – Hubel-Wiesel patterns of LGN input, phase-specific intracortical connectivity that

produces contrast-invariant orientation tuning, and local uniformity of preferred orientation

with diversity of relative and absolute spatial phase – will all codevelop guided only by

plausible LGN activity correlations and simple Hebb-type rules of synaptic modification.

Hebbian development in the context of a mixture of excitatory and inhibitory neurons leads to

the development of at least two anticorrelated receptive field structures: if inhibitory neuron

A inhibits cell B, the two cells tend to develop anticorrelated receptive fields. Thus, properties

that are shared by anticorrelated pairs of receptive fields – e.g., preferred orientation – are

candidates for columnar invariance, while properties that differ between anticorrelated pairs

– e.g., absolute spatial phase – will differ locally in layer 4. The model that arrives at these

conclusions is very simple, but also very robust, depending primarily on these simple and

general features of Hebbian development.

The direct tests of this cat V1 model are to more directly assess the predicted phase-

specificity of intracortical connectivity – i.e., cells linked by excitatory connections should

have similar absolute spatial phase, while those linked by inhibitory connections should have

roughly opposite absolute spatial phase – and to measure the correlations of LGN activity

during development of orientation selectivity to determine whether they have the predicted

form. The two existing cross-correlation studies of pairs of simple cells recorded on the same
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electrode seem consistent with our prediction of phase-specific connectivity, although num-

bers were small in both cases. Thus, DeAngelis et al. (1999) reported that cross-correlations

indicative of monosynaptic excitatory connections were restricted to neuron pairs with sim-

ilar space-time receptive fields, which in particular meant similar preferred orientations and

absolute phase. Liu et al. (1992) reported that 3 of 3 cell pairs with antiphase receptive fields

(as assessed by temporally antiphase responses to drifting sinusoids) had cross-correlations

indicative of mutual inhibition. This is the result expected from our model: inhibitory

cells monosynaptically inhibit cells of opposite phase, while excitatory cells drive inhibitory

cells of the same phase and thus disynaptically inhibit cells of opposite phase. Liu et al.

(1992) also reported that 11/13 cell pairs that showed 80-100o temporal phase differences in

their responses had cross-correlations showing no sign of interaction, again consistent with

the phase-specific connectivity predicted here. While the correlations existing in LGN dur-

ing development of orientation selectivity have not yet been measured, a recent experiment

tested the role of the predicted LGN correlations in driving orientation selectivity in fer-

rets by blocking all ON-center input activity while leaving OFF-center activity intact. This

disruption indeed prevented development of orientation selectivity (Chapman and Gödecke,

2000), as the model predicts.

We have only considered inputs from a single eye, but given two eyes, maximally anticor-

related receptive fields would be expected to be those representing the same eye and same

orientation but having opposite absolute spatial phase. (Both correlations, for well-matched

receptive fields, and anticorrelations, for roughly opposite receptive fields, are expected to be

weaker between the eyes than within the eyes. For example, in the presence of vision, cor-

responding points in the two eyes do not always see the same stimulus, because objects are

located at different disparities; averaging over scenes would reduce both correlations and an-

ticorrelations between the eyes relative to those within the eyes. Before vision and somewhat

before the development of orientation selectivity, correlations exist between the two eyes’ ac-



Kayser and Miller 13

tivities in the LGN that are weaker than within-eye correlations (Weliky and Katz, 1999).

Correlations at the time that orientation selectivity develops have not yet been measured.)

Thus, the same principles would be expected to predict that ocular dominance is locally

invariant, consistent with the fact that ocular dominance shows columnar organization.

Diversity of Receptive Field Properties

The model with retinotopic scatter can produce a diversity of relative spatial phases of

receptive fields, in agreement with DeAngelis et al. (1999), who found that relative phase

varied roughly randomly between two cells recorded on the same electrode. However, a

probable weakness of the model is that it produces only two absolute spatial phases. The

experimental data on this point suggests that multiple absolute phases are found at single

recording sites, though the data are not conclusive. DeAngelis et al. (1999) found that

correlation coefficients between the two spatial receptive fields of cell pairs ranged fairly

uniformly between -1 and 1, which is the result expected if absolute phases show a random

distribution. However, this measure is affected by differences in the spatial positions of the

two receptive fields as well as by differences in their absolute phases. For example, Fig. 2 of

DeAngelis et al. (1999) shows two cells that appear to have roughly identical absolute phase,

but due to spatial position differences the correlation coefficient of their spatial receptive

fields is only 0.23. Thus it is difficult to draw a firm conclusion as to the distribution of

absolute phases from the similarity data. Earlier studies examined the temporal phase of

response of cells to sinusoidal gratings, reporting that pairs of cells recorded on the same

electrode tended to respond either in antiphase (180o out of phase) or in quadrature (90o

out of phase) (Liu et al., 1992; Pollen and Ronner, 1981). Such measurements reflect a

combination of absolute spatial phase and the temporal phase of response. For example, two

cells could respond with 90o temporal phase difference if they had the same absolute spatial

phase, but one received non-lagged LGN inputs and one received lagged LGN inputs (Saul
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and Humphrey, 1992).

Both the similarity data, showing that spatial correlation coefficients can approach −1,

and the finding of cells in temporal antiphase seem consistent with the idea of the present

model that each of two opposite absolute phases can be found among cells recorded on the

same electrode. However, both the similarity data, showing many cell pairs with weak cor-

relation coefficients, and the finding of neuron pairs in quadrature suggest that nearby cells

may have uncorrelated as well as correlated or anticorrelated receptive fields. As discussed

previously, the experiments suggest, consistent with the model, that only the strongly cor-

related or strongly anticorrelated pairs show signs of connections (excitatory or inhibitory,

respectively); the uncorrelated pairs appear to be unconnected. This suggests that our

“columns” may be but one strongly connected set among many such sets that coexist in

the same local spatial region, so that a more complete model would have multiple spatially

overlapping “columns”, with stronger connectivity within a column and weaker connectivity

between columns. Indeed, as noted previously, in simulations of development of multiple

10-cell “columns” with weak connections between adjacent columns, adjacent columns can

develop similar preferred orientation but differ in their absolute spatial phases. A more com-

plete model would also have a greater diversity of spatial and temporal receptive field types,

which would provide more dimensions along which receptive fields may differ and become

decorrelated. In the model, the preferred spatial frequency of cells is determined by the cor-

relation structure of the LGN inputs, and there is no diversity in this structure – correlations

between inputs are simply determined by the distance between two inputs. In reality, there

are multiple subtypes of LGN cells and diversity of LGN receptive field shapes and sizes,

which are likely to lead to diversity of correlations and in turn to diversity of cortical pre-

ferred spatial frequencies. In addition, we have considered only two temporal types of LGN

inputs: an ON and an OFF cell representing the same location respond at opposite tempo-

ral phases to a sinusoidally-modulated stimulus. In reality there is a bimodally-distributed
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continuum of ON-center temporal response types and similarly for OFF-center (Wolfe and

Palmer, 1998), where the modes represent lagged and non-lagged cells.

The key question for a model is why, as more complexity is considered, preferred ori-

entation should remain locally invariant as more variability arises in other receptive field

properties. We suggest that this may arise for the same reason we have already seen in the

more simplified context: even as other response properties vary, cells will tend to maximize

correlations (for excitatory connections) or anticorrelations (for inhibitory connections) by

maximizing subregion overlap or antioverlap, and this in turn requires cells to maintain a

roughly common preferred orientation. Alonso et al. (2001) studied connections from LGN

to cortical simple cells, and showed that spatial phase was the strongest determinant of a

connection – i.e. an LGN cell’s ON-center would overlap an ON-subregion of a simple cell to

which it connected – but that other properties, such as a match of center size to subregion

width or a match of temporal response properties, more weakly constrained connectivity.

This suggests that variations in these other properties have a weaker impact on the correla-

tions that guide development. If the same principles apply to intracortical connections, then

preferred spatial frequency (the cortical analogue of center size) and temporal response prop-

erties might vary between, or even within, weakly connected columns, but subregions would

still become arranged to maximize overlap or anti-overlap and therefore align their orienta-

tions. (Preferred spatial frequency also shows some columnar organization (Issa et al., 2000),

but this organization is much weaker than that of orientation and there is approximately a

±0.5 octave variation in preferred spatial frequency among cells at the same recording site,

A. Emondi, A. Kurgansky, S. Rebrik and K.D. Miller, unpublished results.) Such variation

of more weakly constrained response properties might be sufficient to account for the exper-

imental data. A central issue for future theoretical work is to explore whether and under

what conditions such a scenario can indeed generate greater receptive field diversity while

maintaining roughly constant preferred orientations.
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Comparison to Previous Work

The present work knits together elements of our previous work. We have previously shown

that a correlation structure like that used here will lead to development of a Hubel-Wiesel

pattern of LGN inputs to simple cells, in the context of fixed intracortical connectivity

(Miller, 1994), but we did not address the simultaneous development of intracortical con-

nections. We have also previously shown that the model intracortical circuit cartooned in

Fig. 1 can account for many aspects of the functional responses of cat V1 layer 4 (Ferster and

Miller, 2000; Kayser et al., 2001; Krukowski and Miller, 2001; Lauritzen et al., 2001; Troyer

et al., 1998), but we did not address the development of this circuit. Here we are for the

first time addressing the development of a fully functional circuit, including the simultaneous

co-development of geniculocortical and intracortical connectivity, as well as proposing, based

on this, more general principles that may underly the development of properties that show

columnar invariance.

Some previous models have examined codevelopment of horizontal intracortical connec-

tions and LGN connections in a 2-dimensional model cortex (Bartsch and van Hemmen,

2001; Sirosh and Miikkulainen, 1997). These models examined development of horizontal

patterns of intracortical connections (across the 2-dimensional map), but did not address

the development of the local intracortical functional circuit. Olson and Grossberg (1998),

in work contemporary with the present work (e.g., see Kayser and Miller, 1998), showed

that, if intracortical circuitry were fixed so that cortical cells came in mutually inhibitory

“dipole” pairs, and LGN inputs then developed given this fixed circuitry, then the mutually

inhibitory pairs would develop antiphase receptive fields. However, they did not study how

such intracortical and LGN connectivity could co-develop.
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Generalizations for Layer 4 of the Cortical Circuit

The present results suggest direct generalizations from the functional properties of cat V1 to

more general properties of the cortical layer 4 circuit, which in turn can be tested experimen-

tally. The only thing specific to cat V1 in our model is the nature of the inputs received – the

inputs come in two varieties, ON-center and OFF-center, and have a correlation structure

similar to that shown in Fig. 2A – yet this is sufficient to account for at least a functioning

skeleton of the layer 4 cat V1 circuit. This suggests the generalization that layer 4 more

generally develops through simple Hebb-like rules, instructed simply by the correlations in

the activities of its inputs. Given a co-developing mix of excitatory and inhibitory cells, this

leads naturally to opponent inhibition: cells become excited by one coactive input pattern

and are inhibited by the input pattern most anticorrelated with this pattern.

Opponent inhibition has been a common theme in studies of the visual system (e.g., An-

derson et al., 2000a; Ferster, 1988; Hirsch et al., 1998; Palmer and Davis, 1981), where the

fundamental opponency between light and dark stimuli has a neural correlate in ON- and

OFF-center inputs, but to our knowledge it has not previously been considered that oppo-

nency might be a more general cortical property. What might constitute opponent stimuli in

other systems? In the auditory system, spectro-temporal receptive fields that resemble the

spatial receptive fields of simple cells are observed (e.g., deCharms et al., 1998), raising the

possibility that opponency might be observed between cells with antiphase spectro-temporal

receptive fields (that is, pairs in which one cell is excited at the frequencies and delays that

inhibit the other). More generally, opponency requires that the two opponent stimuli activate

largely nonoverlapping spacetime patterns of inputs, which patterns nonetheless converge in

the same local region of cortex. Application to other systems depends on considering tha-

lamic activity patterns in this light, as well as on directly studying “who inhibits whom” in

cortex.
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What is the function of opponent inhibition in layer 4? Provided that this feedforward

inhibition dominates feedforward excitation (as suggested by the prolonged inhibition fol-

lowing nonspecific stimulation of LGN, Ferster and Jagadeesh (1992), or cortex, Chung and

Ferster (1998)), it enables layer 4 cells to respond specifically to the input pattern that ex-

cites them, in a manner invariant to stimulus magnitude (Troyer et al., 1998) (Fig. 5); this Place

Fig. 5

about here

is the generalization of contrast-invariant orientation tuning in V1. The argument, which is

spelled out in the legend of Fig. 5, is essentially very simple: suppose a cell is excited by an

input pattern A, and receives opponent inhibition driven by the anticorrelated input pattern

Ā. The set of inputs active in pattern A will be essentially non-overlapping with the set

active in pattern Ā. If an input pattern B is uncorrelated with A but shares some inputs

with A, it will also tend to share some inputs with Ā; because the inhibition is dominant,

this will yield a net inhibition. Thus a pattern must be very close in structure to A to yield

net excitation. The degree of “closeness” required increases with the strength of inhibition

but is largely invariant to changes in stimulus magnitude. Thus a cell can respond to its

preferred stimulus A even when presented at very low magnitude, but will not respond to

some partially overlapping stimulus B even when presented at high magnitude.

Layer 4 cells project strongly to layers 2/3 (Callaway, 1998; Gilbert, 1983; Lübke et al.,

2000), where in V1 complex cells are found (Gilbert, 1983) – cells that respond to stimuli

of a given orientation, independent of spatial phase. This suggests a further generalization,

that layer 2/3 cells may be sensitive to the stimulus attributes that anticorrelated opponent

pairs have in common, and insensitive to the attributes that differentiate such pairs.

Conclusion

In sum, we predict that experiments that ask “who inhibits whom?” in layer 4 of other

cortical areas (e.g. primary somatosensory or auditory cortex) will find the answer to be

neurons that represent patterns that are anticorrelated in the input structure, as expected
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from general considerations of Hebbian learning; that the features that distinguish these

opponent pairs will not be invariant within a column, while features that they have in

common will be candidates for columnar invariance; that this opponent inhibition will endow

layer 4 cells with magnitude-invariant pattern recognition; and that layer 2/3 cells may

be sensitive to the features that opponent pairs have in common and insensitive to the

features that distinguish them. Further study will certainly complicate this simple picture.

For example, the concepts of “correlated” and “anticorrelated” activity patterns will need

further refinement: on what time scales must neurons be coactive (or not) to be correlated or

anticorrelated with respect to the Hebbian plasticity rules operating in neocortex (Feldman,

2000; Markram et al., 1997; Song et al., 2000)? Nonetheless, we believe that these ideas

provide a novel and testable framework for studying the organization of cerebral cortex that

is solidly rooted both in the many person-years of experimental study of cat V1 and in simple

consequences of Hebbian development.

Methods

Cortical cells are arranged in a column of 6 excitatory cells and 4 inhibitory cells. (Columns

with 16 excitatory cells and 4 inhibitory neurons, or 80 and 20, have also been used, with

similar results.) Two 16× 16 arrays of LGN cells, representing ON and OFF LGN neurons

respectively, provide input. All cortical cells receive connections from both ON and OFF

LGN neurons over a circle of diameter 13 centered on the cell’s retinotopic position; the

strength of connection is scaled by an arbor function identical to that used previously (Miller,

1994), with maximum value set to 1. All cortical cells are centered on the same retinotopic

point unless retinotopic scatter is introduced (e.g., Fig. 3B). To model scatter (Albus, 1975;

Hubel and Wiesel, 1974), RF position is randomly chosen from a uniform distribution within

an area of radius 3 (half the arbor function radius). Intracortical weights are initially all-to-
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all; each cortical cell, whether excitatory or inhibitory, receives projections from all other cells

in the column (no self-connections are made). All weights are initially assigned randomly

from a uniform distribution ranging from 0.4 to 0.6, scaled by the arbor function in the

case of geniculocortical weights. Each class of weight (i.e. geniculocortical and the 4 types

of intracortical postsynaptic weights – see below) is then multiplicatively renormalized such

that the sum of all weights of each type received by a cell matches a preset value for each

cell, as described below.

We construct LGN activity patterns with appropriate correlations as follows (Goodhill,

1993). An LGN neuron with two-dimensional position α and of type ON (N) or OFF (F )

is randomly assigned an initial activity r
N/F
0 (α) of −0.5 or 0.5. These activities are then

correlated with strength h = 0.2 (where h = 0.5 is perfect correlation, and h = 0.0 is no

correlation) between ON and OFF layers: rN/Fcor (α) = (1 − h)r
N/F
0 (α) + hr

F/N
0 (α). Values

of h ≥ 0.1 gave essentially identical results. The values rN/Fcor are then convolved with a

difference-of-Gaussians function C(α) = e−α
2/σ2 − (1/9)e−α

2/(3σ)2
for σ = 1.54 grid units;

C is applied directly to the ON LGN, but multiplied first by −1 for the OFF LGN. This

yields a set of spatially correlated activities rN/Fsc . The function C embodies our hypothesis

about the second-order structure of LGN activity patterns: ON (OFF) cells tend to fire

with other ON (OFF) cells at short distances, but to fire with OFF (ON) cells at larger

distances (Fig. 2A,B). Wrap-around boundary conditions are applied at LGN grid borders.

Finally, all activities are rectified at zero to give rise to LGN spike rates sN/Fα =
[
rN/Fsc (α)

]+
(here, [x]+ = x, x > 0; = 0, otherwise). Note that the correlation structure that results

is not precisely like CORI of Fig. 2A, because it has an additional positive-going phase at

further retinotopic separations, but this correlation structure also meets the conditions we

have defined (Miller, 1994) for development of simple cell receptive fields.

We give each cortical cell an index (from 1 to 10) and let E , I represent the indices of the

excitatory or inhibitory cells respectively. Let wxy represent the weight from cortical cell y
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to cortical cell x, and wN/Fxα represent the weights from ON/OFF LGN cells α to cortical cell

x. Given the LGN activities sN/Fα , the activity vx of cortical cell x is computed as follows:

dvx
dt

= −vx +
∑
y∈E

wxyf
E(vy)−

∑
y∈I

wxyf
I(vy) +

∑
α;J∈{N,F}

wJxαs
J
α (1)

The functions fE and f I are linear approximations to a sigmoid of the form f(v) = 0, v ≤ 0;

= γv, 0 < γv < fmax; = fmax, γv ≥ fmax. For fE, γ = fmax = 1; for f I , γ = 1.5 and fmax = 2,

reflecting the higher gain and peak firing rate of inhibitory neurons. For a given LGN input

pattern, we iterate cortical activity until a steady state is reached, and then apply plasticity

rules to this combination of LGN and cortical activity; a new LGN input pattern is then

generated and the process repeated.

Excitatory connections, both geniculo- and intra-cortical, develop based on a Hebbian

covariance rule, so that cells that “fire together, wire together”. For a given intracortical

excitatory weight wxy, for instance, if v̄ is the recent time-average of the activity v, then

δwxy ∝


vx > v̄x or vy > v̄y : (vx − v̄x)(vy − v̄y)

otherwise : 0
(2)

Inhibitory connections learn based on a rule derived from the experimental work of Ko-

matsu (Komatsu, 1994, 1996; Komatsu and Iwakiri, 1993). In rat visual cortical slice he

found:

1. In the presence of blockers of excitatory neurotransmission (DNQX and APV), a stable

increase in the initial slope of the IPSP (LTP) occurs in response to brief tetani (Ko-

matsu and Iwakiri, 1993);

2. This LTP is not dependent on post-synaptic voltage (Komatsu, 1994);

3. LTP induction is prevented by the application of GABAB, but not GABAA, antago-

nists (Komatsu, 1996);
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4. If APV is removed from the bath solution, tetanic stimulation or application of NMDA

to the post-synaptic neuron induces a decrease in the initial slope of the IPSP (Komatsu

and Iwakiri, 1993) (LTD);

We translated these findings into the following computationally convenient rules for in-

hibitory plasticity:

1. LTP occurs when the postsynaptic cell is both receiving more inhibition than its recent

time average, irrespective of the membrane voltage, and the presynaptic input is greater

than its recent time average.

2. LTD occurs when the postsynaptic cell is depolarized, and the presynaptic input is

greater than its recent time average.

3. Under other conditions, no change occurs.

This rule takes the following form for an inhibitory weight wxy:

δwxy ∝ −[vx − v̄x]+[vy − v̄y]+ + [ix − īx]+[vy − v̄y]+ (3)

where ix =
∑
z∈I wxzvz is the summed inhibitory input received by the postsynaptic cell.

In practice, the above weight changes are accumulated over some number of input pat-

terns (usually 40) before the values of the weights are updated. Additionally, before the

constraints described below are applied, for the first 200 batches (sets of 40 patterns) of each

simulation we separately normalize (1) all the geniculocortical and (2) all the intracortical

weight changes such that their respective rms values match preset learning rates (generally

an rms value of 0.001 for each). This normalization controls the speed with which the simu-

lations develop. After the first 200 batches, the last normalization factor used is applied for

the remainder of the simulation. We ran a total of 15000 batches per simulation.

To implement competition, we follow weight updates with subtractive normalization of

various weight sums (Miller and MacKay, 1994). We conserve the sum of each weight
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type received by each cell: geniculocortical weights, intracortical excitatory weights, and

intracortical inhibitory weight. The conserved weight sums were: geniculocortical: 1.0;

E → E: 0.125; E → I: 0.5; I → E: 2.25; I → I: 0.25. These numbers were chosen

by running a simulation with all weight sums equal to 1.0, then multiplicatively scaling

weight sums in the final state to determine those sets of sums that gave contrast-invariant

orientation tuning, and choosing one of the latter. The resulting numbers reflect the overall

dominance of inhibition, as required to achieve such tuning (Troyer et al., 1998) and as

suggested by experiments (Chung and Ferster, 1998; Ferster and Jagadeesh, 1992). Inhibitory

synaptic strengths were multiplied by a factor which ramped linearly from 0.2 to 1.0 over

the first 6000 batches and remained 1.0 thereafter. This increase in inhibitory strength,

which mimics the experimentally observed increase of inhibitory strength over development

(Ben-Ari et al., 1997; Luhmann and Prince, 1991), was included because of concern that the

dominant inhibition could initially prevent excitatory cells from responding to any pattern

and thus from learning. We also conserved the total weight projected by each cortical cell.

This was set for each cell to the value found after initial normalization of received weights

to the above values. Over 64 columns, the conserved projected weights were: excitatory,

0.44 ± 0.02 (mean ± stdev); inhibitory, 3.56 ± 0.14. The normalization was applied either

pre- or post-synaptically at alternating time points, for practical reasons: simultaneously

satisfying both pre- and postsynaptic constraints is computationally difficult, but with a

small learning rate is well approximated by alternation.

Weights are bounded below by 0, and above by a maximum value. This maximum is

0.018 times the value of the arbor function at a given retinotopic position for geniculocortical

weights, and 0.5 times the received weight sum for each intracortical weight type. Weights

in these simulations ultimately tend to go to the maximal or minimal allowed values (Miller

and MacKay, 1994) so, given the constraint on total synaptic weight received, the choice of

the maximum value determines the number of nonzero synapses ultimately received, i.e. the
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degree of pruning of the initial all-to-all connectivity. The chosen values lead to pruning of

somewhat more than 1/2 of geniculocortical connections (effects of varying this parameter

were examined in Miller (1994, Fig. 10)), and to pruning of intracortical connections so that

each cell tends to receive intracortical input from two excitatory and two inhibitory cells.

Results are not sensitive to these values; the main requirement is that more than 1/2 of both

geniculocortical and intracortical connections be pruned, so that geniculocortical inputs can

develop clean ON/OFF segregation and intracortical connections can become restricted to

those that are phase appropriate. (These arguments are true of the 10-cell simulations; we

have not systematically studied other cases.) To simultaneously constrain individual weights

and weight sums, we follow the algorithm of Erwin and Miller (1998).

The network is quite robust to variation in parameters. The standard deviation of the

range of orientations preferred by cells within a column is unaffected by varying the sizes

of any one of the weight sums (geniculocortical, E → E, E → I, I → E, I → I) between

0.25 and 4, while leaving the other four fixed; as mentioned above, the weight sums chosen

were selected primarily to ensure contrast-invariant orientation tuning in the mature circuit.

Varying “averaging” parameters such as the number of stimulus presentations over which

we averaged before updating the weights, or the number of activity iterations in cortex for

each stimulus presentation, had no effect on cortical alignment of orientations provided the

number of iterations was 5 or greater. Even differences between geniculocortical and intra-

cortical learning rates of up to 5 orders of magnitude had only minimal effects on orientation

alignment, provided the network was shown enough stimuli to allow development at very

low learning rates. The ramping-up of inhibitory strength could proceed over anywhere

from 3000 to all 15,000 batches without altering results. A thorough analysis of parameter

dependence of results in the 10-cell model can be found in Kayser (1999).

To determine the orientation selectivity index (OSI) and preferred orientation or spatial

frequency for a cell, we take the Fourier transform of the LGN receptive field, defined as the
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difference between ON and OFF weights at each point in the receptive field. The preferred

orientation or preferred spatial frequency is taken to be the orientation or spatial frequency

corresponding to the maximum of the Fourier transform. To compute the OSI, we form

an orientation tuning curve Rj = R(θj) as the maximum of the amplitude of the Fourier

transform in each of 18 10-degree orientation bins, where the jth bin is centered on θj.

We then take the Fourier transform of this tuning curve, R̃n =
∑
j e

2πinj/18Rj. The OSI

is then defined to be
√

2|R̃1|/
√∑

i |R̃i|2. The factor of
√

2 is included so that the OSI is

1 if all the power is in the first harmonic (note, because Rj is real, |R̃1| = |R̃−1| where

R̃−1 = R̃17). We showed in Miller (1994) that, without the factor of
√

2, cells appeared

strongly orientation selective to the eye for OSI≥ .13, which corresponds to OSI≥ .18 with

the present normalization. To determine the spread of preferred orientations across a column,

we computed the standard deviation of the distribution of preferred orientations as follows.

Preferred orientations were in the range 0 to 180 degrees. We considered a line ranging from

0o to 360o, and placed each preferred orientation θ twice on this line, once at θ and once

at 180o + θ. We then found the shortest line segment that contained all of the column’s

preferred orientations once. We then computed the ordinary mean and standard deviation

about this mean of the orientations on this segment.

To determine orientation tuning curves, we display fixed, oriented gratings of 36 ori-

entations and 8 spatial phases, with spatial frequency equal to the mean preferred spatial

frequency across cells in multiple simulations with identical parameters. The steady-state

response of each cortical neuron to each stimulus is determined as described above. Re-

sponses are averaged over spatial phases to yield the neuron’s orientation tuning curve. To

determine the LGN response to a grating of a given contrast, we equate the mean activity of

the LGN inputs during the developmental simulations (about 0.275 in our arbitrary units)

with a rate of 15 Hz, corresponding to experimentally observed background rates (Levine

and Troy, 1986). We then determine the firing rates in response to a sinusoidal grating of a
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given contrast from the data of Sclar (Sclar, 1987) for LGN responses to 2 Hz gratings. We

assume LGN firing rates are sinusoidally modulated across space about the background rate

of 15 Hz, except that negative rates are set to zero, with ON-center and OFF-center LGN

cells showing opposite phase of the modulation; the strength of this sinusoidal modulation

(0.3932, 0.5977, 0.9366 and 1.3262 for 10, 20, 40, and 80% contrast, respectively) is set so

that the first harmonic of the resulting rectified sinusoid equalled Sclar’s value.
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Figure Legends

Figure 1

Receptive Field and Circuit Structure. A. Cartoon of receptive fields (RFs) of

simple cells preferring vertically-oriented stimuli. ON subregions are indicated by white,

OFF subregions by black. Position of each RF in visual space is indicated by position within

the figure – ie. within each RF pair, the RFs are slightly offset. The RFs within the left

pair share the same relative spatial phase (relative to the RF center), but have differing

absolute spatial phases (relative to a fixed point in the visual world), while the RFs within

the right pair have differing relative phases, but share the same absolute phase. B. Cartoon

of the postulated mature circuit. Here, all four indicated RFs are meant to be centered on

the same spatial position, so that identical receptive fields represent cells with the same

absolute spatial phase, while opposite receptive fields represent cells with opposite absolute

spatial phase. Excitatory weights tend to link neurons of the same absolute spatial phase,

while inhibitory weights tend to connect neurons of the opposite absolute spatial phase. The

circuit model cartooned here, excepting inhibitory-to-inhibitory connections, was previously

shown to account for many experimental observations, including the contrast-invariance of

orientation tuning (Kayser et al., 2001; Krukowski and Miller, 2001; Lauritzen et al., 2001;

Troyer et al., 1998).

Figure 2

The Role of Correlated LGN Input. A. Development of geniculocortical (GC) con-

nections. It was previously demonstrated (Miller, 1994) that a simple correlation structure

is sufficient to generate simple cell receptive fields (upper right). The required correlation

structure is summarized by the shape of the function CORI (lower left), which represents
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the difference between one LGN neuron’s correlation with another of the same center type

and another of the opposite center type, each at the given retinotopic separation. The il-

lustrated shape of CORI means that activity patterns tend, stochastically, to resemble that

shown at upper left: when ON neurons are firing, they tend to be most coactive with other

ON neurons at small retinotopic distances, but with OFF neurons at larger distances. If

LGN activities show such a correlation structure, then simple cells arise naturally through a

Hebbian learning rule. B. Sample LGN input patterns at a random time step, instantiating

a correlation structure like CORI . The activities of individual LGN cells (in arbitrary units,

see Methods) are indicated by the scale bar.

Figure 3

Development and Mature Function of the Cortical Circuit. A. Geniculocortical

weights for each of the ten cells in the column, at two different times, are shown by the circular

afferent receptive fields. Grayscale denotes the difference between ON and OFF weights from

a given retinotopic position to the given cell, normalized separately in each panel to cover the

range between maximum and minimum ON/OFF difference across all cells in the panel. ON-

dominated and OFF-dominated positions are white and black, respectively, while positions

with equal ON and OFF weights are gray. Intracortical weights to and from a representative

cell (#1) are represented by circles and squares, respectively, next to geniculocortical weights.

Diameter/length of circles/squares corresponds to size of weight (normalized to maximum for

that weight type, see Methods). Top six cells are excitatory (“E”), bottom four are inhibitory

(“I”). Left: Initial condition. ON and OFF weights are roughly equal and of moderate size.

Intracortical connections are all-to-all (excepting self-connections) with weights of a given

type of roughly equal size between all cell pairs. Middle: Final condition. The 10 cells in the

column have now all developed simple-cell geniculocortical structure with strong ON/OFF
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segregation (gray regions correspond to very small or zero weights). The intracortical weights

are very largely, though not completely, phase-specific: excitatory (inhibitory) projections

are made to cells of similar (opposite) absolute spatial phase. We number cells in left-

to-right and then top-to-bottom order, e.g. cell 2 is at upper right and cell 9 at lower

left. Right: Top: the full 10 × 10 matrix of intracortical weights in the final condition is

shown, normalized to the maximum allowed for the given type of weight, on a scale from 0

(white) to 1 (maximum allowed weight, black). Projecting cell is shown on horizontal axis,

receiving cell on vertical axis, with numbering of cells as in middle panel. Connections show

almost perfect phase specificity. Bottom: Excitatory neurons within the developed column

display contrast-invariant orientation tuning. Response of cell 1 to gratings shown at 10%,

20%, 40%, and 80% contrast is indicated by increasing gray-level. Numbers at top right

in each case indicate mean and standard deviation of best Gaussian fit to each response

distribution, showing invariance of tuning widths with contrast. B. As in A, except that

the position of each receptive field is shifted from the site’s average location by a random

amount (representing retinotopic scatter of the RF centers, Hubel and Wiesel (1974), Albus

(1975)). The circles in the left and middle plots indicate the RF position of cell #6. In the

final condition, excitatory (inhibitory) connections are again made between cells of similar

(opposite) absolute spatial phase.

Figure 4

Robustness of the model results. Total intracortical weight connecting two cells vs. their

difference in preferred orientation (∆Ori) and in absolute phase (∆phase), shown across

all connected pairs of cells in 64 simulations without retinotopic scatter in A, and in 64

simulations with random retinotopic scatter in B. Left shows all excitatory weights and right

shows all inhibitory weights. Bins are colored white when there were no weights in the given
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bin. A cell’s preferred orientation and phase were taken to be the orientation and phase

corresponding to the peak of the Fourier transform of the cell’s LGN receptive field (defined

as the difference between ON-center and OFF-center strength from each location); therefore

when orientations are significantly different, phase differences become less meaningful.

Figure 5

Why dominant opponent inhibition yields magnitude-invariant form recognition.

A. The problem of magnitude-invariant form recognition. A simple cell RF is stim-

ulated either by an optimally-oriented bar at low contrast (left; low contrast denoted by thin

dashed lines), or an orthogonally oriented bar at high contrast (right; high contrast denoted

by thick dashed lines). The optimal bar weakly excites the ON-center LGN inputs to the

cell; the orthogonal bar strongly drives a subset of these ON-center inputs, while pushing a

subset of OFF-center inputs down to zero firing rates. Because this suppression is limited at

zero firing rate, the orthogonal bar evokes a net excitatory input. The two stimuli can thus

be arranged to give the same pulse of LGN input to the cell. Yet the cell should respond to

its optimal stimulus even at low contrast, and fail to respond to the orthogonal stimulus even

at high contrast. We generalize this as follows: if a cell is wired to respond to input pattern

A (the inputs evoked by the vertical bar), then some uncorrelated pattern B (the inputs

evoked by the horizontal bar) will randomly share some inputs with A. Because firing rates

are rectified at zero and background firing rates are low, B at high magnitude will evoke net

excitation, strongly driving the inputs it shares with A while only weakly lowering the drive

of inputs that it inappropriately stimulates. B. How dominant opponent inhibition

solves the problem of magnitude-invariant form recognition. Let Ā be the input

pattern most anticorrelated with A; in the example of (A), this would be the inputs evoked

by a dark bar over the ON subregion. Because input firing rates are non-negative, Ā is
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roughly orthogonal to A: inputs active in A are near 0 firing rate in Ā, and vice versa.

We show them as orthogonal. We show two orthogonal dimensions, the A and Ā direc-

tions, in the space of possible input patterns. Unit-length vectors in the A and Ā directions

are shown in the inset in the upper left quadrant. Dominant opponent inhibition means

that a cell selective for A receives strong inhibition from cells driven by Ā, with weight

w > 1; the vector −wĀ is shown along the negative barA axis. Assume the cell responds if

A−wĀ > 0; the vector A−wĀ is shown in the lower right quadrant. The dashed line in

the upper right quadrant is the line A−wĀ = 0 (this line is perpendicular to A−wĀ, and

runs through the origin); input vectors that lie below this line have A−wĀ > 0 and thus

evoke a response. Non-negative firing rates mean that input patterns can only be located

in the upper-right quadrant. Thus, the set of possible input patterns that evoke a response

is shown by the shaded region. The shape of this region shows that, for all magnitudes of

stimuli, the cell only responds to input patterns that are close in shape (i.e. in vector direc-

tion) to the optimal pattern A. Stated more simply, because an uncorrelated input pattern

B randomly shares some inputs with both A and Ā, it evokes net inhibition and the cell

will not respond to it at any magnitude.
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