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SUMMARY

Whereweallocateour visual spatial attentiondepends
upon a continual competition between internally gen-
erated goals and external distractions. Recently it
was shown that single neurons in the macaque lateral
intraparietal area (LIP) can predict the amount of time
a distractor can shift the locus of spatial attention
away fromagoal.Wepropose that this remarkabledy-
namical correspondence between single neurons and
attention can be explained by a network model in
which generically high-dimensional firing-rate vectors
rapidly decay to a single mode. We find direct experi-
mental evidence for this model, not only in the original
attentional task, but also in a very different task involv-
ing perceptual decisionmaking. These results confirm
a theoretical prediction that slowly varyingactivitypat-
terns are proportional to spontaneous activity, pose
constraints on models of persistent activity, and sug-
gest a network mechanism for the emergence of ro-
bust behavioral timing from heterogeneous neuronal
populations.

INTRODUCTION

We live in a complex visual world with multiple stimuli continually

vying for our attention. In the face of this complexity, we must

reliably shift our loci of attention over time to achieve our goals.

Furthermore, we continually receive noisy sensory cues about

objects in the world. We must reliably integrate such noisy evi-

dence over time in order to make perceptual decisions. Both at-

tentional shifting and decision making require robust temporal

control and hence place stringent constraints on the dynamics

of any neural circuitry mediating these behaviors.

Both behaviors are controlled by cortical circuits in which the

underlying dynamics of single neurons are often highly heteroge-

neous and noisy. The synaptic connections between these neu-

rons are unreliable and not precisely specified in development.
Moreover, these neurons can display significant levels of

spontaneous activity, so that their responses reflect the inter-

action of stimulus-driven inputs with this ongoing activity. How

can robust behavioral dynamics emerge naturally out of the bio-

physics of spontaneously active, imprecisely specified networks

of unreliable and heterogeneous neuronal elements?

We address this fundamental question by examining the dy-

namics of single neurons in the lateral intraparietal area (LIP) of

the posterior parietal cortex. A number of studies suggest that

this brain region plays a role both in the allocation of visual atten-

tion (Colby et al., 1996; Gottlieb et al., 1998; Robinson et al.,

1995; Gottlieb and Goldberg, 1999; Powell and Goldberg,

2000) and in perceptual decision making when the decision is re-

ported via a saccade (Shadlen and Newsome, 2001; Roitman

and Shadlen, 2002; Hanks et al., 2006). In particular, this paper

is motivated by a remarkable and puzzling correlation between

single-neuron dynamics in LIP and shifts in spatial attention

found recently by two of the authors (Bisley and Goldberg,

2003, 2006). We arrive at a circuit explanation of this puzzle

that not only suggests a more general answer to the question

of how heterogeneous cortical dynamics can give rise to robust

behavioral dynamics but also yields insights into the nature of

persistent and slowly integrating activity in LIP. We show that

the puzzle can be explained by circuitry that makes LIP dynam-

ics one-dimensional on slow timescales. This means that slowly

varying patterns of activity, including spontaneous activity dur-

ing fixation, persistent activity during the delay period before

a planned saccade, and slowly integrating activity during a per-

ceptual decision-making task, are all scaled versions of a single

pattern of relative firing rates across neurons. This simple scaling

of a single pattern does not describe more rapidly varying firing

patterns, such as the transient response to a visual stimulus,

so that this scaling does not arise simply from variations in neural

excitability. We uncover direct evidence for this hidden one-

dimensional signal underlying LIP responses both in tasks

involving attentional allocation (Bisley and Goldberg, 2003,

2006) and in tasks involving perceptual decision making (Roit-

man and Shadlen, 2002). Functionally, we propose that the

reduction of neural signals in LIP to a single dimension on the

timescale of hundreds of milliseconds can yield the robust and
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Figure 1. The Experiments of Bisley and Goldberg (2003, 2006)

(A) While a single neuronwas recorded, themonkey initiated a trial by fixating a small spot. After a short delay, the saccade target appeared for 100ms either in the

RF of the recorded neuron or opposite. At varying times after the saccade target disappeared, and at varying contrasts, a Landholt ring (the probe) and three

complete rings flashed briefly. The probe appeared either at the saccade target or opposite. Five hundred milliseconds after the probe appeared, the monkey

had to indicate the orientation of the probe by either maintaining fixation or making a saccade to the target.

(B) In half the trials, a task-irrelevant distractor, identical to the saccade target, was flashed 500 ms after the target offset in a location opposite to the saccade

target.

(C) (Top) The monkey’s visual sensitivity was measured by the probe contrast threshold (Bashinski and Bacharach, 1980; Ciaramitaro et al., 2001) at which the

monkey performed this task with 75% accuracy. This threshold depended on the spatial location and time at which the probe appeared. Lower thresholds

indicate higher sensitivity. (Bottom) The population average response of LIP neurons to a distractor appearing in the RF (red) and the population average delay

activity in response to a target appearing earlier in the RF with the distractor flashed elsewhere (blue). The standard deviation of these rates (as well as those in

panel [D]) is given by the width of the traces. The center of the vertical gray column marks both the center of a temporal window of ambiguity in which there is no

significant difference between the activity in both populations (bottom) and the time at which psychophysical measurements found no significant attentional

advantage at either the target or distractor sites (top).

(D) The response of a single neuron in trials in which a distractor appears in its RF from 600 to 700ms (red), a typical exponential fit to this transient (black), and the

delay period activity of the same neuron in trials in which the target appears in its RF from 0 to 100ms (blue). Themean of this last response yields the delay period

activity D, while the peak of the black curve yields the visual response V, and its decay rate yields k.

(E and F) For each monkey, there is a relationship across all neurons recorded between the visual/delay (V/D) ratio and the rate of decay of activity k following the

distractor. The solid black line shows a linear fit to the data. The slope tc of each fit is the common neuronal crossing time for each monkey.
reliable temporal signal needed for LIP function in attentional

allocation, perceptual decision making, and related oculomotor

behaviors, despite substantial heterogeneity in many aspects

of single-neuron responses.

RESULTS

Single Neurons and Attention: The Puzzle
The Bisley and Goldberg results are reviewed in more detail in

Figure 1. The authors manipulated the locus of attention in

a top-down manner by instructing the monkey to plan a delayed

saccade to the site of a flashed saccade target. During the delay

period, the target site captures the monkey’s attention, in keep-

ing with psychophysical studies in humans showing that atten-

tion is allocated to the endpoint of a planned saccade (Shepherd

et al., 1986; Deubel and Schneider, 1996). Attention was also

manipulated in a bottom-up manner by flashing a behaviorally

irrelevant distractor at a different site during the delay period.

This was designed to transiently capture the monkey’s attention,
16 Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc.
in keeping with prior studies showing that a flashed object can

also attract attention (Yantis and Jonides, 1984, 1996; Egeth

and Yantis, 1997). Measurements of the locus of attention,

defined as the visual field location with enhanced contrast sen-

sitivity, confirmed that attention was initially captured by the

distractor but then moved back to the target (Figure 1C, top).

Single neurons in LIPwere recorded during this task. On differ-

ent trials, either (1) the target flashed in the neuron’s receptive

field (RF) and then the distractor appeared elsewhere or (2) the

distractor flashed in the RF after the target had appeared else-

where. In the first trial type, an LIP neuron displayed a transient

visual response to the target, followed by elevated levels of

persistent activity during the delay period, signifying that the

monkey was planning a saccade to the RF of the recorded neu-

ron. In the second trial type, the same neuron would display

a transient visual response to the distractor that decayed back

toward baseline firing levels. Figure 1C (bottom) shows the aver-

age population response, averaged over these two trial types.

Reinterpreting these trial types as the simultaneous activity of
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two populations of neurons, one at the target and one at the dis-

tractor, one sees that at all points during the task, attention is al-

located to the RF of the population with highest firing rates. For

each monkey there is, however, a brief window of ambiguity in

which the two population averages are statistically indistinguish-

able. The authors probed the center of this window psychophys-

ically and found that at this time (455ms inmonkey B and 340ms

in monkey I), there was no attentional advantage at either loca-

tion. This time was defined as the attentional switching time.

This correlation between the population response and the psy-

chophysics led the authors to the interpretation that LIP plays

the role of a salience map in which attention is allocated to the

site of greatest salience, as represented by greatest LIP activity

(Bisley and Goldberg, 2003).

However, the single-neuron data analyzed by Bisley andGold-

berg (2006) reveal ourmotivating puzzle. The response of a given

neuron i, averaged over trials when the distractor was in the neu-

ron’s RF, was fit as a simple exponential decay of the firing rate

(Figure 1D). This response began from the peak of the visual re-

sponse to the distractor, Vi, and fell with decay rate ki. For the

same neuron i, the average delay period activity on trials in which

the target was in the RF was denoted as Di. Individually, each of

these response properties, Vi, ki, and Di, displayed almost a 10-

fold variation across neurons. Furthermore, there was no stereo-

typed relation between any pair of these three quantities (Bisley

and Goldberg, 2006). But remarkably, when considered to-

gether, the three quantities were not independent of each other.

They obeyed a relation

ln
Vi

Di

ztcki (1)

as shown in Figures 1E and 1F, where tc is a neuron-independent

constant for a given monkey. Rearranging (1), we find

Vie
�ki tczDi: (2)

This is themathematical statement that for every neuron i, the ex-

ponential decay, Vie
�ki t, of the response to the distractor crosses

the delay level activity,Di, of the response to the target at approx-

imately the same time, tc. Furthermore, for each monkey, this

common neuronal crossing time tc, which is 421 ms and 375 ms

for monkeys B and I, respectively, is within 34 ms and 35 ms,

respectively, of the attentional switching time, the time when

psychophysical measurement found that neither the distractor

nor target site had an attentional advantage (Figure 1C, top).

The observation in Equations 1 and 2 of a common single-neu-

ron crossing time within a given monkey is both important and

nontrivial for several reasons. First, while Vi and ki are presum-

ably determined by bottom-up mechanisms via the response

to a new visual input, Di is reflective of top-down salience mech-

anisms induced by the planned saccade to the target. Thus, the

surprising relation obeyed by these three quantities in Equation 1

suggests the existence of a mechanism within LIP that mediates

interactions between the top-down and bottom-up salience sys-

tems. Furthermore, this mechanism must be very robust in order

to enforce Equation 1 despite the large degree of heterogeneity

in the individual quantities Vi, Di, and ki. Also, the single-neuron
data in Figures 1E and 1F were collected over a number of

months, indicating that this mechanism is not only robust but

stable. Finally, the common neuronal crossing time tc is different

for each monkey, but nevertheless in both monkeys tc is close to

the attentional switching time, despite significant differences in

the attentional switching time of the two monkeys. Following

the interpretation in Bisley and Goldberg (2003), this suggests

that the putative neural mechanism within LIP that enforces

Equation 1 actually plays a functional role in determining the at-

tentional switching time. However, despite its correlation with

behavior, the crossing time of any neuron cannot be available

on a single trial; average responses from two different trial types

are required for its calculation. This only adds to the puzzle: why

would LIP be organized to keep invariant a quantity that is not

available on single trials while allowing substantial heterogeneity

in all other aspects of the response?

The observation in Equation 1 is all the more striking because

there is no obvious biophysical explanation for the emergence of

a common crossing timescale tc out of such a heterogeneous

neuronal population. Any explanation involving the dynamics of

isolated single neurons would suffer from severe fine-tuning

problems. The crossing time of a single neuron would depend

sensitively on the strength of top-down inputs and bottom-up vi-

sual inputs as well as intrinsic membrane and synaptic time con-

stants that in turn determine the neuron’s decay rate. The ob-

served heterogeneity in the single-neuron response properties

Vi, ki, and Di implies that these various parameters themselves

are heterogeneous across neurons. The tight correlation be-

tween these three response properties seen in Figures 1E and

1F would then require unrealistic, finely-tuned relations between

these heterogeneous parameters (see Supplemental Data for

a mathematical analysis of these claims).

Moreover, the relation of Equation 1 also cannot be simply ex-

plained by a functional coupling between the different neurons

that were recorded in LIP. There is no evidence for any such cou-

pling. The RF’s of the recorded neurons were at a variety of loca-

tions within the visual field. In trials when the target appeared in

the RF of a recorded neuron, large transient firing rates induced

in other regions of LIP by distractors flashed far from the RF

seemed to have no effect on the low levels of delay period activ-

ity of the recorded neuron. Since many of the recorded neurons

had RFs far enough from one another that, by this assay, they

showed no functional coupling, any explanation for the observed

common crossing time cannot rely on all of the recorded neurons

participating in a common network.

A Common Crossing Time
from One-Dimensional Dynamics
In the following, we find a simple and robust explanation for the

fundamental observation in Equation 1 that circumvents all the

above problems. We begin by explaining a key conceptual in-

sight: how a rapid reduction inmultineuronal dynamics to a single

dimension would be sufficient to realize a common crossing

time.

We first imagine that each recorded neuron i is part of a local,

connected network ofN neurons all sharing the same RF.Wewill

later address the actual case in which the recorded neurons

come from different subnetworks that are not connected to
Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc. 17
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one another. The collective firing-rate dynamics of the local pop-

ulation of neurons can be described by an N-dimensional firing-

rate vector r
!ðtÞ, whose ith component ri(t) represents the firing

rate of neuron i at time t. At any given fixed time t, we can think

of the collection of firing rates ri(t) as a point in N-dimensional fir-

ing-rate space, by plotting each value of ri(t) as i ranges from 1 to

N on a different axis; see Figure 2 for a two-dimensional exam-

ple. Then as time progresses, the firing-rate vector r!ðtÞ traces
out a curve in firing-rate space. The set of delay activities Di for

each neuron i can be thought of as a special point, or vector D
!

in this firing-rate space. In the interpretation of Bisley and Gold-

berg (2003), this point represents the network’s steady-state

activity when salience is assigned to the common RF of all the

neurons.

Now consider the response to a transient visual stimulus,

corresponding to the distractor, flashed in this common RF.

The firing rate of each neuron i will rise to a peak value Vi and

then subsequently decay to its spontaneous firing rate during fix-

ation Si. Again we can think of each collection Vi and Si as special

points or vectors V
!

and S
!

in the same firing-rate space. Since all

of the neurons peak at approximately the same time (Bisley et al.,

2004), the transient response r!ðtÞ traces out a curve that starts

at the point V
!

just after the peak response to the distractor and

eventually decays back down to S
!
. Now in this picture, the con-

straint in Equation 2, that each neuron’s transient response

crosses its own delay activity at approximately the same time,

is equivalent to requiring that the transient decay curve r!ðtÞ

Figure 2. Concept of One-Dimensional Dynamics

An example of firing-rate space for N = 2 neurons. Visual (V), delay (D), and

spontaneous activity (S) are points in this space, while the visual transient

response to a distractor is a curve starting at V and traveling to S. This dynam-

ics can be viewed as motion down an energy valley, shown above, which is

determined by the connectivity between neurons. The floor could be curved,

as shown here, due to nonlinear effects. But regardless of its shape, its critical

property of one dimensionality forces the decaying transient response to inter-

sect the delay period activity. Furthermore, to the extent towhich S andDdo lie

along a single line through the origin, the delay activity of each neuron will be

proportional to its spontaneous activity.
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intersect the delay activity vector D
!

as it travels from V
!

to S
!
.

The crossing time tc is the time at which this intersection occurs.

At this time, the transient response ri(tc) equals Di for all i,

reproducing the observation in Equation 2.

As illustrated in Figure 2, a dynamical scenario in which this

crossing will occur is if (1) all directions but one in firing-rate

space decay away quickly, represented by rapid flow down the

walls of the valley in Figure 2, and (2) the one direction that

decays away more slowly, represented by a slower flow down

the valley floor, contains the delay activity vector D
!
. That is, after

the visual transient induced by the distractor, the network rapidly

settles into a single dimension in firing-rate space, which repre-

sents a particular pattern of activity across neurons that is pro-

portional to D
!
. The amplitude of this pattern then decays more

slowly back down to spontaneous activity levels. We will subse-

quently explain how this dynamical scenario can be simply and

robustly realized by the LIP circuit and how this realization then

explains why even neurons that are not part of the same local

network should have a common crossing time. But first, we ex-

amine the data for evidence of this one-dimensional dynamics.

Direct Experimental Evidence
for One-Dimensional Dynamics
These dynamics lead to strong experimental predictions. It is

possible that strongly nonlinear dynamics could build a valley

floor in Figure 2 that is curved, so that although the delay activity

D
!

and spontaneous activity S
!

both lie on the valley floor, they lie

in very different directions in the firing-rate space. But let us

make the stronger assumption on the dynamics that the valley

floor is relatively straight. Then, independent of any other details

of the circuit that realizes these dynamics, the dynamical sce-

nario leads to the following predictions. First, it predicts that

the multineuronal data in Bisley and Goldberg (2006) is one

dimensional over long timescales, that is, it lies along a single

direction in firing-rate space except during transient activity.

This is not at all obvious from plots of the single-neuron data

shown in Figures 3A and 3B, which display a high degree of het-

erogeneity. Second, it predicts that this one preferred dimension

in firing-rate space corresponds to the spontaneous pattern of

activity S
!

across neurons, as shown in Figure 2. Third, since

the delay activity also settles into this preferred activity pattern,

it predicts that the delay activity pattern D
!

across neurons

should simply be a scaled-up version of the spontaneous pattern

S
!

across neurons. This predicts a new fundamental constant in

the LIP circuit: the ratio of delay activity of any given cell to its

own spontaneous activity should be approximately identical

across all cells. Fourth, on short timescales, just after large input

perturbations, due for example to the distractor, the dynamics

should not be confined to one dimension; it should depart from

the spontaneous pattern of activity. Thus, in contrast to the delay

activity D
!
, we predict that the peak visual response V

!
should

show little relationship to the spontaneous activity pattern S
!
.

We verify all four of these predictions at once in Figures 3C and

3D by replotting the single-neuron data in a new coordinate sys-

tem in firing-rate space. We plot the component of neural activity

in the direction of the average spontaneous activity and themag-

nitude of the neural activity orthogonal to this direction in firing-

rate space (see Supplemental Data). As predicted, we see that,
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Figure 3. Reduction of Neural Activity

to a Single Dimension

(A and B) Single-neuron responses in trials when

the target (blue) or distractor (red) appeared in

the RF. The vertical gray lines mark the times at

which each neuron’s decaying response to the

distractor crosses its own delay activity in re-

sponse to the target. Although there are outliers,

the standard deviation of the crossing times are

only 109 ms for monkey B and 90 ms for monkey I.

Both these deviations are about the width of the

window of neuronal ambiguity inherent in the

experiment (Bisley and Goldberg, 2003).

(C and D) Solid curves represent the component of

the target response (blue) and distractor response

(red) along the direction of the spontaneous vec-

tor, in normalized units. The dashed curves repre-

sent the norm of the residual activity orthogonal to

this direction. The dotted curves show the correla-

tion coefficient, over 100 ms bins, between the

instantaneous activity and the fixed spontaneous

vector. The vertical gray bar represents a window

centered at the time at which behaviorally there is

no attentional advantage either at the distractor or

the target.
throughout the duration of both trial types, the activity pattern

across neurons is almost always identical to that of the sponta-

neous activity (solid lines). The activity orthogonal to this dimen-

sion (dashed lines) is suppressed at all times, except during the

visual transient in response to either a target or a distractor.

Ultimately, by the time attention switches back to the target, as

measured behaviorally, activity orthogonal to the spontaneous

activity has died away, and only a single dimension is left. One

can also see the one-dimensional nature of the time course by

considering a plot of the correlation coefficient between the in-

stantaneous activity and the fixed average spontaneous activity

(dotted lines). As predicted, the multineuronal activity is highly

correlated with the spontaneous activity, except during visual

transients, when feed-forward inputs presumably reduce this

correlation.

In particular, the spontaneous activity is highly correlated

with the delay activity, but not the visual transient activity. To

demonstrate explicitly our third and fourth predictions, we

have shown the scatterplots of spontaneous activity against

delay and visual activity in Figures 4A and 4B. Of course, taken

alone, a cell-by-cell correlation between average spontaneous

and average delay activity could be easily explained by a trivial
excitability argument: more excitable cells fire more in both

situations. However, this argument would also predict that

these highly excitable cells would fire more during the visual

transient. Thus, it would predict a similarly strong correlation

between spontaneous and visual activity. This correlation is in

fact much weaker (Figure 4B), arguing against such a simple

excitability argument. Instead, the correlation between sponta-

neous and delay, but not visual activity, is explained naturally

as a consequence of the reduction of neural activity to a single

dimension. Thus, overall, the data in Figures 3 and 4 provide

direct experimental evidence for our dynamical scenario and,

moreover, reveal a fundamental new constant in the LIP

network, namely a roughly fixed ratio between the delay and

spontaneous activity across all cells in LIP.

The Robustness of One-Dimensional Dynamics
Having found evidence for our dynamical scenario, we now ad-

dress its implementation at a network level, focusing on the crucial

issue of why two neurons, in two different local subnetworks, or

patches, of LIP each processingwidely separated regions of visual

space,wouldexhibit thesamecrossing time.Toaddress this issue,

we consider the worst-case situation, in which each local patch
Figure 4. Nontrivial Relationship between

Spontaneous and Delay Activity

(A) The spontaneous activity of each cell is plotted

on the horizontal axis and is the average of activity

during fixation over 400 ms before target or

distractor onset, averaged both over distractor-

in-RF and target-in-RF trials. The delay activity of

the same cell on the vertical axis is the average

of activity between 800 and 1200 ms after target

appearance in target-in-RF trials.

(B) The same spontaneous activity is plotted

against peak visual activity in distractor-in-RF

trials.
Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc. 19
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processesa regionof visual space,without talking toother patches

processing distant regions of visual space. This situation is consis-

tent with the observed lackof strong interactionsbetweenneurons

with substantially different RFs (Bisley and Goldberg, 2006).

Tomodel the dynamics of each local patch, we use a phenom-

enological linear rate model because it is the simplest model that

can reproduce the data and because it can be analyzed exactly

(see Supplemental Data for a precisemathematical analysis of all

the claims made in this section), yielding considerable intuition

about the robustness of our proposed mechanism. However,

we emphasize that the linear assumption is not essential to our

approach; it serves simply as a particularly tractable realization

of the essential dynamical idea proposed in Figure 2.

Sparse, random, net excitatory connectivity among the neu-

rons in a local patch is sufficient to ensure the basic requirement

of the dynamics we propose—that one pattern of activity decay

muchmore slowly than all other patterns. Furthermore, assuming

net inputs are excitatory, this connectivity also ensures that the

delay activity D
!

lies along the slowly decaying direction. We as-

sume that different patches are different random instantiations of

such connectivity. Intrinsic decay rates are assigned randomly to

each neuron in each patch.We assume that spontaneous activity

is the response of the network to weak tonic bottom-up input,

which we model as positive input that is randomly chosen for

each neuron in each patch. We assume that the visual transient

is driven by a strong pulse of bottom-up input, lasting 100 ms

and with amplitude chosen randomly for each neuron. We as-

sume that delay-period activity is the response of the network

to both the ongoing spontaneous bottom-up input and to a posi-

tive top-down input representing the assignment of salience to

the RF of a patch. This top-down input is randomly chosen for

Figure 5. Model Reproduction

(A) From each of 100 different randomly chosen

sparsely coupled excitatory networks of 100 neu-

rons each, a single neuron is chosen at random

and its visual/delay ratio is plotted against its de-

cay rate. The solid black line shows a linear fit to

the data.

(B) The same is done for 100 randomly chosen iso-

lated neurons.

(C and D) For these same neurons, the relationship

between the spontaneous versus delay activity

and spontaneous versus peak visual activity are

also plotted.

each neuron in the patch. We assume

tonic top-down input underlies delay ac-

tivity, because it is unlikely that LIP alone

can maintain elevated levels of persis-

tent activity. For example, if a distractor

flashes away from a saccade target, the

population of neurons whose RF is at the

distractor has much greater activity than

any other location in LIP, yet this activity

cannot maintain itself and decays back

down to spontaneous levels. Instead,

elevated levels of persistent activity in

response to a saccade target are more likely to arise from coop-

erative effects distributed across various nodes in the oculomo-

tor circuit, including the dorsolateral prefrontal cortex (DLPFC),

frontal eye fields (FEF), and the superior colliculus (SC), each of

which also show persistent activity in the delayed saccade task

(Bruce and Goldberg, 1985; Funahashi et al., 1989; Glimcher

and Sparks, 1992; Kustov and Robinson, 1996). Alternative sce-

narios for LIP persistent activity are addressed in the Discussion.

By the above arguments, neurons within a single patch will

have a common crossing time, but there is no a priori reason

to expect neurons chosen from different patches to have a com-

mon crossing time. Both the local circuitry within each patch and

the inputs to each patch are chosen randomly and independently

of the circuitry and inputs to any other patch. The only thing dif-

ferent patches have in common is the overall distributions from

which their circuit and input parameters are sampled. Neverthe-

less, as seen in the model results shown in Figure 5A, the re-

sponses of the neurons in different patches are correlated and

show a common crossing time. We have simulated k = 100 local

patches of N = 100 neurons each. For each patch, we chose

a single neuron at random and recorded its spontaneous, delay,

and peak visual activities and its decay rate in response to the

various randomly chosen inputs for that patch. Despite the fact

that none of the neurons whose response characteristics are

plotted in Figure 5Awere ever coupled to one another, themodel

reproduces the experimentally observed correlation across neu-

rons observed in Figures 1E and 1F, representing a common

crossing time. Furthermore, Figures 5C and 5D reproduce the

essential experimental observation in Figures 4A and 4B, namely

a high correlation between spontaneous and delay activity, but

a low correlation between spontaneous and visual activity.
20 Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc.
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A key reason why such correlations exist in the model is un-

covered when we reduce the number of neurons N in each local

patch: in the extreme case, when N = 1, the correlation largely

disappears (Figure 5B). Thus, the correlations arise specifically

due to network dynamics. Due to the variability in inputs, cellular

time constants, and connectivity, the different neurons chosen

from different patches show realistic levels of variability in their

effective time constants, in their spontaneous, delay, and visual

activities, and in their ratios of visual to delay activity, and this is

true whether N = 1 or N = 100. But despite this heterogeneity, the

crossing times of neurons in different patches can remain rela-

tively invariant as follows. Because the crossing time of any neu-

ron within a patch occurs after all the fast modes have decayed

away, this crossing time depends predominantly on the dynam-

ics of the slow mode of that patch. In particular, the common

crossing time of all neurons within a patch is governed by the

time at which the patch’s slow mode amplitude in response to

the visual transient crosses the slowmode amplitude in the delay

activity. In turn, this time depends on only three attributes of the

slow mode for that patch: the amplitude of the slow mode exci-

tation in response to visual inputs, the rate of decay of the slow

mode, and the amplitude of the slow mode during delay activity.

For sufficiently large N, each of these three attributes of the slow

mode depends only on the statistical properties of each patch’s

connectivity and input strengths, not on their detailed realiza-

tions. Thus, as long as each patch has similar statistical proper-

ties, the three critical properties of the slow mode dynamics will

remain invariant across different patches. As a result, the single-

neuron crossing time is not only common to all the neurons

within a patch, but it varies little from patch to patch, again pro-

vided that N is sufficiently large. As seen in Figure 5A, as few

as 100 sparsely connected neurons per patch is sufficient to

reproduce the original, puzzling experimental observations.

In summary, so long as LIP connectivity is statistically homo-

geneous and shows a connectivity pattern such as sparse local

excitatory connectivity that leads to a single slow mode in each

local patch, neurons in distant regions of LIP will have the same

crossing time even if they do not talk to each other, because they

will be embedded in two different local networks that have

the same robust slow dynamical properties, despite having

otherwise highly heterogeneous response characteristics.

One-Dimensional LIP Dynamics
in a Decision-Making Task
Is one-dimensional slow dynamics a robust feature of LIP cir-

cuitry, or is it something that only occurs in the particular context

of persistent delay-period activity? To address this question, we

examine data from monkeys performing a completely different

task involving perceptual decision making (Roitman and Shad-

len, 2002). In these experiments, LIP neurons showed slowly

changing activity (rather than persistent activity as in the delay-

period task) that was correlated with the integration of sensory

evidence in the formation of a perceptual decision. Specifically,

monkeys were trained to perform a random-dot-motion discrim-

ination task, where the direction of motion of the dots was

reported by making a saccade either into or out of the RF of a re-

corded neuron in LIP. When the neuron’s activity was averaged

over trials in which the monkey decided to make a saccade into
the RF, the firing rate showed a ramping dynamics during the

stimulus presentation. The initial slope of the rampwas positively

correlated with the motion strength, and in the reaction time ver-

sion of the task, the average firing rate was stereotyped at the

end of the decision-making process, independent of the motion

strength and response time. These results led to the interpreta-

tion by Roitman and Shadlen (2002) that LIP firing-rate dynamics

reflect the stochastic integration of sensory evidence, originating

in MT (Salzman, et al., 1992; Ditterich, et al., 2003; Hanks, et al.,

2006), during the decision-making process and that a decision is

made after the firing rate reaches a fixed threshold.

Despite the differences in tasks and neuronal behaviors, the

two experiments shared similar criteria for selecting the neurons

studied. In Bisley and Goldberg (2003), neurons that had visual

responses to saccade targets in the delayed saccade task

were chosen for further study. Of these neurons, 83% also had

delay period activity in the same task. In Roitman and Shadlen

(2002), neurons that showed delay activity in the delayed

saccade task were chosen for further study. Given that similar

classes of neurons were involved, we decided to test whether

the framework of slow one-dimensional dynamics in LIP applies

to the Roitman and Shadlen (2002) experiments.

We repeat, on the decision-making data, the same analysis

that was used to extract the one-dimensional structure in the at-

tentional data shown in Figures 3C and 3D. For eachmonkey, we

estimate the spontaneous firing rate Si for each neuron i using

data from the fixation period, before the presentation of the ran-

dom-dots stimulus. Then, thinking of this collection of rates as

a vector S
!
, we plot in Figure 6 the ramping activity in a new co-

ordinate system, with activity in the direction of the average

spontaneous activity vector S
!

in solid lines and the magnitude

of all activity orthogonal to this mode in dashed lines. We do

this for both monkeys in each of 12 trial types, specified by six

possible coherence levels and two possible choices. On each

of these plots we also superimpose the time course of the corre-

lation coefficient between the ramping activity pattern and the

fixed spontaneous activity pattern S
!

(dotted lines).

The combined data in Figure 6 largely verify the predictions of

our theory. In almost all cases, the ramping activity occurs along

a single dimension that is well correlated with the spontaneous

activity. This effect is more pronounced in monkey N (Figures

6B and 6D) than in monkey B (Figures 6A and 6C) and is partic-

ularly weak formonkey B for trials onwhich saccadesweremade

out of the RF of the recorded neuron (Figure 6C). This may simply

reflect poorer sampling in monkey B. After dividing all the trials

into each of the 12 trial types, for any given trial type only a subset

of the neurons had enough data to reliably estimate the firing

rate. As a result, of 54 cells recorded in monkey N, an average

of 34 neurons contributed to each curve in Figures 6B and 6D.

In contrast, of 33 cells recorded in monkey B, an average of

only 11 neurons contributed to each curve in Figures 6A and

6C. Comparatively, in the data from the attentional task, 18 neu-

rons from monkey B contributed to the curves in Figure 3C, and

23 neurons frommonkey I contributed to those in Figure 3D.With

the smaller number of neurons, the analysis for any given trial

type is more sensitive to fluctuations in single-neuron dynamics.

In addition, the lower firing rates on trials involving saccades out

of the RF might lead these fluctuations to have relatively more
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Figure 6. Decision-Making Data of Roitman

and Shadlen (2002)

(A and B) For each monkey, the traces describe

the ramping activity at various coherence levels

(percentage of dots moving in a single direction),

indicated by color, on trials in which the monkey

made a saccade into the RF of the recorded neu-

ron. The solid curves show the component of the

multineuron rate vector along the direction of the

spontaneous vector. The dashed curves show

the norm of the residual activity orthogonal to

this. Both these activity levels in the lower half of

each plot are in normalized units varying from

0 to 1, with the scale shown on the right-hand

axes. Superimposed on these plots are dotted

curves that show the correlation coefficient

between the instantaneous ramping activity and

the spontaneous vector. The scale of the correla-

tion coefficient is shown on left-hand axes.

(C and D) The same data for each monkey and

each coherence level, but on trials in which the

monkey made a saccade away from the RF of the

recorded neuron.
effect. Nevertheless, the combined data from both monkeys ex-

hibit evidence for our theoretical framework, here in the context

of decision making, despite the significantly different dynamical

behavior of LIP neurons in this context compared to their

simpler, steady-state behavior in the attentional task.

DISCUSSION

Both the functional role andmechanistic origins of persistent and

integrating activity in LIP have been a topic of debate in the liter-

ature. This activity has not only been implicated in attention and

perceptual decision making but also in motor planning (Snyder

et al., 1997; Platt and Glimcher, 1997), economic decision mak-

ing (Platt and Glimcher, 1999; Dorris and Glimcher, 2004), and

visual categorization (Freedman and Assad, 2006) as well as

the representation of value (Sugrue et al., 2004), time (Leon

and Shadlen, 2003; Janssen and Shadlen, 2005), and inferred

motion (Assad and Maunsell, 1995; Eskandar and Assad,

1999). We have shown, in two different experimental paradigms,

that local LIP dynamics rapidly reduces to a single dimension

and that the persistent and integrating activity underlying LIP

functional responses are simply a scaled version of the sponta-

neous activity during fixation. These observations may in some

sense transcend the debates on LIP function; they suggest

a functional mechanism by which LIP could exert robust tempo-

ral control over a wide variety of oculomotor behaviors on the

timescale of 100s of milliseconds and also suggest a distributed

origin of persistent activity in the oculomotor system.

Robust Behaviorial Dynamics from Heterogeneous
Biophysical Dynamics
The variety of behaviors implicated in LIP function require fine

temporal control. For example, in the context of attentional shift-

ing, top-down information about behavioral relevance allows us

to focus on a fixed location to accomplish goal-directed tasks,

while the bottom-up salience of new or changing stimuli can shift

our attention elsewhere in the visual field, allowing us to deal with
22 Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc.
new threats or opportunities. There must be a delicate balance

between the two mechanisms: if the former is too strong, we

will be either unable or too slow to attend to important new

stimuli, whereas if the latter dominates, then we will be rapidly

distracted and unable to attend to any one location.

Similarly, in the context of decision making, neural circuitry

must make a dynamical transition from an uncommitted state

to a final decision by temporally integrating noisy evidence. If

the circuitry performs this transition too quickly, we may arrive

at an incorrect decision because it does not take enough time

to integrate all available evidence. If the circuit performs this tran-

sition too slowly, a decision, although more likely to be correct,

may come too late to be of behavioral relevance. This tradeoff

is well known in the theory of decision making as the speed-ac-

curacy tradeoff (Gold and Shadlen, 2002) and is analogous to the

delicate balance faced in allocating attention between top-down

and bottom-up salience signals, in the sense that both behaviors

require fine temporal control.

The required, and exhibited, robustness of attentional and

decision-making dynamics stands in sharp contrast to the unre-

liability and heterogeneity of single-neuron data in LIP, a brain

region that is thought to mediate both behaviors. We have pro-

posed and found evidence for a simple dynamical principle

that can help span the bridge between heterogeneous single

neurons and robust behavior. Although single neurons in LIP

can have highly heterogeneous response properties, the tempo-

ral properties of each slowmode in each local patch of LIP, such

as its level of excitation and decay time constant, are highly reli-

able from trial to trial and uniform from patch to patch because

they depend only on statistical properties of LIP connectivity

and inputs. For example, as shown in the Supplemental Data,

the decay time constant of this slowmode is a particularly robust

quantity that depends only on the mean level of recurrent excita-

tion and is remarkably insensitive to statistical fluctuations in

synaptic strengths. Overall, these slow mode dynamics can reli-

ably drive behavior on a trial-by-trial basis. This picture explains

the functional significance of a common crossing time across
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neurons, a quantity that is not available on a single trial; this com-

mon crossing time is really a signature of the robust decays of

slowmodes in local regions of LIP, which are available on a single

trial.

Consider the above requirement of a delicate balance be-

tween top-down and bottom-up attention. If, as suggested in

Bisley and Goldberg (2003), the locus of attention is determined

by the RF of neurons with maximal firing rates, then a robust at-

tentional switching time would arise on a trial-by-trial basis, sim-

ply because the slow mode activity at the distractor would cross

the slow mode activity at the target at approximately the same

time trial after trial, due to the emergent, robust temporal dynam-

ics of each slow mode. No other special mechanism would be

required to fine tune the balance between top-down and bot-

tom-up salience systems. Consider also the above requirement

of tightly controlling the rate of integration in decision making in

order to implement a particular speed-accuracy tradeoff. If, as

suggested in Roitman and Shadlen (2002), the decision making

is implemented by LIP neurons via an integration-to-threshold

mechanism, it is crucial that the integration occur with the

same dynamics across neurons processing distant regions of

the visual space. If this does not happen, then there would be

a nonuniform implementation of the speed-accuracy tradeoff

across the visual field. However, if in each local region the

dynamics is one dimensional, then this dynamics is determined

not by heterogeneous single-neuron properties but by the robust

dynamical properties of the slow mode, which would be the

same across all regions of LIP, thereby allowing a uniform imple-

mentation of the speed-accuracy tradeoff without any fine

tuning.

It remains unclear precisely how the slow mode dynamics are

used in integration. The slow mode time constant is a few hun-

dred milliseconds in the experiments of Bisley and Goldberg

(2003, 2006). The time constant of integration in the experiments

of Roitman and Shadlen (2002) seems likely to be closer to 1 s

(see also Huk and Shadlen, 2005). One possibility is that the

time constant can be modulated, for example by factors that

control the overall strength of recurrent excitation across LIP.

Another is that integration is performed elsewhere and transmit-

ted via top-down input that drives the LIP slow modes. Alterna-

tively, it has been argued that the neural time constant of integra-

tion in the Roitman and Shadlen (2002) experiments actually

could be a few hundred milliseconds or even faster (Ditterich,

2006).

More generally, the considerable temporal robustness

achieved in the reduction of local neural signals to a single di-

mension is a phenomenon that would allow LIP, as well as other

brain regions, to tightly control behavioral dynamics, regardless

of the particular behavior involved. Stronger recurrent excitation

in a given cortical area would yield slower timescales, so one

could conjecture that the observed gradient across cortical

areas in the strength of recurrent excitation (Elston et al., 2005)

might correspond to a gradient in the timescales over which cor-

tical areas control behavior. Our direct observation of a collective

mode of neural activity in Figures 3C and 3D decaying over hun-

dreds of milliseconds then suggests that LIP circuitry may spe-

cialize in the robust control of a variety of oculomotor behaviors

on this timescale.
Implications for the Origins of Persistent Activity in LIP
The dominant theoretical paradigm for the explanation of persis-

tent neural activity in the absence of a stimulus is ‘‘attractor

dynamics,’’ in which persistent activity arises as an attractor or

self-maintaining state of the neural dynamics that maintains itself

through reverberating positive feedback. There exists a large

class of attractor models employing such reverberating feed-

back either at the level of the single cell (Booth and Rinzel,

1995; Lowenstein and Sompolinsky, 2003) or the local network

(Ben-Yishai, et al., 1995; Seung, 1996; Amit and Brunel, 1997;

Compte et al., 2000; Wang, 2001). A common property of simple

attractor models is that a transient response to a stimulus selects

one attractor out of many possible ones by pushing the net-

work’s dynamical state into ‘‘the basin of attraction’’ for that at-

tractor (the set of states that will evolve over time into that attrac-

tor state). Thus, if the transient response to a stimulus is not

dependent on stimulus history, then the current attractor state

of the network is essentially determined by the last presented

stimulus.

This theoretical scenario is insufficient to explain the observed

LIP data (Bisley and Goldberg, 2003, 2006). The saccade target

and distractor are identical stimuli that appear to evoke identical

transient visual responses. Yet the target leads to a localized

state of persistently elevated activity among neurons that

respond to it, while the distractor does not. Although attractor

models exist that are capable of ignoring distractors to some

extent (Brunel and Wang, 2001), they rely on a suppression of

the transient response to the distractor by the active attractor.

We are unaware of any attractor model that can ignore a distrac-

tor whose transient neural response is identical to the one that

leads to the attractor state or involves much larger firing rates

than that of the attractor state, both of which are seen in the

experimental data.

A crucial theoretical ingredient that is missing in simple attrac-

tor models is some form of gating mechanism that, for example,

would allow LIP activity to either shift to persistent activity or not,

depending on the behavioral relevance of the visual stimulus.

Such a gating mechanism is likely to arise from the interactions

among different brain regions active during a task. Indeed, in

the delayed saccade task, not only LIP, but many other brain re-

gions, including the DLPFC (Funahashi, et al., 1989), FEF (Bruce

and Goldberg, 1985), and SC (Glimcher and Sparks, 1992), dis-

play persistent activity during the delay period. From the above

considerations, it seems clear that LIP alone cannot function

as an attractor network. Top-down inputs from FEF (Chafee

and Goldman-Rakic, 2000) or other areas must contribute signif-

icantly to LIP persistent activity, whether as transient inputs that

gate LIP’s state or as ongoing inputs during the persistent activ-

ity. At the same time, the observation that LIP delay activity is

tightly correlated with LIP spontaneous activity, when LIP pre-

sumably is not receiving large inputs from other brain regions,

strongly suggests that during delay activity, LIP is not simply

passively receiving inputs from other brain regions; LIP also

plays a role in sculpting its own persistent activity. In essence,

persistent states in LIP are a relatively weak perturbation of

spontaneous states, which in turn are determined by intrinsic

LIP properties. Thus, persistent activity in LIP is likely to originate

from cooperative feedback between multiple brain regions,
Neuron 58, 15–25, April 10, 2008 ª2008 Elsevier Inc. 23
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allowing for a rich variety of gatingmechanisms that would act by

modulating this cooperative feedback.

The feedback could be as simple as some region other than

LIP acting alone as an attractor, and then, when it is in the attrac-

tor state, providing persistent input to LIP that maintains persis-

tent activity in LIP. In this case, the localized attractor model

would still be basically correct, but the localized attractor would

not be located in LIP (and the mechanism of behavioral gating in

this other area would remain to be worked out). But the slow

modes we have seen in LIP activity suggest an alternative

hypothesis that may be worth exploring. Suppose that none of

the areas involved can act alone as attractors, but that all have

slow modes. The attractor state representing persistent activity

could then be built out of coupling between the slow modes of

the different areas. A slow mode is basically a leaky attractor,

which does not have strong enough recurrent excitation to main-

tain activity in the absence of an input. If the slow modes of dif-

ferent areas provide input to one another, they could ‘‘bootstrap’’

themselves into an attractor: each area would provide persistent

input to the others, and this persistent input would in turn enable

each area’s slow mode to maintain persistent activity. By cou-

pling together, they create a network with more recurrent excita-

tion than any one alone, and this multiarea network could main-

tain activity without an input. The gating decisions would then be

made in the decisions of how much feedback the areas send to

one another in a given circumstance. Since there is rich cortical

circuitry between the inputs that a cortical area receives and the

output it sends to other areas, this provides rich possibilities for

gating, though of course the precise mechanisms constitute

a key research question. Such an added level of complexity un-

derlying persistent activity may be essential to bringing existing

attractor models closer to experimental data, by allowing them

to incorporate the necessary gating mechanisms so that the cur-

rent attractor state of the distributed oculomotor system can be

driven by behavioral relevance rather than simply by the last seen

stimulus.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/1/15/DC1/.
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