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Note: This section (Part 3) is out of date. While everything in it is correct and worth under-
standing, it misses a major point, that non-normal matrices can generate interesting dynamics that
are not predicted by the eigenvalues. I hope to rewrite this section accordingly. A lovely book on
non-normal matrices is L.N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior
of Nonnormal Matrices and Operators. Princeton University Press, 2005.

5 Linear Algebra and Linear Differential Equations for General
Matrices

Until now, we have restricted attention to matrices with complete orthonormal sets of eigenvectors.
This means we restricted to the set of normal matrices, meaning those that commute with their
adjoint, NNT = NTN. This also restricted us to square matrices (normal matrices are necessarily
square matrices, because if N is a non-square rectangular matrix then NN and NN are each
square matrices with different numbers of dimensions and so cannot be equal to one another; e.g.
if N is 4 x 6 then NN is 4 x 4 while NTN is 6 x 6 — check this!). We also restricted attention to
orthogonal or unitary changes of basis, since these were sufficient to get to the eigenvector basis if
eigenvectors were orthonormal.

We now consider general matrices and general linear changes of basis. The general case can be
understood almost as simply as the orthonormal case, and represents just a slight generalization of
the formalisms we’ve already learned.

5.1 Some Basics: Subspaces, Bases, and Dimension

We have been using the idea of an N-dimensional vector space very loosely. It was intuitively obvious
that N orthonormal vectors form a basis for an N-dimensional space, or that all linear combinations
of kK < N orthonormal vectors form a k-dimensional subspace. Now we have to decide when any
collection of vectors forms a basis for a space or a subspace, and how many dimensions that space
or subspace has. To do this, we need to be a little more precise than we have been. We will find
that a key concept is the independence of a set of vectors, which will be defined below: any N
independent vectors in an N-dimensional space form a basis for that space, and given k independent
vectors, the set of all linear combinations of them form a k-dimensional subspace.

We start with a set of scalars, either R, the set of real numbers, or C, the set of complex
numbers. N-dimensional vectors are defined essentially as N-tuples of scalars, that is as elements
of RN or CV, along with the definition of addition of vectors (two vectors add by adding their
components) and multiplication of vectors by a scalar (defined as multiplication of each component
by the scalar). In what follows, we will simply refer to scalars, which should be taken as complex
numbers if dealing with complex vectors or real numbers if restricting to real vectors.
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We will outline the basic definitions needed to establish the concepts of subspaces, bases, and
the dimension of a subspace. Along the way we will quote, mostly without proof, a few theorems
that should be intuitively obvious.

Definition 5.1 A set F of N-dimensional vectors is called a subspace (of RN or CN) if it is
closed under addition and scalar multiplication, that is, if for all v € F, w € F, and scalar A,
v+weF and Av € F.

Note that a subspace might be the entire space RY or CV, or it might be only a part of the space.
We shall use the term vector space to refer to any subspace of RY or C¥.

Definition 5.2 Given a set of N-dimensional vectors v;, 0=1,...,k—1, a linear combination
of the v; is a vector ), c;v; for some set of scalars ¢;. We will call it a non-trivial linear
combination if at least one ¢; is nonzero.

It should be obvious from the above that, if v;, ¢ =0,...,k — 1 is some set of vectors in a vector
space F, then every linear combination of the v; is also in F (if it’s not obvious, stop and prove
it!).

Definition 5.3 Given a set of N-dimensional vectors v;, i =0,...,k—1, the subspace spanned
by the v; is the set of all vectors that can be obtained as linear combinations of the v;. (If it’s not
obvious, show that this is indeed a subspace.)

Definition 5.4 For any vector space F, a set of vectors v; € F,i=0,...,k—1, is said to span
F if every vector in F can be written as a linear combination of the v;.

Definition 5.5 A set of N-dimensional vectors v;, i = 0,...,k — 1 is independent if no non-
trivial linear combination of them is zero.

The idea of independence is intuitively simple: if the v; are not independent, then there are some
¢, not all zero, such that ), ¢;v; = 0. So suppose ¢; # 0, then v; = Z#j ¢ivi/cj, so vj can be
constructed as a linear combination of the other vectors. As a result, the space spanned by the v;
for i # j is the same as the space spanned by all of the v; — adding v; to the others doesn’t add
anything. On the other hand, if the v; are independent, then each v; has some component that
cannot be reached as any linear combination of the other vectors — each one contributes something
unique.

Definition 5.6 A basis of a vector space F is a set of vectors in F that (1) are independent and
(2) span F.

Theorem 5.1 FEvery vector space F has a basis, and every basis of F has the same number of
elements.

Definition 5.7 The number of elements in a basis of F is called the dimension of F.

Theorem 5.2 If D is the dimension of F, then any set of D independent vectors in F is a basis
of F.

Theorem 5.3 If the elements of F are N-dimensional vectors, then the dimension of F is < N
(one cannot have a set of more than N independent N-dimensional vectors).
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Theorem 5.4 Ife;, i=0,...,D — 1 is a basis for F, then every vector in F can be expressed as
a unique linear combination of the e;.

Proof: For some v € F, suppose v= ) .cie; and v =) .die;. Then 0 =v —v =) .(¢; — d;)e;.
But the e; are independent, so ¢; — d; = 0 for all 3.

So at this point we have established our basic results: any k independent vectors in a k-
dimensional subspace form a basis for that subspace, and every vector in the subspace can be
represented as a unique linear combination of the basis vectors. It will also prove useful to under-
stand the set of vectors orthogonal to a subspace:

Definition 5.8 We say a vector v is orthogonal to a subspace F if it is orthogonal to every vector
in F:v-w =0 for every w € F. We say two subspaces F1 and F2 are orthogonal subspaces if
every vector in one s orthogonal to every vector in the other.

Theorem 5.5 If F is a D-dimensional subspace of C or RN, then the set of vectors orthogonal
to F forms an N — D-dimensional subspace which is orthogonal to F.

5.2 Nullspace, Range, and Rank of a Matrix

Let S stand for either R or C. Consider a matrix M mapping vectors in SV to vectors in ST, that
is, M is a P x N matrix. We refer to SV as the domain of M, the space upon which it acts.

Definition 5.9 The nullspace of a P x N matriz M is the subspace of SN that M maps to 0,
that is, it is {v € SN : Mv = 0}. (Prove that this is a subspace.)

Definition 5.10 The rowspace of a P x N matriz M is the subspace of SN spanned by the rows
of M.

Each row of M can be thought of as an N-dimensional vector (strictly, we are referring to the
column vector given by the adjoint of the given row vector; but we will just call this the row). The
nullspace of M is the set of vectors that are orthogonal to every row of M: the k" element of Mv
is the dot product of the k** row of M with v, and each such dot product must be zero if Mv = 0.
If the rowspace has dimension D, then the set of vectors orthogonal to this subspace has dimension
N — D, so:

Theorem 5.6 Let D, be the dimension of the rowspace of M. Then the nullspace of M has
dimension N — D,.. The rowspace and the nullspace are orthogonal subspaces.

Definition 5.11 The range of a P x N matriz M is the subspace of S¥ that can be reached by
the action of M on SN, that is, it is {v € S : v = Mw for some w € SN}. (Prove that this is a
subspace. )

Definition 5.12 The column space of a P x N matriz M is the subspace of ST spanned by the
columns of M.

Each column of M can be thought of as a P-dimensional vector. The range of M is precisely
the column space of M, as can be seen as follows. Let cj, j = 1,..., P be the columns of M; then
for any vector v, Mv = Zj vjcj. (This was shown in Problem 3; recall that it can be seen by

writing (1\/IV)Z = Zj M;jvj = Zj Uj(Cj)i). So:
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Theorem 5.7 The range of M is equal to the column space of M. In particular, if D. is the
dimension of the column space of M, then the range of M also has dimension D..

This brings us to what some have called the Fundamental Theorem of Linear Algebra. Let
dim(F) be the dimension of a subspace F. Then:

Theorem 5.8 Let M : SV — S* be a P x N matriz. Then dim(range M) + dim(nullspace M) =
N. Equivalently, the dimension of the subspace of SN spanned by the rows of M is equal to the
dimension of the subspace of ST spanned by the columns of M: D, = D.,.

Thus, the number of independent rows of M is equal to the number of independent columns of M.
This theorem should make some intuitive sense: the elements of the nullspace don’t add to the range
of M, because if v is in the nullspace of M (Mv = 0), then for every vector w, M(w + v) = Mw.
So the dimension of the range is reduced, compared to the dimension N of the domain, by the
dimension of the nullspace.

In particular, suppose M is a square matrix. If it has a nonzero nullspace, say Mv = 0 for
v # 0, then we cannot “undo the mapping”: if y = Mw, then also y = M(w + kv) for any
scalar k, so we cannot compute M~ 'y since many different vectors map to y. (We could, though,
compute the “pseudo-inverse”, by specifying that we map back only to vectors orthogonal to the
nullspace — for each y in the range of M, there is only one vector orthogonal to the nullspace that
maps to y.) Conversely, if no nonzero vector maps to zero, then the mapping maps N dimensions
to N dimensions and it is 1-1 and can be inverted. Of course, if Mv = 0 for v # 0, then v is an
eigenvector of M with eigenvalue 0, so M has a zero eigenvalue. So we have motivated:

Theorem 5.9 An N x N matriz is invertible if and only if its nullspace is 0 (which is true if and
only if its range is N-dimensional, which is true if and only if it has N independent rows, which
1s true if and only if it has N independent columns, which is true if and only if it has no zero
eigenvalues).

Finally, we define

Definition 5.13 The rank of a matriz is the dimension of its range (which is the same as the
mazximal number of independent rows or of independent columns of the matriz).

We can restate the previous theorem: an N x N matrix is invertible if and only if it has rank V.

5.3 Change of Basis for a Vector

Suppose we are in R or CV and we want to change basis to an arbitrary (possibly non-orthogonal)
basis e;, i =0,..., N — 1. How do we find the coordinates of a vector in this new basis?

The answer is simple, though it’s not immediately obvious why it is the right answer, but here it
is: form the matrix C each of whose columns is one of the basis vectors e;. By definition of a basis,
this set of vectors is independent, so C has N independent rows and columns and is invertible.
Then the coordinates of a vector v in the e; basis are given by C~lv; that is, v = El v;e; where
v = (C_IV)Z'.

Algebraically, this result can be derived as follows. To distinguish the coordinates from the
vector v itself, let’s use b to represent the vector of desired coordinates, i.e. we are looking for
b such that v = ) b;e;. Then we can rewrite v = ) . b;e; as v = Cb (recall Problem 3, and
remember that the e; are the columns of C). This has the unique solution b = C~lv.

58



We can gain more understanding of this as follows. Let fZ-T represent the i** row of C~'. Then
C~1C =1 translates into f; -e; = 0;;. That is, the vector f; is orthogonal to all of the basis vectors
except e;, and it is normalized so its dot product with e; is 1. So starting with v = Zj bje;, we
can take the dot product with f; to find f; - v = Zj bifi-ej = Zj b;jdi; = bj. So b; = f; - v, which is
just another way of stating that (b); = (C™1v);.

We can also gain a bit of geometric intuition into this result, as follows. f; is orthogonal to the
subspace spanned by the N —1 vectors e, j # i; therefore, among the eigenvectors, only e; has any
component in the f; direction. Thus the coordinate b; = f; - v of v in the e; direction had better
exactly account for the amount of v that is in the f; direction, because none of the other e; can
contribute to this direction. Let f; = f;/|f;| be the unit vector in the f; direction. The amount of v
in the f; direction is f; - v. The amount of b;e; in the f; direction is f; - (bie;) = bif; - e;. These two
fv _ f £

fo, —Fo VT f; - v. To see the last step, note that e points in

must be equal; this gives b; =

the f; direction, and is normalized such that its dot product with e; is 1; that is exactly f;.

So to summarize: to find the coordinate v; in v = ), v;e; (we’ll go back now to calling it v;
rather than b;), find the vector f; defined by (1) f; is orthogonal to the subspace spanned by the
e; for j # i (this defines the direction of f;) and (2) f; - €; = 1 (this defines the length of f;). Then
v; = f; - v. This is summarized by saying that, under a change of basis to the basis {e;}, vectors
are mapped v — C~'v, where C is the matrix whose columns are e;.

5.4 Change of Basis for a Square Matrix: Similarity Transforms

How should a square N x N matrix transform under this change of basis? We use the same
arguments as before: we’ll use a prime to indicate a vector or square matrix in the new basis, e.g.
M, v are a matrix and vector in the original basis and M/, v/ are the same matrix and vector in
the new basis. Vectors in the new basis are found by applying C~! to vectors in the old basis. We
want the action of M on any vector v to be the same in any basis, that is, M'v’ = (Mv)’. This
yields M'C~'v = C71(Mv), or CM'C~'v = Mv for every vector v. This can only be trueﬂ if
CM'C ! =M, or M' = C"!MC.

This should all remind you of what we saw before. When we had an orthonormal basis, we
considered the matrix C as the matrix all of whose columns are basis vectors (actually we called
it Of, but now we will call it C). This was an orthogonal (or unitary) matrix, Ct = C~1; vectors
were transformed v — Clv, and matrices were transformed M — CYMC. If the bases are not
orthonormal, however, then C~! # CT; but things work much as before if we substitute C~! for
C'. The case of an orthonormal basis was a special case of this more general rule for transforming
bases.

In particular, suppose M has a complete basis of eigenvectors e;. Then a change of basis to the
eigenvector basis turns M into a diagonal matrix D, whose diagonal entries are just the eigenvalues
of M: D = C~'MC where C is the matrix whose columns are the eigenvectors of M. But this
means M = CDC™!. We're going to be using this, so to be sure you don’t miss it we’ll say it loud:

Fact 5.1 If M has a complete basis of eigenvectors, then M = CDC™! where D is the diago-

You may be wondering about non-square matrices. There is a problem: for a non-square P x N matrix M, v
and Mv live in different spaces (in SV and ST, respectively, where S is the space of scalars). We’ve introduced the
N x N matrix C~! as a change of basis in SV. So M’ = MC will take an N-vector from the new basis, translate it
back to the old basis (by applying C), then apply M to map it to S¥. If we haven’t also changed basis in S¥, then
that’s the full transformation. If we’ve also changed basis in S¥ by some P x P matrix D~!, then the transformed
matrix would be D™'MC: map back to the old basis in SV, apply M, then map into the new basis in ST.
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nal matrix whose entries are the eigenvalues of M, and C is the matriz whose columns are the
etgenvectors of M.

The transformation of matrices that we’ve just seen leads us to define:

Definition 5.14 Two square matrices A and B are said to be similar if A = C™'BC for some
invertible matriz C. The transform B — C™'BC is called o similarity transform.

Many properties are preserved under similarity transforms:

Theorem 5.10 The rank of a matriz is preserved under similarity transforms.
Problem 5.1 1. Using det(AB) = (det A)(det B), prove:
Theorem 5.11 The determinant of a matriz is preserved under similarity transforms.
2. Go on to prove:
Theorem 5.12 The eigenvalues of a matriz are preserved under similarity transforms.

To prove this, note that the eigenvalues of M are the solutions A of det(M — A1) = 0, while
those of C"YMC are the solutions of det(C™'MC — A1) = 0. You can rewrite the latter as
det(C~H(M — A\1)C) = 0. Use det(AB) = (det A)(det B), and the fact that C is invertible
so its determinant is nonzero, to prove that this reduces to det(M — A1) = 0. (Note that
you've actually proven something stronger: that the characteristic polynomial det(M — A1)
is preserved under similarity transforms: all similar matrices have the same characteristic
polynomial.)

3. Prove that the eigenvectors of a matriz are preserved under similarity transforms: if Mv =
Av, then (C7'MC)(C~1v) = A\(C1v).

4. Prove A =1 is preserved under similarity transforms;
5. Prove A =0 is preserved under similarity transforms;

6. Prove “A is the inverse of B” is preserved under similarity transforms, i.e. A = B~ implies
C'AC=(C'BC) L.

However, there is an important difference between similarity transforms and orthogonal (or
unitary) transforms: similarity transforms need not preserve the property “A is the transpose (or
adjoint) of B”, need not preserve the property “A is symmetric (or Hermitian)”, and need not
preserve the property “A is orthogonal (or unitary)”.

Exercise 5.1 Try to prove that each of these statements is preserved under a similarity transform,
see where the argument breaks down, and see why it does not break down in the same place if one
is considering orthogonal (or unitary) transformation. For exzample, if A = BY, does C"1AC =
(C™'BC)"? etec.

These properties are preserved by orthogonal (unitary) transforms, but not by general similarity
transforms. Thus, the concept that a matrix is orthogonal (unitary) or symmetric (Hermitian) only
makes sense when we restrict ourselves to orthogonal (unitary) transforms. Furthermore, similarity
transforms do not preserve the values of scalars, such as dot products (preserving dot products was
what defined orthogonal transformations) or expressions of the form x'My.
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5.5 Understanding General Square Matrices: Eigenvectors, Eigenvalues and
Generalized Eigenspaces

When does a matrix have a complete basis of eigenvectors? To address this, we will assume we are
dealing with square complex matrices — we assume the underlying scalars are the complex numbers
since real matrices may have complex eigenvalues and eigenvectors.

An N x N matrix M always has N eigenvalues. These are, by definition, the N solutions for
A in the equation det(M — A1) = 0, which is known as the characteristic equation for M. The
characteristic equation is an N**-order polynomial in A and hence always has N solutions. However,
these need not all be distinct: for example the second-order polynomial equation (z —2)(x —2) =0
has two solutions, but both are equal to 2.

Although M always has N (not necessarily distinct) eigenvalues, it does not follow that M
has N independent eigenvectors, defined as vectors v; for which (M — \;1)v; = 0 with \; a
solution to M’s characteristic equation. We have already seen one condition that guarantees N
independent eigenvectors, namely if M is normal, MM = MfM; in that case there are always N
orthonormal eigenvectors. Another condition that guarantees NV independent eigenvectors is if all
of the eigenvalues of M are distinct:

Theorem 5.13 If the N x N matrix M has N distinct eigenvalues, then M has N independent
etgenvectors, one corresponding to each of the distinct eigenvalues. In this case, letting the matrix
C be the matriz whose columns are the independent eigenvectors of M, C™'MC is a diagonal
matriz D whose diagonal entries are the eigenvalues of M (and M = CDC™1).

1 2

Problem 5.2 Consider the matrizc M =
0 1+e¢€

> for e # 0. Show that the eigenvalues and

. 1 1 1 1
etgenvectors are A\ = 1, e10<<0> and Ao = 1 + €, 820(<6/2>. LetC—<O e/2>' The

b ) with determinant D = ad — bc is given by ( /D —b/D )

. - a
inverse of a 2 X 2 matrix < d —c¢/D  a/D

1 0
; ; -1 _
Use this to verify that C™"MC = < 0 14e >

Problem 5.3 Recall from Problem 3 that if M has columns ¢; and N has rows rj then MIN =
> cirj. Consider the equation M = CDC™!. The columns of C are the eigenvectors e; of M.
Let f;r be the rows of C~1; we saw in section that the f; are defined by fZ-Tej = 0;5, and that fZ-Tv
gives the coordinate of v along the it" eigenvector e;. D is a diagonal matriz with entries \;, the
etgenvalues of M.

Now put this all together and show that M = CDC™! can be rewritten M = Y, )\ieif;r (hint:
all you have to add is to show that the rows of DC~! are )\if;r, or that the columns of CD are

Aiei). In words: when ), )\ieifj 18 applied to a vector v, the fiT finds the coordinate of v along the
e; direction; this is then multiplied by e;, and scaled by \;. Repeat this for each of the eigenvectors
(sum over i) and you obtain the action of M on v.

Exercise 5.2 From the formulation M = Zj )\jejf;r we can drow a further conclusion: the f;r
are the left eigenvectors of M, that is, fZ-TM = )\ifj, while the e; are the right eigenvectors of M,
Me; = \;je;. Show this by computing fiTM and Me; with M written as Zj )\jejf;, recalling that

f]Tei = 0j;. Thus, M has a set of left eigenvectors f;r and of right eigenvectors e;; neither set is
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orthonormal, but the two are “mutually orthonormal”, meaning f;-rei = 0j;. For the special case
T

of normal matrices, the e; are orthonormal and so f;r = e; — the left and right eigenvectors are
identical.

Old linear algebra books talked about left and right eigenvectors, but it seems to have gone out
of fashion. Nowadays they just talk about eigenvectors, meaning right eigenvectors; they form C
as the matriz whose columns are these eigenvectors, and use C™1 as above without noting that its
rows are the left eigenvectors. That probably makes sense, as there’s no particular use of the left
eigenvectors except to form C™1, but it still seems an interesting point to notice. But outside of

this exercise we will follow the crowd and just say “eigenvectors”, meaning “right eigenvectors”.

If two or more eigenvalues of M are equal to one another, we say these eigenvalues are de-
generate; if k eigenvalues have the same value, we say they have a k-degeneracy. In this case M
may be “missing” some eigenvectors — corresponding to k degenerate eigenvalues, there may be any
number from 1 to k independent eigenvectors. (However if M is normal, then we are guaranteed
there are no missing eigenvectors.) In this case we can define the “generalized eigenspace” as the
set of solutions v to the equation (M — \g1)¥v = 0, where )4 is the k-degenerate eigenvalue. There
will always be k independent elements of the generalized eigenspace of Ay, and they will be inde-
pendent of the (generalized) eigenvectors corresponding to other eigenvalues. Furthermore there is
always at least one eigenvector in the generalized eigenspace: if v is in the generalized eigenspace,
(M — A\g1)"v = 0, which we can rewrite (M — A\g1) [(M — Ag1)"'v] = 0, so (M — A\g1)F v is
either an eigenvector of M with eigenvalue \g, or else it is zero (in which case (M — A\g1)*~2v is
either an eigenvector, or zero, and so on, remembering that when we get down to (M — A\41)v = 0,
it means v is an eigenvector).

1 2

Problem 5.4 Consider the matric M = ( 0 1

). The characteristic equation for M is (A—1)2 =

1
0, which has two roots that are both 1. One eigenvector is ( ), but there is no second eigenvector

0

(confirm this). The generalized eigenspace is given by the solutions v to (M — 1)>v = 0. But
(M — 1)2 = 0 (confirm this) so every vector v satisfies this equation; so in particular we can take

. . 0
the second element of the generalized eigenspace to be ( 1 ) Note that the same arguments would

apply to any matrix M = < (1) (i ) with a # 0.

(Note that if we break the degeneracy between the eigenvalues, then there are two independent
1 2
0 1+e€
that, so long as € # 0, the eigenvalue degeneracy is broken, and there are two distinct and inde-
pendent eigenvectors. For € = 0, however, the two eigenvalues become identical, as do the two
eigenvectors. )

etgenvectors. In Problem |5.4 we considered the matric M = ( ); those results showed

As an aside — this may be too compressed to really make sense to you, in which case don’t get
stuck on it: One can gain a bit of intuition for why some matrices may have missing eigenvectors
as follows. The Cayley-Hamilton theorem says that each matrix satisfies its own characteristic
equation. That is, suppose the characteristic equation of M, det(M — A1) = 0, gives the N-th
order polynomial equation Zfi 0 a;\' = 0, where necessarily ay = 1; Zfi 0 a;\' is then called the
characteristic polynomial of M. Then the Cayley-Hamilton theorem states that Zfi 0 a;M? =
0. If the N eigenvalues of M are A;;, ¢ = 0,...,N — 1, then the characteristic polynomial can
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be written as (A — Ag)(A — A1) ... (A — An—1). So the Cayley-Hamilton theorem tells us that
(M—=X0)(M—=X1)...(M—=An_1) =0. (M— ) will give zero when applied to an eigenvector with
eigenvalue \g; (M — A1) will give zero when applied to an eigenvector with eigenvalue A1, etc. So in
essence, what the Cayley-Hamilton theorem suggests (and what in fact can be proved) is that the
whole vector space can be decomposed into a sum of the generalized eigenspace associated with Ag,
the generalized eigenspace associated with Ay, ... — every vector is a linear combination of elements
of these generalized eigenspaces, and so (M — X\g)(M — A1) ... (M — Ay_1) applied to any vector
gives zero. If an eigenvalue )\; is not degenerate, it has a one-dimensional eigenspace, and elements
e; of that eigenspace satisfy (M — \;)e; = 0 — they are eigenvectors of M. But if an eigenvalue
Aj is k-degenerate, and e; is an element of the associated generalized eigenspace, then all that we
know from the Cayley-Hamilton theorem is that (M — )\j)’“ej = 0. There is no guarantee that these
elements are eigenvectors, only that they form part of the generalized eigenspace of A;.

5.6 Linear Differential Equations With General Square Matrices
We can now write down the general solution to first-order linear differential equations:

Theorem 5.14 Consider the equation %v = Mv. Let \; be the eigenvalues of M, with correspond-
ing eigenvectors, or if need be generalized eigenvectors, e;. Let C be the matriz whose columns are
the e;. Let the initial condition be v(0), and write v(0) = >, v;(0)e; with v;(0) = (C~'v(0))
Then if M has a complete basis of eigenvectors, the solution is

v(t) = Zeivi(O)ekit (5.1)

i

If M has a k-degenerate subspace with eigenvalue \g that is missing some eigenvectors, all factors
of €Mt should be replaced by ert + Zl;;% cptpe)‘dt where the c, are constants to be determined.

When no eigenvectors are missing, this is exactly the formula we had been using previously
— the only difference is now the eigenvectors are not necessarily orthonormal. The origin of the
mysterious factors of ¥ in the case of missing eigenvectors can be understood by using a somewhat
more powerful approach, which also provides a more elegant and powerful way to find the solutions
in the case of missing eigenvectors — look up the Jordan normal form and the solution in terms of
the exponential of a matrix in a linear algebra book. But for our purposes this characterization is
sufficient — missing eigenvectors rarely if ever come up in real life.

If there are missing eigenvectors, one can simply write down the terms given by theorem
and solve for their coefficients:

1 2

Problem 5.5 Consider again the matric M = ( 0 1

), and consider the equation %v = Mv.

Recall the eigenvalues are both 1, the one eigenvector is < (1) >, and the other generalized eigenvector
v1(0)et + kqte
v9(0)el + kaote!
v1(0)el + 2v9(0)te!
v2(0)et ’

can be taken to be < (1) > Write v(t) = < ) and solve for the constants k1 and ks.
You should arrive at the solution v(t) = (

Similarly, if M has a complete basis of eigenvectors, the solution to the inhomogeneous equation
%v = Mv + h(t) can be written just as before:

v(t) = Zeie)‘it [/Ot dse N%h;(s) + Ui(O):| (5.2)
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where v;(0) = (C7'v(0)),, hi(s) = (C~'h(s)),, and again C is the matrix whose columns are
the eigenvectors of M. If M has a k-degenerate subspace with eigenvalue A\; that is missing some
At should be replaced by a linear combination of tPerdt for p = 0,...,k — 1, and
should be replaced by a linear combination of sPe=*as for p=0,...,k — 1.

eigenvectors, e

e—)\ds

5.7 Non-Square Matrices: The Singular Value Decomposition

We now turn to the singular value decomposition (SVD), a powerful method of decomposing a
matrix that can be applied to any matrix, square or rectangular. The SVD defines a set of singular
values that are associated with the matrix. For a (square) normal matrix, the singular values o;
are simply the absolute values of the eigenvalues A; of the matrix, o; = /A7 \;. In particular, for a
matrix that is hermitian, so that all of its eigenvalues are real and its eigenvectors are orthonormal,
we shall see that the SVD is essentially identical to the eigenvector/eigenvalue decomposition;
but for non-hermitian square matrices the SVD and the eigenvector/eigenvalue decomposition are
different (and for non-square matrices, the concept of eigenvector is not even defined).

Theorem 5.15 Singular value decomposition (SVD): Every P x N matriz M can be decom-
posed as
M =UxV! (5.3)

where U is a P X P unitary matriz, V is an N X N unitary matriz, and 3 is a diagonal P x N
matriz (meaning that it is nonzero only along the diagonal, which has length min{P, N}) whose
diagonal entries are real, non-negative, and are known as the singular values of M. If the rank
of M is r, there are v nonzero singular values.

We assume the matrices are arranged so that the singular values are ordered from largest to
smallest. Then let v;, 1 =0,...,N —1 be the columns of V; u;, i =0,...,P —1 be the columns of

U; and o;, i1 =0,...,7r — 1 be the nonzero singular values. Then we can also write the SVD as
r—1
M = Z O'iuiV;L (54)
i=0

The formulation of Eq. should make clear that the first 7 columns of V form a basis for the
space spanned by the rows of M; the first r columns of U form a basis for the range of M; and M
maps one basis into the other, Mv; = o;u;. Thus, the SVD finds two orthonormal bases — one for
the rowspace of M, one for the range — such that one basis is mapped into the other by M; and
the singular values tell how much each basis vector is stretched or shrunken under that mapping.

The SVD should remind you of the eigenvector decomposition for a Hermitian matrix: in that
case M = UDUT = > /\ieie;r, where D is the diagonal matrix of the real eigenvalues \; and
U is the unitary matrix whose columns are the eigenvectors e;. For a Hermitian matrix, the
SVD is the eigenvector decomposition; for negative eigenvalues \; < 0, one defines o; = —\;,
v; = €;, U; = —e;, but otherwise the decompositions are identical. Geometrically, the eigenvector
decomposition M = UDUT means rotate the e; basis vectors to be the coordinate axes; scale these
coordinates (D); and then do the inverse rotation, taking the coordinate axes back to the ;. M
thus maps each e; to a scaled version of itself. The SVD decomposition M = UXVT means rotate
the v; basis vectors to be the coordinate axes; scale these coordinates, and possibly embed the
nonzero coordinates in a space of a different dimension; and then rotate the coordinate axes back
to a different basis, the u; (Fig. . M thus maps each v; to a scaled version of the corresponding
u;. In the case of a Hermitian matrix, the two bases are identical except possibly for signs, but
more generally this is not the case.
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Figure 5.1: The Singular Value Decomposition
The singular value decomposition can be understood as the composition of three actions: rotating the
vectors v; to the coordinate axes; scaling these axes by the singular values; and then rotating these axes
to coincide with the vectors u; in the output space. The result of this is to map vectors on the unit
circle in the rowspace (the space spanned by the rows; the portion of the domain that is orthogonal to the
nullspace) into the principal axes of a hyperellipse in the range. This figure was stolen, with thanks, from
http://www.stanford.edu/class/cs205/notes /book/nodel8.html.
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This geometric interpretation of the SVD is illustrated in Fig. This also shows another
aspect of the SVD. For any matrix M, the unit sphere (the sphere of radius 1) in the space spanned
by the rows of M is mapped to a hyperellipse (a set of vectors x defined by x'Qx = 1 for some

.
u;u;

Hermitian matrix Q; in this case Q = >, —*) in the range of M. The u; are the major axis,

0-7/
first minor axis, second minor axis, etc. of the hyperellipse, and the v; are the unit vectors in the

domain of M that map to these hyperellipse axes in the range of M. The o; are the radii of the
axes of the hyperellipse.

The SVD is often used to break down a function of two variables into a sum of products of
functions of one variable. For example, the response of a visual cortical neuron may depend on
stimulus orientation 6 and on time ¢ (the time between stimulus and response), and one wishes to
know if the orientation tuning changes as a function of time. If the response can be written as a
function of orientation times a function of time, then the orientation dependence is the same at
all times. Thus one takes the response function R(f,t), discretizes it as a matrix R;; representing
the response to orientation 6; at time ¢;, and does an SVD. Each term in R = Z;:& Uiuiv;r is a
product of a function of orientation (the wu;) times a function of time (the vj) (this can be seen
from R;; = Z;;é or(ug)i(vg); — the i dependence is in the u, the j dependence is in the v). If
the first singular value is much larger than all the others, then R is reasonably described by the
first term alone, which means it is reasonably described as the product of a function of orientation
times a function of time. In genomics, one may have a response in each of 10,000 genes across 50
arrays, each representing a different experimental condition; SVD expresses the responses as a sum
of products of a function of the gene times a function of the array.

To perform the SVD, one deals with the matrices MM and MM. MM is a P x P hermitian
matrix: (MMT)T = MM (recall that (AB)" = BTAT). Similarly, MM is an N x N hermitian
matrix. Thus, each matrix has real eigenvalues and has a complete orthonormal basis of eigenvec-
tors. Furthermore the eigenvalues of each are positive or zero: if e; is an eigenvector of MM with
eigenvalue )\;, then eZT-MTMei = \;, but also eZT-MTMei = (Me;)Me; = |Me;|> > 0,50 \; > 0; a
similar argument applies to MM,

Because it is hermitian, MM = SDS' for some diagonal matrix D, which contains the real
eigenvalues of MM, and some unitary matrix S, whose columns contain the eigenvectors of MM/,
But if we compute MM, we find MM = (USVT)(VEIUT) = USSTUT. £%isa Px P diagonal
matrix, so this is precisely the eigenvector/eigenvalue decomposition of MMT. Thus, the columns of
U are the eigenvectors of MM/, and the nonzero singular values are the positive squareroots of the
nonzero eigenvalues of MMT. Similarly, by writing MTM = VEIE VT, we see that the columns of
V are the eigenvectors of MM, and the nonzero singular values are the positive squareroots of the
nonzero eigenvalues of MTM. Thus, to perform the SVD, one does an eigenvector decomposition
of MM and of MTM.

Note that if M is a unitary matrix, then MM! = MM = 1. In this case, the SVD is
not of much use, since any vector is an eigenvector of 1, so the choice of U and V are largely
unconstrained. Furthermore the eigenvalues of a unitary matrix have absolute value 1, so X =1
for a unitary matrix. Thus, one form of the SVD of a unitary matrix is M = M11; so for unitary
matrices, the SVD is not useful.

Problem 5.6 1. Derive the SVD of the 2 x 1 matrix < ; )

2. Derive the SVD of the matrix < i 2 >
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Exercise 5.3 Suppose MIMx = 0. Then x'MMx = 0; but x'MMx = (Mx)!(Mx) = |Mx|%.
Conclude that if MTMx = 0, then Mx = 0; the converse is obviously true. So MM has the
same nullspace as M. The rowspace (the space spanned by the rows) is the subspace orthogonal to
the nullspace; so if two matrices have the same nullspace, they have the same rowspace. Thus the
eigenvectors of MYM with nonzero eigenvalue form a basis for the rowspace of MM and thus also
form a basis for the rowspace of M.

Similarly, show that if xMMT' = 0, then xM = 0. Conclude that MM and M have the same
column space (the space spanned by the columns), so that the eigenvectors of MM with nonzero
etgenvalue form a basis for the range of M.
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