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4 Complex Numbers

We are going to need to deal with complex numbers to deal with nonsymmetric matrices. (Moreover,
complex vectors and matrices are needed to deal with the Fourier transform.) So we begin by
reminding you of basic definitions about complex numbers:

Definition 4.1 A complex number c is defined by c = a + bı, where a and b are real and
ı =
√
−1. We also say that a is the real part of c and b is the imaginary part of c, which we may

write as a = RE c, b = IM c.

Of course, a real number is also a complex number, it is the special kind of complex number
with imaginary part equal to zero. So we can refer to complex numbers as a more general case that
includes the reals as a subcase.

In what follows, when we write a complex number as a+ bı we will mean that a and b are real;
it gets tiring to say “with a and b real” every time so we will omit saying this.

4.1 Motivation: Why complex numbers?

Why do we need complex numbers in thinking about real vectors and matrices? You may recall
one central reason why complex numbers are needed in analysis: a kth-order polynomial f(x) =∑k

i=0 aix
i with real coefficients ai need not have any real roots (a root is a solution of f(x) = 0).

For example, consider the equation x2 = −1, which is just the equation for the roots of the
polynomial x2 + 1; the solution to this equation requires introduction of ı. Once complex numbers
are introduced, k roots always exist for any kth-order real polynomial. Furthermore, the system is
closed, that is, k roots always exist for any kth-order complex polynomial (one whose coefficients
ai may be complex). Once we extend our number system to complex numbers so that every real
polynomial equation has a solution, we’re done – every complex polynomial equation also has a
solution, we don’t need to extend the number system still further to deal with complex equations.

The same thing happens with vectors and matrices. A real matrix need not have any real
eigenvalues; but once we extend our number system to include complex numbers, every real N-
dimensional matrix has N eigenvalues, and more generally every complex N-dimensional matrix
has N eigenvalues. (The reason is exactly the same as in analysis: every N-dimensional matrix has
an associated Nth order characteristic polynomial, whose coefficients are determined by the elements
of the matrix and are real if the matrix is real; the roots of this polynomial are the eigenvalues
of the matrix). So for many real matrices, the eigenvectors and eigenvalues are complex; yet all
the advantages of solving the problem in the eigenvector basis will hold whether eigenvectors and
eigenvalues are real or complex. Thus, to solve equations involving such matrices, we have to get
used to dealing with complex numbers, and generalize our previous results to complex vectors and
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matrices. This generalization will be very easy, and once we make it, we’re done – the system is
closed, we don’t need to introduce any further kinds of numbers to deal with complex vectors and
matrices.

4.2 Basics of working with complex numbers

Other than the inclusion of the special number ı, nothing in ordinary arithmetic operations is
changed by going from real to complex numbers. Addition and multiplication are still commutative,
associative, and distributive, so you just do what you would do from real numbers and collect the
terms. For example, let c1 = a1 + b1ı, c2 = a2 + b2ı. Addition just involves adding all of the
components: c1+c2 = a1+b1ı+a2+b2ı = (a1+a2)+(b1+b2)ı. Similarly, multiplication just involves
multiplying all of the components: c1c2 = (a1 + b1ı)(a2 + b2ı) = a1a2 + (b1a2 + b2a1)ı + b1b2ı

2 =
(a1a2 − b1b2) + (b1a2 + b2a1)ı. Division is just the same, but it’s meaning can seem more obscure:
c1/c2 = (a1 + b1ı)/(a2 + b2ı). It’s often convenient to simplify these quotients by multiplying both
numerator and denominator by a factor that renders the denominator real:

c1
c2

=

(
a1 + b1ı

a2 + b2ı

)(
a2 − b2ı
a2 − b2ı

)
=
a1a2 + b1b2 + (a2b1 − a1b2)ı

a22 + b22
(4.1)

With the denominator real, one can easily identify the real and imaginary components of c1/c2.
To render the denominator real, we multiplied it by its complex conjugate, which is obtained by

flipping the sign of the imaginary part of a number while leaving the real part unchanged:

Definition 4.2 For any complex number c, the complex conjugate, c∗, is defined as follows: if
c = a+ bı, then c∗ = a− bı.

The complex conjugate is a central operation for complex numbers. In particular, we’ve just seen
the following:

Fact 4.1 For any complex number c = a+ bı, c c∗ = c∗c = a2 + b2 is a real number.

Complex conjugates of vectors and matrices are taken element-by-element: the complex conjugate
v∗ of a vector v is obtained by taking the complex conjugate of each element of v; and the complex
conjugate M∗ of a matrix M is obtained by taking the complex conjugate of each element of M.

Exercise 4.1 Note (or show) the following:

• c is a real number if and only if c = c∗.

• For any complex number c, c+c∗ is a real number, while c−c∗ is a purely imaginary number.

• For any complex number c, (c+ c∗)/2 = RE c, (c− c∗)/2ı = IM c.

The same points are also true if c is a complex vector or matrix.

Exercise 4.2 Show that the complex conjugate of a product is the product of the complex conju-
gates: (c1c2)

∗ = c∗1c
∗
2. Show that the same is true for vector or matrix multiplication, (Mv)∗ =

M∗v∗, (MN)∗ = M∗N∗, etc.

The absolute value of a real number is generalized to the modulus of a complex number:

Definition 4.3 The modulus |c| of a complex number c is defined by |c| =
√
c∗c. For c = a+ bı,

this is |c| =
√
a2 + b2.
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Figure 4.1: The Complex Plane
A complex number c = a + bı = reıθ is represented as a vector in the complex plane, (RE c, IM c)T =
(a, b)T = (r cos θ, r sin θ)T. The length of the vector is r = |c|; the vector makes an angle θ = arctan b/a with
the RE axis.

Exercise 4.3 Show that if c is a real number, its modulus is identical to its absolute value.

We can better understand complex numbers by considering c as a vector in the complex
plane, as shown in Fig. 4.1. The y-axis is taken to be the imaginary axis, the x-axis the real axis.
A complex number c = a+ bı is graphically represented in the complex plane as a two-dimensional
vector, c = (RE c, IM c)T = (a, b)T = (r cos θ, r sin θ)T where r = |c| =

√
a2 + b2 is the length of

the vector, and θ is the angle of the vector with the real axis: θ = arctan b/a (which just means
tan θ = b/a). Addition of two complex numbers is vector addition in the complex plane.

This representation in the complex plane motivates the following alternative representation of
a complex number: A complex number c = a + bı may equivalently be defined by c = reıθ, where
r ≥ 0; recall that eıθ = cos θ+ ı sin θ (see Exercise 4.4). (θ is regarded as a number in radians when
evaluating the cos and sin terms, where 2π radians = 360o; thus, eıπ/2 = i, because π/2 radians is
90o, so cosπ/2 = 0 and sinπ/2 = 1).

Exercise 4.4 In case the equation eıθ = cos θ + ı sin θ is unfamiliar, here are two ways to see why
this makes sense.

First, consider the Taylor series expansions of the functions exp(x), cos(x), and sin(x) about
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x = 0:1

ex =
∞∑
k=0

1

k!
xk = 1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + . . . (4.2)

cosx =
∞∑
k=0

(−1)k

(2k)!
x2k = 1− 1

2!
x2 +

1

4!
x4 − . . . (4.3)

sinx =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x− 1

3!
x3 +

1

5!
x5 + . . . (4.4)

Use these series and the fact that ı2 = −1 to convince yourself that eix = cosx+ ı sinx.

Second, consider the differential equation d2f(x)
dx2

= −f(x). Convince yourself that this equation is

satisfied by eıx, cosx, and sinx (recall d cosxdx = − sinx, d sinx
dx = cosx). For the function f(x) = eıx,

note that f(0) = 1 and f ′(0) = ı (f ′(0) means df
dx evaluated at x = 0). But there is at most

one solution to the differential equation d2f(x)
dx2

= −f(x) with a given initial value f(0) and initial
derivative f ′(0). Now show that f(x) = cosx+ ı sinx also has f(0) = 1, f ′(0) = ı, and satisfies the
differential equation. So, by the uniqueness of the solution, eix = cosx+ ı sinx.

Problem 4.1 Let c = a+ bı = reıθ, as above. Relate these two forms of expressing c, by showing
algebraically that a = r cos θ, b = r sin θ, θ = arctan b/a, and r = |c| =

√
a2 + b2. (Recall your basic

trig: cos2 θ + sin2 θ = 1; tan θ = sin θ/ cos θ.)

Exercise 4.5 Note that if c = reıθ, then c∗ = re−ıθ.

Exercise 4.6 Note that multiplication by a complex number c = reıθ is (a) scaling by r and (b)
rotation in the complex plane by θ. That is, given any other complex number c2 = r2e

ıθ2, then
cc2 = c2c = rr2e

ı(θ+θ2).

The complex numbers of the form eıθ — the complex numbers of modulus 1 — form a circle
of radius 1 in the complex plane. As θ goes from zero to 2π, eıθ goes around this circle counter-
clockwise, beginning on the RE axis for θ = 0 and returning to the RE axis for θ = 2π. It will be
critical to understand these numbers in order to understand the Fourier transform.

Problem 4.2 Understanding the numbers eıθ:

• Show that eıθ = 1, ı,−1,−ı for θ = 0, π/2, π, 3π/2 respectively. Thus, the vector in the complex
plane corresponding to eıθ coincides with the RE, IM, -RE, and -IM axes for these four values
of θ.

• Show that e2πı = 1.

• Show that e2πıJ = 1 for any real integer J .

• Show that eıθ is periodic in θ with period 2π: that is, eıθ = eı(θ+2π) (Hint: recall that ea+b =
eaeb for any a and b). Note that this implies that eıθ = eı(θ+2πJ) for any integer J .

Again, multiplication by eıθ represents rotation through the angle θ in the complex plane: that is,
for any complex number c = reıφ, eıθc = reı(θ+φ).

1Recall that the Taylor series expansion of a function f(x) about x = 0 is f(x) = f(0) +
∑∞

k=1
1
k!

dkf

dxk x
k where the

derivatives are evaluated at x = 0. For this expansion to be valid, the function f(x) must have finite derivatives of
all orders k, which is true of exp, sin, and cos.
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4.3 Generalization of our Previous Results to Complex Vectors and Matrices

The generalization of our previous results on vectors, matrices, changes of basis, etc. is completely
straightforward. You should satisfy yourself that, in the case that the matrices and vectors in
question are real, the statements given reduce to precisely the statements we have seen previously.

The root of all the changes is that the “absolute value” or modulus |c| of a scalar c is now given by√
c∗c rather than by

√
cc; this change percolates out to underly all of the following generalizations.

For example, the length |v| of a vector v is now given by |v| =
√∑

i v
∗
i vi =

√
(v∗)Tv. This

motivates the following: in moving from real to complex matrices or vectors, the “transpose”, vT,
is generally replaced by the “adjoint”, v† = (v∗)T. The adjoint is the “conjugate transpose”: that
is, take the transpose, and also take the complex conjugate of all the elements.

Definition 4.4 The adjoint or hermitian conjugate of a vector v is given by v† = (v∗)T =
(vT)∗: if v = (v0, v1, . . . , vN−1)

T, then v† = (v∗0, v
∗
1, . . . , v

∗
N−1).

The adjoint or hermitian conjugate of a matrix M is given by M† = (M∗)T = (MT)∗.

Note that, for a real vector or matrix, the adjoint is the same as the transpose.
One of the most notable results of the change from “transpose” to “adjoint” is the generalization

of the definition of the dot product:

Definition 4.5 The inner product or dot product of v with x is defined to be v · x = v†x =∑
i v
∗
i xi.

Note that this definition is not symmetric in v and x: v†x = (x†v)∗. The order counts, once we
allow complex vectors. This definition of the dot product is motivated by the idea that the length of
a vector should still be written |v| =

√
v · v, which now computes to |v| =

√∑
i v
∗
i vi =

√∑
i |vi|2.

The adjoint of a product behaves just like the transpose of a product: e.g., (MPQ)† = Q†P†M†,
etc.

Orthogonal matrices were defined as the set of real matrices that represent transformations
that preserve all dot products. The same definition for complex matrices yields the set of unitary
matrices:

Definition 4.6 A unitary matrix is a matrix U that satisfies U†U = UU† = 1.

Under a unitary change of basis, a vector transforms as v 7→ Uv, and a matrix transforms as
M 7→ UMU†. A transformation by a unitary matrix preserves all dot products: Uv · Ux =
(Uv)†Ux = v†U†Ux = v†x = v · x.

An orthonormal basis ei satisfies ei · ej = e†iej = δij . Completeness of a basis is represented

by
∑

i eie
†
i = 1. A vector v is expanded v =

∑
i viei where vi = e†iv. A matrix M is expanded

M =
∑

ijMijeie
†
j where Mij = e†iMej .

Symmetric matrices are generalized to self-adjoint or Hermitian matrices:

Definition 4.7 A self-adjoint or Hermitian matrix is a matrix H that satisfies H† = H.

A Hermitian matrix has a complete, orthonormal basis of eigenvectors. Furthermore, all of the
eigenvalues of a Hermitian matrix are real.

Exercise 4.7 Here’s how to show that the eigenvalues of a Hermitian matrix H are real. Let ei
be eigenvectors, with eigenvalues λi. Then e†iHei = e†i (Hei) = λie

†
iei = λi. But also, e†iHei =

(e†iH)ei = (H†ei)
†ei = (Hei)

†ei = (λiei)
†ei = λ∗i e

†
iei = λ∗i . Thus, λi = λ∗i , so λi is real.
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A real Hermitian matrix — that is, a real symmetric matrix — has a complete, orthonormal basis
of real eigenvectors.

Exercise 4.8 Note that a complex symmetric matrix need not be Hermitian. For example, satisfy

yourself that the matrix A = ı

(
a b
b a

)
is symmetric: AT = A; but it is anti-Hermitian: A† =

−A. Conversely, the matrix H = ı

(
0 b
−b 0

)
is antisymmetric: HT = −H; but it is Hermitian,

H† = H.

If a matrix has a complete orthonormal set of eigenvectors, ei, the matrix that tranforms to the
eigenvector basis is the unitary matrix U defined by U† = ( e1 e2 . . . eN ).

In short, everything we’ve learned up till now goes straight through, after suitable generalization
(taking transpose to adjoint, orthogonal to unitary, symmetric to Hermitian).

In addition, we can add one new useful definition:

Definition 4.8 A normal matrix is a matrix N that commutes with its adjoint: N†N = NN†.

Note that Hermitian matrices (H = H†) and unitary matrices (U†U = UU† = 1) are normal
matrices. The usefulness of normal matrices is as follows:

Fact 4.2 A normal matrix has a complete, orthonormal basis of eigenvectors.

We could have defined normal matrices when we were considering real matrices (as matrices N such
that NNT = NTN) but it wouldn’t have done us much good: the eigenvectors and eigenvalues of
a real normal matrix may be complex! Until we were ready to face complex vectors, there wasn’t
much point in introducing this definition.

Problem 4.3 Consider the real matrix

(
a b
−b a

)
. Show that it is normal. Show that it has

eigenvectors e0 = 1√
2
(1, ı)T, with eigenvalue λ0 = (a + bı); and e1 = e∗0 = 1√

2
(1,−ı)T, with

eigenvalue λ1 = λ∗0 = (a − bı). Show that these eigenvectors are orthonormal (don’t forget the
definition of the dot product for complex vectors).

Note that these two eigenvectors are two orthonormal eigenvectors in a two-dimensional com-
plex vector space, and hence form a complete orthonormal basis for the space. That is, any two-
dimensional complex vector v – including of course any real two-dimensional vector v – can be
expanded v = v0e0 + v1e1, where v0 = e†0v, v1 = e†1v. Note that, because e1 = e∗0, if v is real, then
v1 = v∗0.

A particular example of such a matrix is our old friend the rotation matrix: a = cos θ, b = sin θ.
Note in this case that the eigenvalues are λ0 = eıθ and λ1 = e−iθ.

Exercise 4.9 Find the components v0, v1 of the real vector (1, 1)T in the e0, e1 basis just described
in the previous problem. Satisfy yourself that, even though v0, v1, e0, e1 are all complex, the real
vector v is indeed given by v = v0e0 + v1e1. Note that v1e1 = (v0e0)

∗, so the sum of these indeed
has to be real.

Problem 4.4 Let M be a real matrix. Let ei be an eigenvector of M, with eigenvalue λi. Show
that e∗i is also an eigenvector of M, with eigenvalue λ∗i . (Hint: take the complex conjugate of the
equation Mei = λiei.)

Thus, for a real matrix, eigenvalues and eigenvectors are either real, or come in complex con-
jugate pairs.
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Finally, how does the possibility of complex eigenvalues affect the dynamics resulting from
d
dtv = Mv? If eigenvalues are complex, then v(t) will show oscillations. To see this, we return to

the expansion of the solution to d
dtv = Mv in terms of the eigenvectors ei and eigenvalues λi of

M, which still holds in the complex case:

v(t) =
∑
i

vi(t)ei =
∑
i

vi(0)eλitei (4.5)

For real λi, components simply grow or shrink exponentially. However, if λi is complex, λi = a+bı,
the corresponding component will oscillate:

vi(t) = vi(0)eλit = vi(0)eateıbt = vi(0)eat (cos bt+ ı sin bt) (4.6)

Thus, vi(t) will grow or shrink in modulus at rate a, and will oscillate with frequency b.
Of course, if M is real, then (as we’ve just seen in Problem 4.4) complex eigenvalues and eigen-

vectors come in complex conjugate pairs, so the solutions can be written as purely real functions,
although they will still involve an oscillation with frequency b. Suppose M is a real matrix with
such a complex conjugate pair of eigenvectors, e0 with eigenvalue λ0 = a+bı and e∗0 with eigenvalue
λ∗0 = a− bı. Suppose we are given the equation d

dtv = Mv. Let v0(t) represent the combination of

these two components of v, while as usual v0(t) = e†0v and v∗0(t) = (e∗0)
†v. Then

v0(t) = eat
[
v0(0)eıbte0 + v∗0(0)e−ıbte∗0

]
= 2eatRE

[
v0(0)eıbte0

]
(4.7)

Exercise 4.10 Show that Eq. 4.7 works out to

v0(t) = 2eat {[RE v0(0) cos bt− IM v0(0) sin bt]RE e0 − [RE v0(0) sin bt+ IM v0(0) cos bt]IM e0}
(4.8)

Problem 4.5 Let’s work out a more concrete example, our model of activity in a network of
neurons. Suppose we have two neurons – an excitatory neuron and an inhibitory neuron. The
excitatory neuron excites the inhibitory neuron with strength w > 0; the inhibitory neuron inhibits
the excitatory neuron with the same strength. Letting b0, b1 be the activities of the excitatory
and inhibitory neuron, respectively, and assuming no outside input (h = 0), our equation τ dbdt =
−(1−B)b + h becomes

τ
d

dt

(
b0
b1

)
= −

(
1 w
−w 1

)(
b0
b1

)
(4.9)

We have just seen the eigenvectors and eigenvalues for this case in problem 4.3. Accordingly, we
can write the solution as

b(t) = e0 · b(0)e−λ0t/τe0 + e1 · b(0)e−λ1t/τe1 (4.10)

= 2RE {e0 · b(0)e−λ0t/τe0} (4.11)

Show that this works out to(
b0(t)
b1(t)

)
= e−t/τ

(
cos(wt/τ) − sin(wt/τ)
sin(wt/τ) cos(wt/τ)

)(
b0(0)
b1(0)

)
(4.12)

Check that for t = 0 this indeed gives b(0) as it should. Note that the matrix in Eq. 4.12 is just a
rotation matrix, with θ = wt/τ increasing in time. Thus, if we think of the two-dimensional plane in
which the x-axis is the excitatory cell activity and the y-axis is the inhibitory cell activity, the activity
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vector rotates counterclockwise in time as it also shrinks in size (due to the e−t/τ term), spiralling
in to the origin. This rotation should make intuitive sense – when the excitatory cell has positive
activity, it drives up the activity of the inhibitory cell, which in turn drives down the activity of
the excitatory cell until it becomes negative, which in turn drives down the activity of the inhibitory
cell until it becomes negative, . . .. (Of course, in reality, activities cannot become negative, but this
simple linear model ignores the nonlinearities that prevent activities from becoming negative).

Exercise 4.11 Here is a repeat of section 2.5 and problem 2.9, now for unitary matrices.

1. Consider a transformation to some new orthonormal basis, ej. This is accomplished by
some unitary matrix, U that takes a vector v 7→ Uv. Show that the matrix U is given
by U† = (e0 e1 . . . eN−1 ), that is, U† is the matrix whose columns are the ej vec-
tors. To show that this is the correct transformation matrix, show that for any vector v,
Uv = (e†0v, e

†
1v, . . . , e

†
N−1v)T = (v0, v1, . . . , vN−1)

T where vj are the components of v in the
ej basis. This is what it means to transform v to the ej basis: v =

∑
j vjej, so in the ej

basis v = (v0, v1, . . . , vN−1)
T, where vj = e†jv.

2. Show that U is indeed unitary: UU† = 1. This follows from the orthonormality of the basis,
e†jek = δjk.

3. Now show that U†U = 1. This follows from the completeness of the basis,
∑

j eje
†
j = 1. As

in Problem 2.9, by staring at the expressions for U† and U, you might be able to see, at least
intuitively, that U†U =

∑
j eje

†
j (for example, note that, as you multiply each row of U† by

each column of U, the elements of ẽ0 (the first column of U†) will only multiply elements of ẽ†0
(the first row of U); the elements of ẽ1 will only multiply elements of ẽ†1; etc.). Alternatively,
you can prove it in components: show that U†U = 1 is

∑
j(ej)i(ej)k = δik, and that this is

exactly the statement of completeness in components.
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