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6 The Fourier Transform

6.1 Introductory Remarks: Motivations for Studying the Fourier Transform

You’ve probably encountered the Fourier transform somewhere before. The basic idea, you will
recall, is that any arbitrary function can be decomposed into a weighted sum of sines and cosines.
Why is this interesting? Let me outline the basic ideas here. You’re not expected to understand
every detail here, but only to get the flavor. We’ll work things out in detail in the rest of this
chapter.

The main idea is that one can think of expressing a function in terms of sines and cosines as
expressing that function in a different basis: just as we write f =

∑
j fjej to express a vector in a

given basis ei, so we write something like f(t) =
∑

j

[
f cj cosj(t) + fsj sinj(t)

]
to express the function

f(t) as a weighted sum over some set of cosine and sin functions (I’ve left vague, for a moment,
exactly what we mean by the jth cosine or sin in this sum, but roughly you can think of j as
representing frequency). Why is a particular basis useful? We’ve found that a useful basis is one
that diagonalizes a matrix that is important in the problem we’re studying. That turns out to be
why the Fourier transform is important – it’s a change of basis that diagonalizes a whole class of
matrices (or more generally, linear operators, which are to functions what matrices are to vectors
– more on this later1) that come up extremely frequently in neurobiological and other scientific
problems.

In particular, the Fourier transform is going to allow us to solve our two example problems in
certain simple, important cases:

• Development in a set of synapses: We considered the equation

τ
d

dt
w = Cw (6.1)

Consider a one-dimensional array of input neurons. Suppose that the correlations between
two inputs only depend on the separation between them: Cij = c(i − j). This is plausible,
e.g. in the retina, if we express distance in terms of retinal ganglion cell spacings (which get
bigger in terms of degrees of visual space with increasing eccentricity), correlations between
the spontaneous activities of two retinal ganglion cells in the dark fall off roughly as a function
of the distance between the two cells. Then, as we’ll see, we can solve our equation with the

1So, you couldn’t wait? OK, very briefly: a matrix maps a vector to a vector; “linear operator” is the name for the
equivalent operation that maps functions to functions. Examples of linear operators are the derivative operator: d

dt

operates on f(t) to give a new function, df
dt

; or an integral operator: g(t) =
∫
k(t− t′)f(t′) represents the operation of

“convolution with k(t)” acting on f(t) to give a new function g(t). As we’ll see, if you discretize – discretely sample
or bin the t axis – then functions become vectors and linear operators become matrices.
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Fourier transform – this will turn out to be the transformation to the basis that diagonalizes
C. Thus, the Fourier transform will allow us to understand, in this case, how the structure of
the matrix C determines the structure of the principal eigenvectors and thus of the receptive
fields that develop.

The Fourier transform will also solve this problem in the case of a two-dimensional (or three-
dimensional) array of input neurons, provided the correlation between two inputs depends
only on the separation between them.

• Activity in a network of neurons: We considered the equation

τ
db

dt
= −(1−B)b + h (6.2)

Again, consider a one-dimensional network of neurons. Suppose connections are just depen-
dent on the separation between two neurons – each neuron excites those near it, say – so
that Bij = b(i − j) for some function b. This is a lot less plausible for connectivity than for
correlations, but it might make sense if we imagine what we are calling a “neuron” is really a
set or assembly of neurons. At any rate, if connectivity is separation-dependent, then again,
B will be diagonalized by the Fourier transform, and thus the Fourier transform will solve
our problem. Again, this will also work in two or more dimensions, provided connectivity
between two neurons depends only on the separation between them.

More generally, the Fourier transform will allow us to solve the large class of problems repre-
sented by convolutions:

Definition 6.1 The convolution of a function f(t) with a function g(t) is defined by

f ◦ g(t) =

∫
dt′f(t− t′)g(t′) (6.3)

By letting p = t− t′, one can show that equivalently this is f ◦ g(t) =
∫
dp g(t− p)f(p) =

∫
dt′g(t−

t′)f(t′), that is, the convolution is symmetric in g and f . (These formulae work in arbitrary
dimensions, that is, t and t′ can be one-dimensional or many-dimensional (though both must have
the same dimensions), so long as you interpret

∫
dt′ to be an integral over all of the dimensions of

t′.)
We can also think of the discrete version of a convolution, and the Fourier transform will also

solve those. Suppose we only sample the t axis discretely, say at evenly spaced points ti with
spacing ∆t. Then the equation for a convolution becomes

f ◦ g(ti) =
∑
j

f(ti − tj)g(tj)∆t (6.4)

(Note that as ∆t → 0, this becomes Eq. 6.3). Think of the value of a function at ti as the ith

component of a vector, e.g. g(tj) → gj , and similarly think of f(ti, tj) as the (i, j) element of a
matrix, f(ti, tj)∆t → Fij (where we’ve incorporated the constant ∆t into our definition of the
matrix). Then the equation for this discrete convolution becomes

(f ◦ g)i =
∑
j

Fijgj (6.5)

where the value of Fij only depends on the separation of its components: Fij = f(ti − tj)∆t,
which in turn only depends on i − j. But this is just the equation we have discussed in our two
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examples above: when the matrix C (first example) or B (second example) only depends on the
separation of its components, then the equations that arise in our simple examples involve a discrete
convolution. Thus, convolutions, considered more generally to include the discrete as well as the
continuous form, include the two examples we discussed above; the Fourier transform will solve all
such convolutions.

Convolutions arise in many cases. We discussed two examples above, here are three more:

• You have an image I(x). You want to smooth it by applying a Gaussian filter to each
point: replace each intensity value I(x) by the Gaussian-weighted average of the intensities
around x. Letting G(x) be the Gaussian function you smooth with, the smoothed image is
I ◦G(x) =

∫
dx′G(x− x′)I(x′).

• You model a cell as having a linear response r(t) (representing the rate of the neuron’s firing) to
its stimulus s(t). However, there is some temporal integration: the neuron’s present response
is some weighted average of the stimulus over the last 100-150 msec. Then the neuron’s
response is given by r(t) =

∫
dt′L(t − t′)s(t′) where L(t) tells the weighting of stimuli that

occured t in the past.

For example, an LGN cell can be reasonably approximated as having a response r(t) =∫
dxdt′K(x)L(t − t′)s(x, t′) where s(x, t) is the luminance at point x at time t, and K(x)

describes the spatial center-surround structure of the receptive field. This is an indepen-
dent temporal convolution for each pixel or spatial point x. A more accurate description is
r(t) =

∫
dxdt′K(x)L(x, t− t′)s(x, t′); here the temporal kernel or weighting function L can be

different for each point x, to express the fact that different spatial points can take different
temporal averages; in particular, the surround integrates more slowly than the center.

• Suppose each activation of a synapse at time t′ leads to opening of a conductance with a time
course g(t − t′). Let the activity of the presynaptic cell be given by ρ(t) – very roughly, ρ
is positive when the cell spikes and zero otherwise (we’ll see how to define ρ more precisely
later). Then the total conductance at time t is

∫
dt′g(t− t′)ρ(t′)

All of these examples and more will be greatly simplified by use of the Fourier transform.
The Fourier transform is also important for a practical, computational reason: there is a very fast

algorithm, the Fast Fourier transform or FFT, that allows the transformation to the Fourier basis
to be done much faster than by matrix multiplication. For a transformation in an N-dimensional
vector space, the FFT requires on the order of N logN operations, whereas matrix multiplication
requires on the order of N2 operations. The Fourier transformation matrix has a fair amount of
redundancy, which is exploited to achieve this fast algorithm. The computational speed of the FFT
makes the Fourier transform even more computationally useful than it might be otherwise. We
won’t go into the FFT in these notes, but its existence is something you should be aware of (to use
the FFT, you can apply any standard packaged routine, such as the ones in Numerical Recipes or
the ones available in Matlab).

6.2 Introducing the Fourier Transform: The Fourier transform for a function
on a finite domain

We all know what the Fourier transform means: any (reasonable) function can be expressed as a
sum of sines and cosines. In this section, we develop this basic idea, showing you (or reminding
you of) what the Fourier transform is and how it works in what is hopefully a familiar context.
In subsequent sections, we’ll show what this all has to do with vectors, matrices, and unitary
transformations, but for this section we’ll leave that aside.
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6.2.1 The Fourier transform and its inverse

Let’s explicitly write down the idea that any function can be expressed as a sum of sines and cosines.
Consider a function f(t) defined over a finite interval T, that is, defined for −T/2 < t ≤ T/2 (we’ll
take away this restriction to finite intervals in later sections). Then the function can be expressed
as a sum over all the sines and cosines that have an integral number of complete cycles in the
interval T:

f(t) =

∞∑
k=0

[
f ck cos

(
2πkt

T

)
+ fsk sin

(
2πkt

T

)]
(6.6)

= f c0 +
∞∑
k=1

[
f ck cos

(
2πkt

T

)
+ f sk sin

(
2πkt

T

)]
(6.7)

(To go from the first line to the second, we have noted that cos(0) = 1 and sin(0) = 0). The terms
for a given k in Eq. 6.7 are a cosine and a sin that each have exactly k complete cycles in the
interval T .2 Thus, these terms have wavelength T/k: as t increases by T/k, the argument of the
corresponding cos and sin increase by 2π, representing one complete cycle.

It is helpful (and a good way to avoid mistakes or missing factors) to keep track of the units.
Let the units of any quantity x be given by [x], so in particular t has units [t], e.g. time. Since
the arguments of the sin and cosine must be dimensionless, and 2πt/T is dimensionless, then
k is a dimensionless number. The frequency is given by k/T , which has units 1/[t]; e.g. if t
is time and T = 10 sec, then the kth sin or cosine has temporal frequency 0.1k Hz (where 1
Hz=1/sec=1 cycle/sec). Since sin and cos are dimensionless, f ck and fsk have the same units as
f(t): [f(t)] = [f ck ] = [fsk ].

Perhaps you are accustomed to computing the power spectrum of a function in Matlab or other
software, that is, determining the power at each frequency in the function. The power at frequency
k/T is proportional to |f ck |2 + |fsk |2 (see further discussion below); so f ck and fsk translate fairly
directly into quantities that you may be used to measuring.

Note that this Fourier expansion assumes the function is periodic: because every element of
the right side of Eq. 6.7 is periodic with period T , so too f(t) as defined by this expansion is
periodic, that is, f(t + T ) = f(t). Nonetheless one can use the Fourier expansion to represent
arbitrary functions on a finite interval. If the underlying function is continuous but not periodic (i.e.,
limt→−T/2 f(t) 6= f(T/2)), the Fourier reconstruction will show a discontinuity at this point – in the
limit of an infinite number of terms in the expansion, it will get f(t) right for −T/2 < t < T/2, while
the reconstructed f(T/2) will split the difference between the actual f(T/2) and limt→−T/2 f(t) (this
is in general how the Fourier reconstruction treats a discontinuity in the reconstructed function).

In real life, we must always deal with finite samples of a function (e.g. a neuron’s voltage or spike
sequence as a function of time, sampled over some finite time), and in most cases the function is not
periodic over this finite length (if at all). The “imaginary discontinuity” – a very high-frequency
change – imposed on a finitely-sampled non-periodic function by the Fourier reconstruction can
interfere with estimates of the function’s true underlying frequency components. There are various
methods for dealing with this real-life situation, typically involving various combinations of “win-
dowing” the function in clever ways (taking a finite snippet of a function means multiplying the

2Recall that cos and sin are 2π-periodic, that is, they go through a complete cycle every time their argument
progresses through 2π, and so go through k complete cycles if their argument progresses through 2πk for integer
k: cos (θ + 2πk) = cos (θ), sin (θ + 2πk) = sin (θ), for any integer k. So by restricting k to integers and writing

the argument as 2πkt
T

, we ensure that there are an integral (k) number of complete cycles in T : cos
(

2πk(t+T )
T

)
=

cos
(

2πkt
T

+ 2πk
)

= cos
(

2πkt
T

)
.
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true function by a window function that is 1 over the sampled region, 0 outside; instead one can
use window functions that taper more gradually to zero) and “zerofilling” – embedding the finite
sample in a larger interval, with the values of the function in the expanded region set to zero. For
a good introduction to these issues and the various methods of dealing with real-world problems,
see the book Numerical Recipes.

We can reexpress the above Fourier expansion in terms of complex exponentials; this is the
more standard form that one works with, because it is computationally so much more convenient.
Noting that cos θ = 1

2

(
eıθ + e−ıθ

)
and sin θ = 1

2ı

(
eıθ − e−ıθ

)
= −ı

2

(
eıθ − e−ıθ

)
, we rewrite Eq. 6.7

as:

f(t) = f c0 +
∞∑
k=1

[
f ck
2

(
eı

2πkt
T + e−ı

2πkt
T

)
−
ıfsk
2

(
eı

2πkt
T − e−ı

2πkt
T

)]
(6.8)

= f c0 +
∞∑
k=1

[
1

2
(f ck − ıfsk)eı

2πkt
T +

1

2
(f ck + ıfsk)e−ı

2πkt
T

]
(6.9)

=
1

r1

∞∑
k=−∞

fke
ı 2πkt
T (6.10)

where

fk =


r1
2 (f ck − ıfsk) k ≥ 1

r1f
c
0 k = 0

r1
2 (f c−k + ıfs−k) k ≤ −1

(6.11)

and r1 is an arbitrary normalizing constant that we include for later convenience. We again note
units: from Eq. 6.10, [fk]/[r1] = [f(t)]. We can reverse Eq. 6.11 to find

f ck =

{
(fk + f−k)/r1 k 6= 0

fk/r1 k = 0
(6.12)

fsk = ı(fk − f−k)/r1 (6.13)

Eq. 6.10 is the usual form for writing the expansion of a function f(t) defined on an interval T as
a sum of sines and cosines. While it is equivalent to Eq. 6.7, it is computationally far simpler to
work with.

Equations 6.10 or 6.7 are actually the inverse Fourier transform: they tell, given the coefficients
fk, how to reconstitute the function f(t). The Fourier transform tells, given the function f(t), how
to determine the coefficients fk – the amplitudes of the sines and cosines that add together to give
f(t). The Fourier transform is given as follows:

fk =
1

r2

∫ T/2

−T/2
dt f(t)e−ı

2πkt
T (6.14)

where r2 is another to-be-determined constant. Note that units are given by [fk] = [f(t)][t]/[r2];
combining this with [fk] = [r1][f(t)], we find that [r1][r2] = [t].

We can verify that Eq. 6.14 is the correct expression, and determine what r1 and r2 must be,

72



by substituting Eq. 6.10 into Eq. 6.14:

fk =
1

r2

∫ T/2

−T/2
dt f(t)e−ı

2πkt
T (6.15)

=
1

r2

∫ T/2

−T/2
dt

[
1

r1

∞∑
l=−∞

fle
ı 2πlt
T

]
e−ı

2πkt
T (6.16)

=
1

r1r2

∞∑
l=−∞

fl

∫ T/2

−T/2
dt eı

2πt(l−k)
T (6.17)

=
1

r1r2

∞∑
l=−∞

flTδlk (6.18)

=
T

r1r2
fk. (6.19)

Here we have used the result∫ T/2

−T/2
dt eı

2πt(l−k)
T = Tδlk for l and k integers (6.20)

which is easily proven by doing the integral (explicitly done in the Appendix, Section 6.9.2). Ge-

ometrically, this result can be understood as follows: the integral takes eı
2πt(l−k)

T through l − k
complete cycles. Refer back to Fig. 4.1, and think of the integral as a sum: the integral is summing

up the various eı
2πt(l−k)

T vectors, weighted by dt, as they circle round the complex plane l−k times.
If l − k is nonzero, all these different vectors have to cancel out: for any given vector in the sum,
there is an equal and opposite vector that has an equal weight. Thus, the only way the integral

can be nonzero is if l = k, in which case eı
2πt(l−k)

T = 1 and
∫ T/2
−T/2 dt 1 = T .

Equations 6.15-6.19 give fk = T
r1r2

fk. Thus, the requirement on r1 and r2 is that r1r2 = T
(which satisfies our previous finding on units: [r1][r2] = [t]). Any choice of r1 and r2 satisfying this
will do. It turns out to be convenient3 to choose r1 = r2 =

√
T , so let’s adopt that. Note that this

gives units [fk] = [t]1/2[f(t)].
With this choice, we can now summarize:

Definition 6.2 The Fourier transform of a function f(t) defined on a finite interval −T/2 <
t ≤ T/2 is given by

fk =
1√
T

∫ T/2

−T/2
dt f(t)e−ı

2πkt
T (6.21)

The inverse Fourier transform in this case is given by

f(t) =
1√
T

∞∑
k=−∞

fke
ı 2πkt
T (6.22)

The coefficients of the sin and cosine functions in the expansion of f(t) in terms of sin’s and cosines

3It will make the transform to the Fourier basis unitary, that is, from an orthonormal basis to an orthonormal
basis; otherwise the Fourier basis vectors will be mutually orthogonal but not correctly normalized. This will make
more sense later on.
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(Eq. 6.7) are then given by

f ck =

{
(fk + f−k)/

√
T k 6= 0

fk/
√
T k = 0

(6.23)

fsk = ı(fk − f−k)/
√
T (6.24)

6.2.2 More About the Fourier transform, and power spectra

Let’s consider two other aspects of the Fourier transform. First, there are some simple correspon-
dences between the structure of a function f(t) and the structure of its Fourier transform.

Problem 6.1 Show that the following is true:

Fact 6.1 f(t) is real, or equivalently f(t) = f(t)∗, if and only if its Fourier transform coefficients
satisfy fk = f∗−k.

To show the “if”, use Eq. 6.22, compute f(t)∗, and use fk = f∗−k to show that f(t)∗ = f(t). (Hint:
if g(k) is some function of k,

∑∞
k=−∞ g(k) =

∑∞
k=−∞ g(−k) – you’re just summing the same terms

in a different order.)
To show the “only if”, do the reverse: use Eq. 6.22 to write f(t)∗, assume this is equal to

f(t), and see what this implies for the fk. You will need to use the fact that if
∑∞

k=−∞ ake
ı 2πkt
T =∑∞

k=−∞ bke
ı 2πkt
T , then ak = bk for all k.4

Fact 6.1 also can be seen from Eq. 6.7: if f(t) is real, then all the f ck and fsk must also be real
(since they multiply real sin and cos functions in Eq. 6.7). From Eqs. 6.23-6.24, this in turn is
true if and only if (fk + f−k) is real while (fk − f−k) is purely imaginary, which is enough to prove
that fk = f∗−k.

5 Note that fk = f∗−k implies that f0 = f∗0 , that is, f0 is real for a real function
f(t); this should be no surprise, since f0 is just the “DC component” or integral of the function:

f0 = 1√
T

∫ T/2
−T/2 f(t)dt.

Another correspondence between the structure of a function and that of its Fourier transform
comes from considering whether a function is even or odd (or neither). An even function f(t) is
defined as one for which f(t) = f(−t); an odd function has f(t) = −f(−t). The cosine is an even
function, the sin is an odd function. If f(t) is even, then only the even (cosine) terms can contribute
to the expansion in Eq. 6.7 – the coefficients fsk of the odd (sin) terms must all be zero.6 Similarly,
if f(t) is odd, then only the odd (sin) terms can contribute, and all of the cosine coefficients f ck
must be zero. Expressing this in terms of the fk using Eqs. 6.23-6.24, we have:

Fact 6.2 If f(t) is even, meaning f(t) = f(−t), then its Fourier transform is also even: fk = f−k.
If f(t) is odd, meaning f(t) = −f(−t), then its Fourier transform is also odd: fk = −f−k.

4To see this, apply (1/T)
∫ T/2
−T/2 dte

−i 2πmt
T to each sum; using Eq. 6.20, this will pick out the mth coefficient. Thus,

if the sums are equal, each coefficient is equal.
5Write fk + f−k = 2ra and fk − f−k = 2ırb where ra and rb are real. Adding and subtracting these equations

yields fk = ra + irb, f−k = ra − irb.
6Proof: a sum of two nonzero even functions is even (show this); a sum of two nonzero odd functions is odd; a

sum of a nonzero even and a nonzero odd function is neither even nor odd. So the sum of the sin terms is an odd
function, the sum of the cosine terms is an even function, and you can’t build an even function by adding any nonzero
sin terms to the cosine terms.
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Second, let’s gain more clarity about the relationship between the fk and the power at a given
frequency. We’ve already stated that the power at a frequency k/T is proportional to |f ck |2 + |fsk |2.
Using Eqs. 6.23-6.24, this in turn is proportional to (|fk|2 + |f−k|2) (or just |fk|2 for k = 0). So,
for k 6= 0 one must count both the positive and negative frequency components to determine the
power. For a real function, |fk|2 = |f−k|2, so for k 6= 0 the power at frequency k/T is proportional to
twice the power at the positive-frequency component. Thus, if one only looks only at non-negative
frequencies for a real function, the power at frequencies k/T > 0 is proportional to 2|fk|2, while
the power at k = 0 is proportional to |f0|2 (no factor of 2).

To gain more insight into why power sums across frequencies, let’s define the power in f(t) to

be Pf = 1
T

∫ T/2
−T/2 |f(t)|2dt. This is defined by analogy to many situations in physics, where the

energy in a wave is proportional to the square of its amplitude, and the power is the average energy
delivered per unit time.

Problem 6.2 Using Eq. 6.22, show that

|f(t)|2 =
1

T

∞∑
k,l=−∞

f∗kfle
ı
2π(l−k)t

T (6.25)

Then, using Eq. 6.20, show that

Pf =
1

T

∫ T/2

−T/2
|f(t)|2dt =

1

T

∞∑
k=−∞

|fk|2 (6.26)

This result — that the sum or integral of the absolute square of a function in real space is equal to
the sum or integral of the absolute square in Fourier space — is known as Parseval’s Theorem.

Thus, defining the power as the average of the absolute square of a function, we find that this
power is just 1/T time the sum of the absolute squares of the Fourier components. The power in
each frequency component adds independently to give the total power. This relationship is what
makes it natural to represent the power at a signed frequency k as being proportional to |fk|2 (or
at an unsigned frequency k 6= 0 as being proportional to |fk|2 + |f2

−k|).
We will see later that Parseval’s Theorem is a natural consequence of the fact that the Fourier

transform can be regarded as a unitary coordinate transformation – the sum of the absolute square
of the components of a vector is the length of the vector, and this is preserved under unitary
transformations. It is probably not yet clear to you what I am talking about – what integrals of
functions have to do with lengths of vectors, or what unitary transformations of vectors have to do
with Fourier transformations of functions – but it will become clear.

6.2.3 The convolution theorem

The convolution theorem will show that going to the Fourier domain greatly simplifies a convolution
– the convolution becomes a simple, frequency-by-frequency multiplication. To see this, we’ll
consider the convolution f ◦ g(t) of two T-periodic functions, f(t) and g(t):

f ◦ g(t) =

∫ T/2

−T/2
dt′ f(t− t′)g(t′) for −T/2 < t ≤ T/2 (6.27)

Note that the argument t− t′ of f(t− t′) can range from −T to T , so for the convolution to make
sense for functions defined on the finite range −T/2 to T/2, we have to extend the functions by
considering them to be periodic – as is implied by their expression as a Fourier series.

75



To simplify notation, let’s just call the convolution c(t): c(t) = f ◦g(t). So, let’s take its Fourier
transform:

ck =
1√
T

∫ T/2

−T/2
dt c(t)e−ı

2πkt
T (6.28)

=
1√
T

∫ T/2

−T/2
dt

[∫ T/2

−T/2
dt′ f(t− t′)g(t′)

]
e−ı

2πkt
T (6.29)

=
1√
T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ f(t− t′)g(t′)e−ı

2πk(t−t′)
T e−ı

2πkt′
T (6.30)

We let p = t− t′, and continue:

ck =
1√
T

∫ T/2

−T/2
dt′ g(t′)e−ı

2πkt′
T

∫ T/2+t′

−T/2+t′
dp f(p)e−ı

2πkp
T (6.31)

Now, consider any periodic function h(p+ T ) = h(p). Because it is periodic, the integral of h over
a segment of length T is the same for any such segment – it doesn’t matter where the segment is

centered. In particular,7
∫ T/2+t′

−T/2+t′ dp h(p) =
∫ T/2
−T/2 dp h(p). So since both f(p) and the complex

exponential (and hence their product) are T -periodic, we can continue:

ck =

∫ T/2

−T/2
dt′ g(t′)e−ı

2πkt′
T

[
1√
T

∫ T/2

−T/2
dp f(p)e−ı

2πkp
T

]
(6.34)

= fk

∫ T/2

−T/2
dt′ g(t′)e−ı

2πkt′
T (6.35)

=
√
Tfkgk (6.36)

This is the convolution theorem:

Theorem 6.1 Convolution theorem: The Fourier transform (f ◦ g)k of the convolution f ◦ g(t)
of two functions f(t) and g(t) is given by:

(f ◦ g)k =
√
Tfkgk (6.37)

Note that the factor
√
T depends on our choice of the normalization of the Fourier transform and

its inverse; for example, had we chosen r1 = T , r2 = 1, it would disappear. Thus the main point is
that the Fourier transform of the convolution is just (up to a normalization factor) the product of
the Fourier transforms of the two functions; “convolution in real space becomes multiplication in
Fourier space”.

7This can be seen formally as follows:∫ T/2+t′

T/2

dp h(p) =

∫ T/2+t′−T

T/2−T
dp h(p) =

∫ −T/2+t′

−T/2
dp h(p) (6.32)

and therefore∫ T/2+t′

−T/2+t′
dp h(p) =

∫ T/2

−T/2+t′
dp h(p) +

∫ T/2+t′

T/2

dp h(p) =

∫ −T/2+t′

−T/2
dp h(p) +

∫ T/2

−T/2+t′
dp h(p) =

∫ T/2

−T/2
dp h(p).

(6.33)
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Problem 6.3 1. By exactly the same method, prove the correlation theorem, which gives the
Fourier transform of the cross-correlation between two functions (think spike trains):

Theorem 6.2 Correlation theorem: Define the cross-correlation Cf,g(t) of two T-periodic
functions f(t), g(t) as

Cf,g(t) =

∫ T/2

−T/2
dt′ f(t+ t′)g(t′) for −T/2 < t ≤ T/2 (6.38)

Then its Fourier transform is
(Cf,g)k =

√
Tfkg−k (6.39)

2. Now prove the same thing by (1) defining h(t) = g(−t); (2) showing that this implies hk = g−k;
(3) showing Cf,g(t) = f ◦ h(t); (4) applying the convolution theorem to f ◦ h.

6.3 Why the Fourier transform is like a vector change of basis

What do we mean by an orthonormal basis for a vector space? It is a set of vectors ei that satisfy
the following properties:

• Orthonormality: ei · ej = δij .

• Completeness: Any vector v can be written v =
∑

i viei where vi = ei · v.

Suppose we think of the values f(t) of the function f for each point t as being like the components
vi of a vector v for each dimension i. For example, if we only sample f(t) at some discrete set of
points ti separated by ∆t — so there are N = T/∆t points — then the function f(t) becomes an
N-dimensional vector with components fi = f(ti). Indeed in the real (digital) world, we usually end
up dealing only with discretely sampled versions of functions — e.g., we sample continuous voltage
traces with an A/D converter to produce a discrete string of voltages, one for each time-sample
point; we represent a function on a computer as a discrete array of sample points when we perform
calculations on it, such as computing its power spectrum. It makes sense to continue to think of
the f(t) for different t’s as the “components” of the “vector” represented by f(t), even when we
take the limit ∆t→ 0, N →∞ and go back to the case of a continuous function. Another way to
think of this is that there is one component for each dimension or degree of freedom of a vector
– each axis along which the vector can independently vary. In a sense, each point t provides an
independent dimension for a function f(t) – the function can assume a different value at each t –
so we can think of it as a sort of vector with a continuously infinite set of dimensions indexed by
t.8

To keep this correspondence of functions and vectors in mind, I’ll adopt a slight change of
notation: just as we write vectors v and their components vi, so I will write functions f with
components f(t).

Then, just as we define the dot product for vectors as v · q =
∑

i v
∗
i qi, so we can define the dot

product between functions as:

8Of course, if your function space is restricted to be locally continuous, it is not quite true that the function can
assume an independent value at each t; but if derivatives can be arbitrarily large, then the values in arbitrarily small
intervals dt can vary independently . . . In general, the more constraints you put on your function space (continuity,
existence of derivatives, frequency cutoff, . . .), the fewer dimensions it will have, and accordingly in some sense the
lower the dimension of the set of basis functions required to span the space (i.e. to serve as a basis for constructing
all the functions in the space). But this is a deep subject about which I know next to nothing so I’ll stop there.
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Definition 6.3 The dot product of two T-periodic functions f and g is defined by

f · g =

∫ T/2

−T/2
dt f∗(t)g(t) (6.40)

Then the fact that any T-periodic function can be represented by its Fourier expansion can be
interpreted as follows. Take the T-periodic functions as our “vector space” (the careful mathemati-
cian must define the space of functions more carefully, e.g. putting restrictions like being continuous
or finite-valued, to restrict the space to the functions the Fourier expansion can describe, and to
ensure they will behave like a vector space, e.g. addition of two of them will stay within the space).
Let’s define:

Definition 6.4 The Fourier basis functions for the set of T-periodic functions are the functions

ek with components ek(t) = 1√
T
eı

2πkt
T , for k an integer, −∞ < k <∞.

These functions are orthonormal: using Eqs. 6.20 and 6.40,

ek · el =
1

T

∫ T/2

−T/2
dt eı

2π(l−k)t
T = δlk. (6.41)

They are also complete: the Fourier transform says that any function f in our space can be written

f(t) =
1√
T

∞∑
k=−∞

fke
ı 2πkt
T =

∞∑
k=−∞

fk
eı

2πkt
T

√
T

=
∑
k

fkek(t) (6.42)

or f =
∑

k fkek. Furthermore the components fk can be found from the appropriate dot product:

fk =
1√
T

∫ T/2

−T/2
dt f(t)e−ı

2πkt
T =

∫ T/2

−T/2
dt

e−ı
2πkt
T

√
T

f(t) = ek · f (6.43)

So, the Fourier basis looks just like an orthonormal basis for our function space, making the
Fourier transform just a unitary transformation to this basis. Which raises the question: what
basis were we transforming from?

In dealing with vectors, the “current basis” – a set of basis vectors described in their own
coordinate system – is the set of vectors with one coordinate equal to 1 and all other coordinates
equal to zero. As we’ve suggested, a vector’s ith coordinate, vi, becomes a function’s tth value, f(t).
The function that has one “coordinate” – say its value at t = t0 – nonzero, and all other coordinates
zero, is the Dirac delta function δ(t − t0). This function is described in detail in the Appendix,
Section 6.9.1. Briefly, one can think of it as the limit, as ∆t → 0, of a function that is equal to
1

∆t on the region of width ∆t centered at t0, and 0 elsewhere. This function is real, it is zero for

t 6= t0, and it integrates to 1:
∫ T/2
−T/2 dt δ(t− t0) = 1 for −T/2 < t < T/2. Furthermore, just as, for

any vector v and basis vector ek, ek · v = vk where vk is the component of v in the ek direction,

so for any function f , its integral with δ(t − t0) picks out f(t0):
∫ T/2
−T/2 dt δ(t − t0)f(t) = f(t0) for

−T/2 < t < T/2 (see Appendix for more details). Just as we think of the ith basis vector ei as
having jth component (ei)j , so we can think of the function δ(t− t0) as the tth0 basis function et0 ,
whose tth component is et0(t) = δ(t− t0).

Thus, we assert that the basis in which our functions were originally defined — call it the
“real-space basis”, since it is traditional to refer to the original functions as living in “real space”
and their Fourier transforms as living in “fourier space” — is the space of Dirac delta functions:
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Definition 6.5 The real-space basis functions for the set of T-periodic functions are the func-
tions et0 defined by et0(t) = δ(t− t0) for −T/2 < t0 < T/2.

Note that these functions have a continuous index: there is a continuous infinity of possible values
t0, so there is a continuous infinity of real-space basis functions. In contrast, there is a discrete
infinity of Fourier-space basis vectors – they are indexed by the discretely infinite set of all possible
integers. Don’t get too tangled up thinking about this.

Well, let’s see if this definition makes sense. First, are they orthonormal?:

et0 · et1 =

∫ T/2

−T/2
dt δ∗(t− t0)δ(t− t1) = δ(t0 − t1) (6.44)

Hmmmm . . . This seems almost right – it’s a delta function – but it’s a different kind of delta
function. Instead of the Kronecker delta, δt0t1 , we have the Dirac delta, δ(t0 − t1). It turns out
this is the right – or consistent – way to define what it means for a continuously-indexed set of
functions to be orthonormal. Kronecker delta functions have two discrete indices, and make sense
for dealing with sums and discrete spaces; the Dirac delta function has one continuous index, and
makes sense for dealing with integrals and continuous spaces. One way to see this is that the
Kronecker delta, δkl, gives the coordinates of the identity operator, 1, which is defined by the fact
that 1v = v or

∑
j 1ijvj = vi for any vector v. The continuous version of the latter equation is∫ T/2

−T/2 dt1(t − t′)f(t′) = f(t) for any function f , which requires that 1(t − t′) = δ(t − t′). That is,
the Dirac delta is the identity operator on functions, just as the Kronecker delta is the identity
operator on vectors.

Second, are they complete? Yes, any function f can be expanded in them:

f(t) =

∫ T/2

−T/2
dt0 f(t)δ(t− t0) =

∫ T/2

−T/2
dt0 f(t0)δ(t− t0) =

∫ T/2

−T/2
dt0 f(t0)et0(t) (6.45)

or

f =

∫ T/2

−T/2
dt0 f(t0)et0 (6.46)

This is the continuous form of the discrete expression v =
∑

i viei; we have to integrate rather
than sum over the continuous index t0. (To perhaps belabor the point: the equivalent of the ith

component vi is the tth0 component f(t0), while the equivalent of the ith basis vector ei is the tth0
basis function et0). Furthermore, the component f(t0) is found from the appropriate dot product:

f(t0) = et0 · f =

∫ T/2

−T/2
dt e∗t0(t)f(t) =

∫ T/2

−T/2
dt δ(t− t0)f(t) (6.47)

Finally, the convolution theorem can be understood as saying that the Fourier basis diagonalizes
the convolution operator – it is the basis of eigenfunctions of the convolution operator. We generalize
the concept of a matrix M that takes a vector v to another vector Mv, to the concept of a linear
operator O that takes a function f to another function Of (the “linear” part means O(af + bg) =
aOf + bOg). For example, the convolution operator g◦ is linear and takes f to g ◦ f (defined in
Eq. 6.27). The eigenvectors ei of a matrix M satisfy Mei = λiei; similarly the eigenfunctions ex
of a linear operator O satisfy Oex = λxex.
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Problem 6.4 Show that the Fourier basis functions ek are eigenfunctions of the convolution op-
erator. That is, show that

(g ◦ ek) (t) =

∫ T/2

−T/2
dt′ g(t− t′)e

ı 2πkt
′

T

√
T

(6.48)

= gke
ı 2πkt
T =

√
Tgkek(t) (6.49)

or g ◦ ek =
√
Tgkek. (Hint: put the factor 1 = e−i

2πkt
T ei

2πkt
T into the integral, and combine the

first exponential with the eı
2πkt′
T term.) Thus the Fourier basis functions ek are eigenfunctions of

the convolution operator g◦, with eigenvalue λk just given by
√
Tgk, or

√
T times the kth Fourier

component of the function g defining the convolution.

When we transform to the eigenvector basis ei of a matrix M, the matrix becomes diagonal, with
diagonal entries given by its eigenvalues λi. In this basis, the operation of the matrix M on a vector
v is just component-wise multiplication: if v =

∑
i viei, then Mv =

∑
i λiviei, or (Mv)i = λivi.

Compare this to expressing Mv in any other coordinate system, say ea: then (Mv)a =
∑

bMabvb,
that is, to compute the ath component of Mv, one must sum over all components of v.

Precisely the same thing happens in the case of the convolution operator g◦: the Fourier basis ek
is its eigenfunction basis, with corresponding eigenvalues λk =

√
Tgk. In this basis, the operation of

the convolution on a function f is just component-wise multiplication: if f =
∑

k fkek, then g ◦ f =∑
k λkfkek =

√
T
∑

k gkfkek or (g ◦ f)k =
√
Tgkfk. Compare this to expressing f in some other

coordinate system, say the real-space coordinate system: there (g ◦ f)(t) =
∫ T/2
−T/2 dt

′ g(t− t′)f(t′),

that is, to compute the t component of (g ◦ f), one must sum over all components of f .
In summary: the Fourier transform can be understood as a unitary transform of a function f

from the real-space basis, where the function’s components are f(t0), to the Fourier basis, where the
function’s components are fk. We are describing the same function, but in a different coordinate
system. The Fourier transform is useful because it transforms to the eigenvector basis of a wide
class of operators, including convolutions and derivatives. One can generalize everything we’ve
established so far – the properties of Hermitian and Unitary and Normal operators, that Normal
operators have a complete basis of eigenvectors and Hermitian operators have real eigenvalues, etc.
(there are some mathematical exceptions, in infinite-dimensional spaces, but none we ever have to
worry about in real life). It all goes right through, and the intuitions we derived from N-dimensional
spaces go all the way through to continuously-infinite-dimensional spaces. This should not be too
surprising, since in the real digital world we always deal with functions as finite-dimensional vectors,
and this seems to work just fine.

From here, one can go in two directions: one can follow the real world and discretely sample
t, and so consider Fourier transforms of finite-dimensional vectors; or one can let T → ∞, and
consider Fourier transforms of functions on an infinite domain. For finite-dimensional vectors, the
Fourier basis also becomes finite-dimensional. For functions on an infinite domain in real space, the
Fourier coordinates also live on a continuous infinite domain – k goes continuously from −∞ to∞.
So in those two cases Fourier space and real space look alike, unlike in the case we’ve considered.
Otherwise, everything looks more or less identical to what we have found here. The convolution
theorem, the relationships between the structure in Fourier coordinates vs. in real coordinates, etc.,
all go through unchanged except for appropriate changes between sums and integrals for discrete
vs. continuous indexes and some possible changes in normalization factors.

We’ll go through these two cases in a moment. But first, let’s better understand why the Fourier
transform is so useful.
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6.4 Why the Fourier Transform is So Useful: Diagonalizing Translation-Invariant
Operators

There is a very useful theorem about matrices and linear operators that goes like this:

Theorem 6.3 Suppose two matrices M1 and M2 each have a complete basis of eigenvectors. Then
they have a common basis of eigenvectors if and only if they commute: that is, if and only if
M1M2 = M2M1. Similarly, two linear operators O1 and O2 with complete bases of eigenfunctions
have a common basis of eigenfunctions if and only if they commute, O1O2 = O2O1.

Sketch of a proof for matrices: If M1 and M2 have a common basis of eigenvectors, then
M1 = UD1U

† and M2 = UD2U
† for diagonal matrices D1 and D2 and the same unitary matrix

U.9 Using the facts that diagonal matrices always commute with each other and that U†U = 1,
we find M1M2 = UD1U

†UD2U
† = UD1D2U

† = UD2D1U
† = UD2U

†UD1U
† = M2M1.

Conversely, if M1M2 = M2M1 and if e1
i is a basis of eigenvectors of M1 with eigenvalues λ1

i , then
M2M1e

1
i = λ1

iM2e
1
i , but also M2M1e

1
i = M1M2e

1
i , so M1(M2e

1
i ) = λ1

i (M2e
1
i ), that is, M2e

1
i is

also an eigenvector of M1 with eigenvalue λi. If there is only one eigenvector of M1 with eigenvalue
λ1
i , then this implies that M2e

1
i ∝ e1

i and e1
i is also an eigenvector of M2 (but most likely with a

different eigenvalue). If there are multiple eigenvectors of M1 with eigenvalue λi, then the proof
gets a little trickier – when there’s multiple eigenvectors with the same eigenvalue, then any linear
combination of them is also an eigenvector with the same eigenvalue, so all we know in that case
is that M2e

1
i is such a linear combination. But the bottom line in that case is that one can always

pick the right linear combinations as the basis so that M1 and M2 share the same eigenvectors.
Now here’s an example of why this theorem is useful. Consider the operator Ta on functions that

translates them by a: Taf(t) = f(t+ a).10 If an operator commutes with the translation operator,
it means that the operator has the same form no matter where in the function it is applied. Most
linear filters you will encounter are translation-invariant (meaning that they commute with the
translation operator), for example when you smooth an image you apply the same smoothing
function everywhere on the image, you don’t smooth by different amounts at different points on
the image. So the translation-invariant operators are a very important class of linear operators.
Some examples of translation-invariant operators include:

• The derivative operator d
dt : Ta

d
dtf(t) = Taf ′(t) = f ′(t+ a) = d

dtf(t+ a) = d
dtTaf(t).

• The convolution operator g·: Ta(g · f)(t) = (g · f)(t + a) =
∫ T/2
−T/2 dt

′ g(t + a − t′)f(t′) =∫ T/2−a
−T/2−a dt

′ g(t− t′)f(t′ + a) =
∫ T/2
−T/2 dt

′ g(t− t′)Taf(t′) = (g · Taf)(t).

(To understand the elimination of the −a’s in the integral limits in the second-to-last step, see
footnote 7.) The theorem tells us that, if we can find the eigenfunctions of the translation operator,
we will be able to diagonalize any translation-invariant operator – including any derivative or
any convolution – because they will share a common basis of eigenfunctions with the translation
operator.

What are the eigenfunctions of the translation operator?

9We will later see that for a matrix M that has a complete but non-orthonormal basis of eigenvectors, the
expression for M in terms of a diagonal matrix D is M = CDC−1 where the columns of the invertible matrix C are
the eigenvectors. The proof goes through equally well with this expression.

10I haven’t explained what the adjoint of an operator, as opposed to a matrix, is, but the adjoint of Ta is T−a, and
these two commute with one another, so Ta is a normal operator (in particular, since T−a is the inverse of Ta, Ta is
unitary) and so has a complete orthonormal basis of eigenfunctions. Exercise 6.4 will show the matrix version of Ta
in the discrete case (i.e.dealing with vectors rather than functions), and there these relationships will be clear.
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Theorem 6.4 The eigenfunctions of the translation operator are the Fourier basis functions, ek(t) =
1√
T
eı

2πkt
T .

The proof is simple: Taek(t) = ek(t+ a) = 1√
T
eı

2πk(t+a)
T = eı

2πka
T

1√
T
eı

2πkt
T = eı

2πka
T ek(t). That is, if

we translate one of the Fourier basis functions by a, we get back the same Fourier basis function,

multiplied by the complex number eı
2πka
T (this is the corresponding eigenvalue of the translation

operator). Furthermore, for most a, the eigenvalues eı
2πka
T for different k’s are distinct, meaning

that this is the only eigenvector basis of the translation operator (eigenvectors are ambiguous only
when two or more eigenvectors share the same eigenvalue).

Thus: the reason the Fourier transform is so useful is that it diagonalizes all translation-
invariant operators. The Fourier transform is the transform to the basis of eigenvectors of the
translation operator, and these are also eigenvectors of any translation-invariant operator. By
transforming to the Fourier basis, in one fell swoop any such operator is diagonalized. This is the
main reason why the Fourier transform is so powerful and so commonly used. (Another reason is
that a very fast computational implementation, the fast Fourier transform, exists.)

6.5 The Discrete Fourier Tranform

Suppose we take a T-periodic function f(t) and sample it discretely at N points separated by ∆t,
N∆t = T . Thus, in place of f(t) defined on −T/2 ≤ t ≤ T/2, we consider the vector v with
components vj = f(j∆t), j = [−N/2]+, [−N/2]+ + 1, . . . , [N/2]− − 1, [N/2]−. Here, we define
[−N/2]+ to be the smallest integer greater than or equal to −N/2, and [N/2]− to be the largest
integer that is strictly less than N/2 (e.g. if N = 30, the components go from -15 to 14, while
if N = 31, the components go from -15 to 15). Letting ṽk be the kth component of the Fourier
transform of v, we discretize Eq. 6.21 to find:

ṽk =
1√
N∆t

[N/2]−∑
j=[−N/2]+

∆t vje
−ı 2πkj∆t

N∆t (6.50)

=

√
∆t

N

[N/2]−∑
j=[−N/2]+

vje
−ı 2πkj

N (6.51)

What about the inverse transform? Notice that ṽk is N-periodic, ṽk+N = ṽk. The appropriate
generalization of Eq. 6.22, which reduces to that equation in the limit N →∞, ∆t→ 0, N∆t = T ,
is

vj =
1√
N∆t

[N/2]−∑
k=[−N/2]+

ṽke
ı 2πkj
N (6.52)

Since both vk and ṽk are N-periodic, it is common to express the Fourier transform and its
inverse in terms of vectors with components running from 0 to N − 1 rather than from [−N/2]+ to
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[N/2]−. For example, using the periodicity of the ṽk, we can rewrite Eq. 6.52 as:

vj =
1√
N∆t

[N/2]−∑
k=[−N/2]+

e(2πıjk/N)ṽk (6.53)

=
1√
N∆t

[N/2]−∑
k=0

e(2πıjk/N)ṽk +
−1∑

k=[−N/2]+

e(2πıjk/N)ṽk+N

 (6.54)

=
1√
N∆t

[N/2]−∑
k=0

e(2πıjk/N)ṽk +
N−1∑

k=[N/2]+

e(2πıjk/N)ṽk

 (6.55)

=
1√
N∆t

N−1∑
k=0

e(2πıjk/N)ṽk (6.56)

Thus, we can equally well think of frequency (N−1) as frequency −1, frequency (N−2) as frequency
−2, etc. The same change can be performed for Eq. 6.51.

(Recall what is meant by a negative frequency: e(2πıjk/N) = cos (2πjk/N) + ı sin (2πjk/N),
while substituting −k for k gives e(2πıj(−k)/N) = cos (2πjk/N) − ı sin (2πjk/N) = cos (2πjk/N) +
ı sin ([2πjk/N ] + π) (recall that cos(x) = cos(−x), sin(x) = − sin(−x), and sin(x+ π) = − sin(x)).
So a negative frequency −k is just like the positive frequency k except that the imaginary part –
the sinusoid – is phase shifted by 180o (that is, by π radians) relative to the real part.)

Problem 6.5 It may seem odd that a high frequency like (N − 1) is the same as a low frequency
like −1. To convince yourself of this, draw the real and imaginary parts of e(2πıjk/N) for k = N − 1
and k = −1, as a function of integers j from 0 to N − 1, for some small N , say N = 4. You’ll find
that the values coincide at each integer j (as they must given the periodicity with period N of the
exponential, for integer j), though the values would be wildly different for j in between the integers.
Because we’re only looking discretely, at integer j′s, we can’t tell the difference between the two –
they are identical in our discrete, N-dimensional world.

The factors of ∆t in Eqs. 6.51-6.56 are annoying, but we’ve seen that all that matters is the
product of the factors in front of the forward and inverse equations, rather than their separate values
alone, and ∆t cancels out of that product. So let’s eliminate ∆t, and define the discrete Fourier
transform as follows:

Definition 6.6 Given an N-dimensional vector v, with components vk in the current basis: the
Fourier transform of v is the vector ṽ defined by

ṽj =
1√
N

N−1∑
k=0

e(−2πıjk/N)vk (6.57)

Note, jk is an integer: it is the product of the values of j and k, the two indices in question. The
inverse Fourier transform is defined by

vj =
1√
N

N−1∑
k=0

e(2πıjk/N)ṽk (6.58)
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To show that this is the right expression for the inverse transform, we need to first establish a
fundamental relationship for complex exponentials:

N−1∑
k=0

e2πıjk/N =

{
N if j is an integral multiple of N
0 otherwise

(6.59)

This is a discrete analog of Eq. 6.20 for the continuous case. There is a proof and a full discussion
in the Appendix, see Eq. 6.151.

Exercise 6.1 Write down the proof of Eq. 6.59. Here’s a brief outline: For j an integral multiple
of N – j = pN for some integer p – this is easy: e2πıpk = 1 for all integer k, and there are N
terms, so the sum gives N . For j not an integral multiple of N , the task is to show that the sum
gives 0. Geometrically, note that the complex exponentials in the sum represent a sequence of unit
vectors in the complex plane (see Fig. 4.1 with an angle 2πj/N between successive vectors. The
vectors go around the unit circle counterclockwise j times as k goes from 0 to N . So, rotating each
vector through an angle 2πj/N just takes each vector to the next one around the circle; this also
takes the last one to the first one. Therefore, rotating the whole set of vectors by this angle leaves
the set unchanged, and therefore must leave the sum over the vectors unchanged. But rotating the
whole set of vectors by this angle must also rotate the sum of the vectors by this angle (this sum is
just a complex number, hence it is also a vector in the complex plane). Unless this angle represents
a complete rotation — that is, unless j is an integral multiple of N — you can’t rotate a nonzero
vector by this angle and get the same vector back. So the sum must be zero. To express this math-
ematically, note that rotating a complex number by 2πj/N means multiplying it by exp(ı2πj/N).
Write s(j) for the sum, multiply each vector in the sum by exp(ı2πj/N), show that this leaves the
sum unchanged, but show that this also yields exp(ı2πj/N)s(j). So exp(ı2πj/N)s(j) = s(j), so
either exp(ı2πj/N) = 1 or s(j) = 0.

Problem 6.6 Understanding the Fourier transform as a change of basis:

• Show that the Fourier transform can be rewritten as the vector equation,

ṽ = UFTv (6.60)

where UFT is the matrix with components UFT
jk = 1√

N
e−2πı(jk)/N .

• Rewrite the matrix UFT as

UFT =


ẽ†0
ẽ†1
. . .

ẽ†N−1

 (6.61)

where ẽ†j is the row vector with components (ẽ†j)k = 1√
N
e−2πıjk/N ; that is,

ẽ†j =
1√
N

(1, e−2πıj/N , e−2πı(2j)/N , . . . , e−2πı(N−1)j)/N ) (6.62)

• Show that the ẽj are orthonormal, ẽ†j ẽk = δjk, by using Eq. 6.59. (Don’t forget to take the

complex conjugate in the elements of ẽ†j relative to those of ẽk.) Therefore, UFT is a unitary

matrix, UFT(UFT)† = 1.
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• Thus, establish that the Fourier transform is a transformation to the orthonormal basis of
vectors ẽj defined, in the pre-transform basis, by (ẽj)k = e2πıjk/N , or

ẽj =
1√
N

(1, e2πıj/N , e2πı(2j)/N , . . . , e2πı(N−1)j/N )T (6.63)

(See exercise 4.11).

• Rewrite this new basis in terms of cos and sin: ẽj = ẽRE
j + iẽIM

j where

ẽRE
j =

1√
N

(1, cos (2πj/N), cos (2π(2j)/N), . . . , cos (2π(N − 1)j/N))T (6.64)

and

ẽIM
j =

1√
N

(0, sin (2πj/N), sin (2π(2j)/N), . . . , sin (2π(N − 1)j/N))T (6.65)

• Show that ẽRE
j is a cosine vector that oscillates, in going from the 0th to the (N−1)th elements,

through j cycles; while ẽIM
j is a sin vector that oscillates through j cycles. Thus, the Fourier

transform is a transformation to a basis of cos and sin vectors of every integral frequency
from 0 to (N-1) (here, “frequency” is “cycles/vector”; noting that, in any given basis vector,
the last cycle is actually not quite completed, but would be completed if the vector were given
one more element, namely (ẽj)N = (ẽj)0).

Problem 6.7 The inverse Fourier transform:

• Apply the matrix UFT† to Eq. 6.60, to show that the inverse Fourier transform is given by

v = UFT†ṽ (6.66)

(Note, since UFT is unitary, you know that UFT† = (UFT)−1; so nothing fancy is required
here, just multiply the matrices.) Now show that, in components, this is

vj =
1√
N

N−1∑
k=0

e2πıjk/N ṽk (6.67)

(recall that for any matrix M, (M†)jk = M∗kj).

• From Eq. 6.67, show that

UFT† =


ẽT

0

ẽT
1

. . .
ẽT
N−1

 =


(ẽ∗0)†

(ẽ∗1)†

. . .
(ẽ∗N−1)†

 (6.68)

where the ẽj are the Fourier basis vectors (Eq. 6.63).

• By taking the adjoint of Eq. 6.61, show that we can also write UFT† = ( ẽ0 ẽ1 . . . ẽN−1 ).
(Thus, the unitary matrix UFT† is symmetric – its columns are the same as its rows, so it
is equal to its transpose – but it is not Hermitian, that is, it is not equal to its adjoint. The
same is true of its adjoint, the unitary matrix UFT.)
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Problem 6.8 Let’s look at some examples:

• Let N=2.

– Write down the two Fourier basis vectors, ẽ0 and ẽ1. Draw these two vectors in the
coordinate system of the original basis.11

– Interpret the real and imaginary parts of ẽ0 and ẽ1 graphically in terms of sin and cos,
by using the depiction of vectors shown in figure 6.1. To do this, graph the relevant
sin or cos function as a continuous function on the interval from 0 to 2 (hand-sketch is
fine); and then show the elements of the corresponding real or imaginary part of ẽ0 or
ẽ1, as in Fig. 6.1, as the values of this function at 0, 1, and 2.

– Write down the matrix UFT.

– Write down ṽ, the Fourier transform of the vector v = (v0, v1)T.

• Let N=4.

– Write down the four Fourier basis vectors, ẽ0, . . . , ẽ3.

– Interpret the real and imaginary parts of these vectors in terms of sin and cos, as in the
the N = 2 case, but now over the interval from 0 to 4.

– Write down the matrix UFT.

– Write down ṽ, the Fourier transform of the vector v = (v0, v1, v2, v3)T.

You should come away with two senses: (1) the Fourier transform is just another change
of basis, albeit a special one; and (2) the Fourier basis vectors in N dimensions are discrete
approximations to the set of sin and cos functions that have from 0 to (N − 1) cycles.

Exercise 6.2 Let ẽj be the Fourier basis, and let x = e2πı/N . Note that ẽj = 1√
N

(1, xj , x2j , . . . , x(N−1)j)T.

This series, if continued, would be periodic — that is, xNj = 1, x(N+1)j = xj, x(N+2)j = x2j, . . .
— because for any k, x(k+N)j = xkj.

Exercise 6.2 demonstrates that the N-dimensional Fourier transform basis vectors ẽj can nat-
urally be thought of as infinite periodic vectors, with period N , rather than as a finite vector of

length N . This makes it natural to think of any N-dimensional vector v =
∑(N−1)

j=0 vj ẽj as an
infinite periodic vector with period N — it is a linear combination of the basis vectors ẽj , each of
which is periodic.

Let y = x∗ = e−2πı/N . Then exercise 6.2 also means that we can write the Fourier transform
matrix, UFT, as

UFT =



1 1 1 . . . 1 1

1 y y2 . . . y(N−2) y(N−1)

1 y2 y4 . . . y2(N−2) y2(N−1)

. . .

1 y(N−2) y2(N−2) . . . y(N−2)(N−2) y(N−1)(N−2)

1 y(N−1) y2(N−1) . . . y(N−2)(N−1) y(N−1)(N−1)

 (6.69)

11You may be confused by the fact that the new bases are not obtained by a simple rotation from the old bases.
If so, consider renaming these basis vectors, so that what was ẽ0 is now ẽ1, and what was ẽ1 is now ẽ0. With this
renaming, the 2-D Fourier transform is just a rotation of bases by −45·. Thus, the Fourier transform, with basis
vectors named as given in the text, amounts to a rotation of bases through −45·, plus a mirror reflection or exchange
of bases (mirror reflection about the initial (1, 0) axis). This is just a matter of naming; by reordering the Fourier
Transform basis vectors, the transformation to that basis would just be a rotation.

86



0 1 20 1 2

A

B

Figure 6.1: Another Way of Depicting Vectors
We can think of the two-dimensional vector v = (v0, v1)T as being a periodic function of the integers i:
vi+2 = vi for all i; in particular, v2 = v0. We can then depict this vector on the real line, by showing its
values at each integer, as shown. In A, the two usual basis vectors are depicted: left, (1, 0); right, (0, 1). In
B, the vector (1,−1) is shown.
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Due to the periodicity of yk (yN = 1, so y(k+N)j = ykj), there are only N different numbers in this
matrix. For example, y2(N−1) = y−2 = yN−2. So we can rewrite this matrix, for example, as

UFT =



1 1 1 . . . 1 1

1 y y2 . . . y(N−2) y(N−1)

1 y2 y4 . . . y(N−4) y(N−2)

. . .

1 y(N−2) y(N−4) . . . y4 y2

1 y(N−1) y(N−2) . . . y2 y

 (6.70)

This redundancy in the Fourier transform matrix – the fact that its N2 entries include only N
different numbers, which are N powers of a single number – provides the basis for the fast Fourier
transform, a method of computing UFTv in order N logN rather than order N2 multiplications.

6.5.1 The convolution theorem for discrete Fourier Transforms

The power of the Fourier transform is its power to diagonalize translation-invariant operators,
which in the discrete case amounts to diagonalizing convolutions:

Definition 6.7 Let v and w be two N-dimensional vectors, which we shall think of as extended
periodically: vj+N = vj, wj+N = wj, for any integer j. The convolution of v with w is defined
as the vector (v ∗w) with components

(v ∗w)j =
N−1∑
k=0

vj−kwk (6.71)

As we’ve noted, convolutions are operations that come up constantly. They arise whenever
you are applying the same operation to a vector without regard for where in the vector you are:
for example, replacing each element by a weighted average of the element and its two nearest
neighbors. Such operations are called translation-invariant — if you translate the vector by p,
taking wj 7→ wj+p, the operation is not changed. The importance of the Fourier transform is:
the Fourier transform is the transform that diagonalizes a convolution, and more generally that
diagonalizes a translation-invariant operator. As we’ve seen, in the continuous case, this also
means that the Fourier transform diagonalizes derivative operators (e.g. d

dt).

Problem 6.9 Show that v∗w = w∗v. To do this: in Eq. 6.71, substitute p = j−k to find (v∗w)j =∑j
p=j−(N−1)wj−pvp. Now use the periodicity of the two vectors to show that

∑j
p=j−(N−1)wj−pvp =∑N−1

p=0 wj−pvp (Show that the two sums are summing the same terms, just in different orders). This
last term, in turn, is w ∗ v.

Problem 6.10 Show that we can write the convolution in terms of a matrix multiplication, v∗w =
Vw, where V is the matrix

V =


v0 vN−1 . . . v2 v1

v1 v0 . . . v3 v2

. . . . . . . . . . . . . . .
vN−2 vN−3 . . . v0 vN−1

vN−1 vN−2 . . . v1 v0

 (6.72)

(recall that v−1 = vN−1, and more generally, vj = vj+N ). A matrix of the form given in Eq. 6.72
is also known as a circulant matrix.

88



Now we will show that convolutions are solved by the Fourier transform, and learn how to do
Fourier transforms at the same time. Consider the convolution vector, v ∗ w, with components
(v ∗w)j =

∑N−1
k=0 vj−kwk. Let ṽ be the Fourier transform of v, w̃ be the Fourier tranform of w,

and ṽ ∗w be the Fourier transform of (v∗w). We will show that, in Fourier space, the convolution
becomes (ṽ ∗w)k =

√
Nṽkw̃k. That is, the Fourier tranform of the vector v∗w is the vector whose

kth element is
√
Nṽkw̃k.

Thus: Convolution in real space means, in Fourier space, just multiplying together, frequency
by frequency, the components of two vectors. That is, in Fourier space, operating with v∗ or with V
on w is just multiplication of the kth component of w̃ by ṽk (and then rescaling of the entire Fourier-
space vector by

√
N). Intuitively, v is selecting certain frequencies of w: if v is dominated by low

frequencies, the convolution will amplify the low frequencies of w relative to the high frequencies.
The different frequency components of w̃ are not mixed together by the convolution; each frequency
component is just multiplied by a different factor. This means that, under the Fourier transform,
V becomes the diagonal matrix Ṽ with diagonal elements Ṽii =

√
Nṽi. Thus, the Fourier basis

vectors ẽi diagonalize the convolution, and the corresponding eigenvalues are proportional to the
corresponding frequency components of v, ṽi.

Problem 6.11 We will show that (ṽ ∗w)k =
√
Nṽkw̃k. To show this, we will apply the following

general method for executing a Fourier transform:

1. Replace each real-space component by its expression in terms of Fourier-space components
(Eq. 6.67).

2. Collect all the terms corresponding to the original real-space summation(s); these will only
involve exponentials, and the sum(s) over them will turn into delta function(s) as in Eqs. 6.59.

3. Use each delta function to execute one of the remaining sums.

4. Apply the Fourier tranform operator to each side of the equation, or just read off the Fourier
transform from the equation that you have at this point.

Let’s see how each of these steps works in practice:

1. Equation 6.67 gives vj = 1√
N

∑N−1
p=0 e2πıjp/N ṽp, and similarly for w, where the dummy variable

p has been used rather than k as in Eq. 6.67. Substituting for vj−k and wk in the definition
of (v ∗w)j, using the dummy variable q in the expression for wk, gives:

(v ∗w)j =
N−1∑
k=0

vj−kwk = (1/N)
N−1∑
k=0

N−1∑
p=0

e2πı(j−k)p/N ṽp

N−1∑
q=0

e2πıkq/N w̃q

 (6.73)

2. You now collect all the terms that depend on the original summation variable, k: these are

N−1∑
k=0

e2πı(j−k)p/Ne2πıkq/N = e2πıjp/N
N−1∑
k=0

e−2πık(p−q)/N (6.74)

But, from Eq. 6.59,
N−1∑
k=0

e−2πık(p−q)/N = Nδ((p−q) mod N)0 (6.75)
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Thus, you obtain

(v ∗w)j =

N−1∑
k=0

vj−kwk =

N−1∑
p=0

N−1∑
q=0

e2πıjp/N ṽpw̃qδ((p−q) mod N)0 (6.76)

NOTE: You could not have collected terms to do the sum over p or over q, because these
contain vp or wq. Only the sum over k was a pure sum over exponentials, of the form given
in Eq. 6.59.

3. Use the delta function to do the summation over q to obtain

(v ∗w)j =

N−1∑
k=0

vj−kwk =

N−1∑
p=0

e2πıjp/N ṽpw̃p (6.77)

4. (a) By comparing this to Eq. 6.67, you can read off that the Fourier transform of v ∗w is
(ṽ ∗w)p =

√
Nṽpw̃p

(b) Alternatively, take the Fourier transform of each side by applying Eq. 6.57. Each side
of Eq. 6.77 expresses the jth component of a vector in real space; so, to find the kth

component in Fourier space, use Eq. 6.57 (with j ↔ k) and Eq. 6.77 to find:

(ṽ ∗w)k =
1√
N

N−1∑
j=0

e−2πıkj/N (v ∗w)j =
1√
N

N−1∑
j=0

e−2πıkj/N
N−1∑
p=0

e2πıjp/N ṽpw̃p (6.78)

The sum over j gives
∑N−1

j=0 e−2πıj(k−p)/N = Nδ((k−p) mod N)0. Using this to do the p
summation leaves

(ṽ ∗w)k =
√
Nṽkw̃k (6.79)

Congratulations! You’ve not only proven an important theorem, the convolution theorem, but
you’ve also used a very general method for transforming equations to Fourier space: replace each
component of the equation by its expression in terms of Fourier-space components, collect sums
over exponentials to give delta functions, use these to reduce the remaining sums, and perhaps
take the Fourier transform of the final results. When the dust clears, you have an equation in
Fourier-space.

The above was a brute-force method of doing the calculation, but it’s the general way to do
such calculations so it was good to learn it. We now give a more elegant proof that gives more
insight into why the Fourier basis diagonalizes a convolution:

Exercise 6.3 We show that the Fourier basis vectors are eigenvectors of any convolution, as fol-
lows. We write ẽj = 1√

N
(1, xj , x2j , . . . , x(N−1)j)T, as in problem 6.2. To compute Vẽj, we write

out its elements as follows:

Vẽj =


(Vẽj)0

(Vẽj)1

. . .
(Vẽj)N−1

 =
1√
N


v0 + xjvN−1 + x2jvN−2 + . . .+ x(N−1)jv1

v1 + xjv0 + x2jvN−1 + . . .+ x(N−1)jv2

. . .

vN−1 + xjvN−2 + x2jvN−3 + . . .+ x(N−1)jv0

 (6.80)

Now, using the fact that xNj = 1, show that
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• (Vẽj)1 = xj(Vẽj)0;

• (Vẽj)2 = xj(Vẽj)1 = x2j(Vẽj)0;

• (Vẽj)3 = xj(Vẽj)2 = x3j(Vẽj)0;

• . . ..

Thus, show that Vẽj = (Vẽj)0 (1, xj , x2j , . . . , x(N−1)j)T = (Vẽj)0

√
N ẽj

Finally, let’s rewrite this. Let λj =
√
N(Vẽj)0 = (v0 + xjvN−1 + x2jvN−2 + . . . + x(N−1)jv1).

Multiply through by 1 = x−Nj to convert this to λj = (v0 + x−jv1 + x−2jv2 + . . .+ x−(N−1)jvN−1).
Show that λj =

√
Nṽj, where ṽj is the jth component of the Fourier transform of v (look back at

Eqs. 6.61-6.62, and recall the definition in problem 6.2, x = e2πı/N ). Thus, Vẽj = λj ẽj =
√
Nṽj ẽj.

In summary, ẽj is an eigenvector of V with eigenvalue λj =
√
Nṽj. (Compare this result to the

result of Problem 6.11, and make sure you understand the relationship between the two, e.g., how
to derive the result of Problem 6.11 directly from the present result).

In words: each row of the convolution matrix V is just a translation-by-1 of the previous row
(look at Eq. 6.72 to understand what this means). This, along with the fact that everything is
assumed periodic, means that the operation of each successive row of V on a vector w is equivalent
to the first row of V acting on a translated version of w (e.g., operation of the second row is like
the first row acting on a translated-by-(−1) version of w; etc.). The Fourier basis vectors ẽj are
precisely those vectors that are eigenvectors under the operation of translation: under translation-
by-1, ẽj 7→ xj ẽj. So, a convolution acting on ẽj gives a result proportional to (1, xj , x2j , . . . , xN−1),
that is, proportional to ẽj.

Exercise 6.4 For those interested, here’s more about translation-invariance. Let the left-translation
operator L be defined by its action on a vector: L(v0 v1 . . . vN−1)T = (v1 v2 . . . vN−1 v0)T (recall,
we’re taking all vectors to be periodic, so vN = v0). Define the right-translation operator similarly:
R(v0 v1 . . . vN−1)T = (vN−1 v0 . . . vN−3 vN−2)T. As a matrix, L has components

L =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0

 (6.81)

while R = LT is

R =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

 (6.82)

It’s easy to show RL = LR = 1; since R = LT, this means that R and L are unitary. Show
that any convolution matrix V commutes with the translation operators: RV = VR, LV = VL.
Therefore, it is invariant under a translation: V 7→ RVR−1 = VRR−1 = V1 = V, and similarly
for L.

Show that the Fourier basis vectors ẽj are eigenvectors of the translation operators: Lẽj = xj ẽj,
Rẽj = x−j ẽj, with x as defined in problem 6.2. In fact, for either L or R, the Fourier basis
vectors are a complete orthonormal basis of eigenvectors (complete, because there are N of them),
with distinct eigenvalues. The Fourier basis vectors are the only eigenvectors of either translation
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operator.12 Note that this is quite a special property: for example, the ordinary basis, (ei)j = δij,
does not translate into multiples of itself; rather, Re0 = e1, Re1 = e2, Le0 = eN−1, Le1 = e0, etc.

Whenever two normal matrices commute, they have a common basis of eigenvectors. In this
case, this means that, because V commutes with the translation operators, and because the Fourier
basis is the unique basis of eigenvectors for these operators, the Fourier basis also forms the eigen-
vectors of V. To see this in this case, note that Vẽj is an eigenvector of L or R, with the same
eigenvalue as ẽj: LVẽj = VLẽj = xjVẽj, and similarly for R. But this means that Vẽj ∝ ẽj:
that is, ẽj is an eigenvector of V.

In summary, we’ve come to understand the discrete Fourier transform as a change of basis
to a special set of basis vectors. The Fourier basis is the basis of cos and sin vectors of every
integral frequency from 0 to (N-1). This basis is special because it is the basis that diagonalizes
convolutions, and more generally diagonalizes any translation-invariant operator. This is because,
as shown in Ex. 6.4, the Fourier basis vectors are the eigenvectors of the translation operator: they
are precisely the vectors that return a multiple of themselves under translation.

6.6 The Fourier Transform for Functions on an Infinite Domain

We again begin from Eqs. 6.21-6.22, but now we are going to take the limit T →∞, to the case of
a function on an infinite domain. We use our freedom to juggle the factors in front of the Fourier
transform and its inverse – only the product of these factors matters – to replace Eqs. 6.21-6.22
with the equations

fk =

∫ T/2

−T/2
dt f(t)e−ı

2πkt
T (6.83)

f(t) =
1

T

∞∑
k=−∞

fke
ı 2πkt
T (6.84)

We replace the frequency k with m = 2πk/T ; the interval between frequencies m is ∆m = 2π/T .
We let f̃(m) be the mth frequency component of the Fourier transform of f(t). Equations 6.21-6.22
become:

f̃(m) =

∫ T/2

−T/2
dt f(t)e−ımt (6.85)

f(t) =
1

T∆m

∞∑
m=−∞

∆mf̃(m)eımt (6.86)

=
1

2π

∞∑
m=−∞

∆mf̃(m)eımt (6.87)

where the sum over m is in steps of ∆m. We take the limit T →∞, ∆m→ 0 to obtain

f̃(m) =

∫ ∞
−∞

dt f(t)e−ımt (6.88)

f(t) =
1

2π

∫ ∞
−∞

f̃(m)eımt (6.89)

12The N eigenvectors of a matrix are unique, except that arbitrary linear combinations of eigenvectors sharing a
common eigenvalue are also eigenvectors. Here, all eigenvalues are distinct.
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Finally, if we wish, we can use our freedom to rearrange the factors out front to make them more
symmetrical, to arrive at:

Definition 6.8 The Fourier transform of a function f(t) defined on the infinite interval is given
by

f̃(m) =
1√
2π

∫ ∞
−∞

dt f(t)e−ımt (6.90)

The inverse Fourier transform in this case is given by

f(t) =
1√
2π

∫ ∞
−∞

dm f̃(m)eımt (6.91)

In this case, the sum-over-exponentials that you need to prove that this is the correct inverse is∫ ∞
−∞

dt eıkt = 2πδ(k) (6.92)

where the right side is the Dirac delta function. The derivation of this formula is given in the
Appendix (see Eq. 6.150).

Problem 6.12 Prove that Eq. 6.91 for the inverse Fourier transform is indeed the right formula,
by substituting Eq. 6.90 for f̃(m) into the right side of Eq. 6.91 (note that the dummy integra-
tion variable in Eq. 6.90 must be called something other than t, e.g. t′, since t is already in use
in Eq. 6.91), collecting the appropriate exponentials, converting them into delta functions using
Eq. 6.92, and so showing that the right side of Eq. 6.91 indeed gives f(t).

Problem 6.13 Prove the convolution theorem for functions on an infinite interval: take the Fourier
transform c̃(m) of c(t) =

∫∞
−∞ dt

′ g(t−t′)f(t′) and show that the result is proportional to g̃(m)f̃(m).
You can follow the proofs in either section 6.2.3 or section 6.5.1 – or better yet, do it twice, once
following each section!

Problem 6.14 Consider the equation h(x) = a(x)
∫
dx′ g(x − x′)f(x′) (limits of −∞ to ∞ are

assumed where limits are not stated). Show that its Fourier transform is h̃(m) ∝
∫
dp ã(m −

p)g̃(p)f̃(p). You can do this the brute force way, by writing down the expression for h̃(m); using
Eq. 6.91 to express each of the functions a(x), g(x − x′), and f(x′) in terms of their Fourier
transforms (be sure to use a different dummy integration variable for each one, i.e. one’s frequency
variable might be called k, another’s l, another’s m; and be sure to have the appropriate factor – x,
x− x′, or x′ for the three different functions – in the exponential; so for example you would write
g(x−x′) = 1√

2π

∫∞
−∞ dl g̃(l)eil(x−x

′)); converting sums of exponentials to delta functions; and letting

the dust clear. Do that, it’s good practice. But also note, you can do it more directly, as follows:
just as a convolution in real space is a product in Fourier space, so a product in real space (of the
two functions a(x) and b(x) =

∫
dx′ g(x − x′)f(x′)) is a convolution in Fourier space. Use this

fact, along with the convolution theorem which gives the Fourier transform of b(x).

6.7 The Fourier Transform in Multiple Dimensions

When working in multiple dimensions, the Fourier transform can be applied independently to each
dimension. The result of doing so, however, can be represented very compactly in formulae that
look just like those we’ve already developed, except that products are replaced with dot products,
and some factors of d, the number of dimensions, are inserted. Suppose x is a d-dimensional vector,
and f(x) is a scalar function of x. Then:
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• On an infinite domain:

f̃(k) =

(
1

2π

)d/2 ∫
ddx f(x)e−ık·x (6.93)

f(x) =

(
1

2π

)d/2 ∫
ddk f̃(k)eık·x (6.94)

with the corresponding sum of exponentials∫
ddxeık·x = (2π)dδd(k) (6.95)

Here, δd(k) is the d-dimensional Dirac delta function, defined by
∫
ddk δd(k) = 1, δd(k) = 0

for k 6= 0 (or alternatively, defined as the product of one-dimensional delta functions, one for
each dimension of k).

Note that
(

1
2π

)d/2 ∫
ddx e−ık·xf(x) can be rewritten as[

1√
2π

∫
dx0e

−ık0x0

] [
1√
2π

∫
dx1e

−ık1x1

]
[. . .]

[
1√
2π

∫
dxd−1e

−ıkd−1xd−1

]
f(x) (6.96)

This is why the independent application of the Fourier transform along each dimension can
be written so compactly in the form of Eq. 6.93.

• On a finite domain:

fk =
1

T d/2

∫
ddx f(x)e−ı

2πk·x
T (6.97)

f(x) =
1

T d/2

∑
k

fke
ı 2πk·x

T (6.98)

Here, the integral is over the hypercube of length T on a side centered at the origin, and the∑
k is a sum in which each component of k goes from −∞ to ∞. The corresponding sum of

exponentials is ∫
ddxeı

2πx·k
T = T dδk0 (6.99)

where the delta function δk0 is zero for k 6= 0 and 1 for k = 0.

• For a discrete vector: Suppose we discretize f(x) by sampling x on a grid of length
N on a side, where x has d dimensions. We can represent sample points as xj where j is
a d-dimensional set of integers, telling the location on the grid of the sample point; each
component of j runs from 0 to N − 1. Thus we can represent the discretized f as a vector
with a multi-dimensional index: vj = f(xj). Then the Fourier transform is

ṽj =
1

Nd/2

∑
k

e−i
2πj·k
N vk (6.100)

vk =
1

Nd/2

∑
j

ei
2πj·k
N ṽj (6.101)

The corresponding sum of exponentials is∑
k

ei
2πj·k
N =

{
Nd if every component of j is an integral multiple of N
0 otherwise

(6.102)
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Problem 6.15 Prove the convolution theorem on an infinite domain in d dimensions: the Fourier
transform of c(x) =

∫
ddy f(x− y)g(y) is c̃(k) = (2π)d/2f̃(k)g̃(k).

Problem 6.16 Let’s return to our toy neural activity problem. Consider our equation for the
activity in a network of neurons, τ dbdt = −(1 − B)b + h. Let’s make the transition from discrete
vectors to continuous variables: in place of bi we’ll have b(x), in place of Bij we’ll have B(x, y),
etc. (Recall: we can get from the continuous equation to the discrete one by discretely sampling the
continuous variables x at points xi and y at points yi; then we befine bi = b(xi), Bij = B(xi, yj),
etc. Here we are just reversing the process, going from a discrete equation to a continuous one.)
For simplicity we’ll work in one dimension, i.e. x and y are one-dimensional variables (although
the mathematics is identical in arbitrary dimensions except that factors of

√
2π become (2π)d/2 and

products kx become dot products k · x). Let’s assume that interactions are translation invariant,
which means that B(x, y) = B(x − y) – the interactions only depend on the separation between
two points, and don’t otherwise depend on the particular points involved. Let’s work on an infinite
domain. So the continuous version of the equation becomes

τ
d

dt
b(x) = −b(x) +

∫
dy B(x− y)b(y) + h(x) (6.103)

Take the Fourier transform of this equation (you can use the convolution theorem) and show that
the result is

τ
d

dt
b̃(k) = −b̃(k) +

√
2πB̃(k)b̃(k) + h̃(k) (6.104)

= −
(

1−
√

2πB̃(k)
)
b̃(k) + h̃(k) (6.105)

or
d

dt
b̃(k) ≡ λ(k)b̃(k) + h̃(k)/τ (6.106)

where we have defined

λ(k) ≡ −
(

1−
√

2πB̃(k)
)
/τ (6.107)

The equation has been diagonalized – the development of b̃(k) is independent of that of all other
b̃(l) for l 6= k, and is governed by a simple one-dimensional equation.

Let’s assume that h(x) is time independent. Then recall from Section 0.5 that the solution to
Eq. 6.106 is

b̃(k, t) = b̃(k, 0)etλ(k) − h̃(k)

τλ(k)

(
1− etλ(k)

)
, λ(k) 6= 0 (6.108)

b̃(k, t) = b̃(k, 0) + h̃(k)t/τ, λ(k) = 0 (6.109)

The solution in real space is then

b(x, t) =

∫
dk b̃(k, t)

eikx√
2π

(6.110)

The functions eikx√
2π

are the normalized13 eigenfunctions of the operator “−(1 − B)/τ”, which has

become the integral operator − 1
τ

∫
dy [δ(x−y)−B(x−y)]·. Show that eikx√

2π
is indeed an eigenfunction,

13The normalization is
∫
dx e−ikx√

2π

eik
′x

√
2π

= δ(k − k′); this is the continuous analogue of the discrete eigenvector

normalization ek · ek′ =
∑
i(e
∗
k)i(ek′)i = δkk′ .
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with eigenvalue λ(k) (note, when we say that f(x) is an eigenfunction of some integral operator∫
dyK(x − y)·, with eigenvalue λ, we mean that

∫
dyK(x − y)f(y) = λf(x), analogously to the

vector expression
∑

jKijvj = λvi, which is the components version of Kv = λv).

Suppose we write ek for the kth eigenfunction, which has components (values at x) eikx/
√

2π,
analogously to writing ej for the jth eigenvector with components (ej)i. Similarly, let’s write b(t)
for the function with components b(x, t). We’ll write bk(t) for b(k, t), which is the component of
b(t) along the kth eigenfunction. And we’ll similarly write hk for h(k), and write λk for λ(k),
which is the eigenvalue corresponding to the kth eigenfunction. Assuming λk 6= 0 for all k, show
that we can write the solution as

b(t) =

∫
dk ek

[
bk(0)etλk − hk

τλk

(
1− etλk

)]
(6.111)

Except for the use of
∫
dk rather than

∑
i, this is exactly the form of Eq. 3.56, the solution to an

inhomogeneous equation in the discrete case.
That’s all you need to write down for the problem, but let’s think about the result: what does

this tell us? First of all, the eigenfunctions, in this case of translation-invariant connectivity, are
the Fourier modes: oscillations eikx for all k’s. The size of the kth eigenfunction in the solution
b(x, t) is determined by its coefficient b̃(k, t), which in turn is determined by Eqs. 6.108-6.109. (Of
course, b(x, t) is real, which means that b̃(−k, t) = b̃∗(k, t), which means that these solutions come in
pairs that add to real cosine and sine oscillations: b̃(k, t)eikx+ b̃∗(k, t)e−ikx = 2RE b̃(k, t) cos(kx)−
2IM b̃(k, t) sin(kx)). So the independently growing solutions are mixtures of spatial sine and cosine
waves of activity with spatial period 2π/k.

Second of all, if λ(k) > 0 for some k – meaning B̃(k) > 1/
√

2π – then the oscillation with the
corresponding k grows exponentially without bound. We say then that the dynamics are unstable.
If λ(k) = 0 for some k, the oscillation with the corresponding k grows linearly without bound. If
some λ(k) = 0 and no λ(k) > 0, we say the dynamics are “marginally stable”.

If λ(k) < 0 for all k – meaning B̃(k) < 1/
√

2π for all k – then for every k, the amplitude b(k, t)

evolves exponentially to its fixed point: limt→∞ b̃(k, t) = − h̃(k)
τλ(k) . In this case we say the dynamics

are stable. Each mode is determined by its corresponding input h̃(k), amplified by the factor 1
τλ(k) .

Thus, modes with the largest λ(k), meaning the ones with the largest B̃(k) (the ones with B̃(k)
closest to 1/

√
2π) will be most amplified.

Intuitively, the size of B̃(k) tells the size, in the interaction function B(x− y), of an oscillation
of wavelength 2π/k. Such an oscillation represents excitation at some distances (where B(x − y)
is positive) and inhibition at other distances (where B(x − y) is negative). This leads to activity
patterns that oscillate with a similar spatial period between being excited and being inhibited. The
largest such oscillation – the k for which B̃(k) is maximal – will grow the fastest. If this largest
B̃(k) is small enough that the dynamics are stable, it is this mode that will be most amplified relative
to its input h̃(k).

Exercise 6.5 Show that if we work in d dimensions – so that x, y, k, etc. become d-dimensional
vectors x, y, k, etc. – Eq. 6.106 remains identical except that the factor of

√
2π in the expression for

λ(k) is replaced by (2π)d/2. More generally, convince yourself that all of Problem 6.16 is identical
in d dimensions if (1)

√
2π is replaced everywhere with (2π)d/2; (2) factors like kx are replaced by

dot products, k · x; and (3) integrals are interpreted as d-dimensional integrals and delta functions
are interpreted as d-dimensional delta functions.

Exercise 6.6 Let’s also return to our toy problem involving development of ocular dominance. We
begin with the equation τ d

dtw = Cw, for the development of the inputs wi to a single postsynaptic
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cell. We assume that w includes two types of inputs – wL (left eye) and wR (right eye). The
correlations are of four types: CIJ for I, J ∈ {L,R} represents the correlation between inputs of
type I and those of type J Thus our equation becomes

τ
d

dt

(
wL

wR

)
=

(
CLL CLR

CRL CRR

)(
wL

wR

)
(6.112)

We take the continuum limit, working on an infinite domain, and let’s work in two dimensions;
so we have wL(x) in place of wLi and CLL(x,y) in place of CLLij , etc., where x and y are two-
dimensional retinotopic positions of the inputs to the cell being studied. We assume translation-
invariance, so that CLL(x,y) = CLL(x− y). Thus we arrive at the equations

τ
d

dt

(
wL(x)
wR(x)

)
=

∫
d2y

(
CLL(x− y) CLR(x− y)
CRL(x− y) CRR(x− y)

)(
wL(y)
wR(y)

)
(6.113)

Assume that the two eyes are identical – or more formally that the equations are symmetric un-
der interchange of the two eyes, that is, unchanged if we replace R with L and vice versa. This im-
plies that CLL = CRR, CLR = CRL; so let’s give these new names, CSame = CLL = CRR, COpp =
CLR = CRL (where “Same” means same-eye and “Opp” means opposite-eye). Show that in this case
the equation can be “diagonalized” by going to the coordinates
wS(x) = (wL(x) + wR(x))/

√
2, wD(x) = wL(x)− wR(x)/

√
2, so that the resulting equation is

τ
d

dt

(
wS(x)
wD(x)

)
=

∫
d2y

(
CSame(x− y) + COpp(x− y) 0

0 CSame(x− y)− COpp(x− y)

)(
wS(y)
wD(y)

)
(6.114)

Thus, just as in the cases we studied before, the sum of the two eyes’ inputs grows independently of
the difference between the two eyes’ inputs (this follows quite generally from assuming a symmetry
under interchange of the two eyes). We have “diagonalized” the left/right part of the equation by
going to sum and difference coordinates; now, as should be becoming familiar, we can diagonalize the
spatial part of the equation by taking a Fourier transform. Show (you can use the 2-D convolution
theorem) that the result is

τ
d

dt

(
w̃S(k)

w̃D(k)

)
= (2π)

(
C̃Same(k) + C̃Opp(k) 0

0 C̃Same(k)− C̃Opp(k)

)(
w̃S(k)

w̃D(k)

)
(6.115)

Let’s define λD(k) = (2π)
[
C̃Same(k)− C̃Opp(k)

]
, λS(k) = (2π)

[
C̃Same(k) + C̃Opp(k)

]
. Then the

solution is (
w̃S(k, t)

w̃D(k, t)

)
=

(
etλ

S(k) 0

0 etλ
D(k)

)(
w̃S(k, 0)

w̃D(k, 0)

)
(6.116)

Of course back in real space we have the solutions

wS(x, t) =

∫
d2k w̃S(k, t)

eik·x

2π
(6.117)

wD(x, t) =

∫
d2k w̃D(k, t)

eik·x

2π
(6.118)

So, what does this mean? To develop ocular dominance, we want the inputs to our postsynaptic
cell to become all from one eye – all left or all right. That means that throughout the input space,
wD(x) should have the same sign – positive everywhere if the left eye dominates, negative everywhere
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if the right eye dominates. That in turn means that, for ocular dominance to develop, the k = 0
mode should dominate wD (that is, it should be the fastest-growing eigenfunction of wD) – for
k 6= 0, wD oscillates in sign with frequency 2π/|k|, meaning that it oscillates between regions of the
receptive field dominated by the left eye and regions dominated by the right eye.14 So, for ocular
dominance to develop, we need λD(k) to be peaked at k = 0 so that the k = 0 mode is the fastest-
growing mode of wD. One scenario under which this will happen is if CSame(x) − COpp(x) ≥ 0
for all x –that is, if at all separations x, an input is better correlated with another input of its
own eye than it is with another input of the opposite eye. This seems reasonable – we might expect
correlations to fall monotonically with distance |x|, but to always be greater within than between
eyes until both within- and between-eye correlations go to zero. That will cause wD to develop a
pattern consistent with ocular dominance.

Additionally, for ocular dominance to develop, we would like wD to grow faster than wS. If wS

grows faster than wD, both eye’s inputs will be growing (recall that wL ∝ wS+wD, wR ∝ wS−wD),
although the difference between them wD will also be growing; instead we would like one eye’s inputs
to grow and the other eye’s inputs to shrink, which requires that wD grow faster than wS. Suppose
we restrict attention to the k = 0 modes. Then λS(0) = (2π)

∫
d2x

[
CSame(x) + COpp(x)

]
, while

λD(0) = (2π)
∫
d2x

[
CSame(x)− COpp(x)

]
. So for the difference to grow faster than the sum, we

need
∫
d2xCOpp(x) < 0 – that is, the two eyes should be anticorrelated (COpp should be negative

over a significant range). However, it is common to consider that there are additional constraints
on wS that limit its growth – for example, there is some upper limit on total synaptic strength;
and we sometimes assume that the sum

∫
d2xwS(x) is fixed in order to capture the biological idea

that there is a competition between the eyes, so that when one eye’s synapses grow the other eye’s
synapses must shrink. Such additional constraints can suppress the growth of the sum and allow
ocular dominance to develop even with positive correlations between the eyes (note, we expect vision
to cause the two eyes to be positively correlated, since they tend to see the same scenes; but in many
species ocular dominance develops before the onset of vision).

One can make the model a bit more realistic in several ways. In the version above, the post-
synaptic cell receives input from a set of inputs stretching to infinity in the 2-D plane. One can
instead make the inputs localized by multiplying the integral in Eq. 6.113 by an “arbor function”,
A(x), peaked at x = 0 and falling off to zero over the range of allowed connectivity. Adding the arbor
function breaks the translation-invariance of the equations – changing position leads to a different
interaction because there is a different value of A(x) – so the Fourier modes no longer spatially
diagonalize the equation. But what we have learned in the “infinite arbor” case, above, remains
informative – eigenfunctions of wD that have a characteristic wavelength of oscillation k grow at
a rate roughly proportional to λD(k), although they are localized eigenfunctions rather than Fourier
modes. One can also restrict weights to stay within some allowed range, 0 ≤ wL(x) ≤ wmaxA(x)
and similarily for wR(x). This makes the equation nonlinear, but it remains linear when all the
weights are far from these boundary values, so the linear analysis allows us to decide which modes
grow the fastest early on, before weights reach the limiting values, and these fastest-growing modes
end up largely determining the structure of the final receptive field that develops.

6.8 Using the Fourier Transform: Solving the Diffusion Equation

A nice example of the use of the Fourier transform is also a classic problem that everyone who
uses mathematics should know how to do: solving the diffusion equation. We’re going to just go

14Recall that, because wD is real, w̃D(k, t) = w̃D∗(−k, t), so we can obtain real functions by combining

w̃D(k, t)eik·x + wD∗(k, t)e−ik·x = 2RE w̃D(k, t) cos(k · x)− 2IM w̃D(k, t) sin(k · x).
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through the math, but it won’t do you any good to just read it – you need to go through it with a
pencil and paper, replicating each of the steps to your own satisfaction.

The diffusion equation, or heat equation, describes the diffusion in time of the concentration of
a substance, or the spread in time of the temperature from a heat source. The equation is15

∂c(r, t)

∂t
= D∇2c(r, t) (6.122)

Here, c(r, t) is the concentration, or the temperature, at position r and time t; D is the diffusion
constant, or the “thermal diffusivity” when heat is considered. The operator ∇2 is the sum of the
second spatial derivatives in however many dimensions one is considering; for example, in three
dimensions, r = (x, y, z)T, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

We assume the substance is diffusing (or the heat is spreading) in an infinite domain, and that
we are given the initial state c(r, 0), and we want to compute how the concentration changes with
time thereafter. To do this, we make use of the fact that the Fourier transform diagonalizes the
differential operator ∇2 in Eq. 6.122. We express c in terms of its spatial Fourier transform:

c(r, t) =

(
1

2π

)d/2 ∫
ddk c̃(k, t)eik·r (6.123)

Applying ∂
∂t to the right side of Eq. 6.123 just converts c̃(k, t) to ∂c̃(k,t)

∂t , since c̃(k, t) is the only
thing on the right side that depends on t. Applying ∇2 to the right side of Eq. 6.123 just converts
eik·r to ∇2eik·r = −|k|2eik·r, since eik·r is the only thing on the right side that depends on spatial
position r. Thus, Eq. 6.122 applied to Eq. 6.123 yields(

1

2π

)d/2 ∫
ddk

∂c̃(k, t)

∂t
eik·r = D

(
1

2π

)d/2 ∫
ddk (−|k|2)c̃(k, t)eik·r (6.124)

These two integral equations can only be equal if the coefficients of each exponential eik·r are
identical,16 so we obtain the equation

∂c̃(k, t)

∂t
= −D|k|2c̃(k, t) (6.125)

15For those of you who remember the divergence and the gradient: Eq. 6.122 typically arises as follows. Consider
the case of diffusion. First, there is a current that follows the gradient of the concentration, that is, substances flow
from regions of higher concentration to regions of lower concentration. We express this as

j = −k1∇c (6.119)

where j is the current, k1 is a constant, ∇ is the gradient operator, e.g. in 3 dimensions ∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

, and x̂,
ŷ, and ẑ are the unit vectors in the x, y, and z directions respectively. Second, there is a conservation of substance,
so that the concentration at a point changes in time according to the net flow of substance into or out of the point,
which is captured by the divergence of the current, ∇ · j = ∂jx

∂x
+

∂jy
∂y

+ ∂jz
∂z

. The corresponding equation is

∂c

∂t
= −k2∇ · j (6.120)

Putting these two equations together yields
∂c

∂t
= D∇2c (6.121)

where D = k1k2.
16To see this, one can apply

∫
ddr e−ik

′·r to both sides of Eq. 6.124; the result of the r integral is (2π)dδd(k − k′),
which allows us to do the k integral, obtaining Eq. 6.125.
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One ultimately learns to just read off an equation like Eq. 6.125 from an equation like Eq. 6.122:
each application of a spatial derivative pulls down a factor if ık in Fourier space, so the ∇2 in real
space becomes −|k|2 in Fourier space.

Equation 6.125 is just an ordinary differential equation for c̃(k, t) – the Fourier transform
has indeed diagonalized the equation, rendering the development of each Fourier mode c̃(k, t)
independent of that of all the others – and so we can write down the solution in Fourier space:

c̃(k, t) = c̃(k, 0)e−D|k|
2t (6.126)

Finally, we need to work out the solution in real space; to do this, we’ll need to recall that the
initial condition in Fourier space, c(k, 0), can be expressed as the Fourier transform of the initial
condition in real space, c(r′, 0):

c(r, t) =

(
1

2π

)d/2 ∫
ddk c̃(k, t)eık·r (6.127)

=

(
1

2π

)d/2 ∫
ddk c̃(k, 0)e−D|k|

2teık·r (6.128)

=

(
1

2π

)d/2 ∫
ddk

[(
1

2π

)d/2 ∫
ddr′ c(r′, 0)e−ik·r

′

]
e−D|k|

2teık·r (6.129)

=

(
1

2π

)d ∫
ddr′

[∫
ddk eik·(r−r

′)e−D|k|
2t

]
c(r′, 0) (6.130)

=

∫
ddr′ G(r− r′, t)c(r′, 0) (6.131)

where the Green’s function, G(r− r′, t), is given by

G(r− r′, t) =

(
1

2π

)d ∫
ddk eik·(r−r

′)e−D|k|
2t (6.132)

That is, the concentration as a function of time is determined as the convolution of the Green’s
function with the initial distribution of concentration. Intuitively, the Green’s function tells the
distribution over time of an initial localized pulse of concentration: if the initial condition were a
single pulse at position r′, c(r, 0) = δ(r− r′), then the solution is c(r, t) = G(r− r′, t). The actual
initial condition is a weighted average of delta pulses, each weighted by the value of the initial
concentration at the given point: c(r, 0) =

∫
ddr′ δ(r− r′)c(r′, 0); and each of these pulses develops

in time independently according to the Green’s function, so that the final solution is a weighted
sum over each pulse of its independent outcome, G(r − r′, t), weighted by the size of the pulse,
c(r′, 0): c(r, t) =

∫
ddr′ G(r− r′, t)c(r′, 0).

So the last step remaining is to solve for the Green’s function G(r, t) in real space. But the
expression for G is just the inverse Fourier transform of a two-dimensional spherical Gaussian,
where by spherical we mean the variance is the same in all dimensions. We can solve this by letting
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p =
√
Dtk and completing the square:

G(r, t) =

(
1

2π

)d ∫
ddk eik·re−D|k|

2t (6.133)

=

(
1

2π
√
Dt

)d ∫
ddp eip·r/

√
Dte−|p|

2
(6.134)

=

(
1

2π
√
Dt

)d ∫
ddp e−(p−ir/2

√
Dt)2

e−|r|
2/4Dt (6.135)

=

(
1

2π
√
Dt

)d
e−|r|

2/4Dt

∫
ddp e−(p−ir/2

√
Dt)2

(6.136)

Finally to perform the last integral, we can change variables to q = p − ir/2
√
Dt, so the integral

becomes an integral of e−|q|
2

where the limits of integration along the ith component of q go from
−∞− iri/2

√
Dt to ∞− iri/2

√
Dt; here we have to know that, because the Gaussian e−|q|

2
is an

analytic function,
∫∞
−∞ dq e

−q2
=
∫∞−ic
−∞−ic dq e

−q2
for any c; so the integral is simply

∫∞
−∞ d

dq e−q
2

=

πd/2, yielding

G(r, t) =

(
1

4πDt

)d/2
e−|r|

2/4Dt (6.137)

As t → 0, this goes to a delta function, G(r, 0) = δd(r), as it should since G(r, t) represents the
response at time t to a delta-pulse at time 0 (see Eq. 6.140 and surrounding text in the Appendix
as to why this gives a delta function). For finite t, an initial delta peak of substance spreads as
a Gaussian, with width σ =

√
2Dt growing, and peak height shrinking, as the square-root of the

time. For t→∞, the Green’s function goes to zero everywhere: an initial delta pulse of substance
diffuses away to infinity and nothing is left.

6.9 Appendix: Delta Functions and the Sums over Complex Exponentials That
Realize Them

6.9.1 The Dirac delta function

In Chapter 2, we introduced the Kronecker delta:

δij =

{
1 i− j = 0
0 i− j 6= 0

(6.138)

We can abstract two additional key features of the Kronecker delta:

• It sums to 1 for any sum that passes through i− j = 0:
∑j+m

i=j−n δij = 1 for any nonnegative
integers n,m.

• In any sum that passes through i − j = 0, it pulls out one component of a vector:∑j+m
i=j−n δijvj = vi for any nonnegative integers n,m.

When we deal with continuous functions rather than vectors, it is very convenient to have an
analogue of the Kronecker delta. This was realized by the physicist Paul Dirac, and the resulting
function is called the Dirac delta function, δ(x), a function of a continuous variable x. It satisfies
the following properties, analogous to those of the Kronecker delta:

• It is zero wherever x 6= 0: δ(x) = 0 for x 6= 0.
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• It integrates to 1 over any region that includes x = 0:
∫ ε2
−ε1 dx δ(x) = 1 for any ε1 > 0, ε2 > 0.

• In an integral over any region that includes its argument, it pulls out one value of a function:∫ ε2
−ε1 dy f(x− y)δ(y) = f(x) for any ε1 > 0, ε2 > 0.

How can δ(x) be nonzero only at a single point, x = 0, and yet integrate to something finite?
Clearly, the value at x = 0 must be infinite, and just the “right” infinity to integrate to 1. We can
define δ(x) as a limit of a sequence of functions that each integrate to 1, where the limiting value
for any nonzero x is 0. For example:

• Let fγ(x) be a pulse of width γ, height 1/γ (this will always integrate to 1):

fγ(x) =

{ 1
γ

−γ
2 ≤ x ≤

γ
2

0 otherwise
(6.139)

Then, limγ→0 fγ(x) = δ(x).

• Let gσ(x) be a Gaussian of width σ normalized to integrate to 1:

gσ(x) =
1√

2πσ2
exp

(
−x2

2σ2

)
(6.140)

Then limσ→0 gσ(x) = δ(x).

With these definitions, the validity of the first two conditions named above – δ(x) is nonzero
whenever x 6= 0, and integrates to 1 – should be clear. What about the third property? Consider∫
dy h(x − y)fγ(y) for some function h(x). Since fγ is constant over a finite region and zero

elsewhere, this integral is equal to 1
γ

∫ γ
2
−γ
2

dy h(x − y). But as γ → 0, the value of h(x − y)

becomes constant in the interval of the integral: h(x − y) = h(x) − h′(x)y + (1/2)h′′(x)y2 + . . .,
and |y| ≤ γ/2 is going to zero. We can write h(x − y) = h(x) + O(γ), where O(γ) indicates

terms that are linear or higher order in γ. So as γ → 0,
∫ γ

2
−γ
2

dy h(x− y)→ γ (h(x) +O(γ)). Hence,

limγ→0

∫
dy h(x−y)fγ(y) = limγ→0

1
γγ (h(x) +O(γ)) = h(x). But also limγ→0

∫
dy h(x−y)fγ(y) =∫

dy h(x− y)δ(y),17 giving the third property.

6.9.2 Sums Over Complex Exponentials

Most of our manipulations of Fourier transforms depend on various sums or integrals (which we’ll
just call ’sums’) over complex exponentials that yield Kronecker deltas or Dirac delta functions.
All of these have the same geometrical interpretation: if the argument of the complex exponentials
in the sum is not always 0 (or an integral multiple of 2π), the sum goes over complex exponentials
that point in a set of directions evenly distributed around the unit circle in the complex plane
(Fig. 4.1); hence the vectors pointing in different directions cancel out, and the sum gives 0. When
the argument of the complex exponential is 0 (or an integral multiple of 2π), then the complex
exponential is 1, and so the sum just yields the result of substituting 1 for the complex exponential.

We can begin with the result of Eq. 6.20:

17We should be careful in interchanging the limit and the integral, since the integral is itself a limit,
∫
dy . . . =

lim∆y→0

∑
∆y . . ., and one must be sure that the result does not depend on the order of taking the two limits. But

to really be careful we should also be careful about defining the delta function, and this leads to a long and perhaps
not-so-interesting story . . . So just trust me that following one’s intuitions here gives the right answer.
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Complex Exponential Sum 6.1∫ T/2

−T/2
dt eı

2πt(l−k)
T = Tδlk for l and k integers (6.141)

This is easily proved by performing the integral:

l = k :

∫ T/2

−T/2
dt eı

2πt(l−k)
T =

∫ T/2

−T/2
dt = T (6.142)

l 6= k :

∫ T/2

−T/2
dt eı

2πt(l−k)
T =

eı
2πt(l−k)

T

2πı(l − k)/T

∣∣∣∣∣
T/2

−T/2

=
T

2πı(l − k)

(
eıπ(l−k) − e−ıπ(l−k)

)
(6.143)

=
T

2πı(l − k)
2ı sin [π(l − k)] = 0 (6.144)

(note, sinmπ = 0 for any integer m).
Now, apply 1

T

∑∞
k=−∞ to both sides of Eq. 6.141, to obtain∫ T/2

−T/2
dt

1

T

∞∑
k=−∞

e−ı
2πt(k−l)

T = 1 for l and k integers (6.145)

We can simplify by setting p = k − l, obtaining∫ T/2

−T/2
dt

1

T

∞∑
p=−∞

e−ı
2πtp
T = 1 (6.146)

where p is summed over integral values. Let f(t) = 1
T

∑∞
p=−∞ e

−ı 2πtp
T . Then Eq. 6.146 becomes∫ T/2

−T/2 dt f(t) = 1. We will show that f(t) = 0 for t 6= nT with integral n. These two conditions

together imply that, on the region −T/2 ≤ t ≤ T/2, f(t) = δ(t). Finally it is obvious from the
2π-periodicity of the complex exponential that f(t) is periodic with period T : f(t+nT ) = f(t) for
any integer n. This gives the final result that f(t) =

∑∞
n=−∞ δ(t− nT ), that is,

Complex Exponential Sum 6.2

1

T

∞∑
p=−∞

e−ı
2πtp
T =

∞∑
n=−∞

δ(t− nT ) (6.147)

where the p and n sums both extend over integer values.

It remains to show that f(t) = 0 for t 6= nT with integral n. Let s(t) = Tf(t) =
∑∞

p=−∞ e
−ı 2πtp

T .
This represents a sum over an infinite sequence of vectors in the complex plane with successive
vectors separated by an angle −2πt/T (e.g. see Fig. 4.1 and draw a subset of this sequence until
you can visualize the sequence of vectors going round and round the unit circle of the complex
plane). So rotating all the vectors by −2πt/T will take each vector into an adjacent vector; this
will leave the entire set, and thus the sum, unchanged. Yet the sum is itself a vector in the complex
plane, which will also be rotated by −2πt/T ; if this rotation brings the sum back to itself, then
either −2πt/T must represent an integral number of complete rotations around the complex plane,
or the sum must be zero. Mathematically, this rotation is achieved by multiplying by e−2πıt/T :
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e−2πıt/T s(t) =
∑∞

p=−∞ e
−ı 2πt(p+1)

T =
∑∞

p=−∞ e
−ı 2πtp

T = s(t). From e−2πıt/T s(t) = s(t), it follows

that either e−2πıt/T = 1 or s(t) = 0. But e−2πıt/T = 1 if and only if t = nT for some integer n, so
if t 6= nT , then s(t) = 0 and f(t) = 0.

Now we can rearrange Eq. 6.147 as follows: let mp = 2πp/T , so that we have an infinite sequence
of m’s separated by ∆m = 2π/T . Then we can write

1

T

∞∑
p=−∞

e−ı
2πtp
T =

1

T∆m

∞∑
p=−∞

e−ımpt∆m =
1

2π

∞∑
p=−∞

e−ımpt∆m (6.148)

Combining this with Eq. 6.147 gives

1

2π

∞∑
p=−∞

e−ımpt∆m =
∞∑

n=−∞
δ

(
t− 2πn

∆m

)
(6.149)

Finally, taking the limit as ∆m→ 0 (which is T →∞), we find

Complex Exponential Sum 6.3

1

2π

∫ ∞
−∞

dm e−imt = δ(t) (6.150)

Finally, we establish the simple discrete sum (Eq. 6.59 in the main text):

Complex Exponential Sum 6.4

N−1∑
k=0

e2πıjk/N = Nδ(j mod N)0 (6.151)

In this case, the complex exponentials in the sum represent a sequence of unit vectors in the
complex plane with an angle 2πj/N between successive vectors, beginning on the real axis, and
ending 2πj/N before the real axis after having made j revolutions around the unit circle (again,
look at Fig. 4.1 to see what this means; draw these vectors for N = 4, say, and j = 1 or j = 3).
We use the same argument used above: if we rotate all the vectors by 2πj/N , we will end up with
the same set of vectors: each vector will rotate into the next in the sequence, except the last vector
will rotate into the initial one. Thus, the sum of the rotated vectors must be the same as the sum
of the original vectors. But rotating each vector by 2πj/N rotates their sum (regarded as a vector
in the complex plane) by 2πj/N : if this is not an integral number of complete revolutions, then if
the sum were nonzero, it would be changed by the rotation. Since the sum must be zero if 2πj/N
does not represent an integral number of complete rotations, that is, if j is not an integral multiple
of N . Thus, the sum is proportional to δ(j mod N)0. When j is an integral multiple of N , then the
complex exponential is 1, and there are N terms in the sum, so the result is N .

As above, we can make this argument in equations as follows. We call the sum s(j) =∑N−1
k=0 e2πıjk/N . Multiply s(j) by e2πıj/N ; this represents rotating each vector in the complex

plane by 2πj/N . This gives
∑N−1

k=0 e2πıj(k+1)/N , which we can rewrite as
∑N

k=1 e
2πıjk/N . But

e2πıj(0)/N = e2πıj(N)/N , and therefore we can rewrite this as
∑N−1

k=0 e2πıjk/N ; but this is s(j) again.
Thus, we’ve shown that e2πıj/Ns(j) = s(j); if e2πıj/N 6= 1 (that is, if j is not an integral multiple of
N), then this implies that s(j) = 0.
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