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Neurons in the primary visual cortex of higher mammals 
respond selectively to light/dark borders of a particular ori- 
entation. The receptive fields of simple cells, a type of ori- 
entation-selective cell, consist of adjacent, oriented regions 
alternately receiving ON-center and OFF-center excitatory 
input. I show that this segregation of inputs within receptive 
fields can occur through an activity-dependent competition 
between ON-center and OFF-center inputs, just as segre- 
gation of inputs between different postsynaptic cells into 
ocular dominance columns appears to occur through activ- 
ity-dependent competition between left-eye and right-eye 
inputs. These different outcomes are proposed to result, not 
from different mechanisms, but from different spatial struc- 
tures of the correlations in neural activity among the com- 
peting inputs in each case. Simple cells result if ON-center 
inputs are best correlated with other ON-center inputs, and 
OFF with OFF, at small retinotopic separations, but ON-cen- 
ter inputs are best correlated with OFF-center inputs at larger 
separations. 

This hypothesis leads robustly to development of simple 
cell receptive fields selective for orientation and spatial fre- 
quency, and to the continuous and periodic arrangement of 
preferred orientation across the cortex. Input correlations 
determine the mean preferred spatial frequency and degree 
of orientation selectivity. Estimates of these correlations 
based on measurements in adult cat retina (Mastronarde, 
1983a,b) produce quantitative predictions for the mean pre- 
ferred spatial frequencies of cat simple cells across eccen- 
tricities that agree with experiments (Movshon et al., 1978b). 
lntracortical interactions are the primary determinant of cor- 
tical organization. Simple cell spatial phases can play a key 
role in this organization, so arrangements of spatial phases 
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and preferred orientations may need to be studied together 
to understand either alone. Possible origins for other cortical 
features including spatial frequency clusters, afferent ON/ 
OFF segregation, blobs, pinwheels, and opponent inhibition 
within simple cell receptive fields are suggested. A number 
of strong experimental tests of the hypothesis are proposed. 

[Key words: Hebb synapse, simple cell, ON-center cell, 
OFF-center cell, orientation column, orientation tuning, spa- 
tial phase, spatial frequency, visual cortex, developmental 
model, synaptic competition, correlations] 

Most neurons in the primary visual cortex of many mammals 
are tuned to respond to light/dark borders of a particular ori- 
entation (Hubel and Wiesel, 1959, 1962). The inputs that cor- 
tical neurons receive from the lateral geniculate nucleus (LGN), 
in contrast, respond well to borders of all orientations and to 
nonoriented stimuli (Hubel and Wiesel, 1961). 

The physiological origin of orientation selectivity in visual 
cortical responses remains uncertain. Hubel and Wiesel (1962) 
proposed that orientation selectivity may arise in cortical “sim- 
ple cells.” Simple cell receptive fields are composed of adjacent, 
oriented ON- and OFF-subregions. Each ON-subregion receives 
excitatory drive largely or exclusively from the ON-center input 
stream, and similarly for OFF-subregions (Schiller, 1982; Sherk 
and Horton, 1984; Ferster, 1988). The “Hubel-Wiesel model” 
proposes that these oriented subregions arise through the or- 
dered arrangement of LGN inputs: “upon each simple-type cell 
there converge (LGN) fibres. . .having ‘on’ or ‘oh’ centres sit- 
uated in the appropriate retinal regions” (Hubel and Wiesel, 
1962). Much current evidence seems consistent with this model 
(e.g., Tanaka, 1983; Sherk and Horton, 1984; Ferster, 1987, 
1988; Chapman et al., 199 1). 

The developmental origin of orientation selectivity is also 
uncertain. It has often been proposed that orientation selectivity 
develops through a process ofactivity-dependent synaptic mod- 
ification. However, because orientation selectivity arises early 
in development, before birth in monkeys (Wiesel and Hubel, 
1974) and before eye opening in kittens (e.g., Hubel and Wiesel, 
1963; Albus and Wolf, 1984; Braastad and Heggelund, 1985) 
and ferrets (Chapman, 199 l), it has not yet been possible to test 
this hypothesis directly. Many studies have shown that orien- 
tation selectivity, once established, is sharpened by neural ac- 
tivity, and have addressed whether preferred orientation can be 
altered by visual experience (reviewed in Movshon and Van 
Sluyters, 198 1; Fregnac and Imbert, 1984; see also Braastad and 
Heggelund, 198.5; Buisseret et al., 1988; Isley et al., 1990; Chap- 
man, 1991). 
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In this article I propose a developmental origin for a Hubel- 
Wiesel model of simple cell receptive fields. I show that such 
receptive fields, and their organization into continuous and pe- 
riodic arrangements of preferred orientation across the cortex, 
arise naturally through an activity-dependent, correlation-based 
synaptic competition between ON-center and OFF-center in- 
puts to the visual cortex. 

This result, in which two competing input types (ON- and 
OFF-center cells) converge onto the same postsynaptic cells, 
differs from the outcome often reported for correlation-based 
competition. Instead, such competition often results in the seg- 
regation of two input types onto dQf&nt postsynaptic cells (re- 
viewed in Constantine-Paton et al., 1990; Miller, 1990a). Well- 
known examples include the segregation of inputs serving left 
and right eyes into eye-specific layers in the LGN and into ocular 
dominance patches in the geniculate-recipient layers of visual 
cortex (reviewed in Miller and Stryker, 1990; Shatz, 1990). Sim- 
ilarly, ON- and OFF-center retinal inputs segregate onto differ- 
ent postsynaptic cells in the LGN: ON-center LGN cells receive 
exclusively ON-center input from the retina, and similarly for 
OFF-center LGN cells (Horton and Sherk, 1984; Schiller, 1984; 
Dubin et al., 1986; Mastronarde, 1987). In many species, ON- 
and OFF-center inputs to LGN are further segregated into sep- 
arate layers (Schiller and Malpeli, 1978; LeVay and McConnell, 
1982; Conway and Schiller, 1983; Stryker and Zahs, 1983). This 
segregation of ON- and OFF-center inputs, like that of left- and 
right-eye inputs, appears to be activity dependent (Dubin et al., 
1986; Hahm et al., 199 1). 

In contrast to the above cases, ON- and OFF-center inputs 
converge in the orientation-selective layers of the visual cortex. 
Convergence has been shown both physiologically, in that ex- 
citatory input from both ON-center and OFF-center streams 
drives responses in the great majority of oriented cortical cells 
(Schiller, 1982; Sherk and Horton, 1984) and anatomically, in 
that single oriented cortical cells in the cat have been shown to 
receive both types of monosynaptic geniculate input (Tanaka, 
1983). In monkeys, parvocellular geniculate inputs innervate 
cortical layer 4C/3, which is itself composed of center-surround, 
ON-center or OFF-center cells (Hubel and Wiesel, 1968; Blasdel 
and Fitzpatrick, 1984); it is not known whether ON- and OFF- 
center streams converge in these cortical cells. If they do not, 
then in both cats and monkeys, the transition from center-sur- 
round to oriented organization is coincident with the transition 
from segregation to convergence ofON- and OFF-center streams. 

Despite this convergence, ON- and OFF-center inputs seg- 
regate retinotopically within simple cell receptive fields. I will 
show that this can robustly result from a correlation-based syn- 
aptic competition between ON-center and OFF-center inputs. 
This competition is hypothesized to occur by precisely the same 
mechanism as that which has been shown in previous models 
(von der Malsburg and Willshaw, 1976; Miller et al., 1989) to 
lead to segregation between postsynaptic cells, as in ocular dom- 
inance segregation. The two types of outcome-( I) segregation 
between postsynaptic cells or (2) convergence onto the same 
postsynaptic cells combined with segregation within receptive 
fields-result from development under this mechanism given 
two different types of correlations among the input activities. I 
will also show that retinotopic segregation within receptive fields, 
when combined with lateral interactions between nearby cortical 
cells, is sufficient to explain the development and basic hori- 
zontal organization of cortical orientation selectivity. 

This hypothesis explains why the transition from center-sur- 

round to oriented receptive fields should be coincident with the 
transition from segregation to convergence of ON-center and 
OFF-center input streams, and why the oriented cells at this 
transition point should largely be simple cells. It also simplifies 
our picture of development, by showing that synapses in cortex 
may be assumed to respond to the same developmental rules 
whether they are viewed as coming from ON- and OFF-center 
inputs or from left- and right-eye inputs, and by explaining why 
ON- and OFF-center inputs obeying these rules can segregate 
in LGN yet converge in cortex. The hypothesis also accounts 
for other aspects ofreceptive field structure, such as the preferred 
spatial frequencies of simple cells. 

There have been many previous models for the activity-de- 
pendent development of orientation selectivity, beginning with 
von der Malsburg (1973). Most assumed a single type of input, 
and showed that oriented synaptic patterns could result from 
correlation-based development under exposure to oriented pat- 
terns of input activity, as in vision. Such models do not account 
for the development of segregated receptive field subregions, 
and do not address the development of orientation selectivity 
before visual experience. Linsker (1986a-c) demonstrated that 
an activity-dependent process could yield oriented receptive 
fields with segregated subregions of excitatory and inhibitory 
inputs, without exposure to oriented input patterns. However, 
his results relied upon a model in which feedforward synapses 
could have either positive or negative strength, and upon careful 
tuning of certain nonbiological parameters that arise in such a 
model. Tanaka (1992) independently proposes that an ON/OFF 
competition may underlie the development of orientation se- 
lectivity. In his model, a cortical cell comes to receive only a 
single geniculate input, and receptive field structure derives from 
intracortical interactions, whereas in the present model, a simple 
cell’s receptive field structure derives from the pattern of ge- 
niculate inputs received by the cell. These differences are further 
examined in the Discussion. 

Before presenting the methods and results ofthe present study, 
it is necessary to review briefly the theoretical framework to be 
used. 

Theoretical framework: basic assumptions 

The simplest proposed mechanism for activity-dependent syn- 
aptic modification is a “Hebb synapse” (Hebb, 1949) that is, 
a synapse that is strengthened when there is correlation between 
presynaptic and postsynaptic activation or depolarization, and 
unchanged or weakened otherwise (Constantine-Paton et al., 
1990; Bliss and Collingridge, 1993). Hebb synapses and related 
mechanisms, such as activity-dependent release and action of 
a diffusible modification factor (Bliss and Collingridge, 1993) 
can in many cases be described within a single mathematical 
framework (Miller et al., 1989). These mechanisms have in 
common the dependence of development on the correlations 
among the activities of the inputs. 

I have studied these correlation-based mechanisms within the 
context of a simple class of models first used by von der Mals- 
burg (1973), and subsequently used by many other theorists 
(e.g., Bienenstock et al., 1982; Linsker, 1986a-c; Miller et al., 
1989; Tanaka, 1990, 1992; Miller, 1992a). These models share 
the following assumptions: 

l The cortex, and each set of input neurons (e.g., ON, OFF) 
are modeled as 2-D layers of cells (1 -D layers or a single post- 
synaptic cell may also be used). 

l The cortical wiring ensures that there is either (I) a “Mexican 
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hat” interaction in the cortex, in which excitation of a given 
cortical location excites nearby locations and inhibits more dis- 
tant locations, or (2) exclusively excitatory interactions between 
nearby cortical locations. This intracortical interaction via syn- 
aptic connections may be augmented or replaced by an inter- 
action via diffusion of modification factors. 

l The connections from each input cell to the cortex may be 
localized, as described by an “arbor” or “synaptic density” func- 
tion. 

l Input cell activities x, determine cortical cell activities y, 
according to a linear or semilinear rule y, = f(Z, +u, + 2, b,,y,), 
where it’,, is the synaptic weight from input cell i to cortical cell 
j. h,, is the synaptic weight from cortical cell i to cortical cell j, 
and f is a linear or sigmoidal function. This activation rule may 
also be time dependent, but in this case an input pattern is 
considered to be sustained until an equilibrium is reached, and 
the equilibrium activity is governed by the given instantaneous 
equation. 

l Modification of synapses from input cells occurs according 
to some Hebb-like or correlation-based rule, for example, SW,, 
cc h,(y,)h,(x,), where h, and h, are functions, the symbol a means 
“proportional to,” and the w,( are subject to upper and lower 
bounds. A specific example is a covariance rule (Sejnowski, 
1977) with hard limits on synaptic weights: $w,, m (JJ, - (y,)) 
(x, - (x,)), 0 < w,, < w,,,; SW,, = 0, otherwise. Here, (y,) and 
(x,) are the time averages of y, and x,, respectively, and w,,, is 
a maximum value for synaptic weights. The postsynaptic func- 
tion h, could also take into account the concentration of a dif- 
fusible modification factor that is released by cortical activity. 

l Intracortical synapses are generally not treated as modifi- 
able. 

l A constraint or dynamical rule ensures that the synaptic 
changes are competitive: some synapses onto a cortical cell can 
become stronger only at the expense ofother synapses ultimately 
becoming weaker, and vice versa. 

Models of this type are reviewed in Miller (1992~). The va- 
lidity ofthese assumptions is discussed there and in Miller (1990a) 
and Miller and Stryker (1990). 

Theoretical~fiamework: elements of the model 

We have developed a mathematical framework that describes 
development in models of this type when two initially equiv- 
alent input projections compete to innervate a single output 
layer (Miller et al., 1989; Miller, 1990~). The initial development 
of a d$krence between the two input projections may be de- 
scribed by linear equations, even though the rules outlined above 
may include a number of nonlinearities. Thus, to study early 
pattern formation-for example, the initial pattern of segrega- 
tion of ON- and OFF-center inputs within simple cell receptive 
fields-we may focus upon relatively simple, linear equations. 

This early development of the input projections can be math- 
ematically described as follows (Fig. 1). Hereafter I will take the 
input layer to be the LGN. The position of the presynaptic cell 
in the LGN is denoted by Greek letters o(, p, . . . ; the position 
of the postsynaptic cell in the cortex is denoted by letters x, y, 
z, . . . Note that these are each 2-D vector positions. A direct 
conversion between positions in LGN and in cortex will always 
be assumed, for example, by describing both coordinate systems 
in common, retinotopic units. This allows definition of mixed 
quantities such as z - N. 

Visual 
Cortex 

Figure I. Elements of the model: ON (white) and OFF (blaclc) cells in 
the LGN innervate cells in layer 4 of the visual cortex. cy and @ label 
positions in the LGN and x and y label the retinotopically corresponding 
positions in the cortical layer; z labels an additional cortical position. 
The figure illustrates the ON-center and OFF-center synaptic strengths, 
SON and PrF; the afferent correlation functions, C’““N and C)N.C’f’-; the 
arbor function, A; and the intracortical interaction function, I. See in- 
troductory remarks for details. 

The ON-center synaptic strength from position CY to position 
z is PN(z, N); similarly, S°FF(~, CY) denotes OFF-center strength. 
These synaptic strengths arc the dynamical elements ofthe mod- 
el; their time evolution represents cortical development. Intra- 
cortical connectivity is taken for simplicity to be fixed. 

The development of PN and P1 is expressed in terms of 
three measurable functions or sets of functions. The first is a 
set of correlation functions, here PNoN, C’N.Otl, and C)li.ot’, 
describing the correlation between the activities of LGN cell 
pairs as a function of their center-type and separation. PN,C)N(~ 
- 0) describes the correlation in activity of two ON-center cells 
from positions N and p, and similarly for the other functions. 
Orientation selectivity develops in many species before the onset 
of vision, as described above, so here the correlation functions 
describe the spontaneous neural activity in the absence ofvision 
(dark activity). The second function is an arbor function that 
describes the distance over which a single geniculate input can 
arborize and make synapses in cortex. The arbor function 
A(z - LY) is proportional to the number of synapses connecting 
the ON- or OFF-input from a to cortical position Z. [The num- 
ber of ON or OFF synapses, A(,- - CY), is regarded as fixed, while 
their summed strength .?P(z, a) or .!P(z, CX) changes in time; 
anatomical plasticity can be modeled by assuming that synapses 
are removed when their strength becomes zero.] 

The third function is an intracortical interaction function that 
describes how activity at one cortical location influences the 
development ofcorrelated synapses on cells at nearby locations. 
This function, 1(x - y), describes the sign and magnitude ofthe 
interaction between points x and J’ in the cortex. The nature of 
this function depends on the biological mechanism proposed to 
underlie geniculocortical plasticity. In a Hcbbian mechanism, 
the intracortical interaction function is determined by intra- 
cortical synaptic connections: it is positive between two cortical 
locations that tend to excite one another, and negative between 
locations that tend to inhibit one another. For mechanisms that 
involve activity-dependent release and action of a modification 
factor, this function incorporates the spread of influence across 
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Figure 2. How correlations among afferent activities determine recep- 
tive field structure in the model. Left, Correlation function P (vertical 
axis) between afferents with a given separation (horizontal axis). Right, 
Mature cortical receptive fields that result under the given CD. Large 
cl&es indicate the set of afferent inputs received by a cortical cell after 
development is complete. White indicates ON-center inputs, and shad- 
ing indicates OFF-center inputs. Top, If  C’ does not change sign within 
an arbor radius, segregation between postsynaptic cells occurs: a cortical 
cell comes to receive only ON-center (left) or only OFF-center (right) 
input. Bottom, If CD changes sign, so that at small separations same- 
type inputs are best correlated, but at larger separations within the arbor 
radius opposite-type inputs are best correlated, then receptive fields 
develop segregated ON-center and OFF-center subregions. Two (among 
many) alternative possible arrangements of such subregions are indi- 
cated. The correlation structure alone does not strongly distinguish be- 
tween these. However, as will be seen, oriented arrangements (right) 
typically result; the brackets (left) indicate an alternative structure that 
rarely if ever occurs. 

the cortex due to diffusion. In general this function depends on 
the detailed connectivity between specific cells, but for sim- 
plicity it is assumed to depend only on the separation between 
two cortical locations. In the Discussion, conclusions that apply 
to more general connectivity patterns are discussed. 

Thcoretical,fiamework: determinants of development 

The outcome ofcorrelation-based development under the above 
framework has been qualitatively characterized (Miller et al., 
1989; Miller, 1990a; Miller and Stryker, 1990; Miller and 
MacKay, 1994). This characterization assumes that the two 
input projections are equivalent, such that C?.ON = cOFF.OFF. 
This is a simplification, ignoring the greater dark activity of 
OFF-center inputs (Mastronarde, 1983b) and the apparently 
faster rate of development of the more active OFF population 
(Albus and Wolf, 1984; Braastad and Heggelund, 1985). 

To describe the outcome of development, three additional 
quantities must be defined. First, the arbor radius is the radius 
in the cortex of the set of cortical cells that may receive input 
from a single LGN cell, that is, the radius over which A(x) is 
nonzero. It is equivalently defined in the LGN as the radius of 
the set of LGN cells that connect to a single cortical cell. Second, 
the di#>rence correlation .function P is defined by G(A) = 
EMU” - C )N(>FF(A). P(A) tells the degree to which two 
inputs of the same center-type, with retinotopic separation A, 
are better correlated with one another than with an input of the 
opposite center-type at the same separation A. Third, because 
the model studies only the development of the afferent inputs, 
and does not consider mechanisms of cortical integration, I will 
use “receptive field, ” in describing model predictions and re- 

Figure 3. Correlations between ON- and OFF-center receptive fields 
at varying retinotopic separations. Stripes signify ON-regions; white, 
OFF-regions. Consider correlations in dark activity, due to shared pho- 
toreceptor input (Mastronarde, 1983b) as well as to intrinsic LGN con- 
nectivity. A, Two ON-center receptive fields. Left, At small retinotopic 
separations, ON-centers overlap and OFF-surrounds overlap. Hence, 
the cells would be likely to receive common input frequently and to be 
well correlated. Right, At larger retinotopic separations, the ON-center 
of each receptive field overlaps the OFF-surround of the other, so the 
two cells would be expected to receive common input rarely and thus 
to be poorly correlated or anticorrelated. B, An ON-center and an OFF- 
center cell at the same two retinotopic separations. The situation is 
reversed from A. Left, Anticorrelation is expected. Right, Better cor- 
relation is expected than at similar separations in A. This suggests the 
plausibility of a Mexican hat correlation structure, as in Figure 2, bot- 
tom. 

suits, to mean the set of afferent inputs to a cortical cell. The 
basis for comparing model receptive fields, so defined, to ex- 
perimental receptive fields, defined in terms of the response to 
visual stimulation, is considered in the Methods. 

Two rules determine the outcome of development within the 
model framework. The first rule accounts for receptive field 
structure: cortical cells tend to develop receptive fields consisting 
of a subset of inputs that are as mutually correlated as possible. 
The difference correlation function, C’, is the key factor deter- 
mining which subset is most mutually correlated (Fig. 2) (other 
factors can also play a role; see Miller and MacKay, 1994). Two 
forms of Cr’ that lead to qualitatively different receptive field 
structures can be distinguished. First, suppose c7’ is non-neg- 
ative, so that two same-type inputs are better correlated than 
two opposite-type inputs at all separations (Fig. 2, top). Then 
the most correlated subset of inputs generally consists of inputs 
of a single type, so all-ON or all-OFF receptive fields develop. 
This represents segregation of two competing input populations 
onto d$&ent postsynaptic cells, as in the LGN or in ocular 
dominance segregation. Second, suppose (1) P changes sign 
with distance, so that at small distances same-type inputs are 
best correlated but at larger distances opposite-type inputs are 
best correlated; and (2) this sign change occurs within the arbor 
radius (Fig. 2, bottom). I will refer to this as a “Mexican hat” 
correlation structure between ON- and OFF-center inputs. Then 
the receptive field of a cortical cell will develop segregated ON- 
center and OFF-center subfields with widths that best match 
the sign changes in CD. This represents convergence of two 
competing populations onto the same postsynaptic cells, but 
segregation within receptive fields, as in cortical simple cells. 
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Development under the Mexican hat form of CD will be the 
focus of the present study. 

Figure 3 demonstrates why a Mexican hat structure between 
ON- and OFF-center inputs is plausible. Suppose that corre- 
lations in dark activity are due to common photoreceptor input 
that excites “overlying” ON-subregions and inhibits overlying 
OFF-subregions (Mastronarde, 1983a,b). At small retinotopic 
separations (Fig. 3, left), like-center inputs have overlapping 
receptive fields, receive common photoreceptor input, and are 
therefore correlated in their activities, whereas opposite-center 
types have overlapping ON- and OFF-subregions and hence are 
anticorrelated. At larger separations (Fig. 3, right), two cells of 
opposite center types have greater overlap of ON-subregions 
and of OFF-subregions than two cells of the same center type, 
so the two cells of opposite type appear likely to be better cor- 
related. The argument at larger separations must be taken with 
caution, because in adults dark-adapted cells have larger centers 
and weaker surrounds than light-adapted cells, at least in the 
retina (Enroth-Cugell and Lennie, 1975; Barlow and Levick, 
1976); there are conflicting reports as to whether this is also true 
in the LGN (Virsu et al., 1977; Kaplan et al., 1979). Thus, the 
argument only suggests plausibility; measurement of LGN dark 
correlations is needed. The existing biological evidence on dark 
correlations is addressed in the Discussion. 

The second developmental rule accounts for the formation of 
cortical maps: cortical cells tend to develop receptive fields that 
are as correlated as possible with other cortical receptive fields 
at mutually excitatory distances across the cortex, but as anti- 
correlated as possible with other receptive fields at mutually 
inhibitory distances. For the case of ocular dominance segre- 
gation (as in Fig. 2, top), if interactions are excitatory at small 
distances, this rule leads receptive fields to develop in ocular 
dominance patches, where the width of a left-eye patch plus a 
right-eye patch best matches the sign changes of the intracortical 
interaction function (Miller et al., 1989). For the present case 
(Fig. 2, bottom), the implications of this rule are more compli- 
cated, and will be discussed in greater detail below. However, 
it is this rule that leads oriented cells, if they develop, to have 
an ordered spatial arrangement across the cortex. 

In summary, the hypothesis of this article is that the devel- 
opment of simple cell receptive fields and cortical maps may 
result from the combination of (1) an activity-dependent com- 
petition between ON- and OFF-center inputs to simple cells, 
via a Hebbian or other correlation-based mechanism of synaptic 
modification; (2) a Mexican hat correlation structure in the dark 
activity of these ON- and OFF-center inputs; and (3) intra- 
cortical interactions that couple the competitions occurring on 
different cortical cells. 

Short accounts ofthis work have appeared previously (Miller, 
1989b, 1990b, 1992ax; Stryker et al., 1990). 

Methods 
The methods of simulation used here are similar to those of previous 
work (Miller, 1989a, 1992a; Miller et al., 1989). Previously published 
accounts were very brief, so a complete account is given here. 

The equation studied 
I will use the notation defined in Figure 1 and associated text. The 
equation studied is derived in Miller (1990~) and Miller et al. (1989). 
It consists of three pieces. First, the unconstrained (“U”) equation that 
describes correlation-based development under Hebbian or similar 
rules is 

[CONJyO( - ppyy, (I) + CON-(a - p)P~yy, P)]. 

(1) 

$1 I, SOFF is defined similarly, with ON and OFF exchanged everywhere. 
In words, this equation says the following: modification of synaptic 
strength is determined by the linear sum of the effects of all other 
synapses; the effect exerted by the synapses from p to y  on those from 
01 to x is the product of their strength S(J, p), their correlation C(a - 
p) with the synapses being modified, and their influence 1(x - y) on 
those synapses via intracortical connections and/or diffusion of mod- 
ulatory factors. The arbor function, A(x - (Y), tells the number of syn- 
apses being modified. 

Second, this equation is constrained to conserve the total synaptic 
weight over each postsynaptic cell (von der Malsburg, 1973; Miller and 
MacKay, 1994). This constraint models the fact that biological devel- 
opment under a correlation-based rule is competitive; that is, the growth 
of one input is determined not simply by its own activity but by its 
activity relative to that of competing inputs (Wiesel and Hubel, 1965; 
Guillery, 1972; Stryker and Strickland, 1984). A conservation rule en- 
sures that, if one set of cooperating inputs gains in synaptic strength, 
competitors must lose synaptic strength. The rule is not intended to 
model the biological mechanism by which competition is achieved, 
about which little is known. The resulting constrained equation is 

where 

1 
4x) = 2 z, A(x - (3) p .z[: 

The equation for $p)FF is Equation 2 with “ON” changed to “OFF.” 
The second term in Equation 2 subtracts an equal amount from each 
synapse on a given cortical cell, and thus an amount proportional to 
the number of synapses ,4(.x - CY) from each total synaptic strength 
,tP(x, a) or sOFF(x, CY), so as to set &&V(x, a) + $PFF(x, CX)] = 0 for 
each cortical cell X. 

Third, synapses cannot have less than 0 strength or more than 
some maximal strength, so weight limits are imposed: 0 5 sO”(x, a) 5 
s,,,A(x - a), where s,,, is an upper bound on synaptic weights. The 
equation studied in this article is Equation 2, subject to these weight 
limits. 

The conservation rule (Eq. 2) is enforced subtractively, that is, by 
subtracting an equal amount from each synapse. Alternatively, such a 
constraint could be enforced by a multiplicative renormalization. The 
differences between these two methods are discussed in Miller and 
MacKay (1994). For the present model, there is little difference in out- 
come between the two. The major difference is that a subtractively 
enforced constraint leads all synaptic strengths eventually to reach either 
0 or the maximum allowed strength, whereas a multiplicatively enforced 
constraint results in graded synaptic strengths. Thus, in the present 
simulations, all synaptic strengths approach the upper or lower limiting 
value, but this is an artifact of the constraint method and does not 
constitute a prediction or essential feature of the model. 

The architecture 
For purposes of simulation, the cortex, the ON-center inputs, and the 
OFF-center inputs are each modeled as 32 by 32 layers of neurons (Fig. 
4). Each ON or OFF cell projects to a circular arbor of cortical cells, 
centered about the retinotopically corresponding cell in the cortical grid. 
The arbor diameter is I3 grid intervals unless otherwise stated, yielding 
a total of 280,576 geniculocortical synapses (137 ON and I37 OFF 
synapses per cortical cell, 1024 cortical cells). To avoid boundary effects, 
periodic boundary conditions are used, so that the leftmost and right- 
most columns of each grid are adjacent, as are the bottom and top rows. 
One cortical grid interval can be taken to represent roughly 100 Km (see 
Fig. 15) in which case the simulation is of a roughly 3 mm by 3 mm 
patch of cortex with arbors around I mm in diameter. 

The grid and arbor sizes are selected as follows. The grid size must 
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/ ON 

Figure 4. Grids used for simulations. A layer of ON-center and of 
OFF-center LGN inputs and a cortical recipient layer are each repre- 
sented by 32 by 32 grids ofcells. Each geniculate cell connects to a circle 
of diameter 13 grid intervals of cortical cells, centered about the retin- 
otopically corresponding cortical position. Retinotopically correspond- 
ing cells in the two input layers (dark cc//s) connect to the same set of 
cortical cells, and adjacent input cells (gra.~) connect to adjacent and 
partially overlapping sets of cortical cells. 

be a power of 2 because calculations use the fast Fourier transform, as 
described below. The largest grid size that can be accommodated is 32, 
due to memory limitations. To study development of orientation se- 
lectivity, the arbor must be large enough that individual receptive fields 
can reliably develop significant internal structure; a diameter of 9 is 
about the minimum acceptable, but larger arbors yield more regular 
receptive field structure. At the same time, the arbor diameter should 
be significantly smaller than the grid width, so that the effects of re- 
stricting connectivity to a finite arbor can be seen. Parameters should 
also be chosen so that the grid is significantly larger than the width that 
emerges for an orientation hypercolumn (i.e., for a complete cycle of 
orientations; Hubel and Wiesel, 1974) so that periodic boundary con- 
ditions have minimal impact on hypercolumn formation. 

Thcjitnctions u.wd 
In choosing the functionsii, C,, and I that define the model, the following 
considerations apply. Both theoretical and computational studies con- 
sistently find that. for the simple functional forms used here (i.e., falling 
smoothly to zero with distance, either monotonically or with a small 
number of oscillations), only very general features are important to the 
results: whether the function oscillates or falls monotonically to zero, 
the width if it falls monotonically, or the peak of its Fourier transform 
if it oscillates. Thus, certain fixed, simple forms of the functions were 
chosen, limiting the parameter space exploration to these relevant fea- 
tures. Most parameters are assigned “default” values; these were used 
in all cases where not specifically stated otherwise. Typical examples of 
the functions used are shown in Figure 5. 

The arbor function A(X) is proportional to the overlap in area of a 
circle of radius r, and a circle of radius c,r, with centers separated by 
IsI (intended as a crude model of the overlap of geniculocortical ter- 
minal arbors with cortical dendritic arbors). It is set to zero for 1x1 > 
D $2, where D I is the “arbor diameter.” Default parameters are D I = 
13, r, = (D, - 1)/2, c, = 0.5. The fact that the arbor function tapers, 
rather than being constant within the circle of radius L),/2, has little 
effect in most parameter regimes (see Fig. IO). Both analytic and com- 
putational results suggest that the role of the arbor function is primarily 

ARBOR FUNCTIONS 
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Figure 5. Examples of functions used in simulations. Top, Arbor func- 
tions .4(x - a) for arbor diameter 13: left, default (c, = 0.5); right, 
alternative (c, = 0.25); c, is defined in Methods. Middle, Afferent cor- 
relation functions ,N.oN(a - fl) (lest) and C)NO1-r(a - /3) (right) for 
arbor diameter 13. r, is the parameter controlling the width of these 
functions. Bottom, Intracortical interaction functions 1(x - y):jirst row, 
purely excitatory (“E”) functions; second row, mixed excitatoryjinhib- 
itory (“I”) functions. The number (e.g., 0.2 in “E 0.2”) refers to the 
value of the parameter r, that controls the width of this function. In all 
graphs, the horizontal axis represents distance ( Ix ~ CI I, 1 LY - 0 1, or Ix 
- y I, respectively) in grid intervals, while the vertical axis represents 
the value of the function. All are functions of distance; that is, they are 
rotationally symmetric. In any single simulation, each function remains 
fixed; different choices of functions are used in different simulations. 

determined by the cutoff of its Fourier transform (the spatial frequency 
at which its Fourier transform becomes negligibly small compared to 
the value for frequency 0); the corresponding wavelength gives an “ef- 
fective” arbor diameter. The default taper used here primarily has the 
effect of shrinking the effective arbor diameter to about I 1.3. for D, = 
13. 

To define the other functions, first define the Gaussian G(.\-, U) = 
exp( - IX I 2/&). The ON-ON and OFF-OFF correlation functions have 
a Mexican hat form, given by a difference of Gaussians: C’NON(.\-) = 
C)rr’)rr(~) = G(x, r, D ,/2) - (l/y, ‘)G(x, y( rC U ,/2). This form sets an 
approximate balance of correlation and anticorrelation. That is, the C 
values approximately sum to zero: on a continuum, J&K(x) = 0 for 
each C. The ON-OFF correlation functions are defined as Ct’N(~“(~) = 
c?rrON(~) = -0 5C’N”N(x). This defin’t’ i ion is used for simplicity: the 
key determinant’of development is C’ = C’NoN - C”N”“, while the 
separate values of ClNoN and C)NOk’ are relatively unimportant. The 
correlation functions are determined by two parameters. r, controls the 
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width of the Gaussians as a percentage of the arbor radius. It has no 
default value; it is one of two parameters in the model that are system- 
atically varied, y( controls the width of the inhibitory Gaussian relative 
to the excitatory. It has default value y( = 3. Only I; is systematically 
varied because the effect of these functions is controlled by a single 
parameter, the peak of their Fourier transform. As will be shown in 
Results (Fig. IO), variation of y( has essentially no effect provided r, is 
covaried to keep this peak constant. 

There are two types of intracortical interaction functions. Purely ex- 
citatory functions are defined as I(x) = a(x)G(x, 6.5r,). Mexican hat 
functions that mix short-range excitation and longer-range inhibition 
are I(X) = a(x)[G(x, 6.5r,) - (Ilr,>)G(x, 6.5r,r,)]. For arbor diameter 
13. the function in brackets is identical to the correlation functions, 
with r, substituted for r<. The function a(x) reduces the size of intercell 
interactions relative to interactions between synapses on the same post- 
svnaptic cell. It is defined by a(O) = I; u(x) = a, 5 I, x # 0. As with 
the correlation functions, the effect of I(X) is controlled by the peak of 
its Fourier transform. Varying y, (default value y, = 3) has essentially 
no effect provided r, is appropriately covaried to keep this peak invariant 
(see Results, Fig. IO). Altering a, (default value a, = 0.5) does not alter 
this peak and, as noted in Results, setting a, = 1 does not visibly alter 
results. The parameter Y,, like r<, has no default value and is system- 
atically varied. For shorthand, the excitatory I(X) are referred to as “E 
r,” (e.g.. E 0.3. for r, = 0.3) and the mixed excitatory/inhibitory as “I 
r,” (e.g., 10.3, for r, = 0.3). 

Unlike the correlation functions, I(X) does not scale with the arbor 
diameter. The reasons for this will become more clear from the Results. 
In essence, this ensures that simulations with given values of r< and r, 
yield similar results across arbor sizes: a given value of r( results in a 
constant mean number of subregions per receptive field, and thus a 
roughly constant mean orientation selectivity, while a given value of r, 
generally leads to a roughly constant width of orientation hypercolumns. 

The .ritnulutlon algorithm 

For brevity, the simulation algorithm is described only for ON-center 
synapses; it is identical for OFF-center if “ON” and “OFF” are ex- 
changed in all formulas. Simulations were stopped once more than 90% 
of synaptic strengths reached their limiting values of 0 or s,,,A(x - a). 
Here s,,, is the maximum strength ofan individual synapse, with default 
value s,,,, = 4. Synaptic strengths SoN(x, a) were initially assigned a 
random strength uniformly distributed over (I * s,,,,,,)A(x ~ a), with 
s “Olsc = 0.2. The random number generator was ran1 from Press et al. 
(1988). The initial synaptic strengths were multiplicatively normalized 
over each cortical cell as described in step 5 below. Thereafter, at each 
timestep, all synapses were updated as follows: 

(I) Compute unconstrained derivative AON@, o) = $(,,.Y(x, a) of 
each synapse SY’N(~, cr) from Equation I. Derivatives are computed by 
first using the fast Fourier transform to calculate the 4-D convolutions 
of the form Z, ,) 1(x ~ v)C(a - @)S@, p) (note that X, (Y, y. and /3 are 
each 2-D variables). The appropriate sum of convolution terms is then 
multiplied by the arbor function to yield AON. The fast Fourier transform 
is used for speed; the implementation was tested to verify identity of 
results with the slower, direct calculation. The growth constant h (Eq. 
I) was chosen after the first iteration to make the standard deviation of 
change in synaptic weights for that iteration g1 = 0.0 I. As an extra safety 
factor, if the result was that X > X,,, where h, = 0.0 I, 0.02, respectively, 
for arbor diameter 13, I 1, then X was set to max(X/Z, h,). The value o1 
= 0.01 was chosen after preliminary simulations in which, for a number 
of parameter values, no visible synaptic changes occurred as o1 was 
varied from 0.001 to 0.01; at most a few changes in a few synapses 
occurred as 0, was increased further to 0.04; and only slight changes 
were visible with further increase through values as large as 0. I. X,, was 
chosen empirically to prevent the number of timesteps to completion 
from falling below about 40. Resulting X values ranged from 0.0011 to 
0.0377, with number of timesteps ranging from 36 to 90. 

(2) Modify derivatives with subtractive constraints that conserve total 
synaptic strength over each cortical cell. The ON-derivative is modified 
to be a’<)“‘(~, a) = AoN@, a) ~ e(x)A(x - a) where c(x) is as defined in 
Equation 3. 

(3) Use these derivatives plus derivatives from previous timesteps to 
compute total change in each synapse using a three-step method (Birk- 
hoff and Rota, 1978, p 221) and update synaptic strengths. The three- 
step method allows larger timesteps (larger X) and thus faster compu- 
tation. The three-step method used for integrating :S(t) = hF(S) was 

S(t + I) = S(t) + X(23F, ~ l6F, , + SF, ,)/ 12, whcrc F, is the value 
of F(S) at time f; here, F, is the final derivative after step 2 at time /. 
The first two updates were S(l = I) = S(t = 0) + AF,,; S(C = 2) = S(t = 
I) + X(2F, - F,,). After computation of S(/ = 4) the step size and h 
were doubled, so that thereafter only even-numbered timesteps were 
computed, as S(t + 2) = S(t) + 2X(23F, - l6F, Z + 5F, ,)/l2. 

(4) If SoN(X, n) < 0 or .Y(X, a) > s,,,,il(x- - (u), cut off value at 0 or 
s,,,,,,A(x - a), respectively: similarly for g’h’(~, e). 

(5) If any synapses are cut off in step 4, correct for this by multipli- 
catively renormalizing the synaptic strength over the corresponding cor- 
tical cells. Each synaptic strength on the cortical cell at s is multiplied 
by y(x) = [2X,, ,4(x - p)]l(& [SON@, b) + s”ii (s. @)I). This restores total 
synaptic strength on that cell to 28,, A(s - o), as it was before step 4. 

Saturated synapses were stabilized; that is, if synaptic strengths reached 
the limiting values of 0.0 or s,,,,A(x ~ a), they were frozen so that no 
further changes in their strengths were allowed. This is done for com- 
putational convenience and does not alter results (Miller, 1989a; Miller 
et al., 1989). To implement stabilization, frozen synapses were assigned 
derivatives A = 0, steps 2 and 5 were applied only to active (unfrozen) 
synapses, and the formulas for c(x) in step 2 and y(x) in step 5 were 
modified as follows. Let S,,,(s) be the summed strength of all active 
synapses (both ON- and OFF-center) on the cortical cell at s. and let 
S,,,,,(X) be the summed strength of the frozen synapses. Let .,t;:yj(x-, CY) = 
,4(x - a) if g)N(,Y, a) is active, = 0 if .S”“(s, CY) is frozen [and similarly 
for A::Q, a)]. Then e(x) = (Z, [AoN@, 0) + A”“(x, @)])l(Z,, [A:::@, 0) 
+ A::Q, p)]); and r(x) = [US,,,, + 2&4(1 - @]/S,,,(x), subject to 
0.8 5 y(x) 5 1.2. 

Calculation of properties qf rccepti~~c,ficlds 

Responses ofmodel cortical cells to sine wave gratings ofall orientations 
and spatial frequencies were calculated under a simple linear model of 
response. Define the ON/OFF difference: sL’(x, a) = S’N(~, a) - plFT@, 
a). Response is defined as the product of the grating with the receptive 
field pattern of Y’. Let R(x, k, 4) be the response of the cell at x to the 
grating sin([2?rk.(x - 01)/64] + 4) (note that k, like x and (Y, is a 2-D 
vector with inteeer components). Then Xx. k. d) = 2.. 90, a) sin(l2*k. 
(X - (u)/64] + G). It suffices to’know R(x, k) i max,R(&, k, $), which 
can be calculated directly: R(x, k) = 1 .??)(A k) 1, where s>(x, k) is the 
Fourier transform over (Y of .Y’(x, a), on a 64 by 64 grid whose edges 
are zero-filled. 

The preferred spatial frequency and, in some cases, preferred orien- 
tation of the receptive field were assigned as the spatial frequency and 
orientation, respectively, of the sine wave grating giving maximal re- 
sponse. This definition of preferred spatial frequency is in accord with 
experiment (Movshon et al., 1978a; see further discussion below). To 
assess the degree of orientation selectivity, the best response over all 
gratings (all wavenumbers k) in each IO” interval of orientation between 
0” and 180” was determined. This defines a function R(x, n), given by 
the best response ofthe cell atx to gratings in the nth orientation interval, 
n=O ,_ ., 17. For the nth interval, a 2-D vector was constructed with 
length R(x, n) and angle n x 20”. The vector sum of these 18 vectors 
gives a vector v,(x), with length ] v,(x) 1. The orientation selectivity O(X) 
is defined as the ratio of 1 v,(x) I / 18 to the rms length of the 18 individual 
vectors. Selectivity, so defined, takes values from 0 to I. 

Because the measure of response is linear and receptive fields are 
finite in size, even a set of weights corresponding perfectly to a sine 
wave grating gives positive responses at almost all orientations. For this 
reason, it is impossible for this response model to achieve biological 
levels of selectivity. In practice, the maximum selectivity is about 0.28 
for model receptive fields. Nonetheless, this response model is sufficient 
so that the measure of selectivity correlates well with the degree oftuning 
expected based on observation of the spatial structure of the receptive 
field. This is illustrated in Figure 6, which shows receptive fields for 
selectivities ranging from 0 to 0.27. Orientation tuning curves under 
this linear response model are also shown. Note that, for receptive fields 
like these with oriented, segregated sets of ON- and OFF-center inputs, 
a more realistic response model can yield sharp orientation tuning curves 
with physiological levels of selectivity (Ferster, 1987). 

A cell’s preferred orientation can also be defined as the orientation 
corresponding to v,(x) [i.e., the angle of r&), divided by 21. This and 
the previous definition give results that are not discernibly different. 
The definition based on v,(x) was used in maps that simultaneously 
display the preferred orientation and the degree of orientation selectiv- 
ity. 

Mathematically, the orientation selectivity O(s) can bc expressed in 
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Figure 6. Assessment of orientation 
selectivity. Receptive fields and orien- 
tation tuning curves ofcells with steadi- 
ly decreasing assessed values of orien- 
tation selectivity are shown from two 
simulations. Selectivity is the number 
written above each receptive field or 
orientation tuning curve. A, Cells with 
narrower ON- and OFF-regions, re- 
sulting from development with a nar- 
row correlation function, r,- = 0.2. B, 
Cells with broader ON- and OFF- 
regions, resulting from development 
with a broader correlation function, r,. 
= 0.28. Histograms show best “re- 
sponse” (as defined in Methods) to any 
sine-wave grating, across all spatial fre- 
quencies and phases, in each lo” inter- 
val of orientation O-lo”,. . ., 170-I 80”; 
bin to the side shows response to uni- 
form luminance. Note that the linear 
“response” measure used is not meant 
to achieve biological sharpness of tun- 
ing (see Methods). Receptive fields show 
difference between ON-center and OFF- 
center synaptic strength from each in- 
put position; conventions and gray scale 
are as described for Figure 7. 

A r,=o.m 
0 272 0 24 

terms of d(x, p), the Fourier transform of the orientation tuning curve: 
R(x, p) - 2::;’ R(x, n) exp(2ripn/N,), where_ No is the number of 
orientation bins (here, No = ! 8). Then O(x) = IR(x, 1) 1 /v’~~ I &, p) I 2. 
Omitting the x index: use ofR( 1) to characterize selectivity was proposed 
in Wijrgijtter et al. (1990), but with the normalization 0, = IR(l) I/ 
II?(O)1 [they refer to &I) as the second rather than first harmonic, 

because thev define orientation over 360” rather than 18O”l. 0, is the 
ratio of 1 vR l?N, to the mean, rather than rms, length ofthe Ni individual 
vectors that define v,. 0,. may take values larger than 1 when some 
responses are negative. A normalization that avoids this is (Chapman, 
199 I) 0, = O,/( I + O,.). The difference between the various measures 
is their treatment of higher harmonics. With the linear definition of 
response used here, higher harmonics primarily represent multiple peaks 
in the response function, so their presence should decrease the assess- 
ment of orientation selectivity; hence, the present normalization is pre- 
ferred. For physiological data, multiple peaks in the response function 
are rarely found (but see Wiirgiitter and Eysel, 199 la) and higher har- 
monics primarily represent “sharp edges” in the response function (e.g., 
a cell that shows positive response to some orientations and no response 
to the others) (B. Chapman, personal communication); in this case, the 
normalizations of 0,. or 0, are preferred. 

The meaning of a “receptivejeld” 
The measure of cortical cell response defined above, R(x, k, #), takes 
into account only the set of LGN synaptic weights received by the 
cortical cell. This ignores two other factors that also contribute to cortical 
visual responses, namely, (1) intracortical synapses and (2) the receptive 
fields of the LGN afferents. More generally, in considering model results 
I use the term “receptive field” to describe the pattern of LGN synaptic 
weights received by a cortical cell, whereas physiologically, “receptive 
field” describes the response of a cell to visual stimulation and thus 
would incorporate all of these factors. 

One justification for these simplifications is that the spatial pattern 
of LGN synaptic weights should be adequate to predict general prop- 
erties ofsimple cell responses such as preferred orientation and preferred 
spatial frequency. The basis for this statement is twofold. (1) These 
response properties depend only on the spatial pattern of the ON- and 
OFF-subregions in the simple cell’s receptive field (as physiologically 
measured). Many reports, beginning with Hubel and Wiesel(l962), have 
established that a simple cell’s prcfcrrcd orientation is well prcdictcd 
by the direction of the linear arrangement of the cell’s ON- and OFF- 
subregions. Similarly, Movshon et al. (I 978a) showed that the spatial 
frequency response of a cat simple cell is well predicted from the spatial 
structure of the ON- and OFF-subregions of the receptive field. (2) The 
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spatial pattern of the ON- and OFF-subregions in the cortical cell’s 
receptive field (as measured physiologically) should, in turn, be reason- 
ably well predicted by the corresponding pattern in the LGN weights 
received by the cell, assuming that these LGN weights form cleanly 
segregated ON- and OFF-subregions as in the present model cells. 

The effects of LGN receptive fields and intracortical interactions on 
cortical responses were directly studied as follows: “physiological” weights 
PQ, (Y) were defined by PON(x, (u) = Z, B I(x - J+SQ~@, @),5(j3 - LY) 
(and similarly for P”“), where L@ - a) is an LGN receptive field center 
profile. The major effect, relative to the receptive fields formed by the 
LGN weights SON(x, cy), was to enlarge slightly the receptive fields, by 
elongating subregions, widening subregions at the receptive field edges, 
or adding small additional subregions at these edges. This induced small 
changes in preferred spatial frequencies (mean change, increase of 4- 
5%, and rms change, IO-IS%, for two simulations studied). The ori- 
entation maps were largely unchanged but became slightly smoother; 
Fourier transforms of these maps were virtually unchanged but showed 
a slight shift of power to longer frequencies. 

This definition ofphysiological weights involves a number ofarbitrary 
assumptions about cortical integration and so does not necessarily pro- 
duce receptive fields more biologically based than the geniculate weights 
themselves. Hence, it was judged preferable to present the geniculate 
weights, which constitute the “raw data” produced by the model, and 
to focus on general response properties, such as preferred orientation 
and preferred spatial frequency, that should not significantly depend on 
the model of cortical integration. 

Analysis of cortical maps 
To determine the spatial period with which orientation varies across 
cortex (i.e., the width across cortex of a complete cycle of orientations), 
the power spectra of model cortical maps of orientation were deter- 
mined. To do so, the function vR(x) was Fourier transformed on the 32 
by 32 cortical grid. The 2-D vector v,(x), regarded as a complex number, 
is proportional to the fir? harmonic of the response-function, R(x, I). 
Its Fourier transform is R(k, I) = Z, exp(2mk.x/32)R(x, I). The power 
P(k)-at each 2-D wavenumber k = (k,, k>), - I6 i k,, kL 5 15, is P(k) 
= JR(k, I) I*. Power at wavenumber k represents a periodic arrangement 
of orientations with a complete cycle of orientations in 32/ 1 kl grid 
intervals, where 1 k 1 = v’-kT. 

The I-D power spectrum, p(s) = Z,,,=, P(k), gives a measure of the 
width of orientation hypercolumns: the power at s represents the degree 
to which orientation hypercolumns (complete cycles of 180” of orien- 
tation) have width 32/s. To computep(s), the 2-D spectrum was divided 
into annuli as follows: an inner circle had radius 0.23 (in 1 k I); subse- 
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quent annuli had increments of radius 0.4. These numbers were chosen 
empirically as those which left few empty annuli. Lets, be the midpoint 
I/ii of the ith annulus. and fi(.y,) the summed power in that annulus. 
Then p(s,) was computed as p(.s,) = [li(.s, ,) + 2&,) + fi(s,, ,)]/4 (at the 
two edges. the nonexistent annulus was omitted and the division was 
by 3). 

Power spectra in Figure I5 of linearly interpolated model maps were 
determined similarly to other model spectra, except that (1) these maps 
were periodic on. and Fourier transformed on, a I28 by I28 rather than 
32 bv 32 grid: (2) only the preferred orientation B(s) was interpolated, 
so I.;(.Y) was assigned magnitude I and direction 28(x-). 

Power spectra of cxperimcntal maps of orientation were determined 
as follows. These maps were either 192 by 144 or I28 by I28 pixels. 
The vectors v,((.\-) were provided; they had been determined by assessing 
the response at eight orientations and adding these responses as vectors, 
as in the definition of vx(s) above. The central 144 by I44 or, for smaller 
maps. I28 by I28 square of the map was placed on a 256 by 256 grid, 
with the remainder of the grid filled with zeros. Power was then deter- 
mined by Fourier transform, with I,&) regarded as a complex number 
as above. To convert this 2-D power spectrum to a I-D spectrum, the 
central 32 by 32 portion of the 2-D spectrum was analyzed as just 
described for model cortices; power outside this central portion was 
negligible. 

Vortices or singularities of an orientation map were determined as 
follows. For each pixel in the map, a clockwise path is taken around 
the four nelghboring pixels that form a square “down and to the right” 
(using periodic boundary conditions). Let the preferred orientation at 
these four pixels be 8,, i = 0 through 3,0 5 0, < 180, where I is numbered 
sequentially around the path, and let 0, = 8,). The index of the path is 
defined to be S: ,, $(S,, , ~ 0,)/360”. where @b(s) = s, 1.~1 5 90”; @b(s) = 
.I- ~ 180”. .\- > 90”: $(.r) = .\- + IgO”, x i -90”. The index is equal to 
.V/2 for an integer N. If N is non7cro. the path encloses a vortex around 
which orientation cycles N times. If N is positive, the orientation in- 
creases (cycles counterclockwise) for clockwise movement around a path, 
while negative N denotes decrease for clockwise movement. Vortices 
add in the scnsc that a simple closed path through the orientation map 
traverses 180N,,,, degrees. where N,,,,/2 is the sum of the indices of the 
vortices enclosed by the path. 

The gradient of an orientation map (rate of change of preferred ori- 
entation across cortex) was computed as follows. The difference between 
the preferred orientations 8,, 0, of two cells is defined as l(0, - OZ) = 
@(IS, ~ 8, I), with 6 as just defined. At each pixel, the horizontal com- 
ponent of the gradient c;,, is taken to be the mean of the 1 values with 
the two horizontal nearest neighbors, the vertical component (;, the 
mean ofthc 1 values with the two vertical nearest neighbors. The (scalar) 
gradient is defined as <; = v”m,‘. This represents approximately 
the change in degrees oforientation for a movement of one grid interval 
in the fastest-changing direction. 

As discussed in Results, the mean preferred spatial frequency of simple 
cells is predicted to be 1/(2L), where L is the diameter of the positive 
central region of the difference correlation function C’; and I approx- 
imate L for inputs to cat area I7 or area I8 by twice the separation 
over which adult cat retinal X-cell or Y-cell correlations, respectively, 
go to zero (Mastronarde, 1983a,b). Then spatial frequencies are pre- 
dicted as follows: for X-cells. adult retinal correlations go to zero at a 
separation ofone dendritic field diameter. X-cell dendritic field diameter 
varies from 3.6 retinal ganglion cell (RGC) spacings at 2” eccentricity, 
to 4.4 RGC spacings at 12” eccentricity (Mastronarde, l983a, p 306). 
Values at other eccentricities were obtained by linear interpolation or 
extrapolation from these two values. To convert RGC spacings to de- 
grees of visual angle, the following formula was used (Mastronarde, 
I983a): let S = RGC spacings per degree of visual angle, and lI = density 
of retinal ganglion cells in cells per mm’; then S = 0.186fl. Imple- 
mentation of this conversion was based on a program provided to me 
by D. N. Mastronarde. which included values of D as a function of 
eccentricity and polar angle. A weighted average of S was computed, 
weighted by cell density (since higher density means more inputs to 
cortex). The linear interpolation and the weighting have very little effect 
on the final curve: the primary contributing factors are the variation of 
S with eccentricity. and the value of about 4 RGC spacings for the 
radius over which correlations go to zero. 

For Y-cells. Mastronarde’s data arc more variable. A cutoff of I4 
RGC spacings is suggested most strongly by the data (based on Mas- 
tronarde. 1983a. Figs. 3:l. 5.1). and was used. but values between I2 
and 20 might also be justified. A smaller value would move the Y-cell 
curve vertically up; a larger value. vertically down. Y-cell dendritic 
diameters range from 23.3 RGC spacings at 2”eccentricity to 17.8 RGC 
spacings at 12” eccentricity (Mastronarde. l983a, p 306). I assumed that 
the correlations scale with this diameter, and linearly interpolated, pro- 
portionally to these two values. a line that passes through I4 RGC 
spacings at 7” eccentricity (the eccentricity at which X-cells have the 
value 4 RGC spacings). The procedure was otherwise identical to that 
for the X-cell curve. 

Results 

The development of synaptic connectivity has been studied 
through both computer simulations and mathematical analysis. 
The purpose is to characterize in a general way the determinants 
of development under the proposed hypothesis. Our knowledge 
of the relevant biological parameters during development is at 
best crude. as it is generally inferred from circumstantial and 
indirect evidence based on studies in mature animals. Therefore. 
we wish to understand the range of outcomes that may occur 
and the conditions under which they occur. In this way, we may 
determine whether the hypothesis can robustly account for bi- 
ological results across a reasonable range of parameters. 

A typical development with a Mexican hat correlation function, 
for a case in which intracortical connections arc purely excit- 
atory (E 0.3, I; = 0.24), is illustrated in Figure 7. The receptive 
fields of a 5 by 5 patch of cortical cells initially rcccivc a patchy 
mix of both ON-center and OFF-center inputs (Fig. 7.4). Each 
cell gradually develops an oriented receptive field with distinct, 
cleanly segregated ON-subregions (white) and OFF-subregions 
(black). Across the cortex, cells are initially randomly and poorly 
oriented (Fig. 7R); hue indicates the preferred orientation of a 
cell. while brightness indicates the degree of orientation sclec- 
tivity. The cells gradually develop a continuous and periodic 
arrangement of preferred orientations that qualitatively resem- 
bles that observed experimentally (Blasdel and Salama, 1986). 

The types of receptive fields and cortical organization that 
typically emerge are illustrated in Figure 8. Final results arc 
presented from four simulations that began with identical initial 
synaptic weights but developed under differing parameters. The 
simulations used two widths of correlation function (narrower, 
); = 0.24, or broader, I’, = 0.28) and two types of intracortical 
interaction (excitatory, E 0.3, or mixed excitatory/inhibitory. I 
0.3). Figure 8,‘1 presents the full 32 by 32 sets of mature cortical 
receptive fields from the r, = 0.28 simulations, and I8 by 32 
receptive fields from the I’, = 0.24 simulations (corresponding 
to the rightmost I8 columns in the I’, = 0.28 cortices). The 
broader correlation function results in fewer ON/OFF subre- 
gions per receptive field than the narrower function. Despite 
this change in receptive field structure. preferred orientations 
remain largely unchanged, on a cell-by-cell basis, as the corre- 
lation function is changed (compare corresponding cells in the 
two E 0.3 cortices, or the two I 0.3 corticcs). Preferred orien- 
tations are altered when the intracortical interaction function is 
changed: the mixed excitatory/inhibitory intracortical interac- 
tion function leads to a more rapid change of preferred orien- 
tation than the purely excitatory. The swirling, continuous 
changes of preferred orientation that cmcrge are particularly 
visible in the more slowly varying. E 0.3 cortices. 

In all four cases, a majority of receptive fields become ori- 
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Fzgure 7. Development of orientation selectivity. Shown are illustra- 
tions of results from a single simulation, using the purely excitatory 
intracortical interaction function E 0.3, and the afferent correlation func- 
tions with r, = 0.24 (see Ftg. 5). A, Development of the receptive fields 
of a 5 by 5 patch of cortical cells. Difference between ON-center and 
OFF-center synaptic strength at each point in each receptive field is 
shown, at six developmental times ranging from a randomly assigned 
initial condition (T=O) to the final state (T is the number of iterations). 
Whrte represents ON-dominance; black, OFF-dominance; gray, equal- 
rty (see gray scale at bottom). At each time, the 5 by 5 receptive fields 
are shown adjacent to one another without intervening spaces; that is, 
the large square shown at a single time consists of 5 by 5 adjacent 
subsquares, where each subsquare shows the 13 by 13 set of inputs to 
one cortical cell. Comers of each receptive field are always zero (gray), 
because connectivity is restricted to a circle of diameter 13. B, Devel- 
opment of the overall cortical pattern of preferred orientation and ori- 

entation selective (60-67% of cells in each of these simulations 
have selectivity 2 0.12, which represents good selectivity as was 
shown in Fig. 6; see also Fig. 9C), and there is continuous 
organization of preferred orientation across the cortex. How- 
ever, some cells do not become orientation selective. These 
poorly oriented cells primarily occur at regions of high “ori- 
entation gradient,” that is, where preferred orientation changes 
rapidly with cortical position (see Fig. SB,C). Such cells are at 
a boundary between two or more regions of cells with different 
preferred orientations, and hence develop receptive fields that 
“compromise” between these differing neighbors. Factors pres- 
ent biologically but absent from the model, such as plasticity of 
intracortical synapses or nonlinearities in activation and plas- 
ticity rules, might lead such boundary cells to develop a single 
preferred orientation rather than a linear “mix” of orientations 
as here. 

Systematic organization across cortex of the spatial phase of 
receptive fields is evident in Figure 8A. Here, “spatial phase” 
refers to the location within the receptive field of the ON-sub- 
regions and the OFF-subregions (more precisely, it refers to the 
spatial phase of the sine wave to which the receptive field gives 
best response; see Methods). In the E 0.3 cortices, clusters of 
cells with similar preferred orientations show regular shifts of 
spatial phase with movement across cortex perpendicular to the 
preferred orientation (e.g., with horizontal movement across 
cells preferring vertical orientation). Some examples are out- 
lined with white dashed lines. The cells remain largely invariant 
in spatial phase with movement across cortex along the pre- 
ferred orientation. Each receptive field is shifted by one grid 
position in retinotopic position from its neighbors, so these 
spatial phase relationships roughly align ON-subregions retin- 
otopically with ON-subregions and OFF-subregions with OFF- 
subregions among neighboring cortical cells. This leads neigh- 
boring cells to be correlated, consistent with the purely excitatory 
E 0.3 intracortical interaction. The mixed excitatory/inhibitory 

entation selectivity. Preferred orientations are represented by hue, and 
in the top SIX panels the degree of orientation selectivity is represented 
by brightness (see color scale at bottom). The bottom rrght panel shows 
preferred orientation at T = 0 without regard to selectivity: the final 
pattern of preferred orientations is organized by the competitive mech- 
anism and does not stem from any prepattem. Conventronsfor thrs and 
otherjigfigures: 5 by 5 receptive fields are those of the bottom left 5 by 5 
square in the corresponding orientation map. At later times and in other 
figures, gray regions interior to the receptive fields represent weak syn- 
aptic strengths, rather than overlap of strong but equal ON- and OFF- 
center innervations (the two would be indistinguishable since only the 
difference between ON and OFF innervation is shown). Images at each 
timestep have been scaled so that whiteand black represent, respectively, 
the maximum and the minimum difference D between ON- and OFF- 
center strengths among illustrated receptive fields at the given time. 
Maximum difference D and maximum synaptic strength S among re- 
ceptive fields shown are T = 0, D = 0.39, S = 1.21; T = 8, D = 0.53, 
S = 1.48; T = 12, D = 0.80, S = 1.77; T = 16, D = 1.51, S = 2.35; T 
= 20, D = 3.38, S = 3.58; T = 50 and other figures, D = S = 4. In 
orientation maps, preferred orientation (hue) ranges linearly in 16 steps 
from vertical (red, left of color scale), counterclockwise to 1 I .25” clock- 
wise from vertical (reddish color LIZ right of color scale), as indicated by 
ortented lines above color scale. Orientation selectivity (brightness) is 
displayed, for each hue, on a linear scale in 16 steps of brightness. These 
correspond, from dimmest to brightest, to selectivities O-0.01. O.Ol- 
0.02,. ., 0.14-O. 15,O. 15 and above. To show the continuity across the 
periodic boundarv conditions. the 32 bv 32 arid ofcortical cells is shown 
as a 40 by 40 grid, with the leftmost e&ht &lumns repeated at the right 
and the bottommost eight rows repeated at the top. 



I 0.3 interaction leads to more varied combinations of phase 
changes and orientation changes. In some cases in the I 0.3, r( 
= 0.28 cortex, the cells in an iso-orientation cluster have nearly 
identical receptive fields; that is, spatial phase varies slowly or 
not at all (some examples are outlined with dashed lines). These 
relationships lead cortical cells to be correlated over excitatory 
distances and anticorrelated over inhibitory distances, as will 
be discussed in more detail later. 

The orientation maps contain a number of vortices or “pin- 
wheels,” points around which a circular path through neigh- 
boring cells cycles through & 180” of preferred orientation (Bon- 
hoeffer and Grinvald, 199 1). All such vortices are marked with 
asterisks in the E 0.3, r( = 0.28 cortex of Figure 8A. With this 
broader correlation function, some clusters ofcells develop poor 
orientation selectivity and low preferred spatial frequencies [pre- 
ferred spatial frequency is essentially inversely proportional to 
the width of the ON- and OFF-subregions of the receptive field 
(Movshon et al.. 1978a); see Methods]. This is reminiscent of 
the conjunction of poor orientation selectivity and low preferred 
spatial frequencies reported in cytochrome oxidase blobs in 
monkey visual cortex (Silverman et al., 1989). While some vor- 
tices develop such “blob-like” features, there are also many 
vortices that are not “blobs” and “blobs” that are not vortices 
(two such nonvortex “blob-like” regions are marked with “+” 
in the E 0.3, r( = 0.28 cortex). Such an overlapping but non- 
identical relationship is found experimentally between blobs and 
vortices (Bartfeld and Grinvald, 1992; Blasdel, 1992). 

Other receptive field properties become clustered in cortex, 
with the excitatory intracortical interaction yielding a broader 
spatial scale of organization than the mixed excitatory/inhibi- 
tory. This is evident in Figure 8B, which presents the cortical 
maps of the degree of orientation selectivity, orientation gra- 
dient, preferred spatial frequency, and ON- or OFF-dominance 
from these four simulations (maps of preferred orientation will 
be found in Fig. 9R). Orientation gradient is a measure of the 
rate of change of preferred orientation across cortex; it is high 
where preferred orientation changes most rapidly. Cells with 
low orientation selectivity primarily occur in regions of high 
gradient (Fig. SS,C). With the broader correlation function, cells 

The Journal of Neuroscience, January 1994, 14(l) 419 

with both the very lowest and the very highest preferred spatial 
frequencies tend to have poor orientation selectivity (Fig. 8C). 
Particularly with this broader function, a periodic arrangement 
of ON-dominated and OFF-dominated regions emerges. This 
is reminiscent of afferent segregation in the cortex of minks 
(McConnell and LeVay, 1984) and ferrets (Zahs and Stryker, 
1988) but segregation in the model is necessarily less complete. 
Biologically, such afferent segregation may represent either seg- 
regation between postsynaptic cells, or convergence onto indi- 
vidual postsynaptic cells with spatial segregation occurring at 
the level of dendrites. These simulations model the case of con- 
vergence, for which only weak segregation can develop because 
cortical cells are modeled as points without spatially extended 
dendrites. 

Parameter dependence 

These basic results persist across a range of correlation and 
intracortical interaction functions (Fig. 9). The correlation func- 
tion is the primary determinant of receptive field structure: 
broader functions yield wider ON/OFF subregions and thus 
fewer subregions per receptive field than narrower functions 
(Fig. 94). The cortical organization of preferred orientation is 
most influenced by the intracortical interaction function: nar- 
rowing of excitatory intracortical interactions or addition of 
lateral inhibition yields a narrower spatial period of preferred 
orientation (Fig. 9R). Across a range of functions, orientation 
selectivity robustly develops (Fig. 9C) and is organized into a 
continuous, periodic cortical map. 

Only one other parameter significantly influences the out- 
come, in addition to those controlling the widths of the func- 
tions. This is s,,,,,, the maximum synaptic strength, which de- 
termines the number of synapses in a final receptive field and 
thus the final receptive field diameter. There is a constraint 
conserving total synaptic strength S,,,, over each receptive field, 
and almost all synaptic strengths eventually saturate at 0 or s,,,, 
(see Methods). Thus, the number of final synapses is approxi- 
mately S,,,/s,,,,. Increasing s,,,,, from 4 to 8 (Fig. 1O.J) results in 
smaller receptive fields, and in some cases fewer subregions per 
receptive field or even unimodal cells (cells with only a single 

Figure 8. Final results from four simulations. Results are shown from the same simulation as in Figure 7 (E 0.3, r, = 0.24) and from three 
additional simulations beginning with identical initial synaptic strengths but using different parameters (E 0.3, r, = 0.28; I 0.3, r( = 0.28 and r( 
= 0.24). A, Full 32 by 32 set of final receptive fields from r, = 0.28 simulations, and I8 by 32 set of final receptive fields from r( = 0.24 simulations 
(these cells correspond to the rightmost I8 columns of the rC = 0.28 simulations). Conventions and gray scale are as in Figure 7A. Note that, 
because of periodic boundary conditions, the top and bottom rows in each simulation are neighbors, as are the leji and right columns in the rC = 
0.28 cortices. White dashed lines outline examples of regular, progressive phase shifts among cells with movement perpendicular to the preferred 
orientation (E 0.3, rC = 0.28 cortex) or of little or no phase shift across a group of cells (I 0.3, rC = 0.28 cortex). In the E 0.3, r, = 0.28 cortex, 
certain special points are marked as follows. All vortices (points around which orientation cycles by 180”; compare corresponding orientation map 
in Fig. 9B) are marked by asterisks. Bluck asterisks indicate index -% (orientation changes 180” clockwise along a clockwise path about the point); 
white ustensks, index +% (orientation changes counterclockwise for a clockwise path). Two nonvortex points that exhibit poor orientation selectivity 
and preference for low spatial frequencies are marked with p/uses. A closed path enclosing a set of vortices whose indices sum to N/2 traverses 
180N degrees in orientation; thus, the point labeled a may appear to be a vortex around which orientation cycles by 360” (index ~ I), but in fact 
it is not a vortex; there are simply two nearby vortices with index -% (black asterisks). B, Cortical maps of orientation selectivity, orientation 
gradient (rate of change of preferred orientation), preferred spatial frequency, and ON- or OFF-dominance. Maps of preferred orientation are in 
Figure 9B. The scale of cortical organization is primarily determined by the presence or absence of cortical inhibition (“E” vs “I”). The degree of 
ON/OFF segregation, the presence or absence of cells preferring very low spatial frequencies, and the mean preferred spatial frequency of cells 
(better visible in C) are primarily determined by the correlation function (“0.24” vs “0.28”). Note close correspondence between regions of poor 
orientation selectivity and regions of high orientation gradient. C, Scatterplots of orientation selectivity versus orientation gradient or preferred 
spatial frequency of individual cells. for the E 0.3 cortices. Scatterplots for 1 0.3 cortices appear nearly identical for given values of r, , and so are 
omitted. In B, orientation selectivity is shown on a gray scale linear from selectivity 0 (black) to 0.16 (white); all higher selectivities appear white. 
Orientation gradient is linear from 0 (Muck) to maximum gradient in each picture (white); maxima are 102, 91, 106, and IO1 degrees/grid interval 
/torn top to hottorn. Spatial frequency is shown on a gray scale linear from 0 (black) to the maximum frequency in each picture (whfte): maxima 
are 0. I 56, 0. I4 I, 0.169, and 0. I59 cycles/grid interval fiorn top to bottom. ON/OFF dominance is the difference between the summed ON-center 
and summed OFF-center synaptic strengths to a cortical cell; it is shown on a linear scale, where black represents 100% OFF-center; white, 100% 
ON-center: and gray, equality. 
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subregion). However, change of s,,, does not alter either the 
spatial period of ON/OFF alternation within receptive fields or 
the orientation map. 

Variation of other parameters has little effect. The arbor was 
made less tapered and more like a “pillbox” by setting the 
parameter c,, = 0.25, rather than 0.5 (see Fig. 5). Receptive fields 
then receive a greater proportion of their synapses in their pe- 
riphery. This causes little change in results for most of the choices 
of r, and r(. used in Figure 9. However, when using the narrowest 
intracortical interaction functions that include inhibition, this 
change in c, can lead to weakening or elimination of synaptic 
strength in the centers of receptive fields (Fig. 10B). The pa- 
rameters yc. and y, control the width of the inhibitory relative 
to the excitory Gaussian in, respectively, the correlation func- 
tions and the mixed excitatory/inhibitory intracortical inter- 
action functions. It was expected that the results should depend 
on only a single length scale for each function, namely, the peak 
of the function’s Fourier transform. To test this hypothesis, yc. 
and y, were varied to take values 2, 3, and 4, while r,. and r, 
were appropriately covaried to keep the peak of the Fourier 
transform of each function constant. The results are essentially 
invariant, as expected, with only a few small changes in outcome 
(Fig. IOC). The parameter a, sets the strength of intracortical 
interactions between cells, relative to the strength of interaction 

Figure IO. Dependence of simulation 
results on other parameters. A, Effects 
of varying s,,,, the maximum synaptic 
strength. Receptive fields are shown 
from the same cells as in “E” simula- 
tions of Figure 9A, from simulations 
identical I all respects except that s,,, 
was equal .o 8 rather than 4. Effects of 
change in s,,, are qualitatively identical 
for “I” simulations of Figure 9A (not 
shown). B, Effects of decreasing the ar- 
bor parameter c, from 0.5 to 0.25. This 
decreases the taper of the arbor. In com- 
parison to Figure 9A, changes are seen 
only with the intracortical functions I 
0.2 and, to a lesser extent, I 0.3, and 
primarily with the narrowest correla- 
tion function r< = 0.2. There are similar 
but small changes for I 0.2, r, = 0.28; 
otherwise, results with either IO.4 or rc 
= 0.28 are essentially unchanged from 
Figure 9, as are all results with excit- 
atory intracortical functions (not 
shown). C, The parameter y< controls 
the spread of the inhibitory Gaussian 
relative to the excitatory in the corre- 
lation function; the parameter y, con- 
trols the same factor in the mixed ex- 
citatory/inhibitory (“I”) intracortical 
interaction functions. Each was system- 
atically varied while keeping the peak 
of the Fourier transform of the corre- 
sponding function fixed. Results are es- 
sentially invariant, and are shown for 
y<, y, = 2, 4; compare to y, = y< = 3 
(I 0.3, r( = 0.24 in Fig. 9A). For yc = 
2, 3, 4, r, was set to 0.3 1 I, 0.24, and 
0.197, respectively; for y, = 2, 3, 4, r, 
was set to 0.389,0.3,0.246. Initial con- 
ditions were identical to those in pre- 
vious figures. Conventions and gray 
scale are as in Figure 7A. 

among synapses on a single postsynaptic cell. Setting a, to 1 
rather than its default value of 0.5 leads to virtually no visible 
change in results compared to Figure 9 (not shown). Thus, the 
results primarily depend on the factors that control the length 
scales ofthe correlation, intracortical interaction and arbor func- 
tions, and the final receptive field diameter, and remain largely 
invariant as other parameters are varied. 

In the mode1 maps that use spatially broad, purely excitatory 
intracortical interactions, periodic patches of geniculate inputs 
lose all of their connections to cortex. That is, the geniculate 
develops spatially periodic alternations between retinotopic 
regions that project only ON-center input to cortex and regions 
that project only OFF-center input. Such an outcome can be 
ruled out biologically, because all retinotopic regions ofthe LGN 
project both ON- and OFF-center input to cortex. However, 
this is likely not to be a serious problem for the model, because 
simple cells with many different spatial phases are likely to exist 
in a single vertical column in cortex. If so, the inputs that now 
disappear would make synapses on the cells with alternative 
phases. Thus, the problem may be an artifact caused by the 
inability to include more than one spatial phase at a vertical 
position in the 2-D cortical model studied here. However, I 
have also examined the effects on development, within the pres- 
ent framework of a single spatial phase per vertical position, of 



Figure 11. Simulation results for larger variations of the correlation functions: 5 by 5 receptive fields, and orientation maps, from simulations 
using varying correlation functions. Numbers indicate value of r,, which controls the width of the correlation function relative to the arbor (Fig. 
5). Results for 0.2 5 rC 5 0.28 are shown in Figure 9. A, Results using excitatory intracortical interaction function E 0.3. B, Results using mixed 
excitation/inhibition, I 0.3. In orientation maps for large r,., dark (unoriented) regions represent cells receiving almost exclusively ON- or exclusively 
OFF-input; at the borders between such regions, oriented cells receiving mixed ON/OFF input can arise. Initial conditions are identical to those 
in previous figures. Conventions and color scales are as in Figure 7. 

a constraint that limits the degree of change in the total synaptic 
strength over each input arbor to +50%, so that all inputs retain 
cortical connections (methods of constraint as described in Mil- 
ler et al., 1989). Biologically, for example, a less successful input 
might compete more effectively once it has less total synaptic 
strength to support, while a more successful input might reach 
a limit to its ability to compete for further strength. The result 
(not shown) is very much like that obtained by addition oflateral 
inhibition to the intracortical interaction function: the spatial 
scale of orientation domains becomes reduced, but orientation 
selectivity and its periodic, continuous arrangement develop as 
in the simulations presented here. 

Determinants of orientation selectivity and preferred spatial 
frequency 

The results of more widespread variation of the width of the 
correlation function, using either the purely excitatory intra- 
cortical interaction function E 0.3 or the mixed function I 0.3, 
are shown in Figure 11. A range of values of r, leads to strong 
development of orientation selectivity (see also Fig. 12B). 
Whenever orientation selectivity develops, there is periodic and 
continuous organization of preferred orientation across the cor- 
tex. With decreasing breadth of correlations (decreasing r,), 

, orientation selectivity decreases, because the width of ON- and 

OFF-subregions narrows. This yields multiple ON- and OFF- 
subregions within a receptive field, which often fail to maintain 
straight lines or a common direction. This decrease of orien- 
tation selectivity with decreasing r,- is nearly identical using 
larger arbors (diameter 25; not shown), even though the width 
of individual ON/OFF subregions is then larger for a fixed r,.. 
Thus, this decrease of orientation selectivity is due to the num- 
ber of ON/OFF subregions in a receptive field, and not to the 
width of the subregions relative to the grid used for simulations. 
With increasing breadth of correlations, orientation selectivity 
decreases because all-ON or all-OFF receptive fields develop. 
That is, a transition is made to the parameter regime in which 
inputs segregate between postsynaptic cells rather than within 
receptive fields. Oriented cells can nonetheless develop at the 
boundaries (snake-like colored regions in cortices with largest 
rC) of cortical regions of all-ON or all-OFF receptive fields (dark 
regions) when the correlation function is not too broad. This 
regime might be appropriate to describe the ferret, where ON- 
and OFF-center inputs are segregated across cortex (Zahs and 
Stryker, 1988) and only 40% of cells in the mature layer 4 are 
orientation tuned (Chapman, 199 1). 

Across parameters, where orientation selectivity strongly de- 
velops, the mean preferred spatial frequency of cortical cells in 
simulations is accurately determined by the peak of the Fourier 



The Journal of Neuroscience, January 1994, 14(l) 425 

A 

G 

Es< $2 
- E0.2 - IO.2 
- - 

w> 

_c)_ E E0.4 0.3 - 

0.2 

I IO.4 0.3 

f$5 
E0.5 U IO.5 

& 
Peak of F.T. of CD 

a- 
FO 
ez 
gJ q 0.1 

g’y 

eg 
Es 

2 0.0 
0.1 0.2 0.3 0.4 

B ‘C 

transform of the correlation function C’ = CyON.oN - P-“” 
(Fig. 12.f). as theory predicts (Fig. 2). Orientation selectivity 
develops most strongly for values of r, (Fig. 12B) that yield 
about two to three ON/OFF subregions at the mean preferred 
spatial frequency. Because of the taper of the arbor, the effective 
arbor diameter (the cutoff of the Fourier transform of the arbor 
function) is approximately 11.3 grid intervals; two subregions 
occur in I I .3 grid intervals at the peak of P’s Fourier transform 
for I’, = 0.29, while three subregions occur for I; = 0.19. 

The prediction that the mean preferred spatial frequency of 
cortical simple cells is given by the peak ofthe Fourier transform 
of Cl’ can be compared to existing experimental measurements 
by making several assumptions, as follows. The function P 
describes dark correlations measured as a function of input sep- 
aration and center types in, for example, the LGN of early 
postnatal kittens. Such measurements have not been made, but 
similar measurements have been made in the retinas of adult 
cats (Mastronarde, 1983a.b). There, like-center-type correla- 
tions were found to be positive, and opposite-type correlations 
negative. both falling to zero at a certain separation L(o)/2 where 
I) is receptive field eccentricity. Dark correlations were not mea- 
sured at further separations, so it is unknown whether a “Mex- 
ican hat” structure exists in the adult retina; if not, such a 
structure might nonetheless be induced in the LGN through 
inhibitory LGN circuitry (see Discussion). 

Thcrc is no guarantee that correlations in the young animal 
resemble those in the adult (see Discussion). However, pos- 
sessing only the experimentally measured length scales L(B), let 
us hypothesize that these also characterize the young animal, 
and determine whether the resulting prediction is consistent 
with visual cortical receptive fields. Thus, assume that C’ is 
“Mexican hat” in the LGN of young animals, that its central 
positive region falls to zero over the same distance L(o)/2 as in 
adult retina, and that it is negative over some comparable further 
distance. Then the simplest estimate of the peak of the Fourier 
transform of P is that it occurs at frequency 1 cycle/21(0) (Fig. 
13.-l). To see why. note that the peak of P’s Fourier transform 

corresponds to the frequency of the cosine that best fits C’ (i.e., 
cos k.s that maximizes ~~d~xP(x)cos k.x). This cosine will not 
differ greatly from the cosine that has the same zero-crossings 
as P, which has frequency 1 cycle/21(0). Across a wide variety 
of Mexican hat functions constructed as a difference of Gaus- 
sians. this estimate is within 20% of the true peak (Fig. I3B). 

To apply this estimate to visual cortex, 1 assume that X-cell 
correlations determine simple cells in cat area 17, and that Y-cell 
correlations determine those in area 18 (Ferster, 1990a,b; Fers- 
ter and Jagadeesh, I99 I). Further details are in Methods. I then 
compare the estimate I cycle/21(0), derived from Mastronarde’s 
measurements for X- or Y-cells, respectively, to measurements 
made by Movshon et al. (1978b) of the preferred spatial fre- 
quencies of cat area 17 or area 18 cortical cells (Fig. 13C’). The 
matches across eccentricities arc reasonable. The error bars show 
the standard deviation in the predicted mean resulting only from 
the fact that the measured correlations vary with polar angle at 
a fixed eccentricity (Mastronarde, 1983a, and personal com- 
munication). Several additional factors could account for the 
variability in the biological data. First, the biological data in- 
clude both simple and complex cells from all laminae; variability 
is presumably less for simple cells in layer 4, the subject of the 
present model (the standard deviation for simple cells from all 
laminae in area I7 was 56% ofthe mean: Movshon et al., I978b). 
Second. the intracortical interactions induce variability, as shown 

‘C 

Figure 12. Dependence of best spatial frequency and orientation tun- 
ing on parameters. ,4, Best spatial frequency of cortical cells in simu- 
lations, versus rc (parameter controlling width ofcorrelation functions). 
Dashedlinc with .u’sshows the theoretical prediction, given by the spatial 
frequency of the peak of the Fourier transform (f: 7:) of the correlation 
function P; the match is excellent except at large Y, , where orientation 
selectivity is poor and many all-ON or all-OFF cells (preferred spatial 
frequency 0) develop. R, Orientation selectivity of cortical cells in sim- 
ulations, versus r, In both A and B, each symbol represents the mean 
(of best frequency or orientation selectivity, respectively) over all cells 
from a single simulation: error bars are standard deviation, and are 
shown only for E 0.3 and I 0.3 (error bars for other simulations for a 
given r( are similar). flcuy~sol~d //ncs connect results using intracortical 
interaction functions E 0.3 or I 0.3; lighf lines connect results for other 
intracortical interaction functions, which were simulated only for r, = 
0.2-0.3. These simulations all began from the same initial condition, 
and include those displayed in Figures 7-l I. Results using other initial 
conditions or other arbor sizes (only arbor diameter I I has been sys- 
tematically studied) are essentially identical. 

in Figure 8B (the standard deviation of best spatial frequency 
is 9-180/o of the mean for the simulations shown in Fig. 9; it is 
higher for lower or higher values of I; ). Third, there will be 
biological variability in Pat a fixed eccentricity and polar angle. 

Thus, the prediction made by the model for the mean pre- 
ferred spatial frequency of cortical simple cells is quantitatively 
consistent with existing experimental measurements. A rigorous 
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Figure 13. Prediction of the mean 
preferred spatial frequency of cortical 
simple cells. A, Outline of the predic- 
tion method. The model predicts that 
the mean preferred spatial frequency of 
cortical simple cells is that which max- 
imizes the Fourier transform (F.T.) of 
Cl. This is the frequency of the cosine 
(dotted line) that best fits C’ (solid line). 
Existing data (Mastronarde 1983a,b) 
only give an estimate ofL, the diameter 
ofthe positive central region of C’. The 
best-fitting cosine should have similar 
zero-crossings to C’, and therefore 
should have frequency about 1/(2L). B, 
Accuracy of 1/(2L) as an estimate of 
the peak of the Fourier transform of a 
“Mexican hat” function. Data are shown 
for 2-D difference of Gaussian func- 
tions ofthe form I(X) = exp(-x’) - (I,,/ 
1,,2) exp( -.uLII,,‘). The parameters I,, and 
I,, are labeled I Height and I Width, 
respectively, in the figure. I,, determines 
the lateral spread of inhibition relative 
to excitation; I,, determines the strength 
ofinhibition, with I,, = 1 corresponding 
to exact balance between inhibition and 
excitation. Across a wide range of pa- 
rameters, provided there is sufficient 
inhibition to transform I(X) from a 
Gaussian (I,, = 0) to a difference of 
Gaussians, 1/(2L) is within 20% of the 
true peak. C, Comparison ofmodel pre- 
diction to experiment. Experimental 
data are from Figure 6 of Movshon et 
al. (1978b), reproduced by permission. 
The data include both simple and com- 
plex cells from all laminae. On these 
data are superimposed the curves pre- 
dicted by the model for the mean pre- 
ferred spatial frequency of layer 4 sim- 
ple cells. Possible sources of variance 
in spatial frequency, most of which are 
not included in the error bars shown, 
are discussed in Results. Vertical po- 
sition of Y-cell curve has further un- 
certainty due to variability in Mastron- 
arde’s results; see Methods. 

C 

1’ 
1 

‘. I I I 

” ” ” ” ” ” ” !’ 

I I 
-G 3.0 . x-cells I- 

‘.’ . Ycells -m-- _ 

I 
2. . 

-mm . 
i .=. l . .w’* l Area 17 1 

L V.” 
z 0.4 

I 

- I Width = 2 
- I Width = 3 
--+- I Width = 4 

.2 - I Width = 5 

I Height 

test of this prediction will require direct measurements of CD necessarily small size of the model maps rather than a feature 
in the LGN of young animals. intrinsic to development under the model. 

Determinants cf the orient&ion map 

While the properties of individual receptive fields are largely 
determined by the correlation functions, their arrangement into 
a map of preferred orientation is most influenced by the intra- 
cortical interaction function. The quantitative dependence of 
the spatial period of preferred orientation on the parameters 
can be studied by Fourier transforming the maps of preferred 
orientation to determine the amount of power at each spatial 
period or frequency. Here, spatial period refers to the distance 
in grid intervals across the model cortical map corresponding 
to one complete cycle of orientations. Frequency is the inverse 
of spatial period, that is, cycles of preferred orientation per grid 
interval. In Figure 14, the frequency containing peak power and 
the width at half-height of the frequency versus power curve are 
displayed across parameters. The model maps tend to include 
a broader range of frequencies, and more low frequencies, than 
experimental maps. It is possible that this is an artifact of the 

Broader spread of excitatory intracortical influences, or of the 
central excitatory region of intracortical interactions that include 
lateral inhibition, results in larger iso-orientation domains and 
correspondingly smaller frequencies. In contrast, there is little 
dependence on the correlation function. The peak frequency 
does not correspond directly to the peak ofthe Fourier transform 
ofthe intracortical interaction function, but instead is somewhat 
higher. For example, the peak of the I 0.3 function is at 0.09- 
0.1 cycles/grid interval, while simulations with this function 
tend to have maximum power at a frequency about 50% higher: 
and the peak of the excitatory functions is at frequency zero, 
while the corresponding simulations have maximum power at 
a nonzero frequency. There appears to be a maximum spatial 
period (minimum frequency) for arbitrarily long-range excit- 
atory interactions. The maps of preferred orientation for arbor 
diameter 13 change only slightly as r, is increased beyond 0.5, 
although orientation tuning decreases (not shown). Theoretical 
arguments can be made as to why, once excitatory interactions 

5 10 

Recepttve field eccentrlclty (deg) 
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Figure 14. The pcriodicity of the simulated orientation maps. Each 
ibertlcal line shows the results of the Fourier transform of one simulated 
map. The midd/e circle on each vertical line shows the frequency con- 
taining maximum power: the ofher two circles show the highest and 
lowest frequencies containing at least 50% of this maximum. Frequency 
is the number of cycles of orientation per grid interval of the model 
cortical map; a frequency of 0.1 cycles/grid interval corresponds to an 
orientation map that traverses a full cycle (180”) of orientation every 
10 grid intervals. A, Results with excitatory (“E”) intracortical inter- 
actions. R, Results with mixed excitatory/inhibitory (“I”) intracortical 
interactions. The frequency primarily depends on the intracortical in- 
teraction function. Relative lack ofdependence on the correlation func- 
tion is seen in bins simply labeled “E r,” or “I r “: these each show 
results for six correlation functions. from left to rkht. r, = 0.2. 0.22, 
0.24, 0.26, 0.28, 0.3. These simulations all began from the same’initial 
condition, and include those displayed in Figures 7-9. Relative lack of 
dependence on initial conditions is shown by bins labeled (ulf init). 
These were all done with a single, alternate initial condition; each bin 
shows, lcrft to right, results for r, = 0.2, 0.24, 0.28. Bins labeled (other 
inits) show results of IO additional random initial conditions, all for r, 
= 0.24. Relative lack of dependence on the arbor function, except with 
wider excitatory intracortical interactions, can be seen in bins labeled 
arb 19 or arb 25. These show results using arbor diameters 19 and 25, 
which are much like the results for arbor diameter 13 for most intra- 
cortical interaction functions. For E 0.3 and I 0.3, the arbor 25 bins 
show, I& to right, r, = 0.2, 0.24, 0.28; arbor 19 bins used r(. = 0.24. 
For other intracortical interactions, only r( = 0.24 was studied with 
these arbor sizes, and arbors 19 and 25 are shown left to right (for E 
1.0, arbors 13, 19, and 25 are shown lefi to right, all with r(. = 0.24). 
Results from four experimental maps of orientation are shown at the 
right: 92 pm in the experimental maps is equated with 1 grid interval 

extend over about an arbor radius, maps ofpreferred orientation 
should not change as excitatory interactions are made increas- 
ingly long range. This maximum spatial period increases as the 
arbor and correlation functions are made larger in spatial extent 
(the correlation function scales with the arbor function for fixed 
r,), which increases the distance over which cells can directly 
influence one another’s development. The period otherwise 
shows little dependence on the arbor diameter for a fixed in- 
tracortical interaction function. 

The model cortical maps qualitatively resemble experimental 
cortical maps (Fig. 15A). Maps of preferred orientation, with 
regions of high orientation gradient marked as white, are shown 
for model cortices and for experimental maps from monkey 
area 17 (unpublished data from Ts’o et al., 1990) and cat area 
18 (from Bonhoeffer and Grinvald, 1991). The model and ex- 
perimental maps are shown on an identical scale if 4 pixels, or 
92 pm, in the experimental map correspond to one grid interval 
in the model. This is a reasonable but arbitrary choice, corre- 
sponding to arbors with a diameter of about a millimeter and 
intracortical excitation over a radius of about 200-300 Frn. To 
compare the maps on this scale, the model maps have been 
filled in by linear interpolation on a grid four times finer than 
the model grid. This represents a hypothesis, which can be tested 
as computational resources increase, that simulation on a finer 
grid would result in such smooth filling in. 

At least three points of resemblance exist between model and 
experimental cortices. First, the spatial scales on which orien- 
tation periodically varies are similar in the model and corre- 
sponding experimental maps. This simply reflects the choice of 
parameters in the mode1 maps displayed. Second, both model 
and experimental maps have a modular structure and include 
many “pinwheels” or vortices of orientation. This is difficult to 
quantify, but is likely simply to reflect a lack of significant struc- 
ture of the orientation map beyond the basic periodicity, that 
is, a mixing in Fourier space of periodic patterns of orientation 
with similar frequency but many directions and phases. This 
can be seen in Figure 15B, which shows the power at each 2-D 
Fourier frequency of the maps in Figure 154. Model and ex- 
perimental maps have quite different distributions ofpower, but 
have in common similar peak and cutoff frequencies and mixing 
of many directions in Fourier space, and these apparently are 
sufficient to yield visual resemblance of the maps. Third, in the 
monkey and corresponding model map, regions of high orien- 
tation gradient (“fractures”) tend to run in lines (Blasdel and 
Salama, 1986) while in the cat and corresponding model map, 
fractures are largely restricted to points or short lines in the 
regions of orientation vortices. The theoretical determinants of 
this difference are not clear, although purely excitatory intra- 
cortical connections seem necessary in the mode1 to achieve 

in the model maps, as described in Results and the Figure 15 caption. 
Given this scale, the cat cortices have periodicity similar to the E 0.3 
cortices, while the monkey cortices have periodicity similar to I 0.25 
(not shown) or I 0.3 cortices; however, the model maps tend to have a 
broader range of frequencies and a greater representation of very low 
frequencies than the experimental. Experimental maps were provided 
as follows: cat area 17, by Dr. T. Bonhoeffer (unpublished observations); 
cat area 18, by Drs. T. Bonhoeffer and A. Grinvald (from Bonhoeffer 
and Grinvald, 199 1); monkey area 17, left, by Dr. D. Ts’o (unpublished 
data from Ts’o et al.. 1990): monkev area 17. rinht. bv Drs. E. Bartfeld 
and A. Grinvald (unpublished observations): Cat l8-and left monkey 
maps are shown in Figure IS. 
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Figure 15. Comparison of model and experimental orientation maps. A, Comparison of model maps to maps of monkey VI and cat area 18. 
Hue signifies preferred orientation (color scale is as in Fig. 7B, but without brightness variation). Points of high orientation gradient are shown as 
white. One grid interval in model maps corresponds to 92 km in experimental maps. Model maps show 47 by 35 grid intervals (note wraparound); 
experimental maps are 4.32 by 3.22 mm. Points colored white have gradient 264” per model grid interval or per 92 pm. Model maps have been 
filled in by linear interpolation (see Results), and gradients were computed after interpolation. B, 2-D power spectra for each of the maps in A. 
White indicates high power; black, low power. Spectra are shown on identical spatial scale (i.e., points a given distance from the center of each 
spectrum represent the same wavelength) if one model grid interval equals 92 pm. However, “pixel size” in model spectra is twice as large as in 
experimental. Power at a point (x, y) in model spectra, or (2x, 2~) in experimental (measured in pixels from the “center’‘-below) corresponds to 
a periodic pattern of orientation with a complete cycle of orientation in (32/v’-) grid intervals or in (2.94/\/m) mm. Pixel sizes differ 
because Fourier transforms were 128 by 128 for model maps and 256 by 256 for experimental (see Methods). Illustrated are central N by N pixels 
of full spectra, where N = 16 (model) or N = 32 (experimental). This contains essentially all of the power. “Center” is (0,O) in coordinates in which 
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point rather than line fractures. It is also not yet clear whether 
this difference in fracture patterns is a general feature of exper- 
imental cortical maps. Thus, lacking quantitative characteriza- 
tion of the features common to experimental maps and of the 
conditions necessary theoretically to achieve such features, strong 
conclusions cannot be drawn from the resemblance of model 
and experimental maps. 

Mathematical analysis of the model will be presented elsewhere 
(K. D. Miller, unpublished observations). Here I summarize a 
few central results. 

Under a correlation-based mechanism, pairs of cortical cells 
with excitatory intracortical interactions tend to develop cor- 
related receptive fields, while those with inhibitory intracortical 
interactions tend to develop anticorrelated receptive fields (Mil- 
ler, 1990a). The degree of correlation or anticorrelation of two 
simple cells depends not simply on their relative orientations, 
but on the relative retinotopic positions of each cell’s ON- and 
OFF-subregions (Fig. 16). Therefore, the organization of pre- 
ferred orientation is determined by a coupling between the ori- 
entation and the spatial phase of receptive fields. 

Heuristically, the patterns of synaptic connectivity that de- 
velop are determined by both the correlation function, C’, and 
the intracortical interaction function, I, as follows (Miller, 1990a; 
Miller and MacKay, 1994). C’” approximately determines the 
spatial period of alternation between ON- and OFF-center in- 
puts across receptive fields, as has been shown. Similarly, I 
determines the spatial period of alternation between ON- and 
OFF-center inputs across arbors, that is, across the projection 
to cortex from a single retinotopic position in the LGN. Each 
of these two alternations occurs with spatial period determined 
by the peak of the Fourier transform of the corresponding func- 
tion. The spatial phase of receptive fields within an iso-orien- 
tation cluster tends to shift in a regular, periodic manner. This 
oscillation of spatial phase is determined by the sum of the 
receptive field and arbor oscillations (locally, the wavenumber 
of the spatial phase oscillation is the vector sum of the wav- 
enumbers of the receptive field and arbor oscillations). 

When I is purely excitatory, there is an oscillation across 
receptive fields but not across arbors. Then receptive fields in 
an iso-orientation cluster will change spatial phase steadily with 
movement across cortex perpendicular to the preferred orien- 
tation, as seen in Figure 8.4 (E 0.3, I’, = 0.28). This change in 
spatial phase occurs with a spatial period, across the cortex, that 
is equal to the spatial period of alternation of ON- and OFF- 
inputs within individual receptive fields. This maintains in re- 
tinotopic register the ON-subregions and the OFF-subregions 
of nearby cells, and keeps all receptive fields as correlated with 
one another as possible. This optimally matches the receptive 
fields to the purely excitatory intracortical interactions. On the 
other hand. when P and I are both Mexican hat and are similar 

A 

B 

Figutv 16. Correlation of simple cell receptive fields at varying retin- 
otopic separations. A, Two receptive fields with identical preferred ori- 
entations and spatial phases (stripes signify ON-regions; white, OFF- 
regions). Left, At small retinotopic separations, ON-regions overlap and 
OFF-regions overlap; hence, the responses of the two receptive fields 
to dark input activity are well correlated. Right, At a larger retinotopic 
separation perpendicular to the orientation axis, the ON-regions of one 
overlap the OFF-regions of the other, so the responses of the two re- 
ceptive fields are maximally anticorrelated. B, Two receptive fields with 
identical preferred orientations but opposite spatial phases. The situa- 
tion is reversed from A: at small retinotopic separations the responses 
of the two receptive fields are anticorrelated, while at larger retinotopic 
separations perpendicular to the orientation axis they are correlated. 
Thus, interactions between simple cells crucially depend on spatial phase 
and cannot be described in terms of their preferred orientations alone. 

in spatial extent, the receptive field and arbor oscillations may 
cancel, yielding little or no shift in spatial phase of receptive 
fields within an iso-orientation cluster. This provides an cxpla- 
nation for the lack of phase shift sometimes seen in simulations 
in such cases (Fig. 8A, I 0.3, rc = 0.28). Intuitively, the reason 
is as follows. The cortical distances corresponding to the min- 
imum of I and the minimum of c1’ are similar in this case. At 
this distance, intracortical interactions are maximally inhibi- 
tory, and two identical receptive fields are maximally anticor- 
related. Hence, in this case a pattern in which spatial phase does 
not vary within an iso-orientation cluster can give an optimal 
match between the correlations of receptive fields and the in- 
tracortical interactions (although other, more complicated pat- 
terns may also be optimal). 

It is possible to characterize the fastest-growing patterns of 
synaptic connectivity in the model [the eigenfunctions with larg- 
est eigenvalue ofthe operator determining development ofP(x-, 
a) = ,F(x, a) - P-(x, a)]. Th ese fastest-growing patterns 
dominate the early, linear phase of the development of ON- 

+ 

lower left corner is (-N/2, -N/2), upper right is (N/2 - I, N/2 - I). Each spectrum is shown on a linear gray scale from zero power (black) to 
maximum power in that cortex (white). Model cortices are named as in Figure 14. Resemblance of model and experimental maps appears to be 
robust for these intracortical interaction and correlation functions, across varying initial conditions and (without resealing the correlation function) 
for arbor size I I as well as 13. There is one exception: excitatory intracortical interactions may produce “fractures” (regions of high orientation 
gradient) that are somewhat more linear than in the illustrated model cortex, depending on the initial condition. Map of monkey area I7 provided 
by Dr. D. Ts’o (unpublished data from Ts’o et al., 1990); map of cat area I8 provided by Drs. T. Bonhoeffer and A. Grinvald (from Bonhoeffer 
and Grinvald, 1991). 
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and OFF-domains, and features common to all of the fastest- 
growing patterns and their mixtures are likely to persist in 
the final pattern despite biological nonlinearities (see discussion 
in Miller, 1990a.c 1992a; Miller and Stryker, 1990). 

The features just discussed-the spatial periods of the alter- 
nations of ON- and OFF-center strength in receptive fields and 
in geniculate projections, and of the oscillation across cortex of 
receptive field spatial phase-are typically common to all of the 
fastest-growing connectivity patterns. Thus, the predictions of 
these features in terms of CD and I are likely to hold inde- 
pendent ofnonlinearities. The determinants ofthe final periodic 
map of preferred orientation are only partly solved, and a quan- 
titative characterization of its spatial period is lacking. However, 
this period is not common to the fastest-growing patterns. Rath- 
er, it appears to emerge as a predictable, statistical result of 
random mixtures of those patterns. Nonlinearities may select 
nonrandom mixtures. For this reason, the spatial period and 
other features of the orientation map might be significantly al- 
tered under more realistic nonlinearities. 

Finally, why does the oscillation ofON- and OFF-center sub- 
regions within receptive fields lead to orientation selectivity, 
rather than to a center-surround (see Fig. 2) or other structure? 
There appear to be two reasons. First, for a cortical cell devel- 
oping in isolation, there are typically several optimal (fastest- 
growing) receptive field patterns, which are nearly equally well 
matched to the correlations and which grow at nearly equal 
rates. Most combinations of these yield orientation-selective 
cells; that is, a random initial mixture of these patterns will 
favor an orientation-selective outcome. Second, the presence of 
intracortical interactions between cells favors an orientation- 
selective outcome: receptive fields consisting of oriented sub- 
regions can more readily be matched between many neighbors 
than can fields consisting of concentric circular subregions. Thus, 
the optimal patterns for the cortex as a whole consist largely or 
exclusively of oriented cells. 

Discussion 
The present results demonstrate that a simple, activity-depen- 
dent competition between ON- and OFF-center inputs is suf- 
ficient to account for the development oforientation- and spatial 
frequency-selective simple cells and their arrangement into pe- 
riodic, continuous cortical maps. The primary requirements are 
the existence ofa Mexican hat correlation function between ON- 
and OFF-center inputs, and interaction between the competi- 
tions occurring on nearby cortical cells. Given these conditions, 
the results are robust, occurring over a wide range of model 
parameters and independent of choice of random initial con- 
dition. The structure of receptive fields is primarily determined 
by the correlation function C’ = CON.“N - C?OFF. The mean 
preferred spatial frequency of simple cells is determined by the 
peak of C?‘s Fourier transform. This is consistent with exper- 
imental measurements of preferred spatial frequencies of visual 
cortical cells and of correlations among adult retinal ganglion 
cells. When this preferred spatial frequency is l-l .5 cycles (two 
to three ON/OFF subregions) per arbor diameter, excellent ori- 
entation selectivity results. The cortical maps of orientation 
selectivity, spatial frequency, and other properties are primarily 
determined by interactions within cortex, but the input corre- 
lations and arborizations also contribute. The spatial phases of 
simple cells can play a key role in the organization of cortical 
maps. Possible origins for other features ofcortical organization, 

such as blobs, pinwheels, and afferent ON/OFF segregation, 
have been suggested. 

The model does not produce the final precision of visual 
cortical receptive fields or of cortical organization. Some recep- 
tive fields in the model, particularly those along boundaries 
between orientation domains, have curved or odd, nonoriented 
structures, unlike those reported for simple cells. The model 
orientation maps appear to be less regular than cortical maps, 
containing a wider range of frequencies including. in particular, 
more long wavelengths. Thus, the model is far from complete. 
Many additional mechanisms, including but not limited to non- 
linearities in activation and plasticity rules, plasticity of intra- 
cortical connections, vertical intracortical interactions, and the 
particular biophysical properties and connectivities of specific 
cell types, will need to be considered in attempting to account 
for such precise structure. 

Predictions of the model 

Two levels of prediction arise from the present work. Strong 
predictions derive directly from the hypothesis that simple cell 
receptive fields arise from an ON/OFF competition in the pres- 
ence of a Mexican hat correlation function: if these predictions 
are wrong, the model is wrong. These include the predictions 
that Mexican hat correlations should be found experimentally, 
that development of simple cells should depend on the presence 
of such correlations, and that the mean preferred spatial fre- 
quency of simple cells should correspond to the peak of the 
Fourier transform of CD. If the additional assumption is made 
that the couplings between simple cells are direct, and not me- 
diated via nonsimple cells (discussed below), then the additional 
strong prediction is obtained that the arrangement of preferred 
orientations across cortex should be coupled to the arrangement 
of receptive field spatial phase. Other results are much weaker, 
as they depend on additional assumptions such as the 2-D, 
distance-dependent model of cortical interactions or the simple 
saturating nonlinearities used here; these results can be dis- 
carded without discarding the basic hypothesis. These include 
the determinants and structure of the cortical maps of orien- 
tation and other receptive field properties, and the determinants 
of the degree of orientation selectivity. I will discuss each of 
these predictions in turn. 

Activity dependence and correlation structure underlying 
simple cell development 

The hypothesis that activity-dependent competition between 
ON- and OFF-center inputs accounts for the development of 
cortical orientation selectivity can be experimentally tested in 
several ways; negative results would clearly falsify the hypoth- 
esis. First, orientation-selective cells should not form ifall neural 
activity in the retinas, LGN, or cortex is blocked sufficiently 
early in development. Second, a Mexican hat correlation struc- 
ture between ON- and OFF-center inputs should be found in 
dark activity in the preorientation layer at the appropriate de- 
velopmental time. Third, manipulations that abolish a Mexican 
hat correlation structure between ON- and OFF-center inputs 
without abolishing neural activity should, if initiated before the 
development of orientation selectivity, prevent such develop- 
ment. An example is artificial stimulation of the optic nerves 
while retinal neural activity is blocked, which has been accom- 
plished but at a later developmental age (Stryker and Strickland, 
1984). These tests will be difficult to perform due to the early 
developmental age at which orientation selectivity develops. 
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However, indirect evidence for a Mexican hat correlation struc- excite one another, and to maximize “anti-overlap” between 
ture may be sought through studies of LGN dark activity at cells that inhibit one another. Thus, studies of the simultaneous 
later developmental times. arrangements of orientation selectivity, spatial phase, and re- 

In the model, convergence of ON- and OFF-inputs onto the tinotopic position across the mature simple-cell layer-more 
same cortical cells results in simple cell receptive fields. There- specifically, studies of the arrangement of the spatial positions 
fore, the model predicts that the ON- and OFF-center cells of of ON- and OFF-subregions-could give insight into the inter- 
the monkey parvocellular cortical layer 4Cfi should arise in the actions underlying the final maps of orientation and of other 
regime of segregation onto different postsynaptic cells; that is, receptive field properties. This is likely to be a 3-D arrangement, 
the ON-center 4CB cells should receive only ON-center LGN because spatial phase is likely not to have columnar invariance 
excitatory input, and similarly for OFF-center cells. Failure of (further discussed below). 
this prediction may not be fatal to the hypothesis, because in This arrangement has thus far been studied only in simple 
principle center-surround receptive fields can also develop in 
the regime in which ON and OFF converge (Fig. 2) but such 
failure would present a very strong challenge to the hypothesis, 
because such an outcome is not expected without specific non- 
linear effects that select such patterns over orientation-selective 
patterns. 

Prqfcrred spatial.frequr~ncirss qf cortical cells 

A strong prediction of the hypothesis is that the mean preferred 
spatial frequency of cortical simple cells should correspond to 
the peak of the Fourier transform of C’. Based on Figure 13, 

cell pairs recorded on a single electrode. Both the spatial and 
temporal phase differences of such pairs are evenly distributed 
over all possible differences (DeAngelis et al., 1992; but see 
Pollen and Ronner, 198 I; Foster et al.. 1983). In the model, the 
spatial phase differences of nearby cells are determined both by 
their connectivity to one another, and by their simultaneous 
connectivity to many other cells (e.g., see discussion of system- 
atic phase shifts in Analysis of the model, above). Thus, to 
compare such data to the model, connectivity information as 
inferred by cross-correlations as well as systematic mapping 
across a region of cortex may be needed. 

this implies that in cats, the developmental C’ in LGN should It is possible that the horizontal organization of simple cells 
have length scales similar to those derived from adult retinal may be mediated in part by other cells that do not carry infor- 
correlations. mation about spatial phase. If this were the case, the arrange- 

Principles underlying the orientation map, and coupling to 
ment of simple cell spatial phases might not show a systematic 

spatial phase 
structure or relationship to the orientation map. The anatomical 
substrate for horizontal synaptic interactions between simple 

The cortical organization of orientation that results under the cells within layers 4 and 6 in cat area 17 exists at the appropriate 
present hypothesis may be altered as more complexity is added developmental times, as early as the first postnatal week (Cal- 
to the model of intracortical circuitry. However, two firm con- laway and Katz, 1992). However, the substrates for other in- 
clusions may bc drawn. First, the proposed mechanism is suf- teractions also exist at this time in cat area 17. The transient 
hcient to achieve continuity, periodicity, and other basic spatial neurons of the cortical subplate receive LGN input and partic- 
structure in the orientation map. Second, if orientation selec- ipate in microcircuits with layer 4 cells during the first postnatal 
tivity develops by the hypothesized correlation-based mecha- week (Friaufet al., 1990; Friaufand Shatz, I99 I). It is not known 
nism, the cortical organization of receptive fields is shaped by whether the responses of these cells preserve spatial phase in- 
the tendency of cells with excitatory intracortical interactions formation. Complex cells lack specificity for spatial phase. Layer 
to develop correlated receptive fields and ofcells with inhibitory 5 complex cells receive inputs from the LGN and layer 4 and 
intracortical interactions to develop anticorrelated receptive make horizontal projections as early as the first postnatal week 
fields. Two simple cells are predicted by the model to be cor- (Shatz and Luskin, 1986; Callaway and Katz, 1990, 1992). In 
related if they have spatially overlapping ON-subregions and the young rat, cortical cells are coupled by gap junctions in 
overlapping OFF-subregions (Fig. 16). They are anticorrelated domains stretching across all cortical layers and extending per- 
if their receptive fields “anti-overlap,” that is, if the ON-sub- haps 100 pm horizontally (Yuste et al., 1992; Peinado et al., 
regions of one overlap the OFF-subregions of the other. 1993). If such domains exist in the developing cat, they could 

Biologically, simple cells receive “opponent inhibition”; that couple simple and complex cells. 
is. ON-subregions receive ON-excitatory input and OFF-inhib- 
itory input, and conversely for OFF-subregions (Palmer and 
Davis, 198 la; Mullikan et al., 1984a,b; Ferster, 1988). Inhibi- Details qf cortical maps sf orientation and other receptive,jield 

tion can only come from other cortical cells (Ferster and Lind- properties 

Strom, 1983) and such phase-specific inhibition could only come The model provides a mechanism for the development ofspatial 
from other simple cells. Thus, it appears that when one simple organization of preferred spatial frequency and of other recep- 
cell inhibits another, the two develop “anti-overlapping” re- tive held properties. Because the model includes only a 2-D 
ceptivc fields. as the theory predicts. Similarly, the very fact cortex, only columnar organization (vertical invariance of re- 
that simple cells maintain cleanly segregated excitatory subre- ceptive field properties) can emerge in simulations. With inclu- 
gions despite intracortical excitation suggests that when one sion of a third dimension, some receptive field properties might 
simple cell excites another, the two develop overlapping ON- develop laminar rather than columnar organization. Further- 
subregions and overlapping OFF-subregions. more, as discussed in Analysis ofthe model, above, the structure 

If the map of preferred orientation develops through hori- of cortical maps may vary with nonlinearities, and we do not 
zontal coupling between simple cells, then the model predicts have an accurate model of biological nonlinearities. Thus, the 
that this map emerges from a deeper principle than local con- details of the maps that emerge in the model do not constitute 
tinuity of orientation. Rather, the map emerges from a tendency strong predictions. Rather, the robust prediction of the model 
to maximize ON-overlap and OFF-overlap between cells that is that receptive field properties develop some kind of mutually 
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coupled spatial clustering and organization, the details of which 
depend on the details of the intracortical interactions. 

The lack of a third dimension provides a specific reason why 
the model is probably not yet adequate to support detailed con- 
clusions about the cortical organization of preferred orientation. 
Given a third dimension, connectivity patterns will need to be 
identified that lead to development of columnar invariance of 
preferred orientation. There is no reason why spatial phase should 
then also develop columnar invariance. One can imagine a sce- 
nario in which a vertical set of cells, including simple cells with 
a single preferred orientation but with two or more spatial phases, 
is established through vertical excitatory and inhibitory inter- 
actions, and in which such a set interacts with other such sets 
at different horizontal locations. Such an interaction between 
multiple cells of different spatial phases at each cortical “point” 
may lead to very different predictions for the cortical organi- 
zation of preferred orientation than the present model, in which 
there is only a single spatial phase at each cortical point. De- 
velopment of more realistic, experimentally based models of 
the early cortical circuitry is critical to further progress in un- 
derstanding the origins of cortical maps. 

Degree qf oricnfafion selectivity 

When broader correlation functions are used, cells of both un- 
usually low and unusually high preferred spatial frequency tend 
to develop poor orientation selectivity. A correlation of low 
preferred spatial frequencies to poor orientation selectivity has 
been reported (Tootell et al., 1988; Silverman et al., 1989) but 
such a correlation of very high preferred spatial frequencies has 
not previously been suggested. Regions of rapid orientation 
change also show poor orientation selectivity in the model; bi- 
ologically, this appears not to be true near orientation pinwheels 
(Bonhoeffer and Grinvald, 199 1; Bartfeld and Grinvald, 1992). 

These results do not constitute strong predictions, because 
the degree of orientation tuning may depend on many details 
that are not modeled in the present study. As noted previously, 
developmental nonlinearities could lead cells at orientation 
boundaries to develop well-oriented receptive fields rather than 
receptive fields that linearly “mix” neighboring orientations. 
Similarly, the effects of nonlinearities and of intracortical cir- 
cuitry in determining a mature cell’s response to its inputs could 
endow sharp orientation tuning on a cell whose receptive field 
appears only weakly selective in the present model. The timing 
of input activations can also make a strong contribution to 
orientation tuning (Ferster, 1987). Thus, in these cells, poor 
orientation tuning, or late development of sharp orientation 
tuning, constitute possible outcomes of development under the 
hypothesis, but probably do not constitute necessary outcomes. 

In summary, the strong predictions of the model relate to the 
spatial structure of simple cell receptive fields, and the mech- 
anisms by which this structure develops and by which devel- 
oping cells interact to form maps. The model does not make 
strong predictions about the maps themselves, or about the 
physiological sharpness of receptive field tuning. 

Applicability of the model 

The present theory applies well to systems in which simple cells 
form in the geniculate-recipient layers. If simple cells form in 
cortex through projections from unoriented, ON-center or OFF- 
center cortical cells, the present theory might also apply, though 

perhaps with modifications to incorporate feedforward inhibi- 
tion as well as excitation. 

In cats, the vast majority of cells in layer 4 of primary visual 
cortex are simple cells (Gilbert, 1977; Bullier and Henry, 1979) 
so the present theory applies well. In macaque monkeys, the 
magnocellular-recipient layer 4Ca of striate cortex contains many 
oriented cells, most of which are simple cells (Blasdel and Fitz- 
patrick, 1984; Bullier and Henry, 1980). Thus, the present the- 
ory may describe the macaque magnocellular pathway. How- 
ever, the parvocellular-recipient layers 4A amd 4CB contain 
non-oriented cells (Blasdel and Fitzpatrick, 1984) and it is un- 
clear whether significant numbers of simple cells form further 
upstream in the parvocellular pathway (Bulher and Henry, 1980; 
Hubel, 1982). Since this pathway consists ofcolor-selective neu- 
rons, it may be necessary to consider competition between the 
various color-selective neuronal types in order to understand 
parvocellular development. It should also be noted that the 
magno- and parvocellular pathways form matching ocular dom- 
inance and orientation columns, and so do not develop inde- 
pendently. In other species, such as ferrets (see Chapman, I99 1) 
or tree shrew (see Raczkowski and Fitzpatrick, 1990) the ex- 
istence or distribution of simple cells has not yet been studied. 

Why do model orientation maps resemble experimental 
maps? 
The structure of the orientation maps that emerge in the model 
is in many ways arbitrary, as has been emphasized, yet the results 
resemble experimental maps. Why should this be the case? 

If random maps of preferred orientation are band-pass lil- 
tered, the resulting periodic but otherwise random orientation 
patterns closely resemble experimental orientation maps (Rojer 
and Schwartz, 1990). This likely reflects the fact that a mixture 
of spatially periodic orientation patterns without a strongly pre- 
ferred direction (a mixture of Fourier modes from a restricted 
band of frequencies but many or all possible directions) will 
produce a continuous, periodic map oforientation with modular 
iso-orientation regions rather than long iso-orientation rows. 
Thus, any mechanism that produces a periodic pattern of ori- 
entation without a strongly preferred direction is likely to pro- 
duce maps that resemble actual maps (also discussed in Rojer 
and Schwartz, 1990; Obermayer et al., 1992; Niebur and Wor- 
getter, 1993). Experimental maps may have additional struc- 
ture; for example, differences between cat and monkey maps 
may in part reflect the difference between an annular power 
spectrum and a hemicircular one (Fig. 15B). But such differences 
seem to have only a minor effect on a map’s visual appearance 
compared to the modular structure. 

Vortices of orientation of index t% (points around which 
orientation cycles by 180”) are a natural consequence of such 
modular maps. An orientation map that is continuous must 

contain such singularities unless it is topologically equivalent 
to long iso-orientation rows (Elsdale and Wasoff, 1976; Penrose, 
1979). Furthermore, singularities with index -t 1 (around which 
orientation cycles by 360”) can with a small perturbation of the 
map be converted to two nearby singularities of index ?+I/L Thus, 
vortices will be of index ?I/2 except in the unlikely case that 
two such vortices occur precisely in the same place (set Swin- 
dale, 1982, for a similar argument that vortices will almost 
always have index &l/2). 

Thus, orientation modules and vortices of index k% are likely 
to result from a variety of mechanisms, so production of “re- 
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alistic-looking” maps is not a powerful criteria to distinguish 
models. Given a periodic orientation map, it is the absence, 
rather than the presence, of such modules and vortices that is 
surprising, as it implies a preferred direction or other special 
structure in the orientation map. Such maps with long iso-ori- 
entation rows and few or no singularities appear to be found in 
the tree shrew (Humphrey and Norton, 1980; Humphrey et al., 
1980). 

Evaluation of the parameter values studied here 

The intracortical interactions studied in the simulations could 
incorporate excitatory interactions over distances of 200-500 
km, as well as inhibitory interactions over farther distances up 
to about 800 pm (using a scale of 92 pm/grid interval as in Figs. 
14, 15). Such intracortical influences may be due to diffusion 
or to synaptic connectivity. Local excitatory influence by dif- 
fusion of modulatory substances is not likely to spread more 
than tens of micrometers, since typical diffusive spread is 1 pm 
in 1 msec and this distance scales as the square root of the time 
(i.e.. IO pm in 100 msec). If such substances were released si- 
multaneously over much of the dendritic arbor of a single cell, 
then the 100-l 50 pm radius of such an arbor (Lund et al., 1979) 
might also play a role. In striate cortex of 2-week-old kittens, 
excitatory but not inhibitory intracortical synaptic connections 
arc seen in studies of cross-correlations, and extend over hori- 
zontal distances of up to 600 pm (Hata et al., 1993). Intracortical 
projections within layer 4 of kitten striate cortex extend hori- 
zontally many hundreds of micrometers as early as the first 
postnatal week (Callaway and Katz, 1992). In young rats, cor- 
tical cells are coupled by gapjunctions over horizontal distances 
of about 100 Frn (Yuste et al., 1992; Peinado et al., 1993). The 
presence of such coupling in other species has not yet been 
studied; if present, this should represent a purely excitatory 
coupling. In summary, the purely excitatory intracortical inter- 
actions studied in the simulations seem plausible based on avail- 
able data. 

Due to the small amounts of data on young animals, a role 
for inhibitory interactions in simple cell development cannot 
be ruled out. Such interactions are observed in studies of adult 
cat striate cortex. Monosynaptic intracortical synaptic connec- 
tions, both excitatory and inhibitory, have been shown by stud- 
ies of cross-correlations to extend horizontally about 650 pm 
in all layers of cat striate cortex, with the most frequent con- 
nections extending less than 400 Frn (Hata et al., 199 I); periodic 
longer-range connections also exist (Gilbert et al., 1990). Chem- 
ical excitation of cells at one location in cat visual cortex pro- 
duces inhibition in cells from 100 to 500 km horizontally distant 
(Hess et al., 1975). Chemical inhibition of cells at one location 
can lead to either loss of excitation or disinhibition of horizon- 
tally distant cells, suggesting inhibition at distances ofabout 500 
pm and a mixture of inhibition and excitation at distances of a 
millimeter or more (Crook et al., 1991; Wijrgbtter and Eysel, 
I99 1 b). Spatiotemporal patterns ofadult cortical activity appear 
to have characteristic spatial oscillations with a period ofaround 
1 mm (Shoham et al., I99 l), consistent with intracortical in- 
teractions with a similar Fourier transform peak, for example, 
excitation over a radius of about 200 pm and longer-range in- 
hibition. The mixed excitatory/inhibitory functions studied here 
could incorporate the submillimeter interactions that have been 
observed in adult cat cortex. 

To estimate the correlation function Cl, I use data from the 

adult cat (see further discussion below of measurements of cor- 
relations during development). These suggest plausible, though 
not compelling, parameter values for the model. I assume, as 
in Results, that C’ follows the correlation function measured 
in the mature cat retina, but extends to farther distances with 
a change in sign. At lo” eccentricity, adult retinal X-cell cor- 
relations go to zero at about 0.5” separation (Mastronarde, 
I983a,b). The cortical magnification factor there is about 650 
pm/degree (Tusa et al., 1978) so 0.5” corresponds to about 325 
hrn across cortex. Geniculocortical X-cells in the adult cat typ- 
ically arborize over a radius of 500-750 pm (Humphrey et al., 
1985). Layer 4 spiny stellate cells have dendritic arborizations 
of radius 100-150 Km (Lund et al., 1979). Assuming the arbor 
function corresponds to the overlap of these two arborizations, 
the zero-crossing of C’ occurs at about 40-50% of an arbor 
radius. yielding an estimated mean preferred spatial frequency 
of about l-1.25 cycles per arbor diameter. 

Thus, the estimated size of C’ relative to an arbor, based on 
measurements in adult cat retina, is within the range that leads 
to good orientation selectivity in the present model. However, 
using 92 wm/grid interval as in Figures 14 and 15, the absolute 
sizes of both C’ and the arbor are about 20-40% smaller in the 
simulations than in the estimates from adult cats. This should 
have little effect on results. A concurrent change in arbor and 
correlation sizes causes little change in receptive field structure, 
and in simulations leads to little change in the spatial period of 
cortical organization of preferred orientation (Fig. 14). 

Evaluation in light of experimental studies of development 

The theory presented here implies that the earliest developing 
orientation-selective cortical cells should be simple cells in the 
layers that receive unoriented ON-center and OFF-center input, 
and that these cells should initially receive spatially mixed ON/ 
OFF input. The theory also assumes that initial orientation 
selectivity evolves without the influence of patterned visual in- 
put. 

Significant numbers of oriented cells are found in kitten Vl 
as early as visual responses can be found, ranging from P6 
(postnatal day 6) to PI2 in various studies (Hubel and Wiesel, 
1963; Blakemore and van Sluyters, 1975; Buisserct and Imbert. 
1976; Fregnac and Imbert, 1978; Bonds, 1979; Tsumoto and 
Suda, 1982; Albus and Wolf, 1984; Braastad and Heggelund, 
1985). Most of these studies occurred before the age of natural 
eye opening, so these oriented cells develop without vision. In 
kittens before P14, nearly all oriented cells have been reported 
to be simple cells in deep layers of cortex (Blakemore and van 
Sluyters, 1975; Albus and Wolf, 1984), and to be largely or 
exclusively found in the adult geniculate-recipient layers 4 and 
6 (Albus and Wolf, 1984) (but see Tsumoto and Suda, 1982). 
Others report encountering both simple and complex cells in 
the youngest kittens (Hubel and Wiesel, 1963; Tsumoto and 
Suds, 1982; Braastad and Heggelund, 1985). 

Albus and Wolf( 1984) reported a class ofcells, many ofwhich 
were not orientation selective, with linear spatial summation of 
responses but spatially commingled ON- and OFF-responses. 
These were found only in layer 4 before about P18; layer 4 
eventually consists largely or exclusively of simple cells (Gilbert, 
1977; Bullier and Henry, 1979). The early presence of such cells 
and their disappearance over the period that orientation selec- 
tivity develops strongly suggest that ON/OFF segregation in 
simple cell receptive fields can evolve from an initially unseg- 
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regated state. Some investigators might have regarded these cells 
as complex cells; this provides one possible resolution to the 
conflicting reports from young kittens. 

A possible inconsistency between these studies of cat devel- 
opment and the present model is the report of Albus and Wolf 
(I 984) that most (76%) visually responsive cells in very young 
kittens have only OFF-responses, with ON-responses becoming 
equal to OFFonly by about P20. Braastad and Heggelund (1985) 
agree that OFF-responses are on average stronger than ON be- 
fore 3 weeks of age, but report finding some ON-response in 
virtually all cortical receptive fields. They attribute the difference 
to their use of stimulus protocols that enhance detection of the 
weaker ON-responses. If their results are accepted, then the 
main problem for the present theory is that it ignores an early 
ON/OFF inequality, perhaps due to the greater dark activity of 
OFF-inputs (Mastronarde, 1983b), that leads to more rapid 
development of OFF-responses in cortex. This is unlikely to 
lead to fundamental changes in the conclusions because, given 
the basic hypothesis as to the structure of correlations, it should 
not substantially change the spatial period of ON/OFF alter- 
nation of a best-correlated set of inputs to a cortical cell. 

Results in other species also appear consistent with the model, 
although fewer data are available. Normal, adult-like tuning and 
organization of orientation selectivity exist at birth in monkey 
V 1 (Wiesel and Hubel, 1974) and in sheep V2 (Ramachandran 
et al., 1977). Simple cells in newborn monkey are reported to 
be found primarily in layer 4 and to have segregated ON- and 
OFF-subregions (Hubel and Wiesel, 1968). In ferret (Chapman, 
1991). some orientation selectivity is found as early as visual 
responses can be recorded (P23). Normal maturation of ori- 
entation selectivity in ferret depends on neural activity, but 
progresses normally under binocular lid suture in all but deep 
layers. suggesting that spontaneous activity may be sufficient 
for simple cell maturation. 

Evaluation in light of experimental data on input 
correlations 
Two types of dark correlations have been measured experi- 
mentally in the visual system of various species. In the mature 
retinas ofcats, rabbits, and goldfish, ON cells are correlated with 
other ON cells, and OFF cells with other OFF cells, at retino- 
topic separations such that their receptive field centers signifi- 
cantly overlap, while ON cells are anticorrelated with OFF cells 
at the same separations (Arnett, 1978; Arnett and Spraker, 198 1; 
Mastronarde, 1983a,b). At larger separations in rabbits and 
goldfish, no correlations were detected; this has not been studied 
in cat dark correlations. Correlations in the mature cat LGN 
between cells whose centers overlap are similar to those in ret- 
ina, except that asymmetric correlations (e.g., one cell tending 
to fire some milliseconds before another) are also observed (Ar- 
nctt, 1975; Stevens and Gerstein, 1976). LGN correlations have 
not been studied at larger separations where one cell’s center 
overlaps another’s surround. 

In fetal or early neonatal retinas, a different pattern ofactivity 
is seen in which retinal ganglion cells fire in bursts a few seconds 
in duration, separated by minutes of silence (Masland, 1977; 
Maffei and Galli-Resta, 1990; Meister et al., 199 1). In ferret or 
kitten retina in vitro, this activity is organized spatially as ori- 
cnted traveling waves of correlated bursting (Meister et al., 199 1). 
In ferret retina, this activity was observed as late as P22, and 
is no longer prcscnt at P30 (Wong et al., 199 1). In cat retina, it 
was observed as late as P 1 (Meisteret al., I99 I). Retinal ganglion 

cells could not be visually driven at the ages at which wave 
activity was observed (M. Meister, personal communication). 
In comparison, as discussed previously, visual responses in fer- 
ret cortex first appear at P23, and the earliest recordings from 
cat cortex are from P6. In both cat and ferret, these earliest 
cortical recordings include orientation-selective responses, al- 
though in ferret the major development oforientation selectivity 
occurs several weeks later (Chapman, 199 1). Thus, the wave- 
like, bursting pattern of activity disappears at roughly the time 
that visually driveable retinal circuitry and orientation selectiv- 
ity may first arise. The waves may gradually diminish in pre- 
ceding weeks (Meister, personal communication), so it is con- 
ceivable that there is a gradual, overlapping transition between 
correlation structures. 

There are several reasons why the early, wave-like activity 
seems unlikely to underlie simple cell development. First, the 
wave-like activity may disappear too early to play this role, 
although this remains unclear. Second, no distinction between 
ON- and OFF-center populations has been discovered in this 
activity (R. Wong and M. Meister, personal communication). 
That is, although ganglion cells were not visually driveable and 
so could not be classified as ON- or OFF-center, the ganglion 
cell population was not observed to separate into distinct groups 
that tended to fire on separate rhythms. ON and OFF retinal 
inputs to the LGN segregate into laminae in an activity-depen- 
dent manner between PI 4 and P2 I in ferret (Hahm et al., I99 I), 
so some distinction in the activities of ON- and OFF-inputs is 
likely to exist in viw at that time. Unless such a distinction is 
discovered in the waves of activity, they would not appear to 
be the correlation structure guiding ON/OFF segregation in LGN 
or cortex. 

Third, the waves arc very wide compared to geniculocortical 
arbors and simple cell receptive fields. Correlations between the 
activities of cell pairs in these early retinas decrease slowly with 
the distance between two cells, decreasing by only a factor of 2 
over a separation of about lo-20 retinal ganglion cell (RGC) 
spacings (Meister, personal communication). That is, the full 
width at half height of the correlation function is 20-40 RGC 
spacings. In contrast, geniculocortical arbors have a radius cor- 
responding to 4-12 RGC spacings; the largest subregion of cat 
simple cell receptive fields corresponds to 5-20 RGC spacings; 
and the width of the entire receptive field is 9-40 RGC spacings 
[in adult cat at IO-I 2.5” eccentricity: I” corresponds to between 
5 and 10 RGC spacings (Mastronarde 1983a.b); cortical mag- 
nification factor is about 650 pm/degree (Tusa et al., 1978); 
X-cell arbors have a radius of 500-750 km (Humphrey ct al., 
1985) or 0.75-I. 15”: largest subregion is 1.67 2 0.63”, and width 
of receptive held is 2.88 ? 1.04” (Heggelund, 1986)]. Thus, the 
waves are so wide that they should simultaneously activate all 
gcniculate inputs to a single cortical cell, and so would not appear 
“oriented” for purposes of competition on a single cell. They 
appear too large to account for the development of simple cell 
subregions, and are probably too large even to account for the 
entire width of the largest simple cell receptive fields. 

In contrast to the early wave-like activity, the mature retinal 
and geniculate dark activity distinguishes ON- and OFF-center 
cells and, as shown in Figure 13, has length scales appropriate 
to account for simple cell receptive held structure. The major 
problems for the hypothesis that the mature activity underlies 
simple cell development are (I) the uncertainty whether it exists 
sufficiently early and (2) the lack ofany “Mexican hat” structure 
in measurements thus far: correlations appear to go to zero, 
rather than changing sign, at distances where receptive field 
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centers no longer overlap. The absence of a Mexican hat struc- ual simple cells, in a manner corresponding to the simple cell’s 
turc in retinal measurements is actually in accord with the the- subregions. Convergence of multiple geniculate inputs onto sin- 
ory: retinal inputs segregate twtMwn postsynaptic cells in the gle simple cells in cats has been demonstrated in several studies 
LGN. so the theory predicts that retinal correlations either lack (Tanaka, 1983: Freund et al., 1985; Ferster, 1987). Tanaka (1983) 
a Mexican hat structure or else have such a structure but with directly demonstrated convergence of both ON- and OFF-center 
sign change at a separation wider than a retinogeniculate arbor 
radius. 

The LGN might acquire a Mexican hat structure in two ways. 
First, if a Mexican hat structure is absent in retinal dark activity, 
it could be induced in the LGN by intrinsic inhibitory circuitry 
(e.g., Sillito and Kemp, 1983; Kaplan et al., 1987; Mastronarde, 
1987; Lindstrom and Wrobel, 1990; Nelson, 199 I) and/or by 
the stronger dark surrounds of LGN receptive fields relative to 
retinal rcceptivc fields (Virsu et al., 1977; but see Kaplan et al., 
1979). Second, if a Mexican hat structure is present but is thus 
far undetected in retinal dark activity, and its sign change occurs 
outside the narrow radius of retinogeniculate arbors (Sretavan 
and Shatr-, 1987) the sign change might nonetheless occur with- 
in the broader radius of geniculocortical arbors. 

the mature distributions with eccentricity of retinal preferred 
orientations and cortical preferred orientations are similar (Schall 
et al., 1986). 

Under the present model, development is determined by the 
correlation functions. The degree of correlation in dark activity 
of retinal ganglion X-cells appears to match closely the overlap 
of their dendritic fields (Mastronarde, 1983a,b). The dendritic 

Possible effects of orientation bias in input receptive fields 

Retinal and gcniculatc receptive fields arc slightly elliptical rath- 
cr than circular (Levick and Thibos, 1982; Albus et al., 1983; 
Leventhal and Schall, 1983; Soodak et al., 1987). It has been 
proposed that this orientation bias may contribute to the dc- 
vclopmcnt of cortical orientation selectivity (Albus et al., 1983; 
Schall et al.. 1986). In support of this, it has been reported that 

LGN inputs onto a single cat cortical simple cell. Bullier et al. 
(I 982) concluded by less direct methods that about 75% of layer 
4 simple cells in the cat receive both ON-center and OFF-center 
LGN input. This roughly agrees with findings that only about 
20% ofsimple cells in the cat (Palmer and Davis, I98 I; Mullikan 
ct al., 1984b) and 27% in monkey (Schiller et al., 1976) are 
unimodal, that is, have only one excitatory subregion, either 
ON or OFF (but see Hcggelund, 1986, who finds far fewer 
unimodal cells in cats). Tanaka (1983) found that the surrounds 
of LGN cells do not contribute to the visual responses of non- 
unimodal simple cells, also suggesting that such cells are driven 
by both ON-center and OFF-center gcniculate inputs. 

the preservation of the spatial structure of OFF-subregions of 
cat simple cells after ON-center inputs to cortex are silenced 
(Sherk and Horton, 1984) and by the fact that simple cell sub- 
region structure is present in both the pattern ofexcitatory input 
and the pattern of inhibitory input received by the cell (Fcrster, 
1988). 

Tanaka (1983) showed that in cat, more than one-third of 
ON-geniculate X-cells with receptive field center overlapping 

The development of unimodal cells might be accounted for 

an ON-subregion of an area I7 simple cell, or OFF overlapping 
with OFF, made a monosynaptic connection onto the simple 
cell. This high rate of connection is suggestive that inputs con- 
verge in a manner that corresponds to the simple cell’s subre- 
gions, although no data exist on the rate of connection (if any) 
for geniculate cells whose centers overlap the opposite subregion 
type. That the centers of most ON-center geniculate inputs over- 
lap ON-subregions, and OFF overlap OFF, is also suggested by 

fields of retinal ganglion cells are reported to have elliptical 
biases, with a similar distribution across the retina as the biases 
of receptive fields (Leventhal and Schall. 1983; Schall et al., 
1986). Elliptical bias in the dendritic fields would lead to bias 
in their overlaps, which could produce bias in the correlation 
functions. Thus, elliptical bias in the receptive fields may be 
accompanied by a similar bias in the correlation functions. 

Such bias in the correlation functions could not account for 
the development of orientation selectivity, because (I) devel- 
opment with a moderately elliptical but positive correlation 
function does not lead to development oforiented arrangements 

in the present model in several ways. First, sufficient decrease 
of receptive field size during development leads some initially 
bimodal cells to become unimodal (Fig. IO/I). Consistent with 
this idea, in monkeys (Schiller et al., 1976) and cats (Palmer 
and Davis, I98 I; Mullikan et al., 1984a,b), bimodal cells have 
receptive fields about twice as wide as unimodal cells. This 
suggests that subregions in either case are formed by a common 
competitive mechanism. Second, biological variation in con- 
nectivity or correlations might lead to a subpopulation of cells 
for which a change in sign of the correlation function occurs at 
a distance of an arbor radius or more. Such a subpopulation 

of afferents (not shown), while (2) ON/OFF competition with would in isolation develop unimodal, unoriented receptive fields. 
an unbiased Mexican hat correlation function does lead to ori- Interaction with cells developing bimodal, oriented receptive 
entation selectivity, as shown here. However, such bias could fields could lead unimodal cells to develop an oriented set of 
explain the reported correspondence between the distributions inputs, and/or endow orientation selectivity via intracortical 
of retinal and cortical preferred orientations. For example, if connections. Consistent with this idea, cat unimodal cells appear 
there were a larger proportion of radial dendritic fields in one to be a specific subpopulation, consisting of inhibitory cells in 
portion of the retina, this could lead retinal and corresponding the deep parts of layer 4 and in layer 6 (Toyama et al., 1981; 
LGN neurons to be correlated at slightly longer distances in the Mullikan et al., 1984a). 
radial direction than in the tangential, and this could bias the 
cortical competition to slightly favor radial preferred orienta- 
tions. .Vaturc degree qf orientation tuning 

The present model accounts for the development of “Hubel- 

Evaluation in light of experimental data on the mature 
cortex 

Wiesel” receptive fields. These have been shown adequate to 
yield mature orientation tuning, provided a more realistic model 
of cortical response is used (Ferster, 1987). lntracortical inhi- 

Conwrgence qfgeniculute inputs onto simple cells bition may enhance this tuning (Worgijtter and Koch, 1991). 
The present model requires that multiple LGN inputs, including As discussed in Methods, the simple linear model of cortical 
both ON-center and OFF-center inputs, converge onto individ- cell response used here to assess selectivity does not yield mature 
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orientation tuning, but this is a problem of the response model 
rather than of the developmental model. 

Role qf ON- and OFF-center input streams in mature 
orientation sclectirity 

After selective silencing of ON-center inputs in the retina of the 
mature animal, cortical cells in both cats (Sherk and Horton, 
1984) and monkeys @chiller, 1982) retain normal orientation 
tuning. The present hypothesis states that competition between 
ON-center and OFF-center inputs is necessary for the devel- 
oprwnt of orientation selectivity, but not for its mature ex- 
pression. Ferster (I 987) showed that a Hubel-Wiesel model of 
simple cell receptive fields retains normal orientation tuning 
after ON-center inputs are silenced. 

Other models for the development of orientation 
selectivity 

Models for the development of orientation selectivity may be 
roughly divided into two classes. One class, including the present 
model, accounts for the development of individual oriented 
receptive fields. In these models the fundamental variables are 
the synaptic strengths of topographically organized inputs: ori- 
entation-selective receptive fields emerge out of the strength- 
ening and weakening of synapses. The second class of models 
assumes as fundamental variables a cell’s preferred orientation 
and degree of orientation selectivity, and studies the organiza- 
tion of cortical maps. I will discuss each class of models in turn. 

,Wodels that account .for the der~elopmcnt qf oriented receptive 
jrlds 
A model for the activity-dependent development of orientation 
selectivity was first proposed by von der Malsburg (I 973). The 
model was similar to the present one in using a simple Hebbian 
plasticity rule and a 2-D cortex with distance-dependent con- 
nectivity, and in using conservation of synaptic strength over 
each postsynaptic cell to achieve a competitive outcome. The 
model differed from the present one in using only a single type 
of input, with full connectivity between input cells and cortical 
cells, and in using as input patterns oriented bars of various 
orientations, each flashed at the center ofthe input grid. Training 
on these patterns led cortical cells to develop oriented receptive 
fields that varied only in preferred orientation, not in spatial 
phase (the oriented set of connections to a cortical cell always 
ran through the middle of the input grid). Nearby cells tended 
to develop similar preferred orientations. This model would not 
explain the segregation of ON- and OFF-inputs within the re- 
ceptive field, and did not address development of orientation 
selectivity in the absence of vision or the development of spatial 
phase variation. A related model was proposed by Perez et al. 
(1975). 

A scenario like that studied here, in which a circularly sym- 
metric, spatially oscillating correlation function leads to the de- 
velopment of orientation-selective receptive fields and to seg- 
regation of inputs within receptive fields, was first demonstrated 
by Linsker (I 986ax) (analyzed in MacKay and Miller, 1990a,b). 
There arc three major differences between Linsker’s model and 
the present one. First, Linsker postulated feedforward synapses 
that could take either positive or negative strengths, rather than 
ON-center and OFF-center populations of purely excitatory in- 
puts. This is biologically different from the present model, and 
also mathematically different: Linsker’s equations would be fun- 

the early development of the present model is independent of 
many nonlinearities (Miller, 1990~). Second, Linsker used a 
constraint fixing the percentages of positive and negative syn- 
apses in the final receptive field of a cell. Applied to the present 
model, this would be equivalent to fixing the percentage of ON- 
center versus OFF-center synaptic input in each cortical recep- 
tive field. Orientation-selective receptive fields developed in his 
model only in a narrow, tightly tuned regime of the constraint 
parameter, and then only in the late, nonlinear stage of devel- 
opment (MacKay and Miller, 1990a). 

Third, receptive field development was studied only in single, 
isolated cortical cells. The cortical organization of preferred ori- 
entation was studied only in the case that all cortical receptive 
fields are identical except for preferred orientation; that is, all 
have identical spatial phase and preferred spatial frequency. If 
spatial phase cannot vary, then the argument of Figure 16 is 
altered by the elimination of Figure l6B, so the nature ofcortical 
organization differs from the present model. This led to the 
prediction that vertically oriented cells should be found in iso- 
orientation patches that are elongated in the retinotopically ver- 
tical direction across the cortex, and horizontally oriented cells 
should be similarly found in patches extended in the retinotop- 
ically horizontal direction. This prediction disagrees with ex- 
isting experimental results (Blasdel and Salama, 1986; Swindale 
et al., 1987; Diao et al., 1990). 

Tanaka (I 992) has independently proposed a relationship be- 
tween ON/OFFcompetition and the development oforientation 
selectivity. His model is formally equivalent to the present mod- 
el with one crucial difference: in his model, each cortical cell 
eventually receives only one LGN input. Tanaka defines cortical 
receptive fields as the convolution ofthe input arrangement with 
the intracortical interaction function. This means that a cortical 
cell’s receptive field is due to its single input from the LGN, 
plus its input from all other cortical cells within reach of the 
intracortical interaction function. Oriented receptive fields arise 
if this convolution is not circularly symmetric. For example, if 
ON- and OFF-inputs at least partially segregate into cortical 
patches like ocular dominance patches, then oriented cells will 
arise. ON-inputs contribute positively and OFF-inputs contrib- 
ute negatively to the convolution; this means that an “ON” 
subregion may show both ON- and OFF-responses to light, 
although ON-responses will be stronger (and similarly for “OFF” 
subregions). 

In Tanaka’s model, orientation selectivity arises from the 
breaking of circular symmetry in the pattern of inputs to dif- 
ferent cortical cells, rather than to individual cortical cells. This 
mechanism of symmetry-breaking leads to different require- 
ments for the development of orientation selectivity than the 
present model: ocular-dominance-like patchiness of the inputs 
dcvclops when there is a Mexican hat structure in the intra- 
cortical interactions, and does not require such a structure in 
the input correlation function. Under this mechanism, at least 
some cortical cells must initially respond to their nonoriented 
LGN input before oriented responses could appear. In ferrets, 
which have a patchy arrangement of ON and OFF LGN inputs 
(Zahs and Stryker, 1988), there are many nonoriented cells in 
layer 4 (Chapman, 1991) that could potentially provide such 
early responses. 

Soodak (1987, I99 I, and unpublished observations) proposed 
a model for the development of orientation selectivity based on 
the following rule: inputs whose responses are temporally in 

damentally altered by the inclusion of nonlinearities, whereas phase with the cortical cell’s response are weakened, while those 
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180” out of phase arc strengthened and those at 90” are un- 
changed. This rule is derived most easily from an anti-Hebbian 
plasticity rule (a rule in which temporal correlation of pre- and 
postsynaptic activity leads to synaptic weakening). Soodak as- 
sumed that an ON- and an OFF-center input have equal and 
opposite responses to an identical stimulus. Competition under 
this rule in the absence of patterned visual input then leads to 
an exact balancing of the strength of ON-center and OFF-center 
inputs to each cortical cell. In analogy to electrostatics, this sets 
the ON/OFF “charge” (the total ON-center strength minus the 
total OFF-center strength in the receptive field) to zero. This 
leaves only an ON/OFF “dipole” and higher-order (“quadru- 
pole.” etc.) moments. which represent spatial inhomogeneities 
in the distribution of the balanced ON- and OFF-center inputs 
within the receptive lield. The “dipole moment” has an ori- 
entation-selective response. As the “charge” is eliminated, the 
dominant response becomes that due to the dipole and so the 
cell’s responses become orientation selective. 

A virtue of this model is that it depends only on the local 
anticorrelation of ON- and OFF-center inputs, which has been 
observed: a “Mexican hat” correlation structure, which has not 
yet been observed, is not required. However, several problems 
exist. The mechanism does not yield spatial segregation of ON- 
center and OFF-center inputs within the receptive field, but 
rather yields a spatial mixture of inputs with slight spatial im- 
balances. It is unclear whether periodic, segregated subregions 
could nonetheless emerge, for example, through cancellation of 
the balanced ON-center and OFF-center afferent drives and 
through intracortical interactions. If average positive afferent 
responses arc sufficiently stronger than average negative re- 
sponses (e.g., Ferster. 1987). then all regions ofthe final receptive 
field will give positive responses to all stimuli, so orientation 
selectivity will not result. If the “dipole” input is small relative 
to the input provided by a single afferent, orientation tuning 
would be eliminated by realistic levels of variance in the afferent 
activities. Orientation tuning and the spatial structure of OFF- 
subregions both would be likely to disappear ifON-center inputs 
are silenced, but biologically this does not occur (Schiller, 1982; 
Sherk and Horton, 1984). 

.bfodels that twat otkwtation pr&rctxw as,firndarnental 

vasiahks 

Simplified models of cortical map formation characterize re- 
ceptive fields and the interactions between them by a reduced 
set of variables, such as preferred orientation and orientation 
selectivity, in addition to retinotopic position. A distance-de- 
pendent “Mexican hat” interaction in cortex, by which each cell 
influences nearby cells to develop receptive fields similar to its 
own, and influences more distant cells to develop receptive fields 
opposite to its own, then leads to a periodic pattern of the 
reduced variables (note: the present model depends on a Mex- 
ican hat in the input corwlations, not in cortex). Such a model 
for the development of the periodic arrangement of cortical 
preferred orientations and the enhancement of orientation se- 
lectivity was proposed by Swindale (I 982). Models that simi- 
larly depend on a spatially Mexican hat interaction have been 
applied to many examples of pattern formation, such as zebra 
stripes and leopard spots (Turing, 1952; Murray, 1989). A Mex- 
ican hat interaction acts as a band-pass filter in Fourier space, 
and therefore leads to the growth of a spatially periodic pattern 
of the reduced variables with wavelength corresponding ap- 
proximately to the peak ofthe Fourier transform ofthe Mexican 

hat function. Direct application ofa band-pass filter to a random 
pattern can similarly create a periodic pattern like that found 
biologically (Rojer and Schwartz, 1990). 

Such reduced models of cortex usually depend on the ad hoc 
assumption that the reduced variables and a simple interaction 
between them arc sufficient to describe cortical development. 
There are two problems with this assumption. First, it does not 
describe receptive field development, for example, the condi- 
tions under which receptive fields become characterized by their 
orientation tuning. Second, it may be unwarranted. In the pres- 
ent model, the interaction between two receptive fields cannot 
be described in terms of the reduced variables of orientation 
preference and selectivity alone, but depends critically on spatial 
phase (Fig. 16). An approximate reduced description can be 
derived that utilizes spatial phase and spatial frequency in ad- 
dition to orientation as reduced variables, but the resulting in- 
teraction has a complicated structure (K. D. Miller, unpublished 
observations). 

Recent models using the “self-organizing feature map” (Ob- 
ermayer et al., 1990, 1992) or “elastic net” (Durbin and Mit- 
chison, 1990) algorithms represent an intermediate level ofcom- 
plexity. These models use a reduced set of variables to describe 
receptive fields and input activity patterns, but use a Hebb-type 
rule to describe development. Certain abstractions are used to 
describe cortical cell activation. These models lead to locally 
continuous mappings in which a constant distance across the 
cortex corresponds to a roughly constant distance in the reduced 
“input space.” If the input space has more than the cortex’s two 
dimensions-for example, the 5-D space of 2-D retinotopic po- 
sition, orientation preference and selectivity, and ocular dom- 
inance-this means that, when one feature is changing rapidly 
across cortex, the others will be changing slowly. For this reason, 
the models predict that orientation changes rapidly where re- 
tinotopy changes slowly, and vice versa. 

This prediction may arise for mathematical reasons similar 
to those underlying the present prediction that the spatial phase 
and preferred orientation of receptive fields should systemati- 
cally covary: for a reduced model in which inputs are of a single 
type and receptive fields have only a single excitatory subregion, 
a shift in spatial phase is identical to a shift in retinotopic po- 
sition. Experimentally, however, these predictions are quite dif- 
ferent. These models similarly predict covariation of preferred 
orientation and ocular dominance, and this accounts success- 
fully for observed interactions between the two columnar sys- 
tems in monkeys (Obermayer et al., 1992). Simultaneous de- 
velopment of orientation and ocular dominance has not been 
studied with the present model. As implemented thus far, these 
models do not allow prediction of the dependence of emergent 
spatial scales on biologically identifiable parameters, cannot break 
symmetry to develop oriented responses from nonoriented input 
patterns, and do not include ON- and OFF-center inputs or 
account for their segregation within simple cell receptive fields. 
But they demonstrate simple rules that are formally similar to 
Hebbian rules and that can account for complicated aspects of 
cortical maps, and so may provide a guide for future work. 

Conclusion: competitive mechanisms and neural structure 

In a variety of systems, where two input populations converge 
on a single postsynaptic target, the two input types segregate 
between postsynaptic cells. It has not previously been appre- 
ciated that the segregation ofON- and OFF-center inputs within 
receptive fields of cortical simple cells might reflect a similar 
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competitive process, but in a different parameter regime. Per- relation-based synaptic plasticity are adequate to account for a 
haps the strongest argument in favor of the present model is number of the most striking features of visual cortex. It seems 
that it naturally explains this segregation, while also accounting possible that such mechanisms, when combined with greater 
for the development and basic organization of orientation se- realism in models of the input populations and of the cortical 
lectivity. circuitry, may ultimately prove adequate to account in some 

The connectivity patterns that result from synaptic compe- detail for many of the rich and varied structures found in tha- 
tition might be functional, specifically selected for by evolution. lamic and early cortical processing. 
Alternatively, such patterns may be selectively neutral, and arise 
as epiphenomena of competitive rules that have evolved for 
other reasons. For example, in the frog, iftwo eyes are artificially 
forced to innervate a single tectum, ocular dominance stripes 
form (Constantine-Paton et al., 1990); this presumably reflects 
the action of rules that evolved without regard for ocular dom- 
inance, since in nature the frog’s two eyes never innervate a 
common tectum. A third possibility is that an observed pattern 
might be one of a broad variety that can equally well be used 
to construct a functional visual system. Thus, ON- and OFF- 
center cells in the LGN are segregated in separate laminae in 
mink (LeVay and McConnell, 1982), ferret (Stryker and Zahs, 
1983), and tree shrew (Conway and Schiller, 1983), and in the 
parvocellular layers in rhesus monkey (Schiller and Malpeli, 
1978), but there is at most incomplete laminar segregation in 
cat (Bowling and Caverhill, 1989) and no obvious segregation 
in monkey magnocellular layers (Schiller and Malpeli, 1978). 
ON- and OFF-inputs to cortex show laminar segregation in tree 
shrew (Raczkowski and Fitzpatrick, 1990) but column-like seg- 
regation in mink (McConnell and LeVay, 1984) and ferret (Zahs 
and Stryker. 1988). Cortical ocular dominance segregation is 
columnar in the cat and in some species of monkey, but there 
is at most incomplete segregation in other species of monkey 
(reviewed in LeVay and Nelson, 199 1) and only a partial, lam- 
inar segregation in the tree shrew (Raczkowski and Fitzpatrick, 
1990). Such variety suggests that the details of these patterns 
might not be functionally important, although alternatively they 
might represent functional specializations. The present model, 
by bringing segregation within simple cell receptive fields and 
development of orientation selectivity within the common 
framework of synaptic competition, raises the intriguing pos- 
sibility that these also might not be central features of the design 
of the visual system, but rather could arise as one out of many 
equally usable possible arrangements, or even as epiphenomena 
of synaptic competition [the sharpening of orientation selectiv- 
ity by intracortical connectivity, which might suggest design, 
can emerge out ofvery general properties ofcortical connectivity 
(WGrg6tter and Koch, 199 l)]. 

In the future, the present framework can be extended in sev- 
eral ways. Study of simultaneous competition between ON- and 
OFF-center inputs from the two eyes may reveal emergent re- 
lationships between ocular dominance, orientation, and dis- 
parity tuning. Study of a 3-D cortex and of specific connectivity 
between separate excitatory and inhibitory cortical populations 
seems necessary to understand the interacting cortical organi- 
rations of spatial phase, spatial frequency, and preferred ori- 
entation. Consideration oftemporal structure in subcortical and 
cortical responses may allow an understanding of the devel- 
opment of spatiotemporal receptive fields. The model may be 
deepened or altered by incorporation of greater biophysical de- 
tail, plasticity of intracortical synapses, or additional possible 
mechanisms of plasticity such as sprouting and retraction of 
axonal terminals. 

The present study, in combination with previous studies (Mil- 
ler et al., 1989). demonstrates that simple mechanisms of cor- 
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