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phenomenological models of the responses of simple cellsin primary
visual cortex have concluded that a cell’s firing rate should be given
by its input raised to a power greater than one. This is known as an
expansive power-law nonlinearity. However, intracellular recordings
have shown that a different nonlinearity, a linear-threshold function,
appears to give agood prediction of firing rate from a cell’ s low-pass-
filtered voltage response. Using a model based on a linear-threshold
function, Anderson et al. showed that voltage noise was critical to
converting voltage responses with contrast-invariant orientation tun-
ing into spiking responses with contrast-invariant tuning. We present
two separate results clarifying the connection between noise-
smoothed linear-threshold functions and power-law nonlinearities.
First, we prove analyticaly that a power-law nonlinearity is the only
input-output function that converts contrast-invariant input tuning into
contrast-invariant spike tuning. Second, we examine simulations of a
simple model that assumes instantaneous spike rate is given by a
linear-threshold function of voltage and voltage responses include
significant noise. We show that the resulting average spike rate is well
described by an expansive power law of the average voltage (averaged
over multiple trials), provided that average voltage remains less than
about 1.5 SDs of the noise above threshold. Finally, we use this model
to show that the noise levelsrecorded by Anderson et al. are consistent
with the degree to which the orientation tuning of spiking responsesis
more sharply tuned relative to the orientation tuning of voltage re-
sponses. Thus neuronal noise can robustly generate power-law input-
output functions of the form frequently postulated for simple cells.

INTRODUCTION

Responses of visual cortical simple cells are commonly
described by simple phenomenological models in which a
linear filtering of the stimulus is followed by an expansive
power-law nonlinearity to determine an instantaneous firing
rate (Albrecht and Geisler 1991; Albrecht and Hamilton
1982; Anzal et al. 1999; Carandini et al. 1997, 1999; Em-
erson et al. 1989; Gardner et al. 1999; Heeger 1992, 1993;
Murthy et al. 1998; Sclar et al. 1990). By a power-law
nonlinearity, we mean that a cell’s firing rate r depends on
itsinput or voltage V asr = k([V] )" for constants k and n,
where the 0 voltage is set equal to the mean voltage at rest
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and [V]" = max (V, 0).! By an expansive nonlinearity, we
mean that n > 1. The linear filtering aspect of this model
receives support from a number of studies showing that voltage
responses of simple cells are remarkably linear functions of the
visual stimulus (Anderson et al. 2000; Jagadeesh et al. 1993,
1997; Lampl et al. 2001) (but see piscussION).

Despite the success of using an expansive power law non-
linearity in phenomenological models, direct experimental
investigations have shown that the transformation from in-
stantaneous voltage to instantaneous spike rate is well approx-
imated by a linear-threshold function r = k([V — T] "), where
V is the voltage after removal of spikes and low-pass filtering,
r isthe low-pass-iltered spike train, and T is an effective spike
threshold (Anderson et a. 2000; Carandini and Ferster 2000).
In this paper, we show a simple and surprisingly robust con-
nection between linear-threshold models and expansive power-
law nonlinearities; if the voltage trace includes significant
stimulus-independent noise and if the conversion from instan-
taneous voltage to instantaneous firing rate is alinear threshold
function, then the conversion from trial-averaged voltage to
trial-averaged firing rate will be well described by an expansive
power law (cf. Suarez and Koch 1989).

Thiswork isinspired by the recent results of Anderson et al.
(2000). They studied the intracellular basis for the observation
that orientation tuning of visual cortical neurons is contrast
invariant, i.e., changing stimulus contrast simply scales the
magnitude of a neuron’s response, without changing the shape
of its orientation tuning curve (Sclar and Freeman 1982; Skot-
tun et a. 1987). Anderson et al. (2000)’s results can be sepa-
rated into three main findings. First, they found that a cell’s
trial-averaged voltage response V showed contrast-invariant
orientation tuning (both the size of the mean voltage response
and the amplitude of voltage modulation had this property).
Second, they found that spiking responses also showed con-
trast-invariant tuning (as expected) and that a given neuron’s
spiking response was more narrowly tuned for orientation than
its intracellular voltage response. Finaly, they used computer

1 We use the rectified voltage [V] ™ in our definition of a power law to ensure
that responses are an increasing function of voltage, i.e., we assume that
hyperpolarization cannot increase response.
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simulations to demonstrate that a linear threshold model for
converting instantaneous voltage to instantaneous spike rate
could account for this data, but that the noise in the actual
voltage traces was critical for this result: if alinear threshold
model was applied to the actual noisy voltage traces, or to the
trial-averaged voltage traces with the addition of random noise,
then contrast-invariant spiking tuning was attained; but if a
linear threshold model was simply applied to the trial-averaged
voltage traces without additional noise, the spiking tuning
became contrast dependent.

Here we present two basic results that serve to clarify the
connection between the work of Anderson et a. (2000) and the
many successful phenomenological descriptions of simple cell
responses that assume linear input plus an expansive power law
nonlinearity. First, while others have noted that a power law
nonlinearity converts contrast-invariant input into contrast-
invariant output (e.g., Carandini et al. 1997; Heeger 1992;
Heeger et al. 1996), here we prove that a power law is the only
function that achieves this. Thisresult, in combination with the
results of Anderson et al. (2000), implies that adding noise to
alinear threshold function must yield power law behavior to a
good approximation. Second, we quantify the degree to which
a noise-smoothed linear threshold function can indeed be ap-
proximated by a power law, finding that the approximation
holds over a wide range of parameters. We also show that the
exponent in the best-fit power law decreases with increasing
noise level and that the sizes of signal and noise measured by
Anderson et al. (2000) predict an exponent that accounts well
for the observed sharpening of spiking orientation tuning rel-
ative to voltage tuning.

RESULTS
Contrast-invariant tuning

A response function is contrast invariant if changes in stim-
ulus contrast simply scale responses without affecting the
tuning to other parameters. For example, let V(c, 6) describe
the voltage response of a given neuron as a function of contrast
level ¢ and orientation 6. Let g,,(6) be the orientation tuning
function at maximal contrast. If the cell displays contrast-
invariant orientation tuning, then changing to a different con-
trast ¢ simply scales the response, i.e., V(c, 0) = f,,(c)gy (),
where f,,(c) is the cell’s contrast response function (Fig. 1).
Therefore saying that orientation tuning is contrast invariant is
equivalent to saying that the contrast response function is
orientation invariant.

We will work in units in which V = 0 represents the mean
voltage at rest, in the absence of astimulus, so that V represents
the stimulus-induced voltage. It is easy to seethat if the voltage
response is contrast invariant, and the stimulus-induced spike
rate R(V) (i.e., the spike rate after subtracting off the back-
ground rate) is equal to the stimulus-induced voltage raised to
a power n, then this spike rate is contrast invariant:

R(V) = k(VI)" = k([fy (©)gv (0)])" = Ky (0)"([9v (0)])" ()

(In the last step, we used the fact that the contrast response
function is nonnegative.) In ApPENDIX A, We prove the converse,
i.e.,, apower law is the only function that transforms contrast-
invariant inputs into contrast-invariant spiking responses.
Only a pure power law yields contrast invariant responses.
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FiGc. 1. lllustration of a response function with contrast-invariant orienta-
tion tuning. Vertical axis shows response R(c, 6) to contrast ¢ and orientation
0. The response separates into the product of a function of contrast times a
function of orientation, R(c, 6) = f(c)g(6). This condition ensures that orien-
tation tuning is simply scaled by changes in contrast as illustrated by the
projections along the orientation axis for different contrasts. This also implies
that contrast tuning is simply scaled by changes in orientation asiillustrated by
the projections along the contrast axis for different orientations.

Power law functions with nonzero threshold, i.e, r(V) =
k(V — T]")" for T > 0, do not yield contrast-invariant re-
sponses, instead they typically lead to an “iceberg” effect—
tuning widens with increasing contrast as more orientations
receive suprathreshold input.

Accuracy of power-law approximation

Now we turn to the question of whether noise-smoothed
threshold linear functions can be approximated by power-law
nonlinearities. We let the instantaneous spike rate r be a
threshold linear function of voltage V: r{(V) = k[V — T]7,
where T > 0 is a threshold and again V = 0 represents the
mean voltage at rest. We assume that the voltage can be written
asasum of atrial-averaged voltage V and zero-mean Gaussian
noise v with SD o: V = V + v, where (letting an overbar
represent an average over trials) v = 0 and ©* = 0. One can
then derive an equation for T+(V), the average response (aver-
aged over the stochastic noise) as a function of the trial-
averaged voltage V (see Fig. 2A; aprenpix B). Experimental
results usually report the stimulus-induced response with back-
ground response subtracted off. Thus we will study the quan-
tity

RT (\_/) =Ty (\_/) —17(0) (2

We work in units of the noise, taking o = 1. In these units,
both V and T are measured as number of SDs of the noise
above rest eg.,, T = 3 means that threshold is 3 noise SDs
above rest. We take the gain k to be 1, which simply sets the
units of response. With these choices, the form of the function
Rr(V) is determined by the single parameter T.

Figure 2B, top, shows R; versus V as continuous lines for
a range of vaues of threshold T. To determine how well
this function might be approximated by a power law, for each T,
we found the best-fit power law KV" (least-mean-squares fit;
shown as dashed lines) over therange0 =V = T + V,; (upper
limit shown as vertical dotted line segments). Weillustrate, and
initially consider, the case V,; = 1.5. The power law gives an
excellent fit to V over the fitted range for al values of T. Fig.
2B, bottom, shows the same fits on a log-log plot. This shows
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Fic. 2. A: how noise converts a linear threshold function (dashed line) into a smooth function (solid line). The response
r is given by a linear threshold function of the voltage, r(V) = k[V — T]* (dotted line). Assuming V = V + v, where v is
0-mean Gaussian noise (shown in gray), the average responser vs. average voltage V follows the smooth solid line. Diamond
shows (V, T) for the Gaussian shown. Values illustrated were taken from those observed experimentally (o4ee = 3.5 MV,
V =12mV = 3430, s T = 10 MV = 2.860 ¢ See discussion in text section Comparison to experimental data). B: the
smooth function that arises from the combination of noise and a linear-threshold response function closely approximates a
power law. Mean output Ry (vertical axes) is shown vs. mean voltage V (horizontal axes), on linear axes (top) or as log-log
plots (bottom) for varying values of threshold T. Continuous curves: exact noise-smoothed function R; (Egs. 2 and B1).
Dashed lines: best-fitting power law kV". Both VV and T are expressed as number of SDs of the noise above rest. Dotted vertical
lines: V = T + 1.5, the upper boundary of the region over which the power law was fit. Thin solid horizontal lines: Ry =
0.1. Power law provides a good fit to Ry wherever V = T + 1.5 and Ry = 0.1. x axes extend from 0 to T + 3 (top plots) or
from 0.1 to 10 (bottom plots). Power law was found as fit giving least mean-square error over 0 = V =< T + 1.5, using Matlab
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6.0 function fminsearch.

that the power law fails for small inputs. However, these small
inputs correspond to very low output rates (R = 0.1 shown as
thin horizontal lines) that occur only for values of V well below
threshold and result in negligible absolute differences between
actual and fitted functions. _ _

The best-fit exponent [n in the power law Ry ~ k([V] ")7 is
always greater than one and increases with increasing threshold
T (Fig. 3). Intuitively, alarger exponent means that the response
V" remains small for larger vaues of V, consistent with a higher
threshold (cf. Carandini et al. 1997). Note that because the
threshold T is expressed in units of the noise, increasing T for
fixed noise is equivalent to decreasing the noise for fixed T.
Thus the exponent is expected to be a decreasing function of
noise level, i.e., higher noise leads to lower exponents (Ander-
son et al. 2000).

We quantified the robustness of the power law approxi-
mation to R(V) in two ways. First, for each vaue of the
threshold T, we calculated the size of the error at a given voltage
V relative to the size of the response Rr(V), i.e,, we plot |Rr (V) —
KV" /Ry (V) for arange of valuesof V and T (Fig. 4). (Recall that

k and n are determined from optimizing the fit for 0 =V <= T +
1.5). Not surprisingly, the power law breaks down for large V.
In this range, al values of V + v are above threshold, and the
input-output function becomes the underlying linear threshold
function. For low thresholds, the best fit power-law is more
nearly linear (exponents near 1.0, see Fig. 3) and a good fit
extendswell beyond T + 1.5 (T + 1.5isindicated by the upper
dashed linein Fig. 4). For T > 2, however, accurate power-law
fits do not extend much beyond this upper bound of the fitting
range. The power law also breaks down for small values of V.
This indicates that the power-law fit does not capture the exact
shape of the transfer function as it bends away from Ry = 0
(see Fig. 2B). However, errors at small V correspond to very
low firing rates (R <0.1 shown aslower dashed linein Fig. 4).
At such low rates, these large relative errors reflect small
absolute differences between R (V) and the best-fit power law
(see Fig. 2B, top).

To determine the range of voltages over which the power-
law can give a good fit, we varied V,;;, the upper voltage cutoff
of therange of fit [0, T + V,,]. For each V,;;, we calculated the
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FIG. 3. Dependence of power-law exponent n(T) on threshold T, for best-fit
power law k(T)V"™. Fits were done as described in legend of Fig. 2.

average absolute error of the approximation (Fig. 5A), and the
average error relative to the response (Fig. 5B), for integral
values of threshold T from 1to 5. As T increases beyond 2 SDs
of the noise, good power-law fits are only obtained for ranges
that extend about 1.5 SDs above threshold.

In summary, both methods of assessing the accuracy of
power law fits reveal that, across a wide range of thresholds, a
power law gives a good fit in the range [0, T + 1.5].

Comparison to experimental data

We can compare these results to data as follows. The noise
in the recordings of Anderson et a. (2000) was generaly o =
3-4mV (rms). Their thresholds were roughly 10 mV from rest,
yielding T = 2.5-3.3 (expressed in units of the noise). Stim-
ulus-induced voltage changes (DC + F1) at the highest con-
trast studied at the preferred orientation were in the range
of 8-12 mV, yielding V = 2—4 (again in units of the noise) or
no morethan 1.5 above T. (Only contrasts =64% were studied,
but responses of most cat V1 cells are nearly or entirely

Relative Error (%)

20%

10%

0%

Threshold

FIG. 4. Error of the best-fit power-law approximation kV", expressed rel-
ative to the trial-averaged response R;. Relative error is plotted versus thresh-
old T (horizontal axis) and input V (vertica axis). Relaive error is defined as
[R(V) — KV" [/R-(V) (expressed as a percentage). This error is indicated as
grayscale, linear from black = 0 to white = 50%; all values =50% are set to
white. Upper dashed line indicates V = T + 1.5, the upper boundary of the
region over which the power law was fit. Lower dashed line indicates contour
aong which R = 0.1. Asin Fig. 2, k(T) and n(T) in power law kV" were fit
separately for each T over therange0 = V = T + 1.5. Regions of largerelative
error below the R = 0.1 contour show little absolute error: if absolute error
[Rr(V) — kV" | rather than relative error is plotted on the same scale (i.e,
black = 0, white = 0.5), these regions become black (not shown; see aso
Fig. 2).
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FIG. 5. Average absolute error (A) and average relative error (B) for vari-
ations of the upper bound V,; of the range over which a power law was fit.
Power law wasfit over range0 =V =T + V,,. Error is plotted vs. V,;. Average
absolute error is average over V € [0, T + V] of [Ry(V) — kV" |, while
average relative error is average over the same range of [Rr(V) — kV" [IR (V).
The five lines in each plot correspond to T = 1, 2, 3, 4, 5, as labeled. For
T > 1, error rapidly grows for V,; > 1.5; previous figures showed results for
Vi = 15.

saturated at that contrast, e.g., Albrecht 1995.) Thus they found
that even the strongest visual cortical voltage responses remain
in the range in which alinear threshold function yields a power
law as the averaged input-output function.

A power law with exponent n is expected to sharpen tuning
by afactor of \/n. Thisis based on consideration of a Gaussian
tuning curve: if such a curve has SD o, raising it to the power
n produces a curve with SD o/v/n. Thus we can compare
independent estimates of the exponent n, one obtained from
measures of sharpening of tuning, and the other obtained by
using the relationship of noise levels to exponents shown in
Fig. 3. Therange T = 2.5-3.3 obtained from the recordings of
Anderson et al. (2000) yields exponents n = 2.9-3.7 (Fig. 3),
corresponding to a sharpening of tuning by factors of \/n =
1.7-1.9. Carandini and Ferster (2000) found that voltage ori-
entation tuning had a half-width-half-height (HWHH) of 38 =
15° (mean = SD, averaged over cells), while spiking orienta-
tion tuning had a HWHH of about 23 = 8° [see dso Volgushev
et al. (2000), who also found spike tuning to be sharper than
tuning of intracellular potentials]; however, their spiking tun-
ing estimate was almost certainly overly broad, because their
methods did not allow resolution of spiking HWHHs <20°.
These mean values represent a sharpening by a factor of 1.65,
the square of which suggests an exponent n = 2.72, which is
attained in our model when T = 2.3. Given that this is amost
certainly an underestimate of the true sharpening, this agrees
well with the estimate n = 2.9-3.7. Gardner et al. (1999)
examined the same issue using extracellular recording by com-
paring the tuning predicted from a cell’s noise-mapped linear
receptive field to that observed in response to gratings; they
found sharpening corresponding to power-law exponents that
had a geometric mean across cells of 3.15. Under the assump-
tion that the linear receptive field approximates the transfor-
mation of stimuli into membrane voltage, this degree of sharp-
ening agrees well with the noise-based estimate.

DISCUSSION

Here we have shown two things. First, a power law is the
only input-output function that converts contrast-invariant
voltage tuning into contrast-invariant spiking tuning. Second,
given alinear-threshold function relating instantaneous voltage
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to instantaneous firing rate, addition of Gaussian noise to the
voltage yields a relationship between trial-averaged voltage
and trial-averaged firing rate that is well approximated by an
expansive power law. This approximation seems quite good
provided that the trial-averaged voltage does not exceed the
threshold by more than about 1.5 SDs of the noise. We have
gone on to compare these results to existing data. The voltage
responses reported by Anderson et a. (2000) remained within
the range in which a power law gives a good approximation,
even at high contrasts. The exponents predicted from their
reported noise and threshold levels predict a sharpening of
spiking tuning, relative to voltage tuning, that agrees well with
published data on the degree of such sharpening (Carandini and
Ferster 2000; Gardner et al. 1999).

Mechanisms yielding contrast-invariant tuning

Anderson et a. (2000) used numerical simulations to dem-
onstrate that neural noise and a threshold-linear transfer func-
tion could transform contrast-invariant voltage responses into
contrast-invariant spike responses. Our results, both theoretical
(aprPenDIX A) and computational (Figs. 2 and 4), indicate that
the invariance of spike tuning was due to the fact that a
noise-smoothed threshold-linear function is well approximated
by a power law. Thus the approach of Anderson et al. (2000)
to contrast-invariant orientation tuning, based on noise-
smoothed linear threshold models, resembles phenomenol ogi-
cal descriptions in which a linear filtering of the stimulus is
followed by an expansive power law nonlinearity (Carandini et
al. 1997; Heeger 1992; Heeger et al. 1996). It would be
interesting to see if similar mechanisms explain contrast-in-
variance of other response properties, such as spatial frequency
tuning (Albrecht and Hamilton 1982).

However, a noise-induced power-law nonlinearity only ex-
plains half the problem of contrast-invariant tuning of V1
simple cells, namely how voltage tuning that scales with con-
trast is converted into spiking tuning that scales with contrast.
The mechanisms by which the input to simple cells from
neurons in the lateral geniculate nucleus (LGN) is converted
into voltage tuning that scales with contrast remain to be
elucidated. The voltage responses do not result from a simple
linear filtering of the input as postulated by the phenomeno-
logical models. If the voltage resulted from alinear filtering of
the drifting sinusoidal grating stimulus, then the mean voltage
would be independent of orientation and contrast because
changes in these parameters do not change mean luminance.
The experiments of Anderson et a. (2000) found, instead, that
the mean voltage responses to drifting sinusoidal grating stim-
uli were well-tuned for orientation and grew with contrast.
From a more neural point of view, one might expect the
voltage response of asimple cell to arise from alinear filtering
of the firing rates of the LGN neurons that are presynaptic to
that cell. Because LGN firing rates have a rectification nonlin-
earity—their firing rates can greatly increase but can decrease
only to zero—their mean rate of firing increases with contrast.
However, the output of such a filter should again be untuned
for orientation because the mean responses of LGN cells are
largely untuned for orientation, and the mean voltage response
under a linear filtering of the LGN would be obtained by a
weighted sum of the mean responses of each LGN input
(Ferster and Miller 2000; Troyer et a. 1998). Thus the ob-
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served voltage responses do not arise from a linear filtering
either of the stimulus or of the LGN firing rates.

This raises the question as to how this mean LGN input,
which is untuned for orientation and grows with contrast, is
converted into a tuned mean voltage response. We have sug-
gested that feedforward inhibition (inhibition from interneu-
rons driven by LGN input) can suppress the untuned mean
input from the LGN and hence explain the lack of contrast-
dependent responses to stimuli oriented perpendicular to the
preferred orientation (Ferster and Miller 2000; Miller et a.
2001; Troyer et al. 1998; see also McLaughlin et al. 2000;
Wielaard et al. 2001, who propose a similar feedforward in-
hibitory mechanism but in the context of a somewhat different
circuit). The increases in mean voltage for preferred stimuli
may arise through the interaction between cellular or circuit
nonlinearities and the large voltage modul ations experienced at
these orientations. both the reversal potential nonlinearity and
intracortical excitation from other cells with a threshold non-
linearity will cause stimuli that yield larger voltage modula
tions to be accompanied by larger voltage mean responses.
That is, the tuning of the voltage mean may largely be inherited
from the tuning of the voltage modulation. More generally, the
results of Anderson et al. (2000) point away from the nonlin-
earities involved in converting intracellular voltages to spikes
(e.g., the threshold nonlinearity) as being the key issue related
to contrast-invariant tuning, and toward an investigation of
mechanisms that contribute to the tuning properties of the
intracellular voltage.

Comparison to previous theoretical work

Itiswidely known that noise can smooth and in certain respects
linearize a threshold nonlinearity (e.g., Knight 1972; Spekreijse
1969; Stemmler 1996), making otherwise subthreshold inputs
become “visible.” However, the present work is showing some-
thing far more specific, namely that the specific smooth func-
tion that results closely approximates a power law. Further-
more it is key that it is the voltage deviations from background
that are raised to a power [i.e, Rr(V) = k([V]")". Had the
form of the output function instead been, say, k([V — T]™)" for
T >0, this would not yield contrast-invariant tuning—more
and more of the input would be suprathreshold at higher
contrasts. Because the exact equation for Ry (Egs. 2 and Bl)
depends on V only through its dependence on V — T, it is
surprising that this is well approximated by kV" over a signif-
icant range—we know of no simple analytic reason why this
empirical finding should be true.

We are aware of two other works that relate threshold-linear
functions and power laws. First, Carandini et a. (1997) showed
graphically that a power law can roughly approximate a thresh-
old linear function with higher thresholds corresponding to
larger exponents. This suggests that for some response prop-
erties, models based on linear threshold and power law non-
linearities may yield similar predictions. However, contrast-
invariant orientation tuning requires that where responses are
significantly larger than zero, the ratio of responses between
various orientations must remain constant at different levels of
contrast. Even though absolute differences between a power
law and an unsmoothed linear threshold function might be
moderate, the relative error between the functionsis very large
near threshold, and as a result linear threshold models do not
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yield contrast-invariant tuning (Anderson et al. 2000). The key
point we are making is not simply that a linear threshold
function resembles a power law but rather that noise converts
a linear threshold function into a different function that ap-
proximates a power law sufficiently closely to achieve con-
trast-invariant tuning. Second, in afinding close in spirit to the
present work, Suarez and Koch (1989) showed that, given a
linear threshold model, adding noise to the input that is uni-
formly distributed over some range (or, having a population of
cellsreceiving identical input but with a uniform distribution of
thresholds) acts like taking the integral of the linear threshold
function, yielding a quadratic input-output function. However,
the argument is not robust. It only yields a power law of the
formk([V] ")" [rather than k([V — T]")"] when the upper bound
of the noise (at rest) is equal to spike threshold and can only
yield power law exponents exactly equal to 2.

Conclusions

Neural noise can convert an instantaneous linear-threshold
input-output function into a power-law relationship between
mean input and mean output. Given reports suggesting that
spontaneous voltage fluctuations (“noise”) in neocortex in vivo
are large and of comparable size to stimulus-induced voltage
modulations (Arieli et al. 1996; Azouz and Gray 1999; Ho and
Destexhe 2000; Paré et al. 1998; Tsodyks et al. 1999), it will be
of great interest to determine if the response properties of cells
in other regions of the neocortex are best modeled by an
expansive power law nonlinearity. In particular, it will be
interesting to see if such a power law might be related more
generaly to tuning for stimulus form that is invariant to
changes in stimulus magnitude.

APPENDIX A

Here we show that a rectified power law R(V) = k([V]")" is the
only static input-output function that converts contrast-invariant input
tuning into contrast-invariant output tuning, assuming that R(V) is
nondecreasing (an increase in voltage cannot give a decrease in
response) and nonnegative. The more general expression without the
latter assumptions is also a form of power law.

We let ¢ be contrast, 6 be the other parameters (such as orientation)
that show contrast-invariant tuning, V be the input and R(V) be the
output. Contrast-invariant input tuning implies that

V(c, 6) = f(c)g(0) (A1)

for some continuous functions f, g, and we assume contrast scaling is
nonnegative: f(c) = 0. Contrast-invariant output tuning implies that

R(f(9)g(8)) = F(f(c)G(g(6))

for some continuous functions F, G, and again nonnegativity of
contrast scaling implies F = 0. We assume that F(x) and G(x) are
differentiable, at least for x # O.

Differentiating both sides of Eq. A2 with respect to f and g yields

(A2)

dR(f - d(F(f)G
% = gR/(\/) = F’(f)G(g) = W (A3)
dR(fg) _ .o L AE(HG()

dg fRI(V) = R()G'(g) = dg (A4)

We begin by assuming that f, F(f), g, and G(g) are all nonzero. Then

F'(G(@ _F(HG'©@)

R(V) = .

(A5)
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which yields

F'(f)f _G'(@)g _
F(f) ~ Glo

Here, n is an arbitrary constant; because the quantity on the left is a
function only of ¢, and that in the middle is a function only of 6, the
only way these two quantities can be equal to one another isif they are
both equal to a constant (something that depends neither on ¢ or 6),
which we call n. Focusing on the function G, we obtain

(AB)

@ o e
Integrating both sides with respect to g yields
f a9 G- J o (A8)
In G(g) =ning+ k; (A9)
where k; is a constant of integration. Exponentiating yields
G(g) = k0" (A10)

where k, = e". Identical reasoning shows that F(f) = k,f" for some
constant ks. Therefore

R(V) = R(fg) = F(f)G(g) = koksf"g" = kV" (A11)

where k = kyks.

We obtained these results on the assumption that f, F, g, and G were
all nonzero. Combining these results with the continuity of G and F,
however, we can conclude that 1) G(0) = 0 and F(0) = Oand 2) F and
G are either strictly zero or strictly nonzero (and equal to a power law)
on each open half-infinite interval (—, 0) and (0, «). Finaly, since
we have assumed that f is nonnegative and R(V) is nondecreasing and
nonnegative, G(g) = 0 for g < 0. Thus, over the full range of V

R(V) = k(VI")" (A12)

APPENDIX B

Let the voltage V = V + v where overbar represents an average, v =

0 and v = o®. We assume the instantaneous spike rate is given by
r+(V) = K[V — T]*. Then the trid-averaged spike rate is

Rr(V) =KV +o—T]"

k * 02\
= ﬁf 7dvexp(—?> V-T+v
N -V
ko [T (1 et (YET)) - _v-T BL
-re 20’ & \,‘EO’ \J% exp 20‘2 ( )
where erf is the error function, erf (x) = (2\/7) [ dy exp(—y?). To
work in units of the noise, we set o = 1 in Eq. B1.
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