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We extend previous models for separate development of ocular
dominance and orientation selectivity in cortical layer 4 by
exploring conditions permitting combined organization of both
properties. These conditions are expressed in terms of func-
tions describing the degree of correlation in the firing of two
inputs from the lateral geniculate nucleus (LGN), as a function
of their retinotopic separation and their “type” (ON center or
OFF center and left eye or right eye).

The development of ocular dominance requires that the cor-
relations of an input with other inputs of the same eye be
stronger than or equal to its correlations with inputs of the
opposite eye and strictly stronger at small retinotopic separa-
tions. This must be true after summing correlations with inputs
of both center types. The development of orientation-selective
simple cells requires that (1) an input’s correlations with other
inputs of the same center type be stronger than its correlations
with inputs of the opposite center type at small retinotopic
separation; and (2) this relationship reverse at larger retinotopic
separations within an arbor radius (the radius over which LGN
cells can project to a common cortical point). This must be true
after summing correlations with inputs serving both eyes.

For orientations to become matched in the two eyes, corre-
lated activity within the receptive fields must be maximized by
specific between-eye alignments of ON and OFF subregions.
Thus the correlations between the eyes must differ depending
on center type, and this difference must vary with retinotopic
separation within an arbor radius.

These principles are satisfied by a wide class of correlation
functions. Combined development of ocularly matched orien-
tation maps and ocular dominance maps can be achieved
either simultaneously or sequentially. In the latter case, the
model can produce a correlation between the locations of
orientation map singularities and local ocular dominance peaks
similar to that observed physiologically.

The model’s main prediction is that the above correlations
should exist among inputs to cortical layer 4 simple cells before
vision. In addition, mature simple cells are predicted to have
certain relationships between the locations of the ON and OFF
subregions of the left and right eyes’ receptive fields.
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To what extent do cortical receptive fields (RFs) and maps result
from simple, activity-dependent rules for synaptic development?
A primary model system for addressing this is the development of
monocular and binocular, orientation-selective simple cells and
their arrangement into orientation (ORI) and ocular dominance
(OD) maps in the primary visual cortex (Hubel, 1982; Wiesel,
1982).

In previous work, we studied the conditions required to develop
either OD or ORI preference systems alone, under a general class
of synaptic modification rules (Miller et al., 1989; Miller, 1994).
This class, “correlation-based” rules (Miller, 1990a, 1997), in-
cludes mechanisms that have in common the dependence of the
development of a structure on the correlations among the activ-
ities of its inputs. These mechanisms include simple versions of

Hebbian synaptic modification, activity-dependent release, and
uptake of diffusible modifying factors, or synaptic sprouting and
retraction with activity-dependent stabilization. We now examine
whether the coexistence of multiple features in single RFs and
maps is compatible with correlation-based mechanisms by study-
ing the conditions necessary for the combined development of
OD and ORI.

A significant problem is raised by this combined development.
ORI maps are continuous across OD column borders, regardless
of whether the OD map contains many or few binocular cells, and
binocular cells show nearly identical preferred ORIs and spatial
frequencies in each eye’s RF (Skottun and Freeman, 1984). How
can correlation-based development yield binocularly matched
ORI maps, which presumably requires correlation between the
activities of the two eyes, and also yield OD segregation, which
presumably requires a sufficient lack of interocular correlation?

We address this question through study of the development of
simple cells. These are cells with RFs composed of one or more
spatially segregated, elongated subregions, each giving exclusively
ON (response to light onset/dark offset) or exclusively OFF
(response to light offset /dark onset) excitatory input (Hubel and
Wiesel, 1962). These comprise most or all cells in layer 4 of cat
primary visual cortex (Hubel and Wiesel, 1962; Gilbert, 1977;
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Bullier and Henry, 1979). In that layer, the segregation of a
simple cell’s lateral geniculate nucleus (LGN) inputs appears to
underlie its RF properties. Segregation of left- and right-eye
inputs underlies OD (LeVay et al., 1978), whereas segregation of
ON-center and OFF-center inputs underlies spatial RF structure
(Tanaka, 1983; Ferster, 1988; Reid and Alonso, 1995) as proposed
by Hubel and Wiesel (1962). This spatial RF structure in turn
appears to underlie ORI selectivity (Movshon et al., 1978; Jones
and Palmer, 1987; Ferster et al., 1996). Thus, we will study the
development of the LGN inputs to cat layer 4 simple cells. We
ignore for simplicity the simultaneous development of intracorti-
cal connections (Callaway and Katz, 1991; Löwel and Singer,
1992; Durack and Katz, 1996; Ruthazer and Stryker, 1996).

Our previous work studied segregation of only two LGN input
types. We determined how OD maps can emerge from competi-
tion among inputs serving the left and right eyes (Miller et al.,
1989) and how simple cells and ORI maps can emerge through
competition among ON- and OFF-center inputs (Miller, 1994).
We now study the outcome of correlation-based competition
among four input types—ON- and OFF-center cells serving left
and right eyes (see Fig. 1a)—to address combined development of
ORI and OD.

The primary outcome of our model is a specification of the
spatial patterns of correlated activity among these inputs that are
sufficient to yield both binocularly matched ORI maps and OD
segregation. The activity patterns are robust, not requiring fine
tuning. They are simple enough to plausibly exist in spontaneous
neural activity before the onset of vision, although they are also
plausible attributes of visually induced activity. These results are
shown to generalize the results of the earlier separate OD and
ORI models: the earlier results remain applicable, but new results
emerge, including the conditions for developing binocularly
matched orientation maps and a novel prediction for the intero-
cular relationships of ON and OFF RF subregions. These results
should in turn remain applicable if further subcategorizations of
LGN cell types are considered (see discussion in Appendix 1).

It is possible that ORI and OD normally develop at separate
times in response to differing activity patterns. We consider such
sequential development and find that it increases the range of
correlation structures compatible with combined ORI and OD
development. It also induces relationships between the ORI and
OD maps such as those observed experimentally (Crair et al.,
1997b). Simple explanations of the origins of these relationships
are proposed.

Although we focus on the development of connections from
LGN to layer 4 of cat primary visual cortex, simple cells might
also develop through the segregation of monocular, ON- and
OFF-center cell inputs in other systems. Possible examples in-
clude the avian visual Wulst (Pettigrew, 1979) and the projections
from visual cortical layer 4 to upper layers in species in which
layer 4 cells are primarily not ORI-selective [these include mon-
key (Blasdel and Fitzpatrick, 1984), ferret (Chapman and Stryker,
1993), and tree shrew (Fitzpatrick, 1996)]. If so, our analysis
could also apply to such systems.

Preliminary reports of this work have appeared (Erwin and
Miller 1995, 1996a,b).

MATERIALS AND METHODS
Model system
We use a model system based on those previously used to study activity-
dependent formation of OD columns (Miller et al., 1989) and of simple-
cell RFs and ORI columns (Miller, 1994; for review, see Miller, 1996a).

Except for the change from two to four LGN input classes, and other
very minor changes discussed below, the model is as in Miller (1994).

Model cortical cells are arranged in a 32 3 32 grid with positions
denoted by Roman letters, e.g., xW or yW (Fig. 1a). Model LGN cells are
arranged in a corresponding 32 3 32 grid, with positions denoted by
Greek letters, e.g., aW or bW . We use common, e.g., retinotopic, coordinates
so that locations in the two grids can be equated. Each LGN grid location
represents a “projection column” containing four classes of cells: LN, LF,
RN, and RF. Here the first letter stands for the left (L) or right (R) eye
layer, and the second letter stands for the ON (N) or OFF (F) center type
of the LGN receptive field. We will use the variables E and C to represent
eye and center type respectively: E [ {L, R}, C [ {N, F}. We do not
assume that ON and OFF cells are segregated into separate LGN layers
as in the illustration but only that cells of each center type, receiving
input from each eye, are present for all retinotopic positions.

For simplicity, we ignore distinctions among LGN cells beyond these
four types. Ignoring competition among X-, Y-, and W-cell inputs may be
justified by considering the model to represent the dominant input to a
cortical region: X-cells for area 17 and Y-cells for area 18 (Humphrey et
al., 1985; Ferster, 1990a,b; Ferster and Jagadeesh, 1991; Boyd and Mat-
subara, 1996). Distinguishing between cells of differing temporal envelopes
(e.g., lagged and nonlagged; Mastronarde 1987a,b) would likely only ex-
tend, not invalidate, the present results, as explained in Appendix 1.

Connectivity from LGN to cortex is modeled by a static arbor function,
A(xW, aW ), and an evolving synaptic weight function, S(xW, aW ). The arbor
function, A(xW, aW ), models activity-independent biases in connectivity,
e.g., the retinotopically allowed range of cortex over which an LGN
afferent may arborize or sprout. It can be imagined roughly as being 1 for
(xW, aW ) such that there can be a connection from aW to xW, and 0 otherwise.
More generally, we consider a function that tapers from 1 to 0 with
increasing retinotopic separation of aW and xW (Fig. 1b). The arbor function
can be interpreted as a measure of the retinotopic affinity between aW and
xW as determined by activity-independent cues (Miller et al., 1989; Miller,
1997), or alternatively as the relative number of synapses initially made
by an LGN cell at aW to a cortical cell at xW (Miller et al., 1989; Miller,
1990b). The synaptic weight variables, S EC(xW, aW ), represent the total
efficacy or strength of the synaptic connections from LGN cells at
position aW in eye layer E and of center type C to cells at cortical position
xW (Fig. 1a). This efficacy is necessarily zero where A(xW, aW ) is zero. The
spatial RF of the cortical cell at xW is determined by its pattern of
geniculate input, represented by S EC(xW, aW ).

Model dynamics
Overview. We use a simple, linear learning rule, which we will refer to for
simplicity as “Hebbian.” However, our equations can be derived from
simple models of various underlying mechanisms, as mentioned in the
introductory remarks (Miller et al., 1989; Miller, 1990b, 1997). Each
component of the model may thus have multiple interpretations in terms
of biological processes. Some of these are discussed here. For more
details, see Miller (1994).

The dynamic variables in the model are the synaptic weights, S EC,
which define the cortical spatial RFs. These weights develop over time
according to a linear “Hebbian” learning rule, described below, subject to
several constraints. We have shown previously that under this rule,
correlations in firing activity of LGN cells, (Fig. 1a, C) are the primary
determinants of RF structure, whereas interactions between cortical cells
(Fig. 1a, I) are the primary determinants of map structure.

We first present the Hebbian learning rule without any constraints.
This learning rule involves the functions A, I, and C, so we next describe
the forms of these functions we will use. Then we describe the saturation
constraints, which keep individual synaptic strengths positive and
bounded, and the competitive constraints, which cause less-correlated
inputs onto a cortical cell to weaken in response to competition from
more-correlated inputs onto the same cell. The constraint is intended to
model the effects, but not the mechanism, of unknown physiological
processes that achieve a competitive outcome. Finally we describe in
detail the iterative numerical procedure used to integrate the differential
equations of the model and to allow joint enforcement of the saturation
and competitive constraints.

Unconstrained Hebbian learning. To study the pattern of synaptic
weights that initially develops from a nearly uniform projection, it is not
necessary to explicitly specify sequences of input activity patterns.
Rather, we only need to specify “correlation functions,” C EC,E9C9(aW , bW ),
each representing the time averaged pattern of correlation between pairs
of LGN cells, one of type EC at location aW and another of type E9C9 at

Erwin and Miller • Combined Development of ORI and OD J. Neurosci., December 1, 1998, 18(23):9870–9895 9871



location bW (Fig. 1a) (for further details of the averaging procedure, see
Miller, 1990b, and references therein). The time over which this averag-
ing occurs is purposely kept vague: it corresponds to the time separation
of two input activities that yields cooperative interactions under what-
ever plasticity rule is acting biologically. More generally, it would involve
some weighted average over time separation, weighted by the degree of
cooperative interaction. The assumptions being made are that (1) one
can summarize the temporal details of activity of any input pair by a
number describing their degree of cooperation under the plasticity rule;
and (2) these numbers can on average be predicted simply from the
separation of two inputs and their input types (as supported by, e.g.,
Mastronarde, 1983a,b; Meister et al., 1995; Wong and Oakley, 1996).

Unconstrained development under a Hebbian or other correlation-
based synaptic modification rule then takes the form:

d
dt

SEC~xW, aW , t! 5 HEC@S#~xW, aW , t!, (1)

where S represents the set of all synaptic weights, and:

HEC@S#~xW, aW , t! 5 hA~xW, aW !O
yW

I~xW, yW! O
bW ,E9,C9

CEC,E9C9~aW , bW !SE9C9~yW, bW , t!.

(2)

Here, h is a constant learning rate. We have explicitly shown the time
dependence of S EC(xW, aW , t), to distinguish it from the time-independent
terms, but in most cases we will simply write S EC(xW, aW ).

Although this equation may look daunting, it expresses a simple rule.
It states that the development of one synapse (S EC(xW, aW )) is determined
by a sum of the average influences exerted on it by all other synapses
(e.g., S E9C9(yW, bW )). The influence on one synapse by another is a product
of three factors: (1) the synaptic strength of the “influencing” synapse,
S E9C9(yW, bW ); (2) the strength of correlation in the firing of the two
synapses, C EC,E9C9(aW , bW ); and (3) the average influence I(xW, yW) exerted
across the cortex when the two synapses fire together. The influence
between two synapses is attributable to their cooperation (via activity
correlation, C) in producing a “reward” signal. This signal may be the
firing of each synapse’s postsynaptic cell in a Hebbian model, or the
activity-dependent production and uptake of a diffusible modification
factor in other models. The propagation of this influence between
cortical cells is summarized by I, which could represent the effects of
intracortical connectivity in a Hebbian model, and/or of diffusion in a
model involving diffusible factors. Multiplication by the arbor function,
A(xW, aW), ensures that influence is modulated by the intrinsic retinotopic
affinity between aW and xW and in particular ensures that no synapses can
develop where they are retinotopically disallowed (i.e., where A(xW, aW) 5 0).

The advantage of this formulation is that it allows the central deter-
minants of development to be isolated, independent of underlying mech-
anism. That is, for any proposed mechanism, it may be possible to
summarize the elements driving development as (1) a pattern of input
correlations, (2) propagation of influence of correlated input activity
between cortical cells, and (3) retinotopic affinity or retinotopic limita-
tions on connectivity. Our formulation isolates and describes the influ-
ence of each of these three factors on the developmental outcomes and
thus simultaneously describes the determinants of development under
multiple mechanisms. This formulation is further described by, e.g.,
Miller (1990a,b, 1997).

The use of a linear equation can be justified by considering early
development of the differences between initially approximately equiva-
lent input projections, e.g., left eye and right eye or ON and OFF (Miller,
1990a,b). To the extent to which initial differences are small, early
development of these differences will be determined by linear equations.
This early linear development determines many features of the final
mature pattern (in particular, those features that are shared by the fastest
growing patterns in the linear regime typically persist in the final pat-
tern). However, nonlinearities can also play important roles in develop-
mental outcome (Feidler et al., 1997). Furthermore the different input
projections are not really equivalent, because initial projections show
contralateral-eye and OFF-center dominance (Albus and Wolf, 1984;
Braastad and Heggelund, 1985; Crair et al., 1997a). Thus, to some extent
this simple approach is justified simply by its success in yielding insight
into the biology. It is of value to understand the simplest models before
adding complexity to them, the moreso when that complexity is not well
constrained by experiment. Many insights gained from the simplest
models will persist as more complexities are added; we comment at

Figure 1. a, Sketch of the model. The synaptic weight variable S RN(xW, aW)
represents the total weight to cortical position xW from LGN cells at aW
representing eye R (right eye) of center type N (ON-center). Similarly,
S LN(yW, bW) represents the total left-eye, ON-center weight from bW to yW.
More generally, synaptic weights from aW to xW are written S EC(xW, aW), where
E represents eye, E [ {R, L} (right eye, left eye), and C represents center
type, C [ {N, F} (ON center, OFF center). The correlation function
C RN,LN(aW , bW) measures the degree of correlation between the spiking
activities of LGN neurons of type RN at position aW and those of type LN
at position bW . More generally, activity correlations between LGN neurons
of type E, C at position aW , and those of type E9, C9 at position bW , are
written C EC,E9C9(aW , bW). The intracortical interaction function I(xW, yW) de-
scribes how activity at cortical location xW encourages or discourages the
development of correlated synaptic connections at a nearby location yW. b,
c, The correlation functions C EC,E9C9(aW , bW) are defined in terms of two
functions. b, A Gaussian function G3(aW 2 bW) (see Eq. 3) represents
correlations that are purely positive and taper with distance; c, an oscil-
lating or Mexican-hat function M(aW 2 bW) (Eq. 4) represents correlations
that change sign with distance. d, e, Arbor function A(xW 2 aW) and the
intracortical interaction function I(xW 2 yW) used throughout this article.
The horizontal axes are in units of grid intervals; 1 grid interval can be
taken to be ;100 mm (Miller, 1994). The vertical axes are in arbitrary
units (changes in the size of A, I or C are equivalent to change in the size
of the learning rate h (Eq. 2); hence the absolute size of these functions
is arbitrary).
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several points on which features of the outcome are likely to be most
susceptible to alteration by nonlinearities.

The functions A, I, and C. We will show analytically that the arbor
function, A, and the intracortical interaction function, I, play develop-
mental roles in the present model similar to their previously studied roles
in the two-input-type forms of the model (Miller et al., 1989; Miller,
1994). Thus in the present numerical simulations we hold constant the
forms of A and I while we study the role of the correlation functions,
C EC,E9C9(aW , bW ), within and between the four input types.

The correlation between two inputs of given types is assumed to
depend only on their types and on the distance separating them:
C EC,E9C9(aW , bW ) 5 C EC,E9C9(uaW 2 bW u). Such dependence is shown in exper-
imental measurements of correlations (Mastronarde, 1983a,b; Meister et
al., 1995; Wong and Oakley, 1996) and is sufficient to produce RFs with
alternating ON/OFF subregions, such as simple cells.

Two basic functional forms will be used throughout the paper. The
first form has purely positive correlations that taper with distance uaW 2 bW u,
as given by a Gaussian function determined by a parameter g:

Gg~uaW 2 bW u! 5 ~1/g2!exp@2uaW 2 bW u2/~~0.24g!~6.5!!2#. (3)

This function is illustrated for g 5 3 in Figure 1b. A second functional
form, a “Mexican-hat” function (that is, positive at small distances and
negative at larger distances), as illustrated in Figure 1c, represents
correlations that change sign with distance:

M~uaW 2 bW u! 5 G1~uaW 2 bW u! 2 G3~uaW 2 bW u!. (4)

In these definitions, the width of the Gaussian is specified as a fraction
0.24g of the radius of an arbor, which is 6.5 grid intervals corresponding
to ;600 mm, as discussed by Miller (1994). The factor (1/g2) ensures that
varying g varies the width of the Gaussian without altering its two-
dimensional integral. The constant 0.24 in Equation 3 was chosen be-
cause it optimizes the orientation selectivities resulting when certain
correlation functions (C ORI1 and C ORI2, defined in Fig. 2d, below), have
the Mexican-hat form of Equation 4 (Miller, 1994).

For simplicity, we take the arbor function to be identical for each eye,
E, and center type, C, and constant in time. We let A be radially
symmetric, largest near xW 5 aW and falling to zero as a function only of
lateral distance, A(xW, aW ) 5 A(uxW 2 aW u). We use the default arbor function
of Miller (1994), which is zero beyond a radius of 6.5 grid intervals, as
illustrated in Figure 1d. Taking grid intervals to be on the order of 100
mm, arbor diameters are a little .1 mm (for more detailed discussion, see
Miller, 1994, p 433). This arbor function imparts an initially smooth
retinotopy on a coarse scale. Because the receptive fields that evolve are
typically significantly smaller than allowed by the arbor function, fine
scale variations in retinotopy can emerge from activity-dependent syn-
aptic modification.

Intracortical interactions are modeled by a function, I(xW, yW). For sim-
plicity, so that we can focus on the effects of varying input correlations
and also to ease computation, we use a two-dimensional cortical archi-
tecture and take I to be a function of only the distance between two
cortical column positions, I(uxW 2 yWu). This function is not meant to be a
realistic model of interactions attributable to cortical connectivity, which
are three-dimensional and cell-specific and develop along with the
geniculocortical weights. This grossly simplified implementation of cor-
tical interactions means that our model focuses more on development of
RFs than on details of map structure because, as discussed above,
correlations are the primary determinants of RF structure, whereas
intracortical interactions are the primary determinants of map structure
(for extensive discussion, see Miller, 1994.)

Setting I to be a radially symmetric, Mexican-hat function of lateral
distance, with the form illustrated in Figure 1e, is sufficient to cause the
emergence of continuous, approximately periodic maps of RF properties.
The form illustrated is used throughout this paper; it is identical to the
function M defined in Equation 4, except with the factor 0.25 rather than
0.24 in Equation 3 defining the underlying Gaussian functions. (The
value 0.25 was chosen simply as a round number that gave reasonable
orientation maps in Miller (1994); the similarity of the Mexican-hat
functions used for I and C has no significance for the results presented
here.) Because there is little evidence for such Mexican-hat-shaped
intracortical connections, it should be noted that very similar model
behavior is achieved if purely excitatory intracortical interactions are
combined with an additional competitive “arbor” constraint ensuring
that each presynaptic afferent with a given mean activity maintains
approximately constant total synaptic projection strength (Miller et al.,

1989; Miller, 1994; Miller and MacKay, 1994). Thus one can think of the
Mexican-hat I as a computationally convenient stand-in for this combi-
nation of excitatory interactions and arbor constraints.

Saturation constraints. Synaptic weights must be constrained to remain
positive and bounded. We refer to these as saturation constraints. We
take these to be:

0 # SEC~xW, aW ! # 8A~xW, aW !, for all E, C, xW, aW (5)

(the effects of varying the value “8” are studied in Miller, 1994). Once a
synapse S EC(xW, aW ) becomes saturated at either zero or 8A(xW, aW ), it is no
longer plastic. This prevents the Hebbian term H EC[S](xW, aW , t) from
pushing the synapse beyond the saturation limits (this term rarely if ever
changes sign for a synapse once it has developed sufficiently to saturate,
assuming the functions A, I, and C do not change). We let P(xW, t) denote
the set of coordinates of the plastic (unsaturated) synapses onto the
cortical cell at xW:

P~xW, t! 5 $~E, C, aW ! such that 0 , SEC~xW, aW , t! , 8A~xW, aW !%. (6)

Competitive constraints. Some sort of competitive mechanism must be
included in any Hebbian learning scheme to model the fact that different
correlated input patterns compete with one another, so that a single
correlated pattern of inputs ultimately comes to dominate the RF of a
given cell (Guillery, 1972; von der Malsburg, 1973; Bienenstock et al.,
1982; Stryker and Strickland, 1984; Miller and MacKay, 1994; Miller,
1996b). For example, in OD segregation, each eye’s projection is capable
of strengthening its innervation onto cortical cells, yet ultimately only
one eye comes to dominate each layer 4 cell; where one eye wins, the
other must lose. Competition was directly demonstrated by Guillery
(1972), who showed that, after monocular deprivation, the deprived eye
can maintain its projection in retinotopic locations that lack open-eye
competition yet loses its projection where open-eye afferents are present.

Very little is known about the mechanism by which such competition
is enforced physiologically (but see Davis and Goodman, 1998; Turri-
giano et al., 1998). We therefore do not try to model a specific mechanism
but instead simply enforce competition by demanding that the total
synaptic efficacy projecting onto each cortical cell be held constant:

d
dt O

E,C,aW

SEC~xW, aW , t! 5 0. (7)

We refer to this as a competitive constraint on the developmental dynam-
ics. It ensures that when some synapses are strengthened, others must be
correspondingly weakened. It is enforced by modifying our development
equation, Equation 1, through subtraction of an additional term, so that
it becomes:

d
dt

SEC~xW,aW , t!

5 HHEC@S#~xW, aW , t! 2 e~xW, t! A~xW, aW !,
0,

for $~E, C, aW !% [ P~xW, t!,
otherwise. (8)

The value of e(xW, t) is chosen at each time so as to ensure that the
constraint, Equation 7, is satisfied.

When the number of plastic synapses P(xW, t) at cortical position xW is not
changing, the value of e(xW, t) that will satisfy the constraint (7) is:

e~xW, t! 5 F O
P~xW,t!

HEC@S#~xW, aW , t!GY O
P~xW,t!

A~xW, aW !. (9)

In numerical simulations, for any time step over which the number of
plastic synapses in P(xW, t) changes, we instead use the equation:

e~xW, t! 5 F z~xW, t! 1 O
P~xW,t!

HEC@S#~xW, aW , t!GY O
P~xW,t!

A~xW, aW !, (10)

where the value of z(xW, t) must be determined by an iterative procedure,
given in the next section, to ensure that Equation 7 remains true after
application of Equation 8 and restriction of all synapses at xW to lie within
the saturation limits of Equation 5.

Initialization. Synapses are initialized as S EC(xW, aW ) 5 A(xW, aW )[1 1
j(xW, aW )] where each j is drawn randomly from a distribution uniform
between 20.2 and 0.2. Note that this embodies our assumption that
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initial differences between the projections of the different input types are
small (see discussion above on use of a linear equation).

For ease of comparing the effects of changing parameters, a single
random initial condition (same random seed) is used for all illustrated
simulations. We have run simulations for many initial conditions; results
are qualitatively invariant.

Numerical algorithm. This section describes in detail how the differen-
tial equation governing synaptic growth is numerically integrated while
the saturation and competitive constraints are also enforced. These
details are necessary for a complete description of the model sufficient to
allow reconstruction of the results. This section may be safely skipped by
most readers.

We integrate the differential equation, Equation 8, with a three-step
difference method (Birkhoff and Rota, 1978). The initial condition is
taken as time t 5 0. Application of the equations proceeds as follows for
each cell xW at each time step t:

(1) Calculate H EC[S](xW, aW , t) from Equation 2.
(2) Determine the sets of plastic synapses P(xW, t) from Equation 6.
(3) Initially assume z(xW, t) 5 0.
(4) For a given value of z(xW, t):

(a) Calculate e(xW, t) from Equation 10.
(b) For each of the four weights S EC, calculate (d/dt)S EC(t) using

Equation 8.
(c) Calculate DS EC(t) 5 Dt(f0(d/dt)S EC(t) 1 f1(d/dt)S EC(t 2 D t)

1 f2(d/dt)S EC(t 2 2D t)). The factors are f0 5 1, f1 5 f2 5 0 for
the first time step; f0 5 2, f1 5 21, f2 5 0 for the second time
step; and f0 5 23/12, f1 5 216/12, and f2 5 5/12 for subsequent
steps.

(d) For each of the four weights S EC, calculate S EC(t 1 D t) 5
S EC(t) 1 DS EC(t), followed by setting any weight S EC(xW, aW , t 1
D t) , 0 to 0, and any weight S EC(xW, aW , t 1 D t) . 8A(xW, aW ) to
8A(xW, aW ).

(e) Calculate D(xW) 5 ¥E,C,aW[S EC(xW, aW , t 1 D t) 2 S EC(xW, aW , t)] to
determine whether the input to cell xW was held constant for
this value of z(xW, t).

(f) If D(xW) is zero (or smaller than our criterion 0.00001), then
accept the trial values of all the S EC(t 1 D t) for xW and continue
from step 2 with the next xW. Otherwise, discard these S EC(t 1
D t) and repeat from step 4a using a new value of z(xW) selected
by the method of bisection (Press et al., 1992). This method is
guaranteed to converge [to find, in a finite number of steps, a
z(xW) that yields an arbitrarily small D(xW)], because D(xW) de-
creases monotonically with z(xW).

For the first four time steps, we take D t 5 1, but we double the time
step to D t 5 2 afterward. Thus, after t 5 4 no synaptic values are
computed at odd-numbered time steps. [Similar results can be obtained
using Euler one-step integration with a smaller time step. The three-step
method allows the use of a larger D t or h but requires the storage of the
intermediate results (d/dt)S EC(xW, aW , t 2 D t) and (d/dt)S EC(xW, aW , t 2 2D t).]
In two-stage simulations, the correlation functions are changed at the
beginning of the second stage. In this case we again use D t 5 1 for the
first four time steps of the second stage and D t 5 2 thereafter.

As described by Miller and MacKay (1994), with the subtractive
competitive constraint (Eq. 10), the development will cease only when all
of the synapses have reached either the upper or lower cutoff specified in
Equation 5. For efficiency, we terminate a simulation when 90% of the
synapses have reached the upper or lower cutoff. We choose the learning
rate h small enough such that each complete simulation will last at least
40 iterations. (Note: because D t 5 2 after the first four time steps, 40
iterations corresponds to t 5 76.)

RF and map analysis
It is not possible to show images of the RFs and maps from each of the
many simulations conducted. Thus, we define numerical measures
through which we may study the effects of the model parameters. It is
most convenient to describe map properties in terms of the composite
weight vectors defined in Table 1. (These composite weight vectors are
introduced and extensively discussed in Results.)

The degree of OD segregation of a cell, m(xW), is defined as the
difference in connection strength between the right and left eyes, divided
by the sum of those connection strengths: m(xW) 5 ¥aWS OD(xW, aW )/¥aWS SUM(xW,
aW ). Complete right- or left-eye dominance is indicated by m(xW) 5 11 or
21. The overall degree of OD segregation ^m& can be assessed as the root
mean square of m(xW):

^m& 5 S O
xW

m~xW!2/ND 1/2

. (11)

Here, N is the number of cortical locations.
We measure the degree to which ON and OFF inputs are segregated

by an index Z:

Z 5 ~1/N!O
xW,aW

@uSORI1~xW, aW !u/SSUM~xW, aW !#. (12)

We define preferred orientation of the R or L eye, fxW
R or fxW

L, respec-
tively, as the orientation of the flashed sinusoidal grating stimulus that
maximizes the direct LGN input to a cortical cell for stimulation of that
eye. This orientation is computed as that corresponding to the peak of
the Fourier transform of ON minus OFF input for that eye (Miller, 1994).
Note that we do not directly calculate cortical activity, and we neglect
input from other cortical cells for two reasons: (1) we are interested in
the degree of orientation tuning arising from segregation of the LGN
input; and (2) our model does not incorporate development of the
intracortical connections, and if we interpret the static I¼ function as the
strength of synaptic input between cortical cells, then including these
inputs causes only subtle changes in cell responses and the orientation
map (Miller, 1994).

Orientation selectivity, qxW
R or qxW

L, measures the degree to which a cell’s
input to sinusoidal gratings is peaked at its preferred orientation. We use
a measure qxW

E, defined by Miller (1994). With the simple response model
used here, in practice 0 # qxW

E # 0.27. Mean cortical orientation selectiv-
ity, Q, is computed as a weighted average of monocular orientation
selectivities q R and q L across cortex:

Q 5
1
N O

xW

1
2@qxW

R~1 1 mxW! 1 qxW
L~1 2 mxW!#. (13)

In a few cases in which the preferred ORI is nearly the same in each
eye of all binocular cells, we show a “binocular” ORI map, rather than
monocular maps, to save space. Such a map is constructed by averaging,
at each cortical position xW, the two monocular preferred orientations, fxW

E,
E [ {L, R}, weighted by their ORI selectivities, qxW

E, and by the corre-
sponding eye’s proportion of synaptic strength at xW, (1 6 mxW)/2. The
“binocular” preferred orientation, fxW, and selectivity, qxW, are found from

qxWe
2ifxW 5 qxW

Re 2if xW
R
~1 1 mxW!/ 2 1 qxW

Le 2if xW
L
~1 2 mxW!/ 2.

Positive and negative singularities in the ORI maps are defined as
locations centered between four grid positions around which the sum of
the changes in preferred orientation rotates through 180° in the same or
opposite direction as the movement around the singularity.

Table 1. Definitions of the composite variables

Composite weight variables S m Composite correlation functions C m

S SUM 5 (S RN 1 S RF) 1 (S LN 1 S LF) C SUM 5 (C SE SC 1 C SE OC) 1 (C OE SC 1 C OE OC)
S OD 5 (S RN 1 S LF) 2 (SLN 1 SLF) C OD 5 (C SE SC 1 C SE OC) 2 (C OE SC 1 C OE OC)
S ORI1 5 (S RN 2 S RF) 1 (S LN 2 S LF) C ORI1 5 (C SE SC 2 C SE OC) 1 (C OE SC 2 C OE OC)
S ORI2 5 (S RN 2 S RF) 2 (S LN 2 S LF) C ORI2 5 (C SE SC 2 C SE OC) 2 (C OE SC 2 C OE OC)
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To determine the similarity of any two ORI maps, A and B, we use a
method similar to that which has been used in optical imaging experi-
ments (Gödecke and Bonhoeffer, 1996). We first compute single-
orientation response maps at 18 discrete orientations u at 10° intervals.
We define the responses, A(xW, u) and B(xW, u), as the maximum LGN input
to cells at xW attributable to any grating (of any spatial phase or frequency)
with preferred orientation within 65° of u. Correlation coefficients
(Pearson’s r; Press et al., 1992) are computed between the two single-
orientation maps, A(xW, u) and B(xW, u), giving a measure r(u), which is then
averaged over u to give a single measure of similarity between the maps.

RESULTS
The dynamical variables in our model are the four synaptic
weights, S EC, defined in Figure 1a. These represent the projection
to layer 4 from LGN cells of center type C [ {N, F} (ON and
OFF), and of eye E [ {R, L} (right and left) (for simplicity, we
use “of eye E” to mean “driven by eye E”). These develop under
Equation 8, as determined by the correlation functions C, which
describe the patterns of correlation in the firing of pairs of LGN
cells, and by the intracortical interaction function I (Fig. 1e),
which describes interactions across cortical positions attributable
either to synaptic connectivity or diffusible factors. This develop-
ment occurs subject to constraints, including the limits on retino-
topically appropriate connections specified by the arbor function
A (Fig. 1d), competition for limited synaptic resources on each
postsynaptic cell imposed by Equation 10, and minimum and
maximum weight values (saturation limits) imposed by Equation 5.

The functions I and A and the saturation limits all play roles in
the present model that are formally identical to their roles in
earlier models (Miller et al., 1989; Miller, 1994), which described
development of OD or ORI maps alone. Because the effects of
changes in these functions were fully described there, we hold
them constant here and focus on the role of the correlation
functions.

We make the simplifying assumptions that the activity patterns
in LGN of the right and left eyes are statistically indistinguish-
able, as are the activity patterns of the ON and OFF populations.
In reality, there are differences between ON and OFF spontane-
ous activity patterns (in retina; Mastronarde, 1983a,b; Wong and
Oakley, 1996). As previously noted, we also make the simplifying
assumption that the arbor function is identical for all four pro-
jection types (in reality, the contralateral eye has a somewhat
stronger anatomical projection than the ipsilateral eye; LeVay et
al., 1978; Shatz and Stryker, 1978). We will refer to these, along
with the assumption that the four input types begin in approxi-
mately equal, unstructured conditions (see Materials and Meth-
ods), as symmetry assumptions between the two eyes and between
the two center types.

Correlations among input activities are in general defined by a
set of 16 correlation functions, CEC,E9C9(aW 2 bW), describing the
correlation in activity between an input of eye E and center type
C at position aW , and one of eye E9 and center type C9 at position
bW . Because of the symmetry assumptions, the functions CEC,E9C9

depend only on whether E and E9 are the same or opposite eyes
(SE or OE ) and on whether C and C9 are the same or opposite
center types (SC or OC). Thus, there are only four distinct
correlation functions, which we describe as CSE SC , CSE OC , COE SC ,
and COE OC (Fig. 2a).

Composite weight modes and correlation functions
The four synaptic weight variables and correlation functions
correspond to physical quantities that are, in principle, measur-
able. However, the behavior of the model is more easily described
in terms of four composite synaptic weight variables, or modes,

called Sm, where m [ {SUM, OD, ORI1, ORI2}, and four
corresponding correlation functions, Cm. These are defined, as
shown in Figure 2d and Table 1, as different linear combinations
of the respective physical weight variables (Fig. 2b) and correla-
tion functions (Fig. 2c). The modes can be understood as follows:
(1) SSUM(xW, aW) is the summed synaptic connection strength from
all cell types at aW to xW; (2) SOD(xW, aW) is the total right-eye minus
total left-eye synaptic strength from aW to xW; it describes monocu-
larity and OD maps; (3) SORI1(xW, aW) is the total ON-center minus
total OFF-center synaptic strength from aW to xW; it describes one
type of ORI selective RFs and their ORI maps; and (4) SORI2(xW,
aW) is the right-eye ON/OFF difference minus the left-eye ON/
OFF difference from aW to xW; it describes a second type of ORI-
selective RFs and their ORI maps.

Near the beginning of a simulation, when most synapses are far
from their maximum or minimum values, each mode S m develops
independently of the other three, under the influence of its corre-
sponding composite correlation function, Cm. This can be seen in
equations, by substituting the definitions of the composite weight
vectors and correlation functions into Equation 8. Ignoring the
effects of synaptic saturation (Eq. 5), this yields the following four
independent dynamical equations:

d
dt

SSUM~xW, aW ! 5 hA~xW, aW !OyW,bW I~xW, yW!CSUM~aW , bW !SSUM~yW, bW !

2 4e~xW! A~xW, aW !; (14a)

d
dt

SOD~xW, aW ! 5 hA~xW, aW !OyW,bW I~xW, yW!COD~aW , bW !SOD~yW, bW !;

(14b)

d
dt

SORI1~xW, aW ! 5 hA~xW, aW !OyW,bW I~xW, yW!CORI1~aW , bW !SORI1~yW, bW !;

(14c)

d
dt

SORI2~xW, aW ! 5 hA~xW, aW !OyW,bW I~xW, yW!CORI2~aW , bW !SORI2~yW, bW !.

(14d)

Note that all modes except SSUM are described by a formally
identical equation, Equations 14b–14d. This decomposition (Eqs.
14a–14d) was reported by Erwin and Miller (1996b) and was
independently noted by Piepenbrock et al. (1996, 1997). The
derivation is presented in more detail in Appendix 1.

When the symmetry assumptions apply, the outcome of devel-
opment is most conveniently described in terms of the four
modes, because they initially (before weights saturate) develop
independently of one another. The final RF and map properties
are largely determined by this early phase of development. In
contrast, the development of each of the four original weight
vectors, S EC (Fig. 2b), depends on the other three original weight
vectors. Thus, the modes Sm and their corresponding composite
correlation functions Cm provide the natural language with which
to characterize model behavior.

Because Equations 14a–14d neglect the weight saturation con-
straints, Equation 5, they do not completely describe the model
dynamics. It is awkward to express the saturation constraints in
terms of the composite weight vectors. Thus, all simulations are
actually carried out using the numerical algorithm described in
Materials and Methods, which does not make reference to the
modes or the composite correlation functions.
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Independently growing synaptic patterns and their
growth rates
Within each mode, Sm, m 5 {SUM, OD, ORI1, ORI2}, there
are multiple, independently growing weight patterns, which we
label Si

m. For example, one pattern of the OD mode, S1
OD, might

involve monocular cells with eye preference alternating in OD
stripes having a period of four grid intervals, whereas another
pattern, S2

OD, might be similar but with a period of five grid
intervals. Similarly, S1

ORI1 might involve cells developing ON/
OFF segregation with three horizontal subregions per RF,
whereas another pattern, S2

ORI1, might involve two vertical sub-
regions per RF.

Each synaptic pattern, Si
m, has its own corresponding growth

rate, li
m, which we number from largest to smallest: l0

m $ l1
m $ l2

m

$ . . . . Thus, the fastest-growing pattern of mode Sm is S0
m, with

corresponding growth rate l0
m. For fixed A and I, the shapes of the

patterns of Si
m are determined by the shape of C m, whereas their

growth rates li
m increase with the magnitude of Cm and also

depend on the shape of Cm. [The growth rates are defined by the
independent exponential growth of each pattern: letting Si

m(t) be
the amplitude of Si

m at time t; then for small times t, i.e., before

weights saturate, Si
m(t) 5 Si

m(0)el i
m

t. Technically, the Si
m and li

m

are the eigenvectors and eigenvalues of Eqs. 14a–14d.]
The various synaptic patterns, Si

m, grow independently until
synapses begin to saturate at the upper or lower cutoffs in Equa-
tion 5. The fastest growing patterns will dominate the overall
weight pattern by the time saturation begins. Thus, the final RFs
and map typically are determined by a mixing of only the fastest-
growing weight patterns, so that central features of the outcome
of development can be characterized by determining the structure
of these patterns (this approach is discussed in more detail by
Miller et al., 1989; Miller, 1990a, 1994). The fastest growing
patterns may all belong to a single mode, such as OD or ORI, or
may include members of several modes.

Overview
We will begin by discussing how each mode, Sm, develops inde-
pendently. This determines the conditions necessary for develop-
ment of OD or of ORI selectivity alone. We then turn to the
simultaneous development of several modes, for which we deter-
mine the conditions for binocular matching of preferred orienta-
tions and for combined development of OD and ORI. Finally, we

Figure 2. a, If we assume the left and right eyes may be treated equivalently, and likewise for the ON and OFF cells, then the 16 correlation functions
C EC,E9C9, E, E9 [ {R, L}, C, C9 [ {N, F}, reduce to only four distinct functions C XY, as shown. Here X [ {SE , OE}, where SE means same eye and OE
means opposite eye; and Y [ {SC , OC}, where SC means same center type and OC means opposite center type. b–d, Development is most easily described
in terms of four composite synaptic weights or modes, S m, and four corresponding composite correlation functions, C m, m [ {SUM, OD, ORI1, ORI2}.
b, On the lef t, the four synaptic weight variables S EC are shown in a square grid with columns labeled by eye, E, and center type, C. c, Similarly, the four
correlation functions of a are also arranged in a square grid. d, To the right, there is one small grid for each m. The symbols inside the grids define both
S m and C m as sums of positively and negatively weighted entries in the corresponding positions in the larger grids to the lef t. For example, S OD [ S RN

1 S RF 2 S LN 2 S LF, and C ORI1 5 C SE SC 2 C SE OC 1 C OE SC 2 C OE OC. Explicit definitions are in Table 1.
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consider the effects of sequential development, in which initially
ORI develops alone, and OD development begins subsequently
because of a change in input correlations. We find that sequential
development does not qualitatively change the previously deter-
mined conditions but does quantitatively relax some of them.
In addition, it leads to development of significant correlations
between OD and ORI maps similar to those observed
experimentally.

Our results are presented in terms of the form that the corre-
lation functions C m must take to achieve a given developmental
outcome. The results are very simple in this form. However, the
Cm functions are not directly accessible experimentally. As
shown in Table 1 and Figure 2d, the C m functions are linear
combinations of the correlation functions, CSE SC , C SE OC , COE SC ,
and C OE OC , which correspond to more intuitive, experimentally
measurable quantities. To allow our results to be understood in
terms of these more intuitive quantities, we show in Figure 3 the
forms that CSE SC , CSE OC , C OE SC , and COE OC take in our simula-
tions. Figure 3 should be referred to along with each simulation.
We have limited ourselves in the simulations to cases in which
each of the Cm functions can be expressed as a Gaussian (Eq. 3,
Fig. 1b) or Mexican-hat (Eq. 4, Fig. 1c) function.

Separate development of individual modes
Each mode develops independently in the early part of develop-
ment, before synaptic saturation begins to break the indepen-
dence of Equations 14a–14d. In this section, we describe the

determinants of the independent development of each mode.
These results are summarized schematically in Figure 4. These
results derive directly from the results of our previous two-input-
type models, as explained in Appendix 2, so discussion here will
be brief.

The basic intuition behind these results is that correlation-
based development leads to RFs consisting of a maximally cor-
related subset of inputs (for the mathematical expression of this,
see Miller and MacKay, 1994; Miller, 1997). Correlations are
maximized when the spatial RF pattern of each Sm closely follows
the spatial structure of the corresponding C m: if a given Cm is all
of one sign, then so is the RF pattern that results for the corre-
sponding Sm; if a given Cm oscillates in sign, so does the RF
pattern of the corresponding Sm, with a similar spatial period. In
particular, the fastest growing patterns of each Sm follow the form
of the corresponding C m in this manner, and these patterns in
turn determine the structure that develops in Sm.

Development of ocular dominance
Ocular dominance is a net difference in total left-eye versus
right-eye strength, summed over all input types of either eye. OD
is represented only by the SOD mode (Table 1). Monocularity
develops if cortical cells become dominated by a single eye
throughout their RF, which means that SOD has the same sign
throughout the RF (positive for right-eye domination, negative
for left-eye domination). The condition for this to occur is as
follows (Fig. 4a):

Figure 3. Correlations in firing among LGN cells used in the simulations. In terms of composite correlation functions, these take the form C ORI1 5
r 1M, C ORI2 5 r 2M, C OD 5 dG3 , and C SUM 5 0 (see Fig. 1b,c). Here we illustrate these correlations in terms of the more intuitive, experimentally
measurable functions C SE SC , C SE OC , C OE SC , and C OE OC (see Fig. 2a). a, LGN firing correlations corresponding to C ORI1 and C ORI2 alone: d 5 0. Model
results for this case are shown in Figure 6. Correlation functions are shown for C ORI1 dominant: r 1 5 1, r 2 # r 1. For C ORI2 dominant, r 1 # r 2, the
within-eye correlations would be identical to those shown here, whereas between-eye correlations would be of opposite signs to those shown here. b, LGN
correlations attributable to C OD with or without C ORI1: r 2 5 0. Functions of this form are used in Figures 5 and 7 and elsewhere. As in Figure 1b–e,
the horizontal axes are in units of grid intervals (;100 mm; Miller, 1994), and the vertical axes are in arbitrary units.
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Condition 1. For monocularity to develop, COD should be
positive at least at small distances, and it should not significantly
oscillate in sign within an arbor radius. (More precisely: the peak
of the Fourier transform of COD must be at a wavelength long
compared to the arbor diameter.) By arbor radius, we mean the
radius over which LGN cells can project to a common cortical
point.

Condition 1 was found by Miller et al. (1989). The condition
there was expressed in terms of the net difference in total left-eye
versus right-eye strength, which here is represented by SOD; and
in terms of the difference between within-eye and between-eye
correlations, which here is represented by C OD. Note that both
SOD and C OD include a sum over ON and OFF center types
(Table 1), whereas distinct center types were not considered by
Miller et al. (1989). The applicability of those results to the
present case is shown in Appendix 2.

The independent development of an OD map in the present
four-input-type model is shown in Figure 5a, for a case in which
only the SOD mode develops (because all the Cm values except
C OD are set to zero), and COD satisfies Condition 1. Here, COD

was a broad Gaussian. Most cortical cells become monocular, as
shown by the RFs of an 8 3 8 subset (Fig. 5c,d). ON- and
OFF-center inputs develop identically. The form and spatial
period of the OD map are jointly determined by the functions I
and A precisely as in Miller et al. (1989).

Development of orientation selectivity: SORI1 and SORI2

A monocular RF develops ORI selectivity if it develops simple-
cell structure: elongated, spatially segregated ON and OFF sub-
regions. This means that the monocular RF must spatially oscil-
late, along one direction, between regions of ON domination and
OFF domination; that is, the difference between ON-center and
OFF-center strength must spatially oscillate in sign. For a binoc-
ular cell, each monocular RF should have such a structure, with
matching preferred orientations.

SORI1 is the sum of the right-eye and left-eye ON/OFF differ-
ences. ORI selectivity develops if SORI1 spatially oscillates in
sign within an RF. Oscillations in S ORI1 correspond to ON/OFF
segregation that is in phase in the two eyes: ON subregions in the
right eye and ON subregions in the left eye grow in corresponding
locations; likewise, OFF subregions in the two eyes are matched
(Fig. 4b).

S ORI2 is the difference of the right-eye and left-eye ON/OFF
differences. Just as for SORI1, ORI selectivity also develops if
SORI2 spatially oscillates in sign within an RF. Oscillations in
S ORI2 correspond to ON/OFF segregation that is antiphase in the
two eyes (Fig. 4c): ON subregions in the right eye and OFFFigure 4. Top. Determinants of single-cell RF properties for cases in

which development is dominated by a single correlation function. a, When
C OD(aW , bW) dominates the other correlation functions and is positive for
distances within the radius of the arbor function A(xW, aW), monocular RFs
tend to develop. The example RF has no connections to the right eye
(shown as black) and high connection strength in the center of the left eye,
RF, gradually falling to zero at the edges (shown as decreasing bright-
ness). Yellow indicates that ON and OFF connections are mixed in the left
RF. b, When C ORI1(aW , bW) is dominant and oscillates from positive to
negative within the arbor radius, as in the Mexican-hat function shown,
both the left and right RFs of each cortical cell will develop segregated
ON ( green) and OFF (red) regions, giving each cell a preferred orienta-
tion. The ON and OFF regions in the left RF will be at the same locations
as the ON and OFF regions in the right RF. c, When an oscillating
C ORI2(aW , bW) dominates, segregated, elongated ON and OFF regions in
the left and right RFs again result. However, in this case the ON-center
regions in one eye correspond to OFF-center regions in the other, and
vice versa. Each form of between-eye matching of ON and OFF regions,
in-phase (b) or antiphase (c), yields ocularly matched preferred
orientations.

4

Figure 5. Bottom. a, An OD map developed when C OD dominates: C OD

was set to a broad Gaussian, and the other correlation functions were all
set to zero, as shown in Figure 3b, dashed curves (r 1 5 0; d 5 1). Bright
and dark regions correspond to dominance by the right and left eyes,
respectively. b, Color code used to represent strength of synaptic weights
in all RF images. Strengths of ON- and OFF-center connections are
represented by intensities of green and red, respectively. Minimum bright-
ness (black) corresponds to strength zero; maximum brightness of red or
green corresponds to maximum allowed synaptic strength 8. Yellow results
from mixture of ON and OFF connections. c, d, Left- and right-eye RFs,
respectively, of the 8 3 8 subset of cortical cells outlined in a. According
to the arbor function, A(xW, aW), adjacent cortical cells receive input from
adjacent, partially overlapping circular regions of LGN cells with diame-
ter 13. Each circle in c and d shows synaptic strengths of these connections,
S EC(xW, aW), for one cortical cell.
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subregions in the left eye grow in corresponding locations; like-
wise, OFF subregions in the right eye are matched to ON subre-
gions in the left eye.

Only these two modes involve differences between ON-center
and OFF-center innervation, and thus only these modes can yield
simple cells. This yields the following condition (Fig. 4b,c):

Condition 2. For ORI selectivity to develop, the fastest growing
patterns of either the ORI1 or ORI2 mode must have RFs with
simple-cell structure: elongated, spatially segregated ON and
OFF subregions. This in turn means that the corresponding ORI
correlation function, CORI1 or CORI2, should have a Mexican-
hat or similar form that oscillates in sign within an arbor radius.
(More precisely, it must have the peak of its Fourier transform at
a wavelength corresponding to one or more cycles within an arbor
diameter.)

Note that development of either SORI1 or SORI2 alone yields
RFs in which orientation is binocularly matched. Later, we will
consider the case in which both modes develop and determine the
more general conditions required for binocular matching of pre-
ferred orientation.

Condition 2 was found by Miller (1994), which considered two
center types but ignored the existence of two eyes. The condition
there was expressed in terms of the net difference in total ON-
center versus OFF-center strength and the net difference between
within-center-type and between-center-type correlations. The
applicability of these results both to the binocular sum of these
differences (SORI1 and CORI1, respectively) and to the binocular
difference of these differences (S ORI2 and CORI2, respectively) is
shown in Appendix 2.

The independent development of an ORI map in the present
four-input-type model is shown in Figure 6a for a case in which
only the SORI1 mode develops: CORI1 has a Mexican-hat shape,
whereas CSUM, C OD, and C ORI2 are all set to zero. All cortical
cells develop segregated ON and OFF RF subregions, as shown
by the RFs of an 8 3 8 subset of cells (Fig. 6b), and this yields a
continuous map of ORI preference (Fig. 6a). All cortical cells are
binocular, with the two monocular RFs in phase: ON and OFF
subregions and ORI maps are matched in the two eyes. If instead
only the SORI2 mode develops (CORI2 has a Mexican-hat shape,
and CSUM, COD, and CORI1 are all zero) an ocularly matched
ORI map again develops. However, in this case the two monoc-
ular RFs develop in antiphase (Fig. 6c). In either case, the
periodicity of the ORI map depends on CORI6, I, and A in the
same complex way as did the maps of Miller (1994).

RFs corresponding to SORI2 may seem functionally implausi-
ble: it may seem that they would not respond to binocular input,
because excitation in the ON- or OFF-type region of one eye
would be canceled by inhibition from the opposite-type region at
the same location in the other eye. However, independent move-
ments of the right and left eyes, as well as presentation of stimuli
at various depths, complicate this simple picture. In fact, RF
patterns such as SORI1 and SORI2 have been proposed to under-
lie so-called “tuned-excitatory” and “tuned-inhibitory” cells, re-
spectively (Freeman and Ohzawa, 1990; Nomura et al., 1990;
DeAngelis et al., 1995). There is, however, some evidence that
“tuned-inhibitory” cells are rare or absent in the cat (LeVay and
Voigt, 1988).

Development of the summed synaptic strength
The SSUM mode is the only mode affected by the competitive
constraint, represented by the second, subtracted term in Equa-
tion 14a. This term ensures that the total synaptic strength to each

cortical cell remains constant. This constrains the patterns of
SSUM that may grow: the strength of SSUM to a cortical cell may
increase from some LGN locations only if it correspondingly
decreases from other LGN locations.

The development of SSUM can be understood from the devel-
opment of the summed synaptic strength in our previous two-
input models (Appendix 2), as discussed for example by Miller
(1990a). A typical effect of non-zero CSUM is refinement of the
RFs, meaning that the RFs grow at their centers and decay at
their peripheries without changing their total synaptic weight.
Because our constraint is only a poor stand-in for the unknown
mechanisms of biological competition, the details of growth of the
S SUM mode in our model are unlikely to be of biological rele-
vance (also see Discussion). Growth of SSUM is of relevance to us
only insofar as it interacts with, and thus alters the growth of, the
other modes. This interaction is discussed below.

Joint development of orientation and ocular
dominance modes
We now consider the additional conditions on the correlation
functions that must be met for both ORI and OD maps to
co-develop, with binocularly matched ORI preferences. This re-
quires study of the co-development of multiple modes.

The different modes grow independently until synapses begin
to saturate at their upper or lower cutoffs (Eq. 5). As multiple
synapses saturate, the overall synaptic pattern becomes locked in.
Thus, the main effect of the different modes on one another
involves their relative synaptic strengths at the time that satura-
tion begins to halt development. This in turn depends on their
relative growth rates. In general, for several modes to co-develop,
their fastest growing patterns must have comparable growth
rates, whereas modes with fastest growing patterns that have
significantly smaller growth rates will have little influence.

Interaction of the two ORI modes
We have seen that each ORI mode alone yields binocularly
matched ORI preferences. It turns out that the requirement for
binocular matching of ORI preferences is that one of these modes
should remain predominant; the mixing of the two modes de-
stroys binocular matching. The general condition is as follows:

Condition 3. For ocular matching of ORI preferences to de-
velop, the growth rates of one of SORI1 and S ORI2 must suffi-
ciently dominate those of the other. This in turn requires that
between-eye correlations must be center-type-specific (COE SC and
C OE OC must differ significantly from one another).

To demonstrate this, we consider the case in which each is
driven by correlations of identical Mexican-hat form but with
independent magnitudes: CORI1 5 r1 M; C ORI2 5 r2 M (Fig.
3a). We have seen above that, if only r1 is positive (CORI1

dominant), left and right RFs will be in phase, whereas if only r2

is positive (CORI2 dominant), left and right RFs will be in
antiphase (Figs. 4b,c, 6a–c). One might imagine that, if r1 and r2

are both positive, the resulting codevelopment of the two ORI
modes could lead to the development of ocularly matched ORI
maps with other spatial phase relationships between the two eyes.
However, this is not the case.

Instead, if SORI1 and SORI2 codevelop with approximately
equal growth rates, the two eyes develop independent, uncorre-
lated ORI maps and RFs (Fig. 6d,e). To understand this, consider
first the case in which r1 5 r2, so that CORI1 5 CORI2. A glance
at Table 1 shows that CORI1 5 CORI2 implies C OE SC 5 COE OC.
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Figure 6. Interaction of C ORI1 and C ORI2 determines the ocular matching of orientation maps. Here both functions are set proportional to a
Mexican-hat function, C ORI1 5 r 1M and C ORI2 5 r 2M (Fig. 1c), whereas C OD 5 C SUM 5 0 (Fig. 3a). The maps and RFs that develop depend on the
relative values of r 1 and r 2. a, b, For C ORI1 dominant (r 1 5 1, r 2 5 0), left- and right-eye RFs and ORI preference maps are virtually identical. a,
Maps show preferred ORIs and ORI selectivities (represented by orientations and lengths, respectively, of line segments) of model cortical cells in the
32 3 32 periodic array. The longest line corresponds to an ORI selectivity Q (Eq. 13) of 0.20; mean selectivity is 0.11. Line lengths in all later ORI maps
are normalized on the same scale. Preferred ORIs are also represented by hue, on a finer grid (128 3 128), with intermediate pixel ORIs determined
by linear interpolation. Positive and negative singularities in the (interpolated) ORI maps are indicated by black circles. b, Left- and right-eye RFs of the
8 3 8 subset of cortical cells indicated by the boxes in a. c, RFs from maps qualitatively like those of a, but developed with C ORI2 dominant (r 1 5 0,
r 2 5 1). The left- and right-eye RFs have antiphase ON and OFF subregions but otherwise have virtually identical RFs and orientation maps (maps not
shown, but see f ). (Note that the RFs of b and c, are unrelated, because initial conditions of S ORI1 and S ORI2 are each random and uncorrelated with
one another.) d, e, When r 1 and r 2 are of similar magnitude, the right and left eyes’ RFs develop independently. d, The independent left- and right-eye
ORI maps for r 1 5 r 2 5 1. e, Independent left- and right-eye RFs from simulation in d. f, Correlation (see Materials and Methods) between left- and
right-eye responses to oriented stimuli as a function of l0

ORI2/l0
ORI1, the ratio of growth rates of S ORI1 and S ORI2 (which here is equal to r 2/r 1).

Responses, and thus orientation maps, are essentially identical (correlation of 1) for l0
ORI2 , (2/3)l0

ORI1 or l0
ORI1 , (2/3)l0

ORI2. The correlation is
slightly negative for l0

ORI1 5 l0
ORI2 because of spatial variation in overall strength of left and right connections: constraint on summed weight received

by a cortical cell ensures that, on cells in which one eye has larger than average overall weight, the other eye has less than average.
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This means that an ON (or OFF) input of one eye cannot “tell the
difference” (in terms of activity correlations) between an ON
input and an OFF input of the other eye. In that case, although
firing correlations within each eye have the form needed to
generate simple-cell RFs, there is no mechanism to relate the
structure of ON or OFF subregions in one eye to the ON or OFF
subregions in the other eye. ON or OFF subregion structure, and
thus preferred orientations, develop independently in each eye.
When r1 and r2 are not exactly equal but have similar magnitude,
the argument is the same: the intereye correlations differentiate
the two center types only weakly, too weakly to cause the ON/
OFF subregion structures that develop for each eye to become
related. [These arguments can also be understood mathematically
as follows: when the fastest growing patterns of SORI1 and S ORI2

have identical growth rates, then any two orthogonal linear com-
binations of these patterns also grow independently. But one such
orthogonal pair is (SORI1 1 SORI2)/2 5 SRN 2 SRF, and (SORI1

2 SORI2)/2 5 SLN 2 S LF. Thus, the two eyes develop indepen-
dent ON/OFF segregation patterns and ORI maps.]

In Figure 6f, we plot the degree of similarity between the two
eyes’ maps as a function of l0

ORI2/l0
ORI1 5 r2/r1, the ratio of the

fastest growth rates of SORI1 and SORI2. When l0
ORI2 ' l0

ORI1,
the left-eye and right-eye ORIs become independent. For the
choices of functions explored here, the condition for ocular
matching of ORI maps is l0

ORI2 , (2/3) l0
ORI1 or l0

ORI1 , (2/3)
l0

ORI2 (Fig. 6f). The quantitative factor 2/3 may change for other
choices of shapes for CORI1 and/or C ORI2 or for the functions A
and I (although in limited exploration, we have found that it does
not seem to vary much).

How much difference must exist between C OE SC and COE OC for
ORI preferences to become binocularly matched? Note that
CORI6 5 CSE DC 6 COE DC , where CSE DC 5 CSE SC 2 CSE OC and
COE DC 5 COE SC 2 COE OC. Thus, the requirement is that COE DC ,
the difference between COE SC and COE OC , must be of significant
size relative to CSE DC. Furthermore, the difference between
COE SC and C OE OC must vary significantly within an arbor radius
(and therefore, it cannot simply be attributable to differing mean
rates of ON- and OFF-center activity). This can be seen in two
ways. Intuitively, for the ORI maps of the two eyes to match,
COE DC must be such that correct alignment of the two eyes’ RFs
will significantly increase the between-eye correlations relative to
other alignments. If COE SC and C OE OC do not vary significantly
within an arbor radius, then the between-eye correlations would
not vary if one eye’s RF is rotated relative to the other eye’s RF,
and so correct alignment would not be favored. Mathematically,
COE DC must couple to the leading pattern of CORI1 or CORI2,
whereas for orientation to develop, that fastest growing pattern
should involve an oscillation across the RF. If COE DC were flat
over an arbor radius, it would not have any influence on such
a mode.

Small local variations in left- and right-eye dominance are
visible in Figure 6e, even though COD 5 0. This occurs primarily
because the RFs of the left and right eyes begin with different
random initial conditions, so S OD begins with small random
variations. Although SOD does not change during linear develop-
ment (because COD 5 0), saturation nonlinearities can induce
weak additional changes in SOD. This does not yield strong or
spatially structured OD segregation like that observed biologi-
cally; that can only emerge in the model as a pattern of SOD

driven by COD.

Interaction of the ORI and OD modes
For OD and ocularly matched ORI maps to jointly develop from
a single, time-invariant set of correlation functions, the following
condition must also be met:

Condition 4. The fastest growing patterns of OD and of ORI
must have comparable growth rates.

We demonstrate this by varying the relative magnitudes of OD
and ORI correlation functions while ensuring that the previous
conditions are met.

To meet Condition 1, we set COD to the Gaussian function
used to develop OD columns in Figure 5, scaled by a parameter d:
C OD 5 dG3. To meet Conditions 2 and 3, we set one of the ORI
correlation functions, which we arbitrarily choose to be CORI2, to
zero and the remaining one, CORI1, to the Mexican-hat function
M used to develop ORI columns in Figure 6, a and b. We continue
to set C SUM 5 0; we will consider C SUM more carefully in the
next section. Changes in the correlations with d are illustrated in
Figure 3b.

Figure 7 illustrates the effect of varying the ratio of OD and
ORI growth rates by varying d. Because only the ORI1 and OD
modes have non-zero growth rates, the outcome is determined by
the relative magnitudes of their fastest growing patterns. In this
case, it turns out numerically that d is approximately equal to the
ratio of growth rates, l0

OD/l0
ORI1 5 0.97d, so that d can be used

as a convenient stand-in for this ratio.
When this ratio is small, as for d 5 0.5 (Fig. 7c), no pattern of

OD grows fast enough to compete with the rapidly growing ORI
patterns. Thus the final map contains a map of ORI preference
matched in the two eyes but no OD map. No cells are monocular,
and most cells have well segregated ON and OFF subregions
generating ORI preferences. At d 5 1, patterns of OD and ORI
grow at similar rates, generating concurrent representation of an
ORI and an OD map (Fig. 7a,d). The map includes both binoc-
ular and monocular RFs. Very similar maps develop for d 5 1.6,
except that few cells remain binocular (Fig. 7b,e). As d is raised
further, ORI patterns contribute less and less to the final out-
come. Thus the final RFs for d 5 4 (Fig. 7f) contain an OD map
but show little separation into ON and OFF subregions and thus
little ORI selectivity or map.

How similar must the growth rates of ORI and OD be to
support co-development of both kinds of maps? To explore this,
we now allow the shape as well as the amplitude of COD to vary:
C OD 5 dGg (see Eq. 3). The parameter g controls the width of
the Gaussian function forming C OD: g 5 3 gives the function just
studied in Figure 7, whereas larger g yields a proportionately
wider Gaussian. (Note from Eq. 3 that Gg is normalized so that
its magnitude, i.e., its two-dimensional integral, is independent of
g. Thus, g controls width, whereas d controls magnitude.) For the
functions used, we can numerically solve Equation 14b to find
their independently growing patterns and their growth rates. The
fastest growing pattern, S0

OD, is always monocular for C OD } Gg;
its dominance in growth rate over binocular patterns increases
with increasing g (Miller, 1990a). We restrict attention to g $ 2.5,
a large enough value to ensure robust development of OD segre-
gation. The growth rate, l0

OD, of S0
OD decreases with increasing g

and is proportional to the amplitude d.
The range of growth rate ratios, l0

OD/l0
ORI1, that allow co-

development of ORI and OD is quantified in Figure 8. As the
growth rate ratio l0

OD/l0
ORI1 increases, the degree of OD segre-

gation, ^m& (Eq. 11), rises monotonically from near 0.0 to near 1.0
(Fig. 8a, solid curves), whereas the degree of ON/OFF segrega-
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tion, Z (Eq. 12), falls monotonically (Fig. 8a, dotted curves). The
ORI selectivity, Q (Eq. 13), also falls with increasing l0

OD/l0
ORI1

when this ratio is sufficiently large (Fig. 8b), in parallel with the
decrease in ON/OFF segregation. Perhaps surprisingly, ORI se-
lectivity increases with increasing l0

OD/l0
ORI1 for smaller values

of this ratio. A likely explanation for this rise in ORI selectivity
is that the patterns of ORI that are most impeded through
competition with OD are those that have the lowest growth rates,
and these generally have poorer ORI selectivity than the faster-
growing ORI patterns. Modestly high OD growth rates, by out-
competing the slower-growing ORI patterns, can thus increase
ORI selectivity.

Different curves in Figure 8 correspond to different values of g.
Wider g allows both ORI selectivity Q and ON/OFF segregation

Z to develop for larger values of l0
OD/l0

ORI1, for the following
reason. As g widens, the growth rates of nonmonocular patterns
of SOD become smaller relative to those of the leading, monoc-
ular patterns. Therefore, for a fixed l0

OD/l0
ORI1, wider g means

that fewer OD patterns are competing against growth of SORI1,
allowing fuller development of S ORI1. The net effect of widening
g is that the range of relative growth rates that yields combined
maps becomes less restricted, requiring less “fine tuning” of
l0

OD/l0
ORI1. These ranges are quantified in Figure 8c.

ORI selectivity emerges more rapidly than OD, even though
joint map development occurs only when ORI and OD modes
grow at similar rates (Fig. 9). The similar rate of growth is
reflected in the similar time courses of ON/OFF segregation Z
and left /right segregation ^m&. However, ORI selectivity Q devel-

Figure 7. Combined development of OD segregation and ocularly matched ORI maps. Only C OD and C ORI1 are non-zero; C ORI2 5 C SUM 5 0. As
in Figure 6a, C ORI1 is a Mexican-hat function, C ORI1 5 M (Fig. 1c), which leads to development of ORI-selective simple cells with matched orientations
and phases in the two eyes. As in Figure 5, C OD is a Gaussian function, which leads to OD segregation: C OD(aW , bW) 5 dG3(uaW 2 bW u) (Fig. 1b). The
magnitude d of C OD is varied in a and b and c–f. For these functions, l0

OD/l0
ORI1 5 0.97d ' d. When d is small, ORI dominates and OD segregation

does not develop; when d is large, OD dominates and ON/OFF segregation and ORI do not develop. a, b, Binocular ORI preference maps (see Materials
and Methods) for d 5 1.0 and d 5 1.6; note that preferred ORIs match in the two eyes for binocular cells. c–f, OD maps and sample RFs for d 5 0.5,
1.0, 1.6, and 4.0. When an ORI map develops, its structure is largely unchanged by co-development of an OD map (compare Fig. 6a, which has d 5 0,
with a and b here). Similarly, to the extent to which an OD map develops, its structure is unchanged by co-development of an ORI map (compare Fig.
5a with d and e here). The sample RFs come from the 8 3 8 cells indicated by boxes in the maps.
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ops more rapidly than ON/OFF segregation: ORI selectivity can
be strong as a result of only weak segregation of ON and OFF
inputs. (The time courses of development of Z and Q can differ
because the former is a linear function of the weights, whereas the
latter is a nonlinear function.) The result is that the ORI map
approaches its final state before OD segregation significantly
develops. This is shown by the time course of the correlation, r,
between the ORI map computed at any time step t and the final

ORI map (Fig. 9a; compare time course of degree of OD segre-
gation ^m&).

ORI selectivity develops before OD segregation over the entire
range of l0

OD/l0
ORI1 in which OD and ORI maps jointly develop.

This provides one possible explanation for the experimental fact
that ORI selectivity reaches a reasonably high level before OD
bands are observable (LeVay et al., 1978; Fregnac and Imbert,
1984; Crair et al., 1997a). However, this could also be explained
if the correlations driving ORI development exist during a first
developmental stage, before the onset of another correlation
structure driving OD development; this “two-stage” developmen-
tal scenario is explored later in Results.

OD and ORI columns have been shown to preferentially inter-
sect at sharp angles in primary visual cortex of both monkey
(Obermayer and Blasdel, 1993) and cat (Crair et al., 1997b). This
effect also occurs in many abstract feature map models (for
review, see Erwin et al., 1995, Swindale 1996). Although the
initial developments of OD and ORI map modes under Equation
14 are independent, relationships between them could develop

Figure 8. Quantitative measures of map properties for joint development
of ORI and OD maps using correlation functions as in Figure 7, except
that we now also allow the width of C OD to vary, proportional to the
parameter g (indicated by symbols). The growth rate ratio l0

OD/l0
ORI1 is

varied by varying d. a, Solid curves, ^m&, the degree of OD segregation (see
Eq. 11); dotted curves, Z, the degree of RF segregation of ON and OFF
subregions (Eq. 12). b, Mean ORI selectivity, Q (Eq. 13). Higher values of
l0

OD/l0
ORI1 favor development of OD, whereas lower values favor ON/

OFF segregation and development of ORI selectivity. In all cases, ORI
selectivities and maps are matched in the two eyes (because l0

ORI2 5
C ORI2 5 0; see Fig. 6f ). c, The range of ratios l0

OD/l0
ORI1 that allows

co-development of OD and ORI selectivity grows wider with increasing
width, g, of C OD. We define the lower bound on the range of ratios as the
value at which OD segregation ^m& . 0.5 (from a) and the upper bound
as the value at which ORI selectivity Q (from b) falls below the value it
would have for l0

OD/l0
ORI1 5 0, i.e., for development with C OD 5 0. The

growth rates (computed numerically) are given by: l0
OD 5 14.04d, 12.46d,

9.74d, 7.62d, and 3.94d for g 5 2.5, 3, 4, 5, and 8, respectively;
l0

ORI1 5 12.84.

Figure 9. Emergence of map properties during a single simulation of
joint ORI and OD map development. Correlation functions were as in
Figure 7a,d. For these parameters, the fastest growing patterns of ORI
and OD have nearly the same growth rate, l0

OD/l0
ORI1 5 0.97. a, Devel-

opment of OD segregation, ^m&, ON/OFF segregation, Z, and the corre-
lation, Pearson’s r, between the ORI map at any time step and the ORI
map that will be reached at the final time step. Pearson’s r is computed
from summed left- and right-eye responses to sinusoidal gratings, aver-
aged over 18 orientations. b, Development of ORI selectivity, Q, occurs
earlier than the development of either OD segregation, ^m&, or ON/OFF
segregation, Z. High ORI selectivity is achieved by t ' 40, although
ON/OFF segregation is low at this point. Even at this early time, the ORI
map structure is already well correlated, r ' 65%, with its final structure.
Learning rate is h 5 0.008.
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Figure 10. Development of ORI and OD in a two-stage scenario. a, b, The first stage begins from random synaptic connections and develops under LGN
correlation functions as in Figure 6a,b: C ORI1 5 M (Fig. 1c) and is the only non-zero composite correlation function. Weak ORI maps have developed,
with little variation in OD, by t1 5 26 with learning rate h 5 0.008. c, d, The second stage continues from the synaptic weights in a and b, using correlation
functions as in Figure 8 with g 5 3 and d 5 2 (lOD/lORI1 5 1.9): C OD is now a broad Gaussian, whereas C ORI1 5 M is unchanged. (A range of d values
would give similar results; see Fig. 11.) c, ORI preference map at the end of the second stage. Along with map refinement, (Figure legend continues)
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after synapses have begun to saturate via Equation 5. In the
simulations discussed so far, these saturation effects only occur
during a short period near the end of a simulation, and we have
found no statistically significant relationship between the OD and
ORI map patterns. (Such relationships might weakly exist but
might be lost in the noise because of the current low resolution of
simulated ORI maps; testing this will require higher-resolution
simulations.) We show later that a clearly demonstrable relation-
ship between the maps does develop in two-stage development.

Influence of the SUM mode on ORI and OD development
Just as rapid growth in one of the OD or ORI modes can prevent
significant growth in the other of these modes, rapid growth of
patterns in the SUM mode can push some synaptic strengths to
their limiting saturation values (Eq. 6) before OD and ORI map
patterns have had time to develop. Thus we may state the final
condition for joint development of ORI and OD maps:

Condition 5. Patterns of the SUM mode must not grow fast
enough to prevent development of the OD or ORI modes.

The growth of the SUM mode is distinguished from that of the
other modes in two ways. First, the competitive constraint in
Equation 10 requires that growth of SSUM in some regions of any
RF must be exactly canceled by decay of S SUM in other regions of
the same RF, whereas the other modes are unaffected by this
constraint. Second, the initial condition of the SUM mode is close
in shape to A(xW, aW), whereas the other modes are initially close to
0. This means that the SUM mode begins with some patterns
[those similar to A(xW, aW)] having large size, whereas the other
modes start with all patterns having approximately equal, small
sizes. The initially large SUM patterns can dominate develop-
ment through exponential growth, even with relatively modest
growth rates. Both of these conditions make it difficult to predict
when the SUM mode growth will interfere with growth of the
other modes.

Because both the competitive constraint and the method of
initializing weights are not likely to be correct in their details, we
have restricted our analysis above to the case in which CSUM 5 0
and patterns of the SUM mode do not interfere. A more biolog-
ically accurate description of limits on synaptic growth is clearly
needed before the effects of such limits on co-development of OD
and ORI can be properly understood.

For the sake of completeness, however, we have made a limited
study of the effect of variation in CSUM on development. The
results of this study are available as a supplement to the present
paper (Erwin and Miller, 1998).

Time-varying correlation functions: sequential
development of ORI and OD modes
We showed above that OD and ORI maps can jointly develop
under a time-invariant set of correlation functions. Experimental
evidence suggests that development of a binocular ORI map
precedes development of an OD map (Crair et al., 1997a). Al-
though this arises naturally in the above scenarios (Fig. 9), it also
suggests an alternative developmental scenario in which the cor-
relation functions change in time. In this scenario, a period of
ORI but not OD development is followed by a period in which
both ORI and OD are developing. This change could occur

gradually, but it is easier to study a two-stage process with a
sudden change. One might imagine, for example, that a sudden
change in correlations occurs at the time of eye opening or when
the vascular tunic of the eye’s lens begins to fall away [the latter
approximately coincides with (Thorn et al., 1976) or somewhat
precedes (Freeman and Lai, 1978) the onset of the critical period
and the major onset of ocular dominance development (LeVay et
al., 1978)].

Here we study the effect of such a two-stage scenario on our
conclusions. We find that Conditions 1–5 for development of OD
and ocularly matched ORI maps all remain true, but their appli-
cation becomes more flexible. Conditions 1–3 must still each be
met during at least one stage of development, but they need not
all be met at the same time. Condition 4 remains qualitatively
unchanged, as applied to the period in which both ORI and OD
are developing, but the relative growth rates of OD and ORI
modes can now cover a wider range.

We also find that two-stage development offers an additional
benefit. It leads to stronger coupling of the OD and ORI maps,
with relationships between their patterns similar to those that are
experimentally observed. Although such coupling might also oc-
cur in the later time steps of a single-stage development, it is
clearly demonstrable in maps from a two-stage process.

The two-stage simulations proceed as follows. The first stage,
beginning from random initial conditions, involves development
up to a specified time, t1 , with CORI1 the only non-zero corre-
lation function, as in Figure 6a. Thus, only the S ORI1 mode
develops. The second stage continues the simulation with the
same C ORI1, but in addition now COD is non-zero: it is set to a
broad Gaussian, with magnitude proportional to the parameter d,
as in Figures 3b, 8, and 9.

An example of such a two-stage simulation is shown in Fig. 10.
Here, the first stage lasts only a short time (t1 5 26). This short
first stage yields only poorly organized, similar but nonidentical
left- and right-eye ORI maps (Fig. 10a,b). Most synaptic connec-
tions are still weak, and there is only weak segregation of ON and
OFF inputs (Fig. 10e).

The second stage continues with COD non-zero; in this case,
d 5 2. When the second stage terminates, the ORI map has fully
developed (Fig. 10c), and an OD map has formed (Fig. 10d). Most
synaptic connections have saturated at their upper or lower
bounds (Fig. 10f).

The ORI map at the end of the second stage is shown as a
binocular ORI map, because the ORI maps in the two eyes have
become well matched. This can be seen by noting that, although
most cells have connections to only one eye, the cells that are
binocular have similar RFs in the two eyes (Fig. 10f), and the
binocular ORI map is continuous across OD column borders
(Fig. 10c,d).

Two-stage development allows greater flexibility than a one-
stage process in the relative magnitudes of correlation functions
that can be used to develop combined ORI and OD maps. We
judge this range in the same way as in Figure 8. As the first stage
is carried to longer times, t1 , joint OD and ORI maps develop in
a progressively larger range of second-stage growth rate ratios,
l0

OD/l0
ORI1, Fig. 11. One-stage development allowed a range of

4

average ORI selectivity Q has increased from 0.069 (a, b) to 0.122 (c). Preferred ORI changes smoothly across OD boundaries, shown as black lines. d,
OD map after the second stage. Preferred ORIs measured through the left and right eyes are shown as yellow and blue lines, respectively. e, f, Left- and
right-eye RFs of the 8 3 8 subset of neurons outlined in a–d. Color scheme as in Figure 5b, with weights in e multiplied by 4 for visibility.
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0.96 # l0
OD/l0

ORI1 # 2.0, that is, variation by a factor of 2.1. For
two-stage development with t1 5 26, this range expands slightly to
a factor of 2.2; as t1 increases to 66, the range expands to allow
variation by a factor of 6.5 (Fig. 11e).

The two eyes’ ORI maps can develop independently in the
second stage and still become matched: the degree of correlation
between the two eyes’ maps shown in Figure 10, a and b, induced
in the first stage, is sufficient to cause the two eyes to indepen-
dently arrive at nearly identical ORI maps. The outcome of such
development is shown in Figure 11, right column. Here we have
made an additional change in the second-stage correlation func-
tions: in addition to making COD non-zero, we also set C ORI1 5
CORI2. As shown previously, this equality implies that the left
and right eyes’ orientation maps are developing independently,
except for saturation effects. The range of variation of growth rate
ratios, l0

OD/l0
ORI1, allowing joint development of OD and ORI is

greater still under this scenario, growing to a factor of 8.8 for t1 5
66 (Fig. 11f).

We have visually verified that such independent second-stage
development leads to ocularly matched maps. However, it is
difficult to characterize the correlation of the ORI maps in the
two eyes when OD also develops, because most cells come to
receive input from only a single eye. Therefore, to quantitatively
demonstrate that independent development of the two eyes’ maps
in the second stage leads to matched maps, we show the outcome
of development of ORI alone (Fig. 12). Here, the first stage is as
before (only CORI1 is non-zero), whereas in the second stage,
CORI2 5 C ORI1, and C OD remains zero. Thus, in the first stage,
the two eyes’ ORI maps develop in a correlated fashion, yielding
results such as in Figure 10, a and b; in the second stage, the two
eyes’ ORI maps continue development completely independently
of one another, and there is no OD development. As shown in
Figure 12, the correlation between the maps of the two eyes
continues to increase in the second stage. For t1 $ 26, the two
maps come to be essentially perfectly correlated. Once an ORI
map has developed sufficiently far along a path, its outcome
becomes well determined; the two eyes’ maps, having developed
in a correlated way in early development, independently arrive at
a common outcome.

We can summarize by saying that the two-stage process re-
moves the requirement for center-type-specific between-eye cor-
relations in the second stage of development (recall that such
correlations are required to correlate the development of the two
eyes’ ORI maps; and that the condition CORI1 5 CORI2 implies
that such correlations do not exist). It is sufficient that such
correlations exist only in the first stage of development, e.g., up to
the state illustrated in Figure 10, a, b, and e.

A further benefit of the two-stage process is that it leads to a
stronger coupling of the ORI and OD maps, in a direction that is
observed biologically. The SOD and SORI1 weights develop in-
dependently, under Equation 14, until the saturation constraints
of Equation 5 begin to take effect, linking their development in
complex ways. In one-stage development, the OD and ORI maps
develop almost independently until they are nearly complete;
therefore, coupling of the maps is very weak. In two-stage devel-
opment, saturation may begin to couple OD and ORI develop-
ment early in the second stage, i.e., early in OD map develop-
ment. This coupling grows stronger for increasing t1. The OD
map that develops therefore can have a somewhat different form
than that which develops in a one-stage process (compare Figs.
7d, 13a, developed with t1 5 66).

The relationship induced between the OD and ORI maps by

the saturation constraints is similar to the relationship observed
experimentally in cats (Crair et al., 1997b) in at least one respect:
the most monocular regions of the OD map tend to lie closer to
singularities in the ORI map than they would by chance (Fig.
13a–c). This coupling in the model is in the same direction as that
observed biologically, but is weaker. Because the effect grows with
increasing t1 , we illustrate the effect by showing the case t1 5 66
(for t1 5 26, the effect is barely visible).

The reason for this coupling of ORI and OD can be intuitively
understood as follows. OD can grow most strongly where it has
the least competition from ORI. Near pinwheels, ORI patterns on
different nearby cells are least able to contribute to one another’s
growth. OD patterns are oblivious to ON/OFF segregation pat-
terns and hence grow equally well near pinwheels or near linear
ORI regions. Hence, the OD patterns are able to develop most
fully near pinwheels, where they face the least competition, or
equivalently where synapses are least saturated when OD devel-
opment occurs. It is likely that this tendency of pinwheels to form
in the centers of OD bands is sufficient to explain the experimen-
tally observed tendency toward perpendicular crossings of iso-
ORI lines and OD borders. However, as in the one-stage simu-
lations, we can find no statistically significant tendency toward
perpendicular crossings in our two-stage maps; this may be at-
tributable to the weakness of these effects in the model as well as
to the noisiness in (low resolution of) the ORI maps.

Experimental predictions and tests
From these results we can extract two major sets of experimental
predictions. One set relates to correlation structures, the other to
the relation between the left- and right-eye RFs of mature simple
cells.

Correlation structures
The correlation structures we have described should be observed
in cat LGN at the time that ORI selectivity and OD are devel-
oping in layer 4 of cat V1. These structures would be measured by
simultaneously recording pairs of LGN cells. The degree of
correlations in each pair’s activity would be plotted against the
retinotopic separation of the pair’s RFs. Separate such plots
would be made for pairs of same or opposite eyes and same or
opposite center types, yielding the four correlation functions
CSE SC , CSE OC , COE SC , and C OE OC (Fig. 2a).

The overall prediction is that Conditions 1–5 should be met. In
more directly biological terms, the essential predictions are: (1)
when ocularly-matched simple cell RF structure develops: (a)
within eyes, the difference between same-center-type and
opposite-center-type LGN correlations, CSE SC 2 C SE OC , should
have Mexican-hat or oscillating structure; (b) intereye LGN cor-
relations should be center-type-specific: C OE SC and C OE OC should
be non-zero and differ from one another, in a manner that varies
over an arbor radius; and (2) when OD develops, total within-eye
LGN correlations, C SE SC 1 C SE OC , should be larger than total
between-eye LGN correlations, COE SC 1 COE OC.

When and under what conditions should these correlations be
measured? Optical measurements in cat show that ORI maps are
ocularly well matched from their first appearance, at postnatal
day 12 (P12), regardless of whether the animal has had visual
experience (Crair et al., 1997a). Because this development is
independent of vision, the relevant correlations would be in LGN
spontaneous activity, in darkness (“dark activity”) or with eyelids
closed. It is not precisely clear when ocularly matched ORI maps
develop. P12 is only 1 d after synaptic connections from layer 4 to
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upper layers first cross into layer 3 (Callaway and Katz, 1992);
optical measurements, which measure upper-layer activity, prob-
ably could not see an earlier map. With electrode studies, ORI-
selective cells are found in deep layers as early as recording is

possible (P6, before normal eye opening) (Albus and Wolf, 1984;
Braastad and Heggelund, 1985) (earlier work reviewed by Movs-
hon and Van Sluyters, 1981; Fregnac and Imbert, 1984). The
optical results make it seem likely that the initial development of

Figure 11. Two stage development, as in Figure 10, in which an ocularly matched, binocular ORI map begins to develop under one set of correlation
functions and an OD map develops, along with continued development of ORI selectivity, under a second set of correlation functions. In the first stage,
C ORI1 5 M (Fig. 1c) is the only non-zero composite correlation function. In the second stage, C OD 5 dG3 (Fig. 1b) is also non-zero, with d a variable
parameter. Note l0

OD/l0
ORI1 ' d. In the lef t plots ( filled symbols), C ORI2 remains zero throughout both stages, as in Figure 10. In the right plots (open

symbols), C ORI2 5 C ORI1 in the second stage (which means the two eyes’ ORI maps develop independently during that stage; also see Fig. 12). The
first phase lasts until time t1 (indicated in the legend), with h 5 0.008, and the second phase continues to completion with the same h. a, b, Degree of
OD segregation, ^m&, and of segregation of ON and OFF subregions, Z. c, d, Mean orientation selectivity, Q. e, The range of l0

OD/l0
ORI1 that allows

codevelopment of OD and ORI selectivity (computed as in Fig. 8c) grows wider with increasing length of the first stage t1. f, The range for any t1 is even
wider when C ORI2 5 C ORI1 during stage 2. Filled symbols are repeated from e for comparison.
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ORI preference in the deep layers is also ocularly correlated.
Thus, the predicted correlation structure should probably be
looked for in the period P6–P12, although it is possible that
ocularly matched ORI maps develop even earlier.

Ocular dominance appears to develop somewhat later (LeVay
et al., 1978; Crair et al., 1997a). Physiologically, some OD is first
visible optically at P14 (Crair et al., 1997a). Until approximately
P18–P20, visual experience appears to have no effect on ORI or
OD development (Fregnac and Imbert, 1984; Crair et al., 1997a).
The major development of OD, including equalization of the
contralateral and ipsilateral projections and anatomical segrega-
tion, develops immediately after this time and depends strongly
on visual experience (LeVay et al., 1978; Crair et al., 1997a). Our
studies have shown that OD may appear later than ORI selectiv-
ity even if the relevant correlation structures are present at the
same time. Thus, the OD-relevant correlations might be present
in spontaneous activity as early as the ORI-relevant correlations
and certainly should be present by P14. Such correlations should
be present in visually induced activity after P20.

Binocular spatial phase relationships
Our model predicts “binocular subregion correspondence”: the
ON and OFF subregions in the two eyes’ RFs for a given cell
should be arranged with either a 0° (S ORI1-dominant) or 180°
(SORI2-dominant) spatial phase shift, measured in absolute LGN
coordinates. This result is compatible with observed interocular
phase shifts (Freeman and Ohzawa, 1990), because those phases
are defined in relative coordinates that move with the centers of
each eye’s RF. Our model allows any value of such a relative phase
shift, as long as it is accompanied by an appropriate position shif t
between the spatial envelopes of the two eyes’ RFs (Fig. 14).
Because of our choice of a narrow arbor function, only small
position shifts between RFs of the two eyes develop in our
simulations. Use of a wider arbor function relative to final RF

size would allow development of larger position shifts (Berns et
al., 1993) and thus a larger range of relative phase shifts.

Some support for subregion correspondence exists in the find-
ing that most tuned excitatory cells in both cat (Ferster, 1981;
LeVay and Voigt, 1988) and macaque V1 (Poggio and Fischer,
1977) have preferred disparity at 0°. This arises naturally from
subregion correspondence, whereas it is not predicted if relative
phase shifts and position shifts are uncorrelated (although non-
zero preferred disparities can also arise from subregion corre-
spondence; this will be discussed elsewhere). The same authors
report that tuned excitatory cells are binocular, whereas near and
far cells tend to be monocular (disparity tuning arising from
inhibition from the nondominant eye). This is also consistent with
the idea that when both eyes have significant input to a cell, their
RFs are in subregion correspondence.

More realistic models of intracortical circuitry might lead to
more complex possibilities. For example, multiple forms of co-
existence between left- and right-eye RFs on individual cells
might arise through chains or loops of excitatory and inhibitory
network interactions. It seems inescapable, though, that the set of
absolute spatial phases of left- versus right-eye RFs in individual
layer 4 cells should not be consistent with a random distribution:
there should be correlations between the absolute phase found in
one eye’s RF and that found in the other eye’s for the preferred
ORIs of the two eyes to become matched. This general prediction
is robust and can be tested in adult binocular simple cells in cat
layer 4.

We are aware of only one experiment (Anzai et al., 1997) that
attempted to measure both position and phase shifts in the same
set of cells. Unfortunately, we have found that the reference-cell-
pair method used there is not sufficient to distinguish between the
coordinated shifts of position and relative phase that we predict,
and an uncorrelated distribution of these shifts (Erwin and
Miller, 1997). Measuring many cells’ RFs simultaneously yields a
stronger test. We will describe these results, and other conse-
quences of binocular subregion correspondence that can be more
easily tested, in detail elsewhere.

DISCUSSION
We have studied correlation-based competition among four input
types (ON- and OFF-center cells from left and right eyes), and
determined the conditions necessary for development of both (1)
OD segregation and (2) ORI-selective simple cells with ocularly
matched ORI preferences. These conditions, approximately sum-
marized, are as follows:

(1) For OD to develop, total within-eye activity correlations
(summed between a pair of same-center-type and a pair of
opposite-center-type LGN cells at a given separation) must
be greater than or equal to total between-eye correlations
for LGN input separations within the retinotopic equiva-
lent of a geniculocortical arbor radius.

(2) For ORI to develop, the activity correlations within each
eye should have a “Mexican-hat” or oscillatory structure
(correlations between same-center-type cell pairs greater
than those between opposite-center-type cell pairs at small
retinotopic separations but smaller at larger retinotopic
separations within an arbor radius).

(3) For preferred ORIs to be matched in the two eyes,
between-eye activity correlations should be center-type-
specific, in a manner that varies with input separation over
an arbor radius. This ensures that maximal correlations
arise when center-specific subregions in the two eyes are

Figure 12. Development of correlation between left- and right-eye maps
for a two-stage simulation. Binocular ORI develops in the first stage, for
which only C ORI1 5 M is non-zero. If C ORI2 remains zero (no symbol),
the correlation rises monotonically and is near 1 within 40 steps. Open
symbols show cases in which C ORI2 5 C ORI1 in a second stage, beginning
at t1 ; this means that the two eyes’ ORI maps develop independently in
this stage. For t1 $ 26, the correlated first-stage development has already
created conditions such that each eye’s map, developing independently,
will converge on a similar map. Thus, the correlation between the two
eyes’ maps increases monotonically to a value near 1.
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appropriately aligned; as a byproduct, this yields matching
of preferred orientations.

(4) For OD and ocularly matched ORI to develop together, the
growth rates of OD and of ORI should be approximately
comparable.

Conditions 1–3 are fairly general, met by a wide range of
correlation structures. They may be met at different times, e.g.,
Condition 3 may be met only in an early stage in which binocu-
larly matched ORI selectivity develops, whereas Condition 1 may
be met only in a later stage in which OD develops. Condition 4
also does not require tight tuning: if ORI and OD develop under
a single correlation structure, the ORI/OD growth rate ratio can
vary by factors of $2–8; if ORI and OD develop in separate
stages, this range can be increased as much as three times.

The maxima of OD in the model tend to arise near ORI
singularities, as observed experimentally (Crair et al., 1997b), at
least when ORI and OD develop in separate stages. A qualitative
explanation is proposed: pinwheels slow the growth of ORI but
not OD and hence are sites where OD development faces less
competition.

Robustness of the results
Model results fall into two categories. Some are general to a large
class of correlation-based learning rules; others depend on fairly
arbitrary choices in modeling competition between modes.

The first category includes results describing the correlation

structure needed to develop a given RF or map structure, e.g.,
Conditions 1–3 above and the qualitative explanation of the OD
maxima–ORI pinwheel relationship. These results should be
reasonably robust: they follow from the idea that development
leads to RFs and maps that, in some sense, maximize input
activity correlations.

Results in the second category involve competition between
different modes, e.g., between OD and ORI, where each mode
captures a different aspect of the input correlations. Examples
include Condition 4 above, the fact that OD maxima–ORI pin-
wheel relationships are only demonstrable in two-stage and not
one-stage simulations, or Condition 5 (stated only in Results),
which involves suppression of OD or ORI development by growth
of the SUM mode. These results depend on our simple-minded
pictures of saturation and competition, in which different modes
grow independently until they are coupled and then stabilized by
saturation of synaptic strengths. Biology likely contains more
subtle mechanisms of competition (Miller, 1996b; Davis and
Goodman, 1998; Turrigiano et al., 1998). These might allow
multiple aspects of input activity to be captured: strong develop-
ment of one feature might allow subsequent development of
another feature, rather than freezing development. Such behavior
is seen in models in which cortical cells compete nonlinearly for
activation (Ritter et al., 1992; Sirosh and Miikulainen, 1997;
Piepenbrock and Obermayer, 1999). Before model predictions in

Figure 13. Data from the end of a two-stage simulation as in Figure 10c,d, but with a longer first stage: t1 5 66. a, The gray scale image shows the OD
map after smoothing with the Gaussian filter exp(2x 2), with x measured in cortical grid intervals. Circles mark locations of singularities in the ORI map.
Each upward- or downward-pointing triangle marks a local maximum (maximum of right-eye preference) or minimum (maximum of left-eye preference)
of OD, m(xW), in the smoothed OD map. b, Cumulative histogram (rough curve) of the distances, as a fraction of map width, connecting each of the OD
maxima and minima in the smoothed map to its nearest ORI singularity, for the map in a and for nine other two-stage simulations with identical
parameters but different seeds for the random-number generator. The smooth curve shows the distribution expected if local extrema and singularities
were each independently and randomly located with a uniform probability density (spatially Poisson; Chandrasekhar, 1954); this curve is proportional
to p(r) 5 1 2 exp(2lpr 2), where l 5 116.0 is the average number of singularities per ORI map. The observed distribution contains more small distances
(mean, 0.0422) than the expected distribution (mean 1/2=l 5 0.0464). The two distributions are significantly different [pKS , 8.17 3 10 28, where pKS
is the p value from Kolmolgorov–Smirnov (KS) test]. This effect weakens as the length of the first stage, t1 , is decreased and is very weak or absent for
one-stage development. c, The “shuffled” cumulative histogram (rough curve) was obtained by matching pairs of ORI and OD maps from simulations
using different seeds. This curve lies much nearer to and has the same mean value (0.0464) as the random distribution. Even though the histograms in
b and c are clearly different, because there are many more data points underlying the shuffled histogram in c than the single-run histogram in b, the
difference between shuffled and random distributions has only a slightly weaker p value (pKS , 1.64 3 10 25) for c than b.
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the second category can be given much weight, better understand-
ings of competitive and nonlinear mechanisms are needed, both
theoretically and biologically. This might considerably broaden
the conditions allowing co-development of OD and ORI.

Piepenbrock et al. (1996, 1997), studying the present model,
independently noted that nonlinearities determine the precise
conditions allowing OD and ORI co-development (also see Er-
win and Miller, 1996b). They concluded from this that codevel-
opment could not occur robustly. We have shown the opposite
and believe the correct conclusion is simply that the quantitative
details of conditions allowing co-development are not to be
trusted.

Some nonlinearities might also modify results in the first cat-
egory. For example, Feidler et al. (1997) report that certain
nonlinearities can yield RFs that would not result from a linear
rule. They studied development of direction tuning, but the re-
sults translate directly to the present model, with direction tuning
replaced by disparity tuning (Wimbauer et al., 1997a,b). After
translation, these results show that, in a one-dimensional envi-
ronment in which the distribution of stimulus disparity has non-
zero peaks symmetric about zero, certain nonlinearities allow

intereye absolute phase differences other than 0 or 180° to de-
velop. It will be interesting to explore these ideas in a 2-D
environment with alternative intereye stimulus distributions.

Evaluation of assumptions
Our results depend on several simplifying assumptions. First, we
have assumed symmetries between the two eyes and between the
two center types. As discussed previously, this ignores actual
asymmetries in projection strengths and activity patterns.

The symmetry between ON and OFF is not crucial. The
“Mexican-hat” correlation structure is sufficient to robustly give
simple-cell structure within each eye’s RFs. This yields an ap-
proximate balancing of total ON and OFF innervation, indepen-
dent of asymmetries in overall activities of ON versus OFF
inputs.

The symmetry between left and right is more important but can
be regarded as a simple stand-in for the unknown mechanisms of
competition, that is, for whatever forces lead to equalization of
the projections of the two eyes. As discussed elsewhere (Miller
and MacKay, 1994; Miller, 1996a), at least two mechanisms can
achieve equalization: a Mexican-hat pattern of intracortical inter-
actions, i.e., short-distance excitation and longer-distance inhibi-
tion; or a competitive process (e.g., competition for neurotro-
phins) that ensures that all afferents with approximately equal
average activity achieve approximately equal projection strength.
(Because we used a Mexican-hat cortical interaction here, we did
not need to assume that the two eyes begin with equal strength;
however, this assumption simplified analysis considerably). Given
either symmetry assumptions or competitive mechanisms to ren-
der the eyes equal, the impact of correlations on development
should be as described here.

The facts that there is initial contralateral dominance and that
ocular equalization occurs only in the presence of vision have
been suggested to require non-Hebbian mechanisms of develop-
ment (Crair et al., 1997a). Instead, we believe they suggest that
vision is required to induce adequate competition, e.g., adequate
development of inhibition or release of neurotrophins.

We also assume that the LGN inputs from each eye can be
divided into two homogeneous groups, ON and OFF (this could
be extended to more groups; Appendix 1). These groups are
heterogeneous in their visual response properties; for example,
the temporal phase of response to a drifting sinusoid is widely
distributed among neurons of a single type (Saul and Humphrey,
1990). The key requirement of our model is an overall tendency
to a Mexican-hat correlation structure between ON and OFF in
darkness. A fair amount of diversity in the details, which amounts
to addition of noise to the correlations assumed here, can be
tolerated; the amount tolerable is a quantitative issue not ex-
plored here. Measurements have shown clear separations of ON
from OFF retinal cells in their dark correlation properties (Mas-
tronarde, 1983b; Meister et al., 1995; Wong and Oakley, 1996).

Possible sources of the postulated activity correlations
Because the development of ocularly matched ORI maps is in-
dependent of vision (Crair et al., 1997a), we presume it depends
on LGN spontaneous activity. Are the correlation structures we
predict plausible attributes of this activity?

For the ORI maps of the two eyes to become matched, we
predict that the LGN must possess center-type-specific intereye
correlations. In adults, both excitatory and inhibitory LGN in-
terocular interactions exist (Xue et al., 1987; Guido et al., 1989;
Schroeder et al., 1990; Moore et al., 1992; Tong et al., 1992).

Figure 14. Absolute and relative phases. The sinusoidal function in a has
an absolute phase F defined relative to the coordinate axis. The Gabor
function in b is composed of the sinusoid in a multiplied by a Gaussian
envelope. It may be described by a relative phase f1 , defined relative to
the center of the Gaussian envelope. The Gabor function in c is composed
of the same sinusoid (a), multiplied by a Gaussian envelope that is shifted
in position relative to the one in b. Thus b and c show different relative
phases, f1 and f2 , even though they both have the same absolute phase,
F, as the sinusoid in a.
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There are at least three potential sources of intereye LGN cor-
relations at the developmentally appropriate times: the peri-
geniculate nucleus, the corticogeniculate feedback, and the inhib-
itory intrinsic connections within the LGN. The perigeniculate
nucleus induces spindle waves that, in vitro, propagate across the
retinotopic map of the LGN in register between the layers of the
two eyes (Kim et al., 1995). These waves arise in ferret (McCor-
mick et al., 1995) shortly before the major development of cortical
ORI selectivity (Chapman and Stryker, 1993). Corticogeniculate
feedback is established even earlier in development (Shatz and
Rakic, 1981; Weber and Kalil, 1987; Johnson and Casagrande,
1993). Cortical simple cells, which retain center-type-specific
information, project to LGN only in binocular regions (Tsumoto
and Suda, 1980), suggesting such information may be important
for LGN binocular interactions.

The existence of strong intereye correlations, apparently gen-
erated by corticogeniculate feedback, has recently been demon-
strated in developing (P24–P27) ferret LGN, 0.5–1 week before
the major development of ORI selectivity (Weliky and Katz,
1998). These correlations appear to have the proper form to drive
the major features described thus far in ferret layer 4 (Zahs and
Stryker, 1988): OD segregation (because the correlations are
stronger within than between eyes) and ON/OFF segregation into
cortical patches (because correlations within a single eye are
stronger between cells of the same rather than opposite center
type; note that differing ON and OFF mean activity levels could
explain ON/OFF patch continuity across OD borders). It is not
clear whether these correlations have the proper form to account
for simple cells or their ocular matching, because retinotopic
positions of the cells were not measured. However, it is also not
clear whether such correlations should exist in ferret LGN: only
40% of the cells in ferret layer 4 are ORI-selective (Chapman and
Stryker, 1993), and there is as yet no evidence as to whether these
are simple cells.

For development of simple-cell RF structure, within-eye cor-
relations should have Mexican-hat structure. As extensively dis-
cussed by Miller (1994), such correlations are expected from (1)
the connectivity yielding center-surround receptive fields, com-
bined with (2) the assumption that correlations in spontaneous
activity are attributable to common input from photoreceptors
(Mastronarde, 1983b). A possible flaw in this argument was also
discussed: it relies on center-surround RF structure but discusses
correlations in spontaneous activity, which may involve dark-
adapted cells. In adult cats, dark-adapted cells tend to lose their
surrounds in retina (Enroth-Cugell and Lennie, 1975; Barlow and
Levick, 1976) and perhaps also LGN (Virsu et al., 1977; Kaplan
et al., 1979). Recent studies in salamander retina demonstrate a
Mexican-hat correlation structure between ON and OFF ganglion
cells in spontaneous activity both in light and darkness (Meister
et al., 1995). These cells also lose their surrounds in darkness (M.
Meister, personal communication). Thus, at least in salamander,
the circuitry that produces the RF surround in light may equally
influence correlations in light and darkness.

These arguments focus on adult-like correlations based on
spontaneous quantal events in photoreceptors (Mastronarde,
1983b, 1989). An alternative correlation structure exists in early
developing retina, attributable to spatially traveling waves of
activity (Wong et al., 1993; Wong and Oakley, 1996). It was
argued by Miller (1994) that these waves probably are not in-
volved in development of simple cells and ORI selectivity. The
arguments were threefold: the waves are far too wide to produce
simple cell subregions; they disappear about or slightly before the

time that ORI selectivity first arises; and no ON/OFF difference
had been observed in the waves. An ON/OFF difference has since
been observed in ferrets (this has not yet been studied in cats)
beginning at P14, when ON/OFF segregation begins in LGN
(Wong and Oakley, 1996), but ;2.5 weeks before significant
development of ORI selectivity (Chapman and Stryker, 1993;
Chapman et al., 1996). Although this difference is appropriate to
drive ON/OFF segregation in ferret LGN (Lee and Wong, 1996;
Miller, 1996b), the timing and size of the waves continue to
render them unlikely candidates for a role in simple cell
development.

Other models
Only one other model has addressed ocular matching of ORI
preferences in the absence of vision (Wolf et al., 1996). That work
concluded that boundary conditions such as those of cat area 18,
but not area 17, could cause well correlated ORI maps to develop
from activity-dependent mechanisms. We predict that interocular
correlations in spontaneous activity induce matching of the two
eyes’ maps in both areas 17 and 18; boundary conditions may also
contribute in area 18 but are not needed given such correlations.

Previous models of joint OD and ORI map development are of
two types. Some used reduced description of inputs and RFs in
terms of a few low-dimensional “features,” such as OD, ORI, and
retinotopic position (Obermayer et al., 1992; Swindale, 1992)
(Durbin and Mitchison, 1990; as extended in Erwin et al., 1995).
These models assume a single ORI map and thus do not address
ocular matching of the maps. More generally, they do not explain
how RF features are generated from the inputs of many separate
synapses. Synapse-based models have been studied by several
authors. Tanaka (1996) and Olson and Grossberg (1998) assumed
between-eye correlations were zero and so obtained only ocularly
uncorrelated orientation maps. Shouval et al. (1996) studied de-
velopment of a single cortical cell’s RF in response to natural
images (well correlated between the two eyes); the problem of
ocular matching without vision was not addressed, and the ap-
proach was not extended to multiple cells and maps. The more
general relationship of our separate ORI and OD models to these
and other modeling approaches has been extensively discussed
(Miller, 1990a, 1994, 1996a; also see Erwin et al., 1995; Swindale,
1996).

Conclusion
Our model is very simple and has many inadequacies. Nonethe-
less, the richness and diversity of the experimental results ac-
counted for, starting from extremely simple assumptions of a
correlation-based synaptic competition, suggest that the basic
explanations proposed here may underlie the more complex re-
sults of biological development.

The model reveals that the two most salient RF properties of
primary visual cortical cells, OD and ORI selectivity, arise nat-
urally from competition among inputs representing two eyes and
two center types. Given the symmetry assumptions, the natural
variables describing development in this system are ocular differ-
ence (S OD), center-type difference (SORI1), and their combina-
tion (SORI2). The neural organizations of OD and ORI arise as
a result of simple properties of the input correlations driving
these variables (Fig. 4). It seems possible that many RF properties
may arise from such competitions between differing input types
[e.g., lagged vs nonlagged, which may yield development of direc-
tion selectivity (Feidler et al., 1997; Wimbauer et al., 1997a,b) and
color-selective input subtypes in the monkey parvo system; also
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see Appendix 1]. As discussed by Miller (1994), this raises the
possibility that such RF properties may arise, not through selec-
tion for their computational role in visual processing (although
such selection shapes internally generated input correlation struc-
tures), but rather as byproducts of deeper and more general,
modality-independent principles of cortical computation.

In conclusion, cortical self-organization via correlation-based
synaptic competition can explain the development of linked ORI
maps in the two eyes in the absence of vision, along with devel-
opment of OD segregation, and can naturally account for the
observed correlation between OD maxima and ORI singularities.
The role of self-organization has two key tests: appropriate LGN
correlations as described here must exist at the times that ORI
selectivity and OD first develop; and binocular simple cells in
adult layer 4 should have nonrandom absolute phase relationships
between their right- and left-eye receptive fields.

APPENDIX 1: FURTHER DETAILS OF MODE
DECOMPOSITION
The decomposition of Equation 14 (which amounts to diagonal-
ization of the matrix of correlation functions; e.g., see Erwin and
Miller, 1996b) can be easily found as follows. We assume a
symmetry of our equations under exchange of right-eye and
left-eye labels and under exchange of ON-center and OFF-center
labels. If our equations (e.g., Eq. 2) are invariant under such
exchange, then the eigenvectors of those equations can be ex-
pressed as eigenvectors of the “exchange operators.”

Eigenvectors under exchange are easily found as the sum (S) or
difference (D) of the weights designated by the two exchanged
labels. For example, for the ocular label E [ {L, R}, the sum
SSE 5 S R 1 SL is equal to itself under L/R exchange and hence
has eigenvalue 11 under such exchange, whereas the difference
SDE 5 SR 2 SL is equal to its negative under L/R exchange and
hence has eigenvalue 21 under such exchange. The same proce-
dure applies to the center-type label C [ {N, F}. This provides a
basis for finding the decomposition, by proceeding one label at a
time. We let lE , lC be the eigenvalue under L/R or N/F ex-
change, respectively. Then the patterns are found as follows:

Begin with two labels, L and R. Eigenvectors are:

SSE 5 SR 1 SL, lE 5 11

SDE 5 SR 2 SL, lE 5 21

Add additional two labels, N and F. Eigenvectors are:

SSESC 5 ~SSE!N 1 ~SSE!F, lE 5 11, lC 5 11

SSEDC 5 ~SSE!N 2 ~SSE!F, lE 5 11, lC 5 21

SDESC 5 ~SDE!N 1 ~SDE!F, lE 5 21, lC 5 11

SDEDC 5 ~SDE!N 2 ~SDE!F, lE 5 21, lC 5 21

Alternatively, begin with two labels, N and F. Eigenvectors are:

SSC 5 SN 1 SF, lC 5 11

SDC 5 SN 2 SF, lC 5 21

Add additional two labels, L and R. Eigenvectors are:

SSCSE 5 ~SSC!R 1 ~SSC!L, lC 5 11, lE 5 11

SSCDE 5 ~SSC!R 2 ~SSC!L, lC 5 11, lE 5 21

SDCSE 5 ~SDC!R 1 ~SDC!L, lC 5 21, lE 5 11

SDCDE 5 ~SDC!R 2 ~SDC!L, lC 5 21, lE 5 21

[Note: (SSE )N 5 (SR 1 SL)N 5 SRN 1 SLN; (SDC)R 5 (SN 2
SF)R 5 S RN 2 SRF; etc.]. Note that eigenvectors with identical
superscripts are equal, regardless of superscript order (e.g., SSE SC

5 SSC SE , SSE DC 5 SDC SE , etc.).
We now identify:

SSUM 5 SSESC 5 SSCSE

(15)
SOD 5 SDESC 5 SSCDE

SORI1 5 SSEDC 5 SDCSE

SORI2 5 SDEDC 5 SDCDE

The corresponding eigenvalues under the original equation (Eq.
2) are proportional to CSUM, COD, CORI1, and C ORI2, respec-
tively; these can be found, it turns out, by applying the same
procedure to the C values, if N, F, R, and L are respectively
replaced by SC , OC , SE , and OE (these labels are defined in
Fig. 2a).

This method can be applied to arbitrary dualistic symmetries of
input types. For example, if there were eight input types corre-
sponding to three symmetries (e.g., left /right, ON/OFF, and
lagged/nonlagged), then there would be eight independently
growing composite weights, corresponding to the four above with
eigenvalue 11 and 21 under the new symmetry (i.e., each of the
four composite S xs above would split into two composite weights,
[(S x)lagged 6 (S x)nonlagged], where 6 gives eigenvalue 61 under
lagged/nonlagged exchange; and the corresponding correlation
functions would be (C x)ST and (C x)DT, where ST and DT stand for
sum and difference, respectively, of same-temporal-type and
opposite-temporal-type correlation functions).

More generally, no matter how many types of cells there may
be and whether they form dualistic symmetries, as long as the
symmetries hold between left and right and between ON and
OFF, then, if we characterize inputs only by L/R/N/F (ignoring all
other distinctions), then the development of L/R/N/F will still be
described in the linear regime by the above four modes and
composite correlation functions. However, the underlying corre-
lation functions CEC, E [ {SE , OE}, C [ {SC , OC} may be more
difficult to determine, because they will involve various linear
combinations over correlation functions involving the various
other subtypes. Nonetheless, assuming we have calculated the
CEC correctly, our analysis will then correctly describe the devel-
opment of L/R/N/F (ignoring all other distinctions) in terms of
these correlation functions.

APPENDIX 2: RELATIONSHIP OF TWO-INPUT-TYPE
AND FOUR-INPUT-TYPE MODELS
We previously considered two-input-type models of OD (Miller
et al., 1989) and ORI (Miller, 1994) development. We label the
two input types S I, I [ {1, 2}. In the OD model, S 1 and S2 were
right-eye and left-eye inputs, SR and SL, whereas in the ORI
model, S 1 and S2 were ON-center and OFF-center inputs, SN and
S F. These models used equations identical to those of the present
model (Eqs. 1, 2, 5–9), except for the use of only two rather than
four input types (replacing the combination E, C by I and E9, C9
by I9, the equations become identical).

In both two-input-type models, we assumed a symmetry of the
equations under exchange of S1 and S2, which implies that C 11 5
C 22 [ CSAME and C12 5 C21 [ COPP. Development before
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saturation limits took effect was then reexpressed in terms of
composite variables: SS 5 S 1 1 S 2, SD 5 S1 2 S2, CS 5 C SAME

1 COPP, and CD 5 CSAME 2 COPP. Again, the procedures of the
present paper are identical except for the change in the number of
input types.

The resulting equation for development of S D in terms of CD

was identical to each of Equations 14b–14d for development of
Sm in terms of Cm, m [ {OD, ORI1, ORI2}. We previously
showed how the independently growing patterns of SD and their
growth rates are determined by CD. Because the equations are
identical, these results apply directly to tell how the indepen-
dently growing patterns of each Sm, m [ {OD, ORI1, ORI2},
and their growth rates are determined by the corresponding Cm.

The resulting equation for development of SS in terms of CS

was identical to Equation 14a for development of SSUM in terms
of C SUM. [There is a superficial difference: a factor of 2 rather
than 4 multiplying e(xW), which reflects the number of input types.
The equations become identical if Eq. 9 for e is rewritten in terms
of S SUM (or SS) rather than S EC (or SI).] Thus, our previous
studies of the development of SS can be applied directly to
understand development of SSUM under Equation 14a.

Beyond formal equivalence of the equations, the two-input-
type models can also be seen as special cases of the present
model. If we define SR 5 SRN 1 SRF, SL 5 SLN 1 S LF, CSAME

5 CSE SC 1 C SE OC , and COPP 5 COE SC 1 C OE OC , then SD and CD

in the OD model are identical to S OD and COD in the present
model. Thus, the two-input-type OD model can be understood as
a special case of the present model in which ON/OFF differences
are zero, so that S ORI1 5 S ORI2 5 0. Similarly, if we define S N

5 SRN 1 SLN, SF 5 SRF 1 SLF, CSAME 5 CSE SC 1 COE SC , and
COPP 5 C SE OC 1 COE OC , then S D and CD in the ON/OFF model
are identical to S ORI1 and CORI1 in the present model. So the
two-input-type ON/OFF model can be understood as a special
case of the present model in which left–right differences are zero,
so that S OD 5 S ORI2 5 0. These equivalences can also be seen
from Appendix 1: setting all terms involving DE to zero, we arrive
at the ON/OFF model, whereas setting all terms involving DC to
zero, we arrive at the left /right model.
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