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5 Linear Algebra and Linear Differential Equations for General
Matrices

Until now, we have restricted attention to matrices with complete orthonormal sets of eigenvectors.
This means we restricted to the set of normal matrices, meaning those that commute with their
adjoint, NN† = N†N. This also restricted us to square matrices (normal matrices are necessarily
square matrices, because if N is a non-square rectangular matrix then NN† and N†N are each
square matrices with different numbers of dimensions and so cannot be equal to one another; e.g.
if N is 4× 6 then NN† is 4× 4 while N†N is 6× 6 – check this!). We also restricted attention to
orthogonal or unitary changes of basis, since these were sufficient to get to the eigenvector basis if
eigenvectors were orthonormal.

We now consider general matrices and general linear changes of basis. The general case can be
understood almost as simply as the orthonormal case, and represents just a slight generalization of
the formalisms we’ve already learned.

5.1 Some Basics: Subspaces, Bases, and Dimension

We have been using the idea of an N-dimensional vector space very loosely. It was intuitively obvious
that N orthonormal vectors form a basis for an N-dimensional space, or that all linear combinations
of k < N orthonormal vectors form a k-dimensional subspace. Now we have to decide when any
collection of vectors forms a basis for a space or a subspace, and how many dimensions that space
or subspace has. To do this, we need to be a little more precise than we have been. We will find
that a key concept is the independence of a set of vectors, which will be defined below: any N
independent vectors in an N -dimensional space form a basis for that space, and given k independent
vectors, the set of all linear combinations of them form a k-dimensional subspace.

We start with a set of scalars, either R, the set of real numbers, or C, the set of complex
numbers. N-dimensional vectors are defined essentially as N-tuples of scalars, that is as elements
of RN or CN , along with the definition of addition of vectors (two vectors add by adding their
components) and multiplication of vectors by a scalar (defined as multiplication of each component
by the scalar). In what follows, we will simply refer to scalars, which should be taken as complex
numbers if dealing with complex vectors or real numbers if restricting to real vectors.
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We will outline the basic definitions needed to establish the concepts of subspaces, bases, and
the dimension of a subspace. Along the way we will quote, mostly without proof, a few theorems
that should be intuitively obvious.

Definition 5.1 A set F of N-dimensional vectors is called a subspace (of RN or CN ) if it is
closed under addition and scalar multiplication, that is, if for all v ∈ F , w ∈ F , and scalar λ,
v + w ∈ F and λv ∈ F .

Note that a subspace might be the entire space RN or CN , or it might be only a part of the space.
We shall use the term vector space to refer to any subspace of RN or CN .

Definition 5.2 Given a set of N-dimensional vectors vi, 0 = 1, . . . , k− 1, a linear combination
of the vi is a vector

∑
i civi for some set of scalars ci. We will call it a non-trivial linear

combination if at least one ci is nonzero.

It should be obvious from the above that, if vi, i = 0, . . . , k − 1 is some set of vectors in a vector
space F , then every linear combination of the vi is also in F (if it’s not obvious, stop and prove
it!).

Definition 5.3 Given a set of N-dimensional vectors vi, i = 0, . . . , k−1, the subspace spanned
by the vi is the set of all vectors that can be obtained as linear combinations of the vi. (If it’s not
obvious, show that this is indeed a subspace.)

Definition 5.4 For any vector space F , a set of vectors vi ∈ F , i = 0, . . . , k − 1, is said to span
F if every vector in F can be written as a linear combination of the vi.

Definition 5.5 A set of N-dimensional vectors vi, i = 0, . . . , k − 1 is independent if no non-
trivial linear combination of them is zero.

The idea of independence is intuitively simple: if the vi are not independent, then there are some
ci, not all zero, such that

∑
i civi = 0. So suppose cj 6= 0, then vj =

∑
i 6=j civi/cj , so vj can be

constructed as a linear combination of the other vectors. As a result, the space spanned by the vi
for i 6= j is the same as the space spanned by all of the vi – adding vj to the others doesn’t add
anything. On the other hand, if the vi are independent, then each vi has some component that
cannot be reached as any linear combination of the other vectors – each one contributes something
unique.

Definition 5.6 A basis of a vector space F is a set of vectors in F that (1) are independent and
(2) span F .

Theorem 5.1 Every vector space F has a basis, and every basis of F has the same number of
elements.

Definition 5.7 The number of elements in a basis of F is called the dimension of F .

Theorem 5.2 If D is the dimension of F , then any set of D independent vectors in F is a basis
of F .

Theorem 5.3 If the elements of F are N-dimensional vectors, then the dimension of F is ≤ N
(one cannot have a set of more than N independent N-dimensional vectors).
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Theorem 5.4 If ei, i = 0, . . . , D − 1 is a basis for F , then every vector in F can be expressed as
a unique linear combination of the ei.

Proof: For some v ∈ F , suppose v =
∑

i ciei and v =
∑

i diei. Then 0 = v − v =
∑

i(ci − di)ei.
But the ei are independent, so ci − di = 0 for all i.

So at this point we have established our basic results: any k independent vectors in a k-
dimensional subspace form a basis for that subspace, and every vector in the subspace can be
represented as a unique linear combination of the basis vectors. It will also prove useful to under-
stand the set of vectors orthogonal to a subspace:

Definition 5.8 We say a vector v is orthogonal to a subspace F if it is orthogonal to every vector
in F : v ·w = 0 for every w ∈ F . We say two subspaces F1 and F2 are orthogonal subspaces if
every vector in one is orthogonal to every vector in the other.

Theorem 5.5 If F is a D-dimensional subspace of CN or RN , then the set of vectors orthogonal
to F forms an N −D-dimensional subspace which is orthogonal to F .

5.2 Nullspace, Range, and Rank of a Matrix

Let S stand for either R or C. Consider a matrix M mapping vectors in SN to vectors in SP , that
is, M is a P ×N matrix. We refer to SN as the domain of M, the space upon which it acts.

Definition 5.9 The nullspace of a P × N matrix M is the subspace of SN that M maps to 0,
that is, it is {v ∈ SN : Mv = 0}. (Prove that this is a subspace.)

Definition 5.10 The rowspace of a P ×N matrix M is the subspace of SN spanned by the rows
of M.

Each row of M can be thought of as an N -dimensional vector (strictly, we are referring to the
column vector given by the adjoint of the given row vector; but we will just call this the row). The
nullspace of M is the set of vectors that are orthogonal to every row of M: the kth element of Mv
is the dot product of the kth row of M with v, and each such dot product must be zero if Mv = 0.
If the rowspace has dimension D, then the set of vectors orthogonal to this subspace has dimension
N −D, so:

Theorem 5.6 Let Dr be the dimension of the rowspace of M. Then the nullspace of M has
dimension N −Dr. The rowspace and the nullspace are orthogonal subspaces.

Definition 5.11 The range of a P × N matrix M is the subspace of SP that can be reached by
the action of M on SN , that is, it is {v ∈ SP : v = Mw for some w ∈ SN}. (Prove that this is a
subspace.)

Definition 5.12 The column space of a P ×N matrix M is the subspace of SP spanned by the
columns of M.

Each column of M can be thought of as a P -dimensional vector. The range of M is precisely
the column space of M, as can be seen as follows. Let cj , j = 1, . . . , P be the columns of M; then
for any vector v, Mv =

∑
j vjcj . (This was shown in Problem 3; recall that it can be seen by

writing (Mv)i =
∑

jMijvj =
∑

j vj(cj)i). So:
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Theorem 5.7 The range of M is equal to the column space of M. In particular, if Dc is the
dimension of the column space of M, then the range of M also has dimension Dc.

This brings us to what some have called the Fundamental Theorem of Linear Algebra. Let
dim(F) be the dimension of a subspace F . Then:

Theorem 5.8 Let M : SN → SP be a P ×N matrix. Then dim(range M) + dim(nullspace M) =
N . Equivalently, the dimension of the subspace of SN spanned by the rows of M is equal to the
dimension of the subspace of SP spanned by the columns of M: Dr = Dc.

Thus, the number of independent rows of M is equal to the number of independent columns of M.
This theorem should make some intuitive sense: the elements of the nullspace don’t add to the range
of M, because if v is in the nullspace of M (Mv = 0), then for every vector w, M(w + v) = Mw.
So the dimension of the range is reduced, compared to the dimension N of the domain, by the
dimension of the nullspace.

In particular, suppose M is a square matrix. If it has a nonzero nullspace, say Mv = 0 for
v 6= 0, then we cannot “undo the mapping”: if y = Mw, then also y = M(w + kv) for any
scalar k, so we cannot compute M−1y since many different vectors map to y. (We could, though,
compute the “pseudo-inverse”, by specifying that we map back only to vectors orthogonal to the
nullspace – for each y in the range of M, there is only one vector orthogonal to the nullspace that
maps to y.) Conversely, if no nonzero vector maps to zero, then the mapping maps N dimensions
to N dimensions and it is 1-1 and can be inverted. Of course, if Mv = 0 for v 6= 0, then v is an
eigenvector of M with eigenvalue 0, so M has a zero eigenvalue. So we have motivated:

Theorem 5.9 An N ×N matrix is invertible if and only if its nullspace is 0 (which is true if and
only if its range is N -dimensional, which is true if and only if it has N independent rows, which
is true if and only if it has N independent columns, which is true if and only if it has no zero
eigenvalues).

Finally, we define

Definition 5.13 The rank of a matrix is the dimension of its range (which is the same as the
maximal number of independent rows or of independent columns of the matrix).

We can restate the previous theorem: an N ×N matrix is invertible if and only if it has rank N .

5.3 Change of Basis for a Vector

Suppose we are in RN or CN and we want to change basis to an arbitrary (possibly non-orthogonal)
basis ei, i = 0, . . . , N − 1. How do we find the coordinates of a vector in this new basis?

The answer is simple, though it’s not immediately obvious why it is the right answer, but here it
is: form the matrix C each of whose columns is one of the basis vectors ei. By definition of a basis,
this set of vectors is independent, so C has N independent rows and columns and is invertible.
Then the coordinates of a vector v in the ei basis are given by C−1v; that is, v =

∑
i viei where

vi = (C−1v)i.
Algebraically, this result can be derived as follows. To distinguish the coordinates from the

vector v itself, let’s use b to represent the vector of desired coordinates, i.e. we are looking for
b such that v =

∑
i biei. Then we can rewrite v =

∑
i biei as v = Cb (recall Problem 3, and

remember that the ei are the columns of C). This has the unique solution b = C−1v.
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We can gain more understanding of this as follows. Let f †i represent the ith row of C−1. Then
C−1C = 1 translates into fi ·ej = δij . That is, the vector fi is orthogonal to all of the basis vectors
except ei, and it is normalized so its dot product with ei is 1. So starting with v =

∑
j bjej , we

can take the dot product with fi to find fi · v =
∑

j bjfi · ej =
∑

j bjδij = bi. So bi = fi · v, which is

just another way of stating that (b)i = (C−1v)i.
We can also gain a bit of geometric intuition into this result, as follows. fi is orthogonal to the

subspace spanned by the N−1 vectors ej , j 6= i; therefore, among the eigenvectors, only ei has any
component in the fi direction. Thus the coordinate bi = fi · v of v in the ei direction had better
exactly account for the amount of v that is in the fi direction, because none of the other ej can

contribute to this direction. Let f̂i = fi/|fi| be the unit vector in the fi direction. The amount of v
in the fi direction is f̂i · v. The amount of biei in the fi direction is f̂i · (biei) = bif̂i · ei. These two

must be equal; this gives bi = f̂i·v
f̂i·ei

= f̂i
f̂i·ei
· v = fi · v. To see the last step, note that f̂i

f̂i·ei
points in

the f̂i direction, and is normalized such that its dot product with ei is 1; that is exactly fi.
So to summarize: to find the coordinate vi in v =

∑
i viei (we’ll go back now to calling it vi

rather than bi), find the vector fi defined by (1) fi is orthogonal to the subspace spanned by the
ej for j 6= i (this defines the direction of fi) and (2) fi · ei = 1 (this defines the length of fi). Then
vi = fi · v. This is summarized by saying that, under a change of basis to the basis {ei}, vectors
are mapped v→ C−1v, where C is the matrix whose columns are ei.

5.4 Change of Basis for a Square Matrix: Similarity Transforms

How should a square N × N matrix transform under this change of basis? We use the same
arguments as before: we’ll use a prime to indicate a vector or square matrix in the new basis, e.g.
M, v are a matrix and vector in the original basis and M′, v′ are the same matrix and vector in
the new basis. Vectors in the new basis are found by applying C−1 to vectors in the old basis. We
want the action of M on any vector v to be the same in any basis, that is, M′v′ = (Mv)′. This
yields M′C−1v = C−1(Mv), or CM′C−1v = Mv for every vector v. This can only be true1 if
CM′C−1 = M, or M′ = C−1MC.

This should all remind you of what we saw before. When we had an orthonormal basis, we
considered the matrix C as the matrix all of whose columns are basis vectors (actually we called
it O†, but now we will call it C). This was an orthogonal (or unitary) matrix, C† = C−1; vectors
were transformed v → C†v, and matrices were transformed M → C†MC. If the bases are not
orthonormal, however, then C−1 6= C†; but things work much as before if we substitute C−1 for
C†. The case of an orthonormal basis was a special case of this more general rule for transforming
bases.

In particular, suppose M has a complete basis of eigenvectors ei. Then a change of basis to the
eigenvector basis turns M into a diagonal matrix D, whose diagonal entries are just the eigenvalues
of M: D = C−1MC where C is the matrix whose columns are the eigenvectors of M. But this
means M = CDC−1. We’re going to be using this, so to be sure you don’t miss it we’ll say it loud:

Fact 5.1 If M has a complete basis of eigenvectors, then M = CDC−1 where D is the diago-

1You may be wondering about non-square matrices. There is a problem: for a non-square P × N matrix M, v
and Mv live in different spaces (in SN and SP , respectively, where S is the space of scalars). We’ve introduced the
N ×N matrix C−1 as a change of basis in SN . So M′ = MC will take an N -vector from the new basis, translate it
back to the old basis (by applying C), then apply M to map it to SP . If we haven’t also changed basis in SP , then
that’s the full transformation. If we’ve also changed basis in SP by some P × P matrix D−1, then the transformed
matrix would be D−1MC: map back to the old basis in SN , apply M, then map into the new basis in SP .
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nal matrix whose entries are the eigenvalues of M, and C is the matrix whose columns are the
eigenvectors of M.

The transformation of matrices that we’ve just seen leads us to define:

Definition 5.14 Two square matrices A and B are said to be similar if A = C−1BC for some
invertible matrix C. The transform B→ C−1BC is called a similarity transform.

Many properties are preserved under similarity transforms:

Theorem 5.10 The rank of a matrix is preserved under similarity transforms.

Problem 5.1 1. Using det(AB) = (det A)(det B), prove:

Theorem 5.11 The determinant of a matrix is preserved under similarity transforms.

2. Go on to prove:

Theorem 5.12 The eigenvalues of a matrix are preserved under similarity transforms.

To prove this, note that the eigenvalues of M are the solutions λ of det(M− λ1) = 0, while
those of C−1MC are the solutions of det(C−1MC− λ1) = 0. You can rewrite the latter as
det(C−1(M − λ1)C) = 0. Use det(AB) = (det A)(det B), and the fact that C is invertible
so its determinant is nonzero, to prove that this reduces to det(M − λ1) = 0. (Note that
you’ve actually proven something stronger: that the characteristic polynomial det(M − λ1)
is preserved under similarity transforms: all similar matrices have the same characteristic
polynomial.)

3. Prove that the eigenvectors of a matrix are preserved under similarity transforms: if Mv =
λv, then (C−1MC)(C−1v) = λ(C−1v).

4. Prove A = 1 is preserved under similarity transforms;

5. Prove A = 0 is preserved under similarity transforms;

6. Prove “A is the inverse of B” is preserved under similarity transforms, i.e. A = B−1 implies
C−1AC = (C−1BC)−1.

However, there is an important difference between similarity transforms and orthogonal (or
unitary) transforms: similarity transforms need not preserve the property “A is the transpose (or
adjoint) of B”, need not preserve the property “A is symmetric (or Hermitian)”, and need not
preserve the property “A is orthogonal (or unitary)”.

Exercise 5.1 Try to prove that each of these statements is preserved under a similarity transform,
see where the argument breaks down, and see why it does not break down in the same place if one
is considering orthogonal (or unitary) transformation. For example, if A = BT, does C−1AC =
(C−1BC)T? etc.

These properties are preserved by orthogonal (unitary) transforms, but not by general similarity
transforms. Thus, the concept that a matrix is orthogonal (unitary) or symmetric (Hermitian) only
makes sense when we restrict ourselves to orthogonal (unitary) transforms. Furthermore, similarity
transforms do not preserve the values of scalars, such as dot products (preserving dot products was
what defined orthogonal transformations) or expressions of the form x†My.
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5.5 Understanding General Square Matrices: Eigenvectors, Eigenvalues and
Generalized Eigenspaces

When does a matrix have a complete basis of eigenvectors? To address this, we will assume we are
dealing with square complex matrices – we assume the underlying scalars are the complex numbers
since real matrices may have complex eigenvalues and eigenvectors.

An N × N matrix M always has N eigenvalues. These are, by definition, the N solutions for
λ in the equation det(M− λ1) = 0, which is known as the characteristic equation for M. The
characteristic equation is an N th-order polynomial in λ and hence always has N solutions. However,
these need not all be distinct: for example the second-order polynomial equation (x−2)(x−2) = 0
has two solutions, but both are equal to 2.

Although M always has N (not necessarily distinct) eigenvalues, it does not follow that M
has N independent eigenvectors, defined as vectors vi for which (M − λi1)vi = 0 with λi a
solution to M’s characteristic equation. We have already seen one condition that guarantees N
independent eigenvectors, namely if M is normal, MM† = M†M; in that case there are always N
orthonormal eigenvectors. Another condition that guarantees N independent eigenvectors is if all
of the eigenvalues of M are distinct:

Theorem 5.13 If the N × N matrix M has N distinct eigenvalues, then M has N independent
eigenvectors, one corresponding to each of the distinct eigenvalues. In this case, letting the matrix
C be the matrix whose columns are the independent eigenvectors of M, C−1MC is a diagonal
matrix D whose diagonal entries are the eigenvalues of M (and M = CDC−1).

Problem 5.2 Consider the matrix M =

(
1 2
0 1 + ε

)
for ε 6= 0. Show that the eigenvalues and

eigenvectors are λ1 = 1, e1 ∝
(

1
0

)
and λ2 = 1 + ε, e2 ∝

(
1
ε/2

)
. Let C =

(
1 1
0 ε/2

)
. The

inverse of a 2× 2 matrix

(
a b
c d

)
with determinant D = ad− bc is given by

(
d/D −b/D
−c/D a/D

)
.

Use this to verify that C−1MC =

(
1 0
0 1 + ε

)
.

Problem 5.3 Recall from Problem 3 that if M has columns ci and N has rows r†i then MN =∑
i cir

†
i . Consider the equation M = CDC−1. The columns of C are the eigenvectors ei of M.

Let f †i be the rows of C−1; we saw in section 5.3 that the fi are defined by f †i ej = δij, and that f †i v
gives the coordinate of v along the ith eigenvector ei. D is a diagonal matrix with entries λi, the
eigenvalues of M.

Now put this all together and show that M = CDC−1 can be rewritten M =
∑

i λieif
†
i (hint:

all you have to add is to show that the rows of DC−1 are λif
†
i , or that the columns of CD are

λiei). In words: when
∑

i λieif
†
i is applied to a vector v, the f †i finds the coordinate of v along the

ei direction; this is then multiplied by ei, and scaled by λi. Repeat this for each of the eigenvectors
(sum over i) and you obtain the action of M on v.

Exercise 5.2 From the formulation M =
∑

j λjejf
†
j we can draw a further conclusion: the f †i

are the left eigenvectors of M, that is, f †i M = λif
†
i , while the ei are the right eigenvectors of M,

Mei = λiei. Show this by computing f †i M and Mei with M written as
∑

j λjejf
†
j , recalling that

f †j ei = δji. Thus, M has a set of left eigenvectors f †i and of right eigenvectors ei; neither set is
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orthonormal, but the two are “mutually orthonormal”, meaning f †j ei = δji. For the special case

of normal matrices, the ei are orthonormal and so f †i = e†i – the left and right eigenvectors are
identical.

Old linear algebra books talked about left and right eigenvectors, but it seems to have gone out
of fashion. Nowadays they just talk about eigenvectors, meaning right eigenvectors; they form C
as the matrix whose columns are these eigenvectors, and use C−1 as above without noting that its
rows are the left eigenvectors. That probably makes sense, as there’s no particular use of the left
eigenvectors except to form C−1, but it still seems an interesting point to notice. But outside of
this exercise we will follow the crowd and just say “eigenvectors”, meaning “right eigenvectors”.

If two or more eigenvalues of M are equal to one another, we say these eigenvalues are de-
generate; if k eigenvalues have the same value, we say they have a k-degeneracy. In this case M
may be “missing” some eigenvectors – corresponding to k degenerate eigenvalues, there may be any
number from 1 to k independent eigenvectors. (However if M is normal, then we are guaranteed
there are no missing eigenvectors.) In this case we can define the “generalized eigenspace” as the
set of solutions v to the equation (M−λd1)kv = 0, where λd is the k-degenerate eigenvalue. There
will always be k independent elements of the generalized eigenspace of λd, and they will be inde-
pendent of the (generalized) eigenvectors corresponding to other eigenvalues. Furthermore there is
always at least one eigenvector in the generalized eigenspace: if v is in the generalized eigenspace,
(M − λd1)kv = 0, which we can rewrite (M − λd1)

[
(M− λd1)k−1v

]
= 0, so (M − λd1)k−1v is

either an eigenvector of M with eigenvalue λd, or else it is zero (in which case (M − λd1)k−2v is
either an eigenvector, or zero, and so on, remembering that when we get down to (M−λd1)v = 0,
it means v is an eigenvector).

Problem 5.4 Consider the matrix M =

(
1 2
0 1

)
. The characteristic equation for M is (λ−1)2 =

0, which has two roots that are both 1. One eigenvector is

(
1
0

)
, but there is no second eigenvector

(confirm this). The generalized eigenspace is given by the solutions v to (M − 1)2v = 0. But
(M− 1)2 = 0 (confirm this) so every vector v satisfies this equation; so in particular we can take

the second element of the generalized eigenspace to be

(
0
1

)
. Note that the same arguments would

apply to any matrix M =

(
1 a
0 1

)
with a 6= 0.

(Note that if we break the degeneracy between the eigenvalues, then there are two independent

eigenvectors. In Problem 5.2 we considered the matrix M =

(
1 2
0 1 + ε

)
; those results showed

that, so long as ε 6= 0, the eigenvalue degeneracy is broken, and there are two distinct and inde-
pendent eigenvectors. For ε = 0, however, the two eigenvalues become identical, as do the two
eigenvectors.)

As an aside – this may be too compressed to really make sense to you, in which case don’t get
stuck on it: One can gain a bit of intuition for why some matrices may have missing eigenvectors
as follows. The Cayley-Hamilton theorem says that each matrix satisfies its own characteristic
equation. That is, suppose the characteristic equation of M, det(M − λ1) = 0, gives the N-th
order polynomial equation

∑N
i=0 aiλ

i = 0, where necessarily aN = 1;
∑N

i=0 aiλ
i is then called the

characteristic polynomial of M. Then the Cayley-Hamilton theorem states that
∑N

i=0 aiM
i =

0. If the N eigenvalues of M are λi, i = 0, . . . , N − 1, then the characteristic polynomial can
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be written as (λ − λ0)(λ − λ1) . . . (λ − λN−1). So the Cayley-Hamilton theorem tells us that
(M−λ0)(M−λ1) . . . (M−λN−1) = 0. (M−λ0) will give zero when applied to an eigenvector with
eigenvalue λ0; (M−λ1) will give zero when applied to an eigenvector with eigenvalue λ1, etc. So in
essence, what the Cayley-Hamilton theorem suggests (and what in fact can be proved) is that the
whole vector space can be decomposed into a sum of the generalized eigenspace associated with λ0,
the generalized eigenspace associated with λ1, . . . – every vector is a linear combination of elements
of these generalized eigenspaces, and so (M − λ0)(M − λ1) . . . (M − λN−1) applied to any vector
gives zero. If an eigenvalue λi is not degenerate, it has a one-dimensional eigenspace, and elements
ei of that eigenspace satisfy (M − λi)ei = 0 – they are eigenvectors of M. But if an eigenvalue
λj is k-degenerate, and ej is an element of the associated generalized eigenspace, then all that we
know from the Cayley-Hamilton theorem is that (M−λj)kej = 0. There is no guarantee that these
elements are eigenvectors, only that they form part of the generalized eigenspace of λj .

5.6 Linear Differential Equations With General Square Matrices

We can now write down the general solution to first-order linear differential equations:

Theorem 5.14 Consider the equation d
dtv = Mv. Let λi be the eigenvalues of M, with correspond-

ing eigenvectors, or if need be generalized eigenvectors, ei. Let C be the matrix whose columns are
the ei. Let the initial condition be v(0), and write v(0) =

∑
i vi(0)ei with vi(0) =

(
C−1v(0)

)
i
.

Then if M has a complete basis of eigenvectors, the solution is

v(t) =
∑
i

eivi(0)eλit (5.1)

If M has a k-degenerate subspace with eigenvalue λd that is missing some eigenvectors, all factors
of eλdt should be replaced by eλdt +

∑k−1
p=1 cpt

peλdt where the cp are constants to be determined.

When no eigenvectors are missing, this is exactly the formula we had been using previously
– the only difference is now the eigenvectors are not necessarily orthonormal. The origin of the
mysterious factors of tp in the case of missing eigenvectors can be understood by using a somewhat
more powerful approach, which also provides a more elegant and powerful way to find the solutions
in the case of missing eigenvectors – look up the Jordan normal form and the solution in terms of
the exponential of a matrix in a linear algebra book. But for our purposes this characterization is
sufficient – missing eigenvectors rarely if ever come up in real life.

If there are missing eigenvectors, one can simply write down the terms given by theorem 5.14
and solve for their coefficients:

Problem 5.5 Consider again the matrix M =

(
1 2
0 1

)
, and consider the equation d

dtv = Mv.

Recall the eigenvalues are both 1, the one eigenvector is

(
1
0

)
, and the other generalized eigenvector

can be taken to be

(
0
1

)
. Write v(t) =

(
v1(0)et + k1te

t

v2(0)et + k2te
t

)
and solve for the constants k1 and k2.

You should arrive at the solution v(t) =

(
v1(0)et + 2v2(0)tet

v2(0)et

)
.

Similarly, if M has a complete basis of eigenvectors, the solution to the inhomogeneous equation
d
dtv = Mv + h(t) can be written just as before:

v(t) =
∑
i

eie
λit

[∫ t

0
ds e−λishi(s) + vi(0)

]
(5.2)
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where vi(0) =
(
C−1v(0)

)
i
, hi(s) =

(
C−1h(s)

)
i
, and again C is the matrix whose columns are

the eigenvectors of M. If M has a k-degenerate subspace with eigenvalue λd that is missing some
eigenvectors, eλdt should be replaced by a linear combination of tpeλdt for p = 0, . . . , k − 1, and
e−λds should be replaced by a linear combination of spe−λds for p = 0, . . . , k − 1.

5.7 Non-Square Matrices: The Singular Value Decomposition

We now turn to the singular value decomposition (SVD), a powerful method of decomposing a
matrix that can be applied to any matrix, square or rectangular. The SVD defines a set of singular
values that are associated with the matrix. For a (square) normal matrix, the singular values σi
are simply the absolute values of the eigenvalues λi of the matrix, σi =

√
λ∗iλi. In particular, for a

matrix that is hermitian, so that all of its eigenvalues are real and its eigenvectors are orthonormal,
we shall see that the SVD is essentially identical to the eigenvector/eigenvalue decomposition;
but for non-hermitian square matrices the SVD and the eigenvector/eigenvalue decomposition are
different (and for non-square matrices, the concept of eigenvector is not even defined).

Theorem 5.15 Singular value decomposition (SVD): Every P ×N matrix M can be decom-
posed as

M = UΣV† (5.3)

where U is a P × P unitary matrix, V is an N ×N unitary matrix, and Σ is a diagonal P ×N
matrix (meaning that it is nonzero only along the diagonal, which has length min{P,N}) whose
diagonal entries are real, non-negative, and are known as the singular values of M. If the rank
of M is r, there are r nonzero singular values.

We assume the matrices are arranged so that the singular values are ordered from largest to
smallest. Then let vi, i = 0, . . . , N − 1 be the columns of V; ui, i = 0, . . . , P − 1 be the columns of
U; and σi, i = 0, . . . , r − 1 be the nonzero singular values. Then we can also write the SVD as

M =
r−1∑
i=0

σiuiv
†
i (5.4)

The formulation of Eq. 5.4 should make clear that the first r columns of V form a basis for the
space spanned by the rows of M; the first r columns of U form a basis for the range of M; and M
maps one basis into the other, Mvi = σiui. Thus, the SVD finds two orthonormal bases – one for
the rowspace of M, one for the range – such that one basis is mapped into the other by M; and
the singular values tell how much each basis vector is stretched or shrunken under that mapping.

The SVD should remind you of the eigenvector decomposition for a Hermitian matrix: in that
case M = UDU† =

∑
i λieie

†
i , where D is the diagonal matrix of the real eigenvalues λi and

U is the unitary matrix whose columns are the eigenvectors ei. For a Hermitian matrix, the
SVD is the eigenvector decomposition; for negative eigenvalues λi < 0, one defines σi = −λi,
vi = ei, ui = −ei, but otherwise the decompositions are identical. Geometrically, the eigenvector
decomposition M = UDU† means rotate the ei basis vectors to be the coordinate axes; scale these
coordinates (D); and then do the inverse rotation, taking the coordinate axes back to the ei. M
thus maps each ei to a scaled version of itself. The SVD decomposition M = UΣV† means rotate
the vi basis vectors to be the coordinate axes; scale these coordinates, and possibly embed the
nonzero coordinates in a space of a different dimension; and then rotate the coordinate axes back
to a different basis, the ui (Fig. 5.1). M thus maps each vi to a scaled version of the corresponding
ui. In the case of a Hermitian matrix, the two bases are identical except possibly for signs, but
more generally this is not the case.
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Figure 5.1: The Singular Value Decomposition
The singular value decomposition can be understood as the composition of three actions: rotating the
vectors vi to the coordinate axes; scaling these axes by the singular values; and then rotating these axes
to coincide with the vectors ui in the output space. The result of this is to map vectors on the unit
circle in the rowspace (the space spanned by the rows; the portion of the domain that is orthogonal to the
nullspace) into the principal axes of a hyperellipse in the range. This figure was stolen, with thanks, from
http://www.stanford.edu/class/cs205/notes/book/node18.html.
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This geometric interpretation of the SVD is illustrated in Fig. 5.1. This also shows another
aspect of the SVD. For any matrix M, the unit sphere (the sphere of radius 1) in the space spanned
by the rows of M is mapped to a hyperellipse (a set of vectors x defined by x†Qx = 1 for some

Hermitian matrix Q; in this case Q =
∑

i
uiu
†
i

σ2
i

) in the range of M. The ui are the major axis,

first minor axis, second minor axis, etc. of the hyperellipse, and the vi are the unit vectors in the
domain of M that map to these hyperellipse axes in the range of M. The σi are the radii of the
axes of the hyperellipse.

The SVD is often used to break down a function of two variables into a sum of products of
functions of one variable. For example, the response of a visual cortical neuron may depend on
stimulus orientation θ and on time t (the time between stimulus and response), and one wishes to
know if the orientation tuning changes as a function of time. If the response can be written as a
function of orientation times a function of time, then the orientation dependence is the same at
all times. Thus one takes the response function R(θ, t), discretizes it as a matrix Rij representing

the response to orientation θi at time tj , and does an SVD. Each term in R =
∑r−1

i=0 σiuiv
†
i is a

product of a function of orientation (the ui) times a function of time (the v†i ) (this can be seen
from Rij =

∑r−1
k=0 σk(uk)i(v

∗
k)j – the i dependence is in the u, the j dependence is in the v). If

the first singular value is much larger than all the others, then R is reasonably described by the
first term alone, which means it is reasonably described as the product of a function of orientation
times a function of time. In genomics, one may have a response in each of 10,000 genes across 50
arrays, each representing a different experimental condition; SVD expresses the responses as a sum
of products of a function of the gene times a function of the array.

To perform the SVD, one deals with the matrices MM† and M†M. MM† is a P ×P hermitian
matrix: (MM†)† = MM† (recall that (AB)† = B†A†). Similarly, M†M is an N × N hermitian
matrix. Thus, each matrix has real eigenvalues and has a complete orthonormal basis of eigenvec-
tors. Furthermore the eigenvalues of each are positive or zero: if ei is an eigenvector of M†M with
eigenvalue λi, then e†iM

†Mei = λi, but also e†iM
†Mei = (Mei)

†Mei = |Mei|2 ≥ 0, so λi ≥ 0; a
similar argument applies to MM†.

Because it is hermitian, MM† = SDS† for some diagonal matrix D, which contains the real
eigenvalues of MM†, and some unitary matrix S, whose columns contain the eigenvectors of MM†.
But if we compute MM†, we find MM† = (UΣV†)(VΣ†U†) = UΣΣ†U†. ΣΣ† is a P×P diagonal
matrix, so this is precisely the eigenvector/eigenvalue decomposition of MM†. Thus, the columns of
U are the eigenvectors of MM†, and the nonzero singular values are the positive squareroots of the
nonzero eigenvalues of MM†. Similarly, by writing M†M = VΣ†ΣV†, we see that the columns of
V are the eigenvectors of M†M, and the nonzero singular values are the positive squareroots of the
nonzero eigenvalues of M†M. Thus, to perform the SVD, one does an eigenvector decomposition
of MM† and of M†M.

Note that if M is a unitary matrix, then MM† = M†M = 1. In this case, the SVD is
not of much use, since any vector is an eigenvector of 1, so the choice of U and V are largely
unconstrained. Furthermore the eigenvalues of a unitary matrix have absolute value 1, so Σ = 1
for a unitary matrix. Thus, one form of the SVD of a unitary matrix is M = M11; so for unitary
matrices, the SVD is not useful.

Problem 5.6 1. Derive the SVD of the 2× 1 matrix

(
1
2

)
.

2. Derive the SVD of the matrix

(
3 0
4 5

)
.
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Exercise 5.3 Suppose M†Mx = 0. Then x†M†Mx = 0; but x†M†Mx = (Mx)†(Mx) = |Mx|2.
Conclude that if M†Mx = 0, then Mx = 0; the converse is obviously true. So M†M has the
same nullspace as M. The rowspace (the space spanned by the rows) is the subspace orthogonal to
the nullspace; so if two matrices have the same nullspace, they have the same rowspace. Thus the
eigenvectors of M†M with nonzero eigenvalue form a basis for the rowspace of M†M and thus also
form a basis for the rowspace of M.

Similarly, show that if xMM† = 0, then xM = 0. Conclude that MM† and M have the same
column space (the space spanned by the columns), so that the eigenvectors of MM† with nonzero
eigenvalue form a basis for the range of M.
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