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SUMMARY

In cerebral cortex, ongoing activity absent a stimulus
can resemble stimulus-driven activity in size and
structure. In particular, spontaneous activity in cat
primary visual cortex (V1) has structure significantly
correlated with evoked responses to oriented stimuli.
This suggests that, from unstructured input, cortical
circuits selectively amplify specific activity patterns.
Current understanding of selective amplification
involves elongation of a neural assembly’s lifetime
by mutual excitation among its neurons. We intro-
duce a new mechanism for selective amplification
without elongation of lifetime: ‘‘balanced amplifica-
tion.’’ Strong balanced amplification arises when
feedback inhibition stabilizes strong recurrent exci-
tation, a pattern likely to be typical of cortex. Thus,
balanced amplification should ubiquitously con-
tribute to cortical activity. Balanced amplification
depends on the fact that individual neurons project
only excitatory or only inhibitory synapses. This
leads to a hidden feedforward connectivity between
activity patterns. We show in a detailed biophysical
model that this can explain the cat V1 observations.

INTRODUCTION

Neurons in cerebral cortex are part of a highly recurrent network.

Even in early sensory areas receiving substantial feedforward

input from subcortical areas, intracortical connections make up

a large fraction of the input to cortical neurons (Thomson and

Lamy, 2007; Binzegger et al., 2004; Stepanyants et al., 2008).

One function of this recurrent circuitry may be to selectively

amplify certain patterns in the feedforward input, enhancing

the signal-to-noise ratio of the selected patterns (Douglas

et al., 1995; Ganguli et al., 2008).

A side effect of such selective amplification is that the selected

patterns should also be amplified in the spontaneous activity of

the circuit in the absence of a stimulus (Ganguli et al., 2008).

We imagine that spontaneous activity is driven by feedforward

input that is unstructured except for some spatial and temporal
filtering. Thus, all patterns with similar spatial and temporal

frequency content should have similar amplitudes in the feedfor-

ward input. In the circuit response, those patterns that are selec-

tively amplified should then have larger average amplitude than

other, unamplified patterns of similar spatial and temporal

frequency content. This may underlie observations that cerebral

cortex shows ongoing activity in the absence of a stimulus that is

comparable in size to stimulus-driven activity (Arieli et al., 1996;

Kenet et al., 2003; Fiser et al., 2004; Anderson et al., 2000b; Fon-

tanini and Katz, 2008), and that in some cases the activity shows

structure related to that seen during functional responses (Kenet

et al., 2003; Fontanini and Katz, 2008).

Existing models of selective amplification are ‘‘Hebbian-

assembly’’ models, in which the neurons with similar activity

(above or below baseline) in an amplified pattern tend to excite

one another while those with opposite activity may tend to inhibit

one another, so that the pattern reproduces itself by passage

through the recurrent circuitry (Goldberg et al., 2004; Douglas

et al., 1995; Seung, 2003). In these models, selective amplifica-

tion of an activity pattern is achieved by slowing its rate of decay.

In the absence of intracortical connections, each pattern would

decay with a time constant determined by cellular and synaptic

time constants. Because the pattern adds to itself with each

passage through the recurrent circuitry, the decay rate of the

pattern is slowed. Given ongoing input that equally drives

many patterns, patterns that decay the slowest will accumulate

to the highest amplitude and so will dominate network activity.

(Note that, if a pattern reproduces itself faster than the intrinsic

decay rate, it will grow rather than decay. This along with circuit

nonlinearities provides the basis for ‘‘attractors,’’ patterns that

can persist indefinitely in the absence of specific driving input,

but our focus here is on amplification rather than attractors.)

In V1 and other regions of cerebral cortex, recurrent excitation

appears to be strong but balanced by similarly strong feedback

inhibition (Chagnac-Amitai and Connors, 1989; Haider et al.,

2006; Shu et al., 2003; Higley and Contreras, 2006; Ozeki

et al., 2009), an arrangement often considered by theorists

(van Vreeswijk and Sompolinsky, 1998; Tsodyks et al., 1997;

Latham and Nirenberg, 2004; Brunel, 2000; Lerchner et al.,

2006). Here we demonstrate that this leads to a new form of

selective amplification, which we call balanced amplification,

that should be a major contributor to the activity of such

networks, and that involves little slowing of the dynamics. The
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basic idea is the following. The steady-state response to a given

input involves some balance of excitatory and inhibitory firing

rates. If there is a fluctuation in which the balance is variously tip-

ped toward excitatory cell firing or inhibitory cell firing in some

spatial pattern, then, because excitation and inhibition are both

strong, both excitatory and inhibitory firing will be driven strongly

up in regions receiving excess excitation, and be driven strongly

down in regions receiving excess inhibition. That is, small

patterned fluctuations in the difference between excitation and

inhibition will drive large patterned fluctuations in the sum of

excitation and inhibition. The same mechanism will also amplify

the steady-state response to inputs that differentially drive exci-

tation and inhibition. The amplification from difference to sum will

be largest for patterns that match certain overall characteristics

of the connectivity, thus allowing selective amplification of

those patterns. This represents a large, effectively feedforward

connection from one pattern of activity to another, i.e., from

a difference pattern to a sum pattern. Although the circuitry is

fully recurrent between neurons, there is a hidden feedforward

connectivity between activity patterns. Because the sum pattern

does not act back on the difference pattern and neither pattern

can significantly reproduce itself through the circuitry, neither

pattern shows a slowing of its dynamics. This form of amplifica-

tion should make major contributions to activity in any network

with strong excitation balanced by strong inhibition, and so

should be a ubiquitous contributor to cortical activity.

We show in particular that this mechanism can explain a well-

studied example of selective amplification in primary visual

cortex (V1) of anesthetized cat. V1 neurons respond selectively

to oriented visual stimuli. In cats, nearby neurons prefer similar

orientations and there is a smooth map of preferred orientations

across the cortical surface. Kenet et al. (2003) compared the

spatial patterns of spontaneous activity, in the absence of a

visual stimulus, across V1 upper layers with either the pattern

evoked by an oriented visual stimulus (‘‘evoked orientation

map’’) or a similarly structured control activity pattern. An evoked

orientation map is a pattern in which neurons with preferred

orientation near the stimulus orientation are coactive and other

neurons are inactive. While on average the correlation coefficient

between snapshots of spontaneous activity and the evoked map

or control was 0, the distribution of correlation coefficients was

significantly wider for the evoked map than for the control

pattern. That is, excursions of the spontaneous activity were

significantly larger in the direction of an evoked orientation

map than in the direction of other similarly structured patterns.

This seems likely to result from the preferential cortical amplifica-

tion, from unstructured feedforward input, of activity patterns in

which neurons of similar preferred orientation are coactive. The

likely substrate for such amplification is orientation-specific

connectivity. Neurons in middle and upper layers of V1 receive

both excitatory and inhibitory input predominantly from other

neurons with similar preferred orientations (Martinez et al.,

2002; Anderson et al., 2000a; Marino et al., 2005), and orienta-

tion-specific excitatory axonal projections can extend over

long distances (Gilbert and Wiesel, 1989).

A Hebbian-assembly model of this amplification has been

proposed (Goldberg et al., 2004). However, a significant problem

for such a model is that it relies on slowing of the dynamics,
636 Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc.
and the data of Kenet et al. (2003) show limited slowing (see

Discussion). The amplified patterns of spontaneous activity

observed in V1 fluctuate with a dominant timescale of about

80 ms (Kenet et al., 2003; and M. Tsodyks, personal communica-

tion), comparable to the timescales over which inputs are corre-

lated (Wolfe and Palmer, 1998; DeAngelis et al., 1993). We show

that balanced amplification provides a robust explanation for the

amplification observed in V1 by Kenet et al. (2003) and its time-

scale. We cannot rule out that Hebbian mechanisms are also

acting, but even if they contribute, balanced amplification

remains a significant and heretofore unknown contributor to

the total amplification.

RESULTS

We will initially study balanced amplification using a linear firing

rate model. When neural circuits operate in a regime in which

synchronization of spiking of different neurons is weak, many

aspects of their behavior can be understood from simple models

of neuronal firing rates (Ermentrout, 1998; Pinto et al., 1996; Bru-

nel, 2000; Vogels et al., 2005). In these models, each neuron’s

firing rate approaches, with time constant t, the steady-state

firing rate that it would have if its instantaneous input were main-

tained. This steady-state rate is given by a nonlinear function of

the input, representing something like the curve of input current

to firing rate (F-I curve) of the neuron. When the circuit operates

over a range of rates for which the slopes of the neurons’ F-I

curves do not greatly change, its behavior can be described by

a linear rate model:

t
dr

dt
= � r + Wr + I = � ð1�WÞr + I: (1)

Here, r is an N-dimensional vector representing the firing rates

of a population of N neurons (the ith element ri is the firing rate of

the ith neuron). These rates refer to the difference in rates from

some baseline rates, e.g., the rates in the center of the operating

region, and so can be either positive or negative. W is an N 3 N

synaptic connectivity matrix (Wij is the strength of connection

from neuron j to neuron i). Wr represents input from other

neurons within the network. I represents input to the network

from neurons outside the network, e.g., feedforward input.

The essential mechanisms of selective amplification can be

understood from this model. Equation 1 is most readily analyzed

in terms of patterns of activity across the network, rather than the

individual firing rates of the neurons. The overall network activity

r(t) can be represented as a weighted sum of a set of N basis

patterns, denoted pm, m = 1,., N, with weights (amplitudes) rm(t):

rðtÞ=
X

m

rmðtÞpm:

Similarly, the input can be decomposed as

IðtÞ=
X

m

ImðtÞpm:

Each basis pattern or ‘‘mode’’ represents a set of relative rates

of firing of all neurons in the network, e.g., neuron 2 fires at three

times the rate of neuron 1, while neuron 3 fires at one-half the rate
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A

C

B Figure 1. Balanced Amplification in the

Two-Population Case

(A) Diagram of a balanced circuit with an excitatory

and an inhibitory population. Excitatory connec-

tions are green and inhibitory connections are red.

(B) Plot of the sum (blue line) and difference (black

line) between activity in the excitatory (rE, green

line) and inhibitory (rI, red line) populations in

response to a pulse of input to the excitatory pop-

ulation at time 0 that sets rE (0) = 1 (rI (0) = 0).

Diagrams above the plot represent the color-

coded levels of activity in the excitatory and inhib-

itory populations at the time points indicated by the

dashed lines.

(C) The circuit depicted in (A) can be thought of as

equivalent to a feedforward network, connecting

difference activity pattern to sum activity pattern

with strength wFF = w(1 + kI). In addition, the sum

pattern inhibits itself with strength w+ = w(kI � 1).

Parameters: kI = 1.1; w = 4(2/7) (for reasons

explained in Figure 2 legend).
of neuron 1, etc. The ith element of the m th pattern, pi
m, represents

the relative rate of firing of neuron i in that pattern. Examples of

basis patterns can be seen in Figure 3B, where each row shows

two basis patterns, labeled p� and p+, each representing

a pattern of activity across the excitatory (E) and inhibitory (I)

neurons in a model network; this figure will be explained in

more detail later.

The basis patterns are typically chosen as the eigenvectors of

W; this is the only basis set whose amplitudes evolve indepen-

dently of one another. pm is an eigenvector if it satisfies Wpm =

wm pm , where wm , a (possibly complex) number, is the eigenvalue

associated with pm. That is, pm reproduces itself, scaled by the

number wm , upon passage through the recurrent circuitry.

Thus, eigenvalues with positive real part, which correspond to

patterns that add to themselves by passage through the

circuitry, are the basis of Hebbian amplification. To understand

the response to ongoing input, it suffices to know the response

to input to each single basis pattern at a single time, because

responses to inputs to different patterns and at different times

superpose. When the eigenvectors are the basis patterns, inputs

to or initial conditions of the pattern pm affect only the amplitude

of that pattern, rm , with no crosstalk to other patterns. In the

absence of input, rm decays exponentially with time constant

tm = t/(1 � R(wm)), where R(wm) is the real part of wm . These are

the mathematical statements that the amplitude of each pattern

evolves independently of all others, and that, if wm has positive

real part (but real part < 1 to ensure stability), then the decay of

rm will be slowed, yielding Hebbian amplification.

However, for biological connection matrices, this solution

hides key aspects of the dynamics. Because individual neurons

project only excitatory or only inhibitory synapses, synaptic

connection matrices have a characteristic structure, as follows

(Wilson and Cowan, 1972, 1973; Ermentrout, 1998). Let

r =

�
rE

rI

�
;

where rE is the subvector of firing rates of excitatory neurons and

rI of inhibitory neurons. Let WXY be a matrix with elements R 0
describing the strength of connections from the cells of type

Y (E or I) to those of type X. Then the full connectivity matrix is

W =

�
WEE �WEI

WIE �WII

�
:

The left columns are nonnegative and the right columns are

nonpositive. Such matrices are nonnormal, meaning that their

eigenvectors are not mutually orthogonal (see Supplemental

Data S3, available online). If nonorthogonal eigenvectors are

used as a basis set, the apparently independent evolutions of

their amplitudes can be deceiving, so that even if all of their ampli-

tudes are decaying, the activity in the network may strongly but

transiently grow (Trefethen and Embree, 2005; Trefethen et al.,

1993; see Supplemental Data S3.2). This also yields steady-state

amplification of steady input that is not predicted by the eigen-

values. We will illustrate this below. We will show that, given

biological connection matrices with strong excitation balanced

by strong inhibition, this robustly yields strong balanced amplifi-

cation, which will occur even if all eigenvalues of W have negative

real part so that there is no dynamical slowing; and that these

dynamics are well described using a certain mutually orthogonal

basis set (a ‘‘Schur basis’’) rather than the eigenvectors.

The simplest example of balanced amplification is a network

with two populations of neurons, one excitatory (E cells) and

one inhibitory (I cells), each making projections that are indepen-

dent of postsynaptic target (Figure 1A). In terms of Equation 1,

r =

�
rE

rI

�

and

W =

�
w �kIw
w �kIw

�

(the case in which all four weights have distinct values gives

similar results; see Supplemental Data S3.3). Here, rE and rI are

the average firing rates of the E and I populations, respectively,

and w and kIw are the respective strengths of their projections.
Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc. 637
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We assume inhibition balances or dominates excitation, that is,

kI R 1. The eigenvalues of W are 0 and w � kIw = �w+ , where

w+ = w(kI � 1), so W has no positive eigenvalues and there is

no Hebbian amplification. Because inhibition balances or domi-

nates excitation, when rE and rI are equal, the synaptic connec-

tions contribute to net inhibition. That is, letting

p+ =

�
1
1

�
;

which is the pattern with equal excitatory and inhibitory firing,

then Wp+ = �w+p+. However, when there is an imbalance of

excitatory and inhibitory rates, then the rates are amplified by

the synaptic connections. That is, letting

p� =

�
1
�1

�
;

representing equal and opposite changes in excitatory and

inhibitory rates from baseline, then Wp� = wFF p+, where wFF h
w + kIw = w(kI + 1). This means that small changes in the differ-

ence between E and I firing rates drive large changes in the sum

of their rates (note that, if recurrent excitation and inhibition are

both strong, then wFF is large). We refer to p+ as a sum mode

and p� as a difference mode. Note that p+ and p� are orthogonal,

and that p� is not an eigenvector.

We decompose r(t) as a sum of these two basis patterns, r(t) =

r+(t)p+ + r�(t)p�, with r+(t) and r�(t) representing the sum and

difference of excitatory and inhibitory activities, respectively:

r+ ðtÞ=
1

2
ðrEðtÞ+ rIðtÞÞ; r�ðtÞ=

1

2
ðrEðtÞ � rIðtÞÞ:

Then the dynamics in the absence of external input can be

written

t
dr+

dt
= � ð1 + w+ Þr+ + wFFr� (2)

and

t
dr�
dt

= � r�: (3)

The network, despite recurrent connectivity in which all

neurons are connected to all others (Figure 1A), is acting as

a two-layer feedforward network between activity patterns (Fig-

ure 1C). The difference mode activates the sum mode with feed-

forward (FF) connection strength wFF , representing an amplifica-

tion of small firing rate differences into large summed firing rate

responses, and the sum mode inhibits itself with the negative

weight �w+, but there is no feedback from the sum mode onto

the difference mode. As expected for a feedforward network,

the amplification scales linearly with the feedforward synaptic

strength, wFF , and can be large without affecting the stability

or timescales of the network.

The resulting dynamics, starting from an initial condition in

which excitation, but not inhibition, is active above baseline, is

illustrated in Figure 1B. The excess of excitation drives up the

firing rates of both excitation and inhibition, until inhibition

becomes strong enough to force both firing rates to decay. In

terms of the sum and the difference of the rates, the difference
638 Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc.
decays passively with time constant t. The difference serves

as a source driving the sum, which increases until its intrinsic

decay exceeds its drive from the decaying difference. The sum

ultimately decays with a somewhat faster time constant

t + = t=ð1 + w+ Þ< t: This is the basic mechanism of balanced

amplification in circuits with strong, balancing excitation and

inhibition: differences in excitatory and inhibitory activity drive

sum modes with similar excitatory and inhibitory firing patterns,

while the difference itself decays. In the absence of a source, the

sum mode then decays.

The description of these same dynamics in terms of the eigen-

vectors of W is deceptive, because the eigenvectors are far from

orthogonal. If orthonormal basis patterns (meaning mutually

orthogonal and normalized to length 1) are used, then the ampli-

tudes of the basis patterns will accurately reflect the amplitudes

re and ri of the actual neural activity, in the sense that the sum of

the squares of the amplitudes of the basis patterns is equal to the

sum of the squares of the neuronal firing rates. Transformation to

a nonorthogonal basis, such as that of the eigenvectors of a non-

normal matrix, distorts these amplitudes. In the case of a network

like that in Figure 1, this distortion is severe: what is actually tran-

sient growth of the firing rates becomes monotonic decay of

each amplitude in the eigenvector basis (for reasons explained

in Trefethen and Embree, 2005 and in Supplemental Data S3.2

and Figure S1).

To understand balanced amplification in more intuitive terms,

we consider the response of the excitatory population to an

external input IE to the excitatory population (Figure 2). We

contrast the balanced network just studied (Figure 2, right) with

a Hebbian counterpart: a single excitatory population of neurons

recurrently exciting itself with strength w (Figure 2, left). We set w

for the Hebbian network to produce the same integrated excit-

atory cell response to a delta-pulse of input (a pulse confined

to a single instant of time), and thus the same overall amplifica-

tion in response to a sustained input, as the balanced network.

The responses are plotted with (red lines) and without (blue lines)

recurrent connections.

Wefirst consider the response toa delta-pulse of input sufficient

to set the initial excitatory state to rE (0) = 1 (Figures 2A and 2B); for

the balanced network, rI (0) = 0. In the Hebbian network, the effect

of the recurrent circuitry is to extend the decay time from t to

t=ð1�wÞ: In contrast, as we saw above, in the balanced network,

the recurrent circuitry produces a positive pulse of response

without substantially extending the response time course. This

extra pulse of response represents the characteristic response

of r+ to a delta-pulse input to r� (Supplemental Data S1.1 and

S3.4), which is added to an exponential decay with the membrane

time constant. For this sum to produce an initially increasing

response in the E population, as shown, the circuit must have

w > 1. This means that the excitatory network by itself is unstable,

but the circuit is stabilized by the feedback inhibition, a regime

likely to characterize circuits of cerebral cortex (Chagnac-Amitai

and Connors, 1989; Latham et al., 2000; Ozeki et al., 2009). Given

the unbalanced initial condition, the activity of the unstable excit-

atory network starts to grow, but it also drives up the activity of the

inhibitory population, which ultimately stabilizes the network.

We next consider the response to a sustained input IE = 1

(Figures 2C and 2D). Because the system is linear, the sustained
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input can be regarded as identical delta-pulses of input at each

instant of time, and the response as the sum of the transient

responses to each delta-pulse of input. The time course of the

rise to the steady-state level is thus given by the integral of the

transient response—that is, the rise occurs with the time course

of the accumulation of area under the transient curve. Thus, the

stimulus onset response is greatly slowed for the Hebbian

network, but only slightly slowed for the balanced network, rela-

tive to the time course in the absence of recurrent circuitry. This

can be seen by comparing the scaled versions of the responses

without recurrent circuitry (blue dashed lines) to the responses

with recurrent circuitry (red lines).

As we increase the size of the recurrent weights by increasing

w to obtain more and more amplification, the delta-pulse

response of the Hebbian network decays more and more slowly,

so the approach to the steady state becomes slower and slower

(Figure 2E). For the balanced network, increased amplification

leads to a higher and higher pulse of response without a slowing

of the decay of this response. In fact, higher levels of amplifica-

tion yield increasing speed of response, due to the increasingly

negative eigenvalue w+, so that for large w the response speed

becomes identical to the speed without recurrence (Figure 2F,

and see Supplemental Data S1.1.2). In sum, in the Hebbian

A B

C D

E F

Figure 2. Amplification of Response to

a Pulse Input and a Sustained Input

The firing rate response rE of the excitatory popu-

lation to an external input IE to the excitatory pop-

ulation, in two models. (Left column) The excitatory

population makes a recurrent connection of

strength w to itself, leading to Hebbian amplifica-

tion. (Right column) Balanced network as in

Figure 1, kI = 1.1. In all panels, blue lines show

case without recurrent connections (w = 0). (A

and B) Response to a pulse of input at time

0 that sets rE (0) = 1. Time course of input is shown

below plots. Red curve shows response with

weights set so that the integral of the response

curve is four times greater than the integral of the

blue curve [(A), w = 0.75; (B), w = 4(2/7)]. (C and

D) Response to a sustained input IE = 1 (time

course of input is shown below plots). Blue dashed

line shows w = 0 case scaled up to have the same

amplitude as the recurrently connected case. (E

and F) Time course of response to a sustained

input, IE = 1, in recurrent networks with weights

set to ultimately reach a maximum or steady-state

amplitude of 1 (blue), 3 (green), 4 (red), or 10 (cyan).

All curves are normalized so that 100% is the

steady-state amplitude. Blue curves have w = 0.

Other weights are: (E) w = 2/3 (green), w = 3/4

(red), w = 0.9 (cyan); (F), w = 2.5 (green), w = 4(2/7)

(red), w = 90 (cyan).

mechanism, increasing amplification is

associated with increasingly slow

responses. This leads to an inherent

tradeoff between the speed of a Hebbian

network’s response and the amount by which it can amplify its

inputs. For the balanced mechanism, responses show little or

no slowing no matter how large the amplification.

In spatially extended networks with many neurons, balanced

amplification can selectively amplify specific spatial patterns of

activity. We first consider a case with two simplifications. We

take the number of excitatory and inhibitory neurons to be equal;

using realistic (smaller) numbers of inhibitory neurons, with their

output weights scaled so that each cell receives the same overall

inhibition, does not change the dynamics. We also assume that

excitatory and inhibitory neurons, though making different

patterns of projections, make projections that are independent

of postsynaptic cell type. Then, if WE describes the spatial

pattern of excitatory projections and WI of inhibitory projections,

the full weight matrix is

W =

�
WE �WI

WE �WI

�
:

A full analysis of this connectivity is in Supplemental Data (S1.2);

here we report key results. If WE and WI are N 3 N, then W has N

eigenvalues equal to 0 and another N equal to the eigenvalues of

the matrix WE � WI . We take inhibition to balance or dominate
Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc. 639
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A

C

B Figure 3. Difference Modes (p�) and Sum

Modes (p+) in a Spatially Extended Network

(A) Orientation map for both linear and spiking

models. Color indicates preferred orientation in

degrees.

(B) The five pairs of difference modes (p�, left)

and sum modes (p+, right) of the connectivity

matrix with the largest feedforward weights wFF

(listed at right), by which the difference activity

pattern drives the sum pattern (as indicated by

arrows). Each pair of squares represents the

32 3 32 sets of excitatory firing rates (E, left

square of each pair) and inhibitory firing rates (I,

right square) in the given mode. In the difference

modes (left), inhibitory rates are opposite to excit-

atory, while in the sum modes (right), inhibitory

and excitatory rates are identical. Also listed on

the right is the correlation coefficient (cc) of

each sum mode with the evoked orientation

map with which it is most correlated. Pairs of

difference and sum modes are labeled p1 to p5. The second and third patterns are strongly correlated with orientation maps.

(C) Plots of the time course of the magnitude of the activity vector, jr(t)j, in response to an initial perturbation of unit length consisting of one of the difference

modes from (B) (indicated by line color).
excitation, by which we mean the eigenvalues of WE �WI have

real part % 0. Thus, W has no eigenvalues with positive real

part and there is no Hebbian amplification. But there is strong

balanced amplification.

We can define a set of N pairs of spatially patterned difference

and sum modes, pm� and pm+, m = 1,., N, that each behave very

much like the difference and sum modes p� and p+ in the

simpler, two-neuron model we studied previously. The E and I

cells in the mth pair each have an identical spatial pattern of acti-

vation, given by the mth eigenvector of WE + WI , up to a sign; this

pattern has opposite signs for E and I cells in pm� but identical

signs for E and I cells in pm+. The feedforward connection

strength from pm� to pm+ is given by the mth eigenvalue of

WE + WI . That is, the strongest amplification is of spatial patterns

that are best matched to the circuitry, in the sense of best repro-

ducing themselves on passage through WE + WI . WE + WI has

entries that are nonnegative and large, assuming excitation

and inhibition are both strong, so at least some of these feedfor-

ward weights will be large. The difference modes pm� decay with

time constant t, while the sum modes pm+ decay at equal or

faster rates that depend on the eigenvalues of WE � WI . Thus,

there is differential amplification of activity patterns without

significant dynamical slowing. This mechanism of transient

spatial pattern formation (or sustained amplification of patterned

input) should be contrasted with existing mechanisms of sus-

tained pattern formation, which involve dynamical slowing

(Ermentrout, 1998).

The five pairs of difference modes pm� and sum modes pm+

with the five largest feedforward weights wFF are illustrated in

Figure 3B, for a simple model of synaptic connectivity based

on known properties of V1. In this model, the strength of

a synaptic connection between two neurons is determined by

the product of Gaussian functions of distance and of difference

in preferred orientation (see Experimental Procedures). The

orientation map is a simple 4 3 4 grid of pinwheels (Figure 3A).

The only difference between the patterns of excitatory and inhib-

itory synapses is that excitatory synapses extend over a much
640 Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc.
larger range of distances, as is true in layer II/III of V1 (Gilbert

and Wiesel, 1989). The orientation tunings of excitatory and

inhibitory synapses are identical, as is suggested by the fact

that intracellularly measured excitation and inhibition have

similar orientation tuning in upper layers of V1 (Martinez et al.,

2002; Anderson et al., 2000a; Marino et al., 2005). Inhibition is set

strong enough that all the eigenvalues of W have real part % 0.

Next to each pair of modes in Figure 3B is the weight wFF

between them, and the maximal correlation coefficient between

the sum modes and any stimulus-evoked orientation map

(evoked maps are computed as the response of a rectified

version of Equation 1 to an orientation-tuned feedforward input).

The mode corresponding to the largest wFF is spatially

uniform. Kenet et al. (2003) filtered out the spatially uniform

mode in their experiments because it can result from artifactual

causes, but it showed much variance (M. Tsodyks, personal

communication). The next two modes closely resemble evoked

orientation maps. To characterize the time course of this ampli-

fication, we examine the time course of the overall size of the

activity vector, jr(t)j, in response to an initial perturbation consist-

ing of one of the difference modes (Figure 3C). The first mode

follows the time course wFF ðt=tÞ e�t=t once ðt=tÞ>> 1=wFF ; cor-

responding to a 0 eigenvalue of WE � WI . Subsequent modes

peak progressively earlier, interpolating between time courses

proportional to ðt=tÞ e�t=t and et/t, representing the influence of

increasingly negative eigenvalues (see Supplemental Data

S1.1.2). Thus, patterns that resemble evoked orientation maps

can be specifically amplified by balanced amplification without

significant dynamical slowing, given a circuit with balanced,

orientation-specific excitatory and inhibitory circuitry. We will

show shortly that this can account well for the observations of

Kenet et al. (2003) in the context of a nonlinear spiking network.

In the more general case, when WEE, WEI, WIE, and WII all have

distinct structure, one cannot write a general solution, but one

can infer that similar results should apply if strong inhibition

balances or dominates strong excitation (see Supplemental

Data S3.3 and S3.5). Any such matrix has strong hidden
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feedforward connectivity, as shown by the Schur decomposition

(Supplemental Data S3.2). We have seen that use of an ortho-

normal basis set provides strong advantages for understanding

the dynamics. The Schur decomposition finds a (nonunique)

orthonormal basis in which the matrix, which means the effective

connectivity between basis patterns, is as simple as possible

given orthonormality: the effective connectivity includes only

self-connections and feedforward connections, but no loops.

The dynamics can be analytically solved in this basis (Supple-

mental Data S3.4). In Figure 1, the orthogonal sum and difference

vectors (if properly normalized) are a Schur basis. For a normal

matrix, the Schur basis is the eigenvector basis. In the eigen-

vector basis, a matrix is simply the diagonal matrix of eigen-

values; that is, there are only self-connections (Figure 4A).

However, these basis patterns are not mutually orthogonal for

nonnormal matrices, such as biological connection matrices. A

nonnormal matrix in the Schur basis also has the eigenvalues

as diagonal entries or self-connections, and zeros below the

diagonal, but there are nonzero entries above the diagonal.

These entries represent feedforward connectivity between

patterns: there can only be a connection from pattern i to pattern

j if i > j (Figure 4B). Given strong excitation and inhibition, the

strongest feedforward weights should be from difference-like

patterns (meaning patterns in which excitatory and inhibitory

activities tend to have opposite signs) to sum-like patterns (in

which they tend to have the same signs) (Supplemental Data

S3.5), as shown. If the eigenvalues are small due to inhibition

balancing excitation, but the original matrix entries are large,

then there will be large entries off the diagonal in the Schur

decomposition, because the sum of the absolute squares of

the matrix entries is the same in any orthonormal basis. That is,

strong but appropriately balanced excitation and inhibition leads

to large feedforward weights and small eigenvalues, so that the

effective connectivity becomes almost purely feedforward

(Figure 4C) and involves strong balanced amplification.

The eigenvector picture illuminates a simple biological fact

hidden in the biological connectivity matrix: some activity

patterns may excite themselves or inhibit themselves, and if so

their integration and decay times are slowed or sped up, respec-

tively. This fact, which underlies Hebbian amplification, is

embodied in the eigenvalues, and is retained in the Schur

picture: the eigenvalues continue to control the integration and

decay times of the Schur basis patterns, exactly as for the eigen-

vector basis patterns. However, there is another biological fact

hidden in the biological connectivity matrix that remains hidden

in the eigenvector picture: small amplitudes of some patterns

(difference patterns) can drive large responses in other patterns

(sum patterns). This fact underlies balanced amplification. In the

eigenvector picture, this fact is hidden in the nonorthogonal

geometry of the eigenvectors (Supplemental Data S3.2). In the

Schur picture, this biological fact is made explicit in the feedfor-

ward connection from one pattern to another.

The linear rate model demonstrates the basic principles of

balanced amplification. To demonstrate that these principles

apply to biological networks, in which neurons are nonlinear,

spiking, and sparsely connected, we study a more detailed

biophysical model capturing basic features of V1 connectivity.

The model is highly simplified and is not meant to serve as a
complete and accurate model of V1. It consists of 40,000 excit-

atory and 10,000 inhibitory integrate-and-fire neurons con-

nected by fast conductance-based synapses. The excitatory

and inhibitory neurons are each arranged on square grids span-

ning the orientation map used previously (Figure 3A). The

neurons are connected randomly and sparsely, with probabilities

of connection proportional to the weight matrix studied in the

linear model, that is, dependent on distance and difference in

preferred orientation. Each neuron receives feedforward input

spike trains, modeled as Poisson processes with time-varying

rates, to generate sustained spontaneous activity. The input

rates vary randomly with spatial and temporal correlations,

determined by filtering spatiotemporally white noise with a spatial

and a temporal kernel, that reflect basic features of inputs to

upper layers. During visually evoked activity each neuron

receives a second input spike train, modeled as a Poisson

process whose rate depends on the difference between the

neuron’s preferred orientation and the stimulus orientation. The

network exhibits irregular spiking activity as in other models of

sparsely connected spiking networks with balanced excitation

and inhibition (van Vreeswijk and Sompolinsky, 1998; Brunel,

2000; Lerchner et al., 2006) (see Supplemental Data S4.1 and

Figure S2 available online).

Figure 4. Alternative Pictures of the Activity Dynamics in Neural
Circuits

(A) The eigenvector picture: when the eigenvectors of the connectivity matrix

are used as basis patterns, each basis pattern evolves independently, exciting

or inhibiting itself with a weight equal to its eigenvalue. The eigenvectors of

neural connection matrices are not orthogonal, and as a result this basis

obscures key elements of the dynamics.

(B) The orthogonal Schur basis. Each activity pattern excites or inhibits itself

with weight equal to one of the eigenvalues. In addition, there is a strictly feed-

forward pattern of connectivity between the patterns, which underlies

balanced amplification. There can be an arbitrary feedforward tree of connec-

tions between the patterns, but in networks with strong excitation and inhibi-

tion, the strongest feedforward links should be from difference patterns to

sum patterns, as shown. There may be convergence and divergence in the

connections from difference to sum modes (not shown; see Supplemental

Data S1.2). At least one of the patterns will also be an eigenvector, as shown.

(C) If strong inhibition appropriately balances strong excitation, so that

patterns cannot strongly excite or inhibit themselves (weak self-connections),

the Schur basis picture becomes essentially a set of activity patterns with

a strictly feedforward set of connections between them.
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Figure 5. Spontaneous Patterns of Activity in a Spiking Model

(A) The 0� evoked map.

(B) Example of a spontaneous frame that is highly correlated with the 0� evoked map (correlation coefficient = 0.53).

(C) Distribution of correlation coefficients for the 0� evoked orientation map (solid line) and the control map (dashed line). The standard deviations of the two distri-

butions are 0.19 and 0.09, respectively. The figure represents 40,000 spontaneous frames corresponding to 40 s of activity.

(D) The solid black line is the autocorrelation function (ACF) of the time series of the correlation coefficient (cc) for the 0� evoked map and the spontaneous activity.

It decays to 1/e of its maximum value in 85 ms. The dashed black line is the ACF of the input temporal kernel. It decays to 1/e of its maximum value in 73 ms. The

widening of the ACF of the response relative to the ACF of the fluctuating input is controlled by the same timescales that control the rise time for a steady-state

input (Supplemental Data S1.1.2) and, for a balanced network, is expected to be between the ACF of the convolution of the input temporal kernel with te�t/tm

(dashed red lines) and with e�t/tm (dashed blue lines).

(E) A 4 s long example section of the full time series of correlation coefficients used to compute the ACF in (D). All results are similar using an evoked map of any

orientation.
By averaging the response of the network to a stimulus of

a given orientation, we produce an evoked orientation map.

Frames of spontaneous activity frequently resemble these

evoked maps (Figures 5A and 5B). As in Kenet et al. (2003), we

quantify the similarity between two patterns by the correlation

coefficient between them. We chose our parameters so that

frames of spontaneous activity show a distribution of correlation

coefficients with a given evoked map that is two times as wide as

that for a control map (Figure 5C), the same as the amplification

observed by Kenet et al. (2003) (Supplemental Data S2.2). We

examine the dynamics of the amplified pattern by examining

the autocorrelation of its time series of correlation coefficients.

This results from two factors. The inputs to cortex, created by

filtering white noise with a temporal kernel, have a correlation

time of about 70 ms. This input is amplified by balanced amplifi-

cation, which filters with a pulse response whose time course

varies between te�t/t and e�t/t (Figure 3C, Supplemental Data

S1.1.2). Here t is tm, the neuronal membrane time constant,
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which has an average value of 20 ms during spontaneous activity

(the synaptic time constants could also play a role, but are very

fast in our model, z3 ms). The time series autocorrelation is

well described by the autocorrelation of this doubly-filtered white

noise, with the larger input correlation time dominating the total

timescale (Figures 5D and 5E). If all recurrent weights are scaled

up by a common factor, amplification increases but the time-

scale of the amplified pattern only decreases, due to the

decreased membrane time constant caused by the increased

conductance (Figure 6). That is, the recurrent connectivity

amplifies input activity patterns resembling evoked maps while

causing no appreciable slowing of their dynamics, as predicted

by balanced amplification. We show that this conclusion holds

across a variety of network parameters, and contrast this with

Hebbian amplification, in Supplemental Data S4.3 and Figure S3.

To further demonstrate that balanced amplification underlies

selective amplification in the spiking model, we examine addi-

tional predictions. The difference patterns in Figure 3B should
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each produce a time course of the corresponding sum pattern

like that shown in Figure 3C. In the spiking model, we cannot

use a pure difference pattern as an initial condition because it

leads to synchronized spiking responses. Instead, we probe

the noisy spontaneous activity for the same effect. If difference

modes are being amplified and converted into sum modes,

patterns of activity resembling sum modes will tend to be stron-

gest shortly after patterns of activity resembling their corre-

sponding difference mode. We find that this is the case, with

very similar behavior in the spiking model and in a rectified linear

model that closely resembles the linear cases we analyzed. We

project the network activity onto the sum and difference patterns

of Figure 3B in 1 ms intervals and calculate the cross-covariance

between each pair of projection time series. For both the spiking

model (Figure 7A) and the rectified linear model (Figure 7B), (1)

the peak of the cross-covariance is shifted to the right of 0,

reflecting conversion of difference modes to sum modes; (2)

the peak covariances are larger for patterns with larger amplifi-

cation; and (3) the effect is specific: little cross-covariance is

seen between mismatched sum and difference patterns

(‘‘control’’), which have no feedforward connection.

The balanced amplification model also predicts that the differ-

ence modes should not be differentially amplified and so should

have roughly equal amplitudes in the spontaneous activity (all the

leading modes, sum and difference, have roughly equal power in

the input). The sum modes, being differentially amplified, should

have larger amplitudes that decrease with mode number (i.e.,

with decreasing feedforward weight). Examining the standard

deviation of the amplitudes of patterns 2 through 8 (the first

pattern is filtered out in the model, as in the experiments), this

prediction is well obeyed. In the spiking model, the difference

modes show little variation (mean 0.076 with root mean square

[rms] difference from the mean 0.010) and no tendency to grow

larger or smaller with mode number (r = 0.28, p = 0.54). The

sum modes monotonically decrease with mode number (though

modes 2 and 3 are very similar), from 0.2 for mode 2 to 0.075 for

mode 8. The linear rectified model behaves similarly.

Figure 6. Increasing Strength of Balanced Amplifica-

tion Does Not Slow Dynamics in the Spiking Model

All recurrent synaptic strengths (conductances) in the spiking

model are scaled as shown, where 100% is the model of

Figures 5 and 7. The amplification factor increases with recur-

rent strength (this factor is the ratio of the standard deviation of

the distribution of correlation coefficients of the 0� evoked

orientation map to that of the control map; these are shown

separately in Figure S2B). The correlation time of the evoked

map’s activity tACF monotonically decreases with recurrent

strength (dashed line) (tACF is the time for the ACF of the

time series of evoked map correlation coefficients to fall to 1/e

of its maximum). This is because the membrane time constant

tm is decreasing due to the increased conductance. The differ-

ence tACF � tm does not change with recurrent strength

(dashed-dot line), while amplification increases 3-fold.

DISCUSSION

In cortical networks, strong recurrent excitation

coexists with strong feedback inhibition (Chagnac-

Amitai and Connors, 1989; Haider et al., 2006; Shu et al., 2003;

Higley and Contreras, 2006; Ozeki et al., 2009). This robustly

produces an effective feedforward connectivity between

patterns of activity, in which small, spatially patterned imbalances

between excitatory and inhibitory firing rates (difference patterns)

drive, and thus amplify, large, spatially patterned balanced

responses of excitation and inhibition (sum patterns). This

balanced amplification should be a ubiquitous feature of cortical

networks, or of any network in which strong recurrent excitation

and strong feedback inhibition coexist, contributing both to

spontaneous activity and to functional responses and their fluctu-

ations. If inhibition balances or dominates excitation, then

balanced amplification can occur without slowing of dynamics.

If some patterns excite themselves and thus show Hebbian

slowing, then Hebbian amplification and balanced amplification

will coexist (see Figure 4 and Supplemental Data S3.4).

Given stochastic input, we have found that balanced amplifi-

cation in a network in which excitatory and inhibitory projections

have similar orientation tuning produces orientation-map-like

patterns in spontaneous activity, as observed in cat V1 upper

layers (Kenet et al., 2003). This is consistent with results from

intracellular recordings that show that cells in cat V1 upper layers

receive excitatory and inhibitory input with similar tuning (Marti-

nez et al., 2002; Anderson et al., 2000a; Marino et al., 2005).

Previous work (Goldberg et al., 2004) found that these patterns

could be explained by Hebbian slowing, but this relied on

‘‘Mexican hat’’ connectivity in which inhibition is more broadly

tuned for orientation than excitation to create positive eigen-

values for orientation-map-like patterns.

The z 80 ms dominant timescale of experimentally observed

evoked-map patterns in spontaneous activity (Kenet et al., 2003

and M. Tsodyks, personal communication) and their amplifica-

tion of about 23 relative to control patterns (Supplemental

Data S2.2) place significant constraints on the degree of Hebbian

slowing. As we discuss in detail in Supplemental Data S4.4,

given the correlations of the inputs (Wolfe and Palmer, 1998;

DeAngelis et al., 1993), a purely Hebbian-assembly model of
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Figure 7. Cross-Covariance of Difference and Sum Modes in Spiking and Linear Rectified Models

Cross-covariance functions between sum modes and difference modes in spiking (A) and linear rectified (B) versions of model in Figure 3 (spiking model as in

Figure 5). The four colored curves plotted in each figure labeled p2 through p5 correspond to the second through fifth pairs of modes illustrated in Figure 3. The

time series of projections of the spontaneous activity pattern onto each sum mode and each difference mode were determined, and then the cross-covariance

was taken between the time series of a given difference mode and that of the corresponding sum mode. Positive time lags correspond to the difference mode

amplitude preceding the sum mode’s. The dashed lines labeled control (ctrl) show all combinations of difference modes from one pair and sum modes from

a different pair.
this requires an intrinsic (cellular/synaptic) decay time, in the

absence of recurrent connections, of no more than about

20 ms. This is plausible, but so too is a considerably longer

intrinsic timescale. The intrinsic decay time reflects both the

decay of synaptic conductances and the membrane time

constant (Shriki et al., 2003; Ermentrout, 1998). Conductances

in excitatory cortical synapses include a significant component

driven by N-methyl-D-aspartate (NMDA) receptors (Feldmeyer

et al., 1999, 2002; Fleidervish et al., 1998), which at physiological

temperatures have decay time constant >100 ms (Monyer et al.,

1994). If these contribute significantly to the intrinsic decay time

of cortical activity, the Hebbian-assembly scenario would

produce too long a timescale.

With present data, we cannot rule out a contribution of Heb-

bian slowing to the observations of Kenet et al. (2003). However,

we have shown that balanced amplification will play a major role

in the dynamics of circuits with strong but balanced excitation

and inhibition, as is believed to be the case for cerebral cortex

(Chagnac-Amitai and Connors, 1989; Haider et al., 2006; Shu

et al., 2003; Higley and Contreras, 2006; Ozeki et al., 2009).

Thus, we can say that balanced amplification is almost surely

a significant contributor, and may be the sole contributor, to

the observations of Kenet et al. (2003). Comparison of the

dynamics of control patterns and amplified patterns in the spon-

taneous data would reveal the extent, if any, to which amplifica-

tion is accompanied by slowing.

In sum, balanced amplification represents a mechanism by

which arbitrarily strong recurrent connectivity can shape activity

in a network with balanced, similarly tuned excitation and inhibi-

tion, while maintaining the fast dynamics normally associated

with feedforward networks.
644 Neuron 61, 635–648, February 26, 2009 ª2009 Elsevier Inc.
Implications for Experiments
The experiments of Kenet et al. (2003) were conducted in anes-

thetized animals. The connection between spontaneous activity

and columnar structures such as evoked orientation maps is less

clear in awake animals (D.B. Omer, L. Rom, U. Ultchin, and

A. Grinvald, 2008, Soc. Neurosci., abstract). Awake cortex may

also show a significant difference in the timescale of network

activity relative to anesthetized cortex: in awake V1 (Fiser

et al., 2004; and J. Zhao, G. Szirtes, M. Eisele, J. Fiser, C.

Chiu, M. Weliky, and K.D.M., unpublished data) and in awake

monkey LIP (Ganguli et al., 2008), one mode involving common

activity among neurons across some distance has a decay

time of hundreds of milliseconds, while all other modes have

considerably faster decay times. These differences suggest

differences in the effective connectivity of awake and anesthe-

tized states. For example, a decrease in the overall level of inhi-

bition in the awake state could cause one common-activity

mode to show Hebbian slowing. More subtle changes in effec-

tive connectivity might disrupt the amplification of evoked-

map-like activity or its spatial or temporal coherence.

From the patterns with largest variance in spontaneous activity

in a given state, predictions of connectivity that would amplify

those patterns and of further tests for such connectivity can be

made. Comparing this predicted connectivity across states

may suggest key loci for state-dependent modulations of

circuitry (Fontanini and Katz, 2008). Similarly, experiments could

characterize the fluctuations of activity around visually evoked

responses in both states. Individual neurons in upper layers

have variable responses to a drifting grating (reviewed in Kara

et al., 2000), which might be part of larger patterns like the

patterned fluctuations in spontaneous activity (Fontanini and
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Katz, 2008). If there is similar effective connectivity in sponta-

neous and evoked activity, one would expect in anesthetized

animals to see patterns resembling evoked maps of all orienta-

tions in the fluctuations about the response to a particular orien-

tation (although nonlinearities, e.g., synaptic depression/facilita-

tion, might suppress or enhance the evoked map relative to

others).

It should soon be possible to directly test for the presence of

balanced amplification in cortical networks by optically exciting

or inhibiting identified excitatory or inhibitory neurons over an

extended region of the upper layers of cortex (Zhang et al.,

2007). Suppose the excitatory network by itself is unstable and

is stabilized by feedback inhibition, as appears to be the case

for V1 during visual stimulation (Ozeki et al., 2009); then,

balanced amplification causes a brief stimulation of excitatory

cells to yield a positive pulse of transient response among both

excitatory and inhibitory neurons, as in Figure 2B. Hebbian

amplification causes a slowed decay of the response, as in Fig-

ure 2A. Coexistence of both mechanisms would yield both

a positive pulse and a slowed decay. A circuit transient might

occur over a time difficult to separate from the time course of

closure of the light-activated channels. One could instead

examine the response to sustained activation of inhibitory cells,

which paradoxically leads to a steady-state decrease of inhibi-

tory cell firing if the excitatory subnetwork is unstable (Tsodyks

et al., 1997; Ozeki et al., 2009). This effect reflects the same

dynamics that underlie balanced amplification (Supplemental

Data S1.1.3).

The intrinsic decay time of cortical responses in the absence of

recurrent connections might be measurable, allowing determi-

nation of the slowing induced by the recurrent circuitry. In V1

upper layers, this might be accomplished by intracellularly

measuring voltage rise and decay times to the onset and offset

of visual stimuli under normal conditions and after optically

induced inhibition of excitatory cells in those layers. This would

leave feedforward excitation and inhibition intact so that, after

compensating for conductance-induced changes in membrane

time constant, the differences in response times would reflect

the influence of the local recurrent network.

Other Models
Previous models have examined dynamical effects of the divi-

sion of excitation and inhibition into distinct neuronal classes

(Wilson and Cowan, 1972, 1973; Pinto et al., 2003; Ermentrout,

1998; Li and Dayan, 1999; Kriener et al., 2008). Wilson and

Cowan (1973) observed ‘‘active transients,’’ in which a suffi-

ciently large initial condition was amplified before it decayed, in

some parameter regimes in simulations of a nonlinear rate

model, and argued that this may be the regime of sensory cortex.

Pinto et al. (2003) modeled somatosensory (S1) cortex as

a similar ‘‘excitable system,’’ in which a threshold level of rapidly

increased input engages excitatory recurrence that raises excit-

atory firing rates before slower inhibition catches up and stabi-

lizes the system. There are likely to be interesting ties between

these results and the dynamics exposed here. Kriener et al.

(2008) recently showed that random connectivity matrices with

separate excitatory and inhibitory neurons produce much more

variance than random matrices without such separation. This
effect can be understood from nonnormal dynamics: the separa-

tion yields large, effective feedforward weights that greatly

increase the variance of the response to ongoing noisy input,

as in the amplification of evoked-map-like patterns.

Li and Dayan (1999) suggested a different mechanism of

selective amplification that also depends on the division into E

and I cells. They studied a rate model with a threshold nonline-

arity. When a fixed point is unstable, a state that can be induced

by a slow inhibitory time constant, the network can oscillate

about the fixed point. This oscillation may have large amplitude,

so that at its peak a pattern like the fixed point is strongly ampli-

fied. This differs from the present work both in mechanism and in

biological implications. Their mechanism would yield a periodic

rather than a steady response to a steady input, and for sponta-

neous activity, would predict a periodic alternation in the auto-

correlation function of the time series of correlation coefficients

that is not seen in the data.

The role of excitatory and inhibitory neurons in generating

balanced amplification is specific to neural systems, but similar

dynamical effects can arise through combinations of excitatory

and inhibitory feedback loops (Brandman and Meyer, 2008).

More generally, the ideas of feedforward connectivity between

patterns arising from nonnormal connection matrices may be

applicable to any biological network of interacting elements,

such as signaling pathways or genetic regulatory networks. Non-

normal dynamics have been previously applied to biology only in

studies of transient responses in ecological networks (Neubert

and Caswell, 1997; Neubert et al., 2004; Chen and Cohen,

2001; Townley et al., 2007).

In conclusion, the well-known division of neurons into separate

excitatory and inhibitory cell classes renders biological connec-

tion matrices nonnormal and opens new dynamical possibilities.

When excitation and inhibition are both strong but balanced, as is

thought to be the case in cerebral cortex, balanced amplification

arises: small patterned fluctuations of the difference between

excitation and inhibition drive large patterned fluctuations of the

sum. The degree of drive between a particular difference and

sum pair depends on overall characteristics of the excitatory

and inhibitory connectivity, allowing selective amplification of

specific activity patterns, both in responses to driven input and

in spontaneous activity, without slowing of responses. This previ-

ously unappreciated mechanism should play a major and ubiqui-

tous role in determining activity patterns in the cerebral cortex,

and related dynamical mechanisms are likely to play a role at all

levels of biological structure.

EXPERIMENTAL PROCEDURES

Linear Model

The linear model consists of overlapping 32 3 32 grids of excitatory and inhib-

itory neurons, each assigned an orientation according to a superposed orien-

tation map consisting of a 4 3 4 grid of pinwheels and taken to be 4 mm 3

4 mm. Each pinwheel is a square and each grid point inside a given pinwheel

is assigned an orientation according to the angle of that point relative to the

center of the square, so that orientations vary over 180� as angle varies over

360�. Individual pinwheels are then arranged in a 4 3 4 grid such that the orien-

tations along their borders are contiguous. This is accomplished by making

neighboring pinwheel squares mirror images, flipped across the border

between them.
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The strength of a synaptic connection from neuron j of type X (E or I) to

neuron i is determined by the product of Gaussian functions of the distance

(rij) and the difference in preferred orientation (qij) between them:

WX
ij ðrij ; qijÞfe�r2

ij
=ðwX

r Þ2 e�qij2=ðwX
q Þ

2

;

with parameters wr
E = 4 mm, wr

I = 0.4 mm, and wq
E = wq

I = 20�. The input

synaptic strengths to each neuron are normalized (scaled) to make the sum

of excitatory and inhibitory inputs each equal 20.

To generate evoked orientation maps, we simulate response of a rectified

version of the linear equation to an orientation-tuned,feedforward input. The

rectified equation is Equation 1 with Wr replaced by W[r]+ (this is the appro-

priate equation if r is regarded as a voltage rather than a firing rate), where

[v]+ is the vector v with all negative elements set to 0. The feedforward input

to each neuron, excitatory or inhibitory, is a Gaussian function of the difference

q between the preferred orientation of the neuron and the orientation of the

stimulus:

Revoked = 4e�q2=ð20+ Þ2 :

The evoked orientation map is the resulting steady-state pattern of activity.

Spiking Model

The network consists of 40,000 excitatory and 10,000 inhibitory integrate-and-

fire neurons. The voltage of each neuron is described by the equation:

C
dV

dt
= gleakðEleak � VÞ+ geðEe � VÞ+ giðEi � VÞ: (4)

Here C is the capacitance, and gleak, ge, and gi are the leak, excitatory, and

inhibitory conductances with corresponding reversal potentials Eleak, Ee, and

Ei. When the voltage reaches spike threshold, Vthresh, it is reset to Vreset

and held there for trefract. Parameters, except for C, are from Murphy and Miller

(2003) and are the same for excitatory and inhibitory neurons: gleak = 10 nS,

C = 400 pF, Eleak = �70 mV, Ee = 0 mV, Ei = �70 mV, Vthresh = �54 mV, Vreset =

�60 mV, and trefract = 1.75 ms. The capacitance is set such that, taking into

account mean synaptic conductances associated with ongoing spontaneous

activity, the membrane time constant is about 20 ms. At rest, with no network

activity, the membrane time constant is 40 ms.

Conductances

The time course of synaptic conductances is modeled as a difference of expo-

nentials:

gðtÞ=
X
Dtj

g
�
e�Dtj=tfall � e�Dtj=trise

�
: (5)

Here Dtj is defined as (t � tj), where tj is the time of the jth presynaptic action

potential that has tj < t. For simplicity we include only fast synaptic conduc-

tances, AMPA and GABAA, with identical time courses for excitation and inhi-

bition: trise = 1 ms, tfall = 3 ms. The equality and speed of time courses are not

necessary for our results (see Supplemental Data S4.5). What is necessary is

that the inhibition not be so fast or strong that it quenches the response to the

feedforward connection before it can begin to rise, nor so slow or weak that it

fails to stabilize the network if the excitatory subnetwork alone is unstable. The

network operates in the asynchronous irregular regime in which neurons fire

irregularly and without global oscillations in overall rate (see Supplemental

Data S4.1 and Figure S2). To operate in this regime, time constants must be

chosen appropriately (Wang, 1999; Brunel, 2000; Shriki et al., 2003), but this

is not a tight constraint.

The sizes of the synaptic conductances evoked by a presynaptic action

potential, g, are defined in terms of the integrated conductance gtint where

tint =

Z N

0

dt
�
e�t=tfall � e�t=trise

�
= 2 ms:

Values used are gtint = 0.02875 nS $ ms and gtint = 0.001625 nS $ ms. These

are chosen to produce a certain strength of orientation-map-like patterns in

the spontaneous activity, while maintaining average conductance during

ongoing spontaneous activity of roughly two times the resting leak conduc-

tance (Destexhe and Paré, 1999). Increasing the overall size of the conduc-
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tances or the ratio of excitation to inhibition increases the strength of the

patterns.

Synaptic Connectivity

Neurons are in an evenly spaced grid, 200 3 200 for excitatory neurons and

100 3 100 for inhibitory neurons (inhibitory cell spacing is twice excitatory

cell spacing). As in the linear model, each neuron is assigned an orientation

from a superposed orientation map consisting of a 4 3 4 grid of pinwheels.

The synaptic connectivity is sparse and random, with the probability Pij
X of

a connection from neuron j of type X (E or I) to neuron i equal to ki
XWij

X, where

Wij
X is the function used in the linear model. ki

X is chosen to separately normalize

excitatory and inhibitory connections to each neuron so that the expected

number (average over random instantiations) of connections received by

each neuron is Ne = 100 excitatory and Ni = 25 inhibitory connections.

Because the connections are random, some neurons will receive more or

fewer connections. To obtain similar firing rates for all neurons in the network,

we scale up or down the excitatory and inhibitory synaptic conductances

received by each neuron so that its ratio of excitatory to inhibitory conduc-

tances is

R =
Nege

Nigi

:

To achieve this, all the excitatory conductances onto a given neuron are

scaled by fe, and inhibitory conductances fi , with

fe =
2:0

1 + 1=x
;

fi =
2:0

1 + x
;

and x = Neni/(Nine). Here, ne and ni are the actual number of excitatory and

inhibitory synapses received by the given neuron. This sets

nefege

nifigi

= R

for the cell, while also setting (1.0 � fe) = (fi � 1.0). The latter condition imitates

a homeostatic synaptic plasticity rule in which excitation and inhibition are

increased or decreased proportionally to maintain a certain average firing rate.

Spontaneous and Evoked Input

During spontaneous activity each neuron receives background feedforward

input consisting of an excitatory Poisson spike train, with rate randomly deter-

mined by convolving white noise with a spatial and temporal filter. The spatial

filter is proportional to e�x2=ð200 mmÞ2 ; and the temporal filter to t2e�gt with g =

40 Hz. This kernel is slower than the average temporal kernel of LGN cells

(Wolfe and Palmer, 1998), but is closer in speed to the temporal kernels of

simple cells in layer IV (DeAngelis et al., 1993) that provide the main input to

layers II/III. For simplicity, we do not replicate the biphasic nature of real

LGN or simple-cell temporal kernels, but simply try to capture the overall time-

scale.

We set the standard deviation of the unfiltered, zero-mean input noise to

1250 Hz and normalized the integrals of the squares of the spatial and temporal

filters to 1 to produce filtered noise with the same standard deviation. This rate

noise is added to a mean background rate of 10250 Hz. Each input event evokes

synaptic conductance 0.00025 nS $ ms. Steady input at the mean background

rate is sufficient to just barely make the neurons fire (less than 1 Hz), while steady

input at the mean plus three standard deviationsyieldsa firing rateofabout 24Hz.

Visually evoked orientation maps are generated by averaging frames of

network activity (see Comparison to Experiment subsection below) for 3 s in

response to a visually evoked input added to the background input. The

evoked input to a neuron is a Poisson spike train with a rate

Revoked = 10000e�ðDqÞ2=ð20
�Þ2

where Dq is the difference between the neuron’s preferred orientation and the

stimulus orientation. Synaptic conductance is again 0.00025 nS $ ms.

Comparison to Experiment

To compare spontaneous and visually evoked activity, we compute the corre-

lation coefficient between frames of spontaneous activity and the visually



Neuron

Balanced Amplification
evoked orientation map every millisecond. A frame is constructed by taking the

shadow voltages of all the excitatory neurons, subtracting the mean across

these neurons, and spatially filtering with a Gaussian filter with a standard devi-

ation of 80/O2 = 56 mm.

The shadow voltage is the membrane potential of the neuron integrated

continuously in time without spike threshold; i.e., it is not reset when it reaches

spike threshold. This is meant to approximate the voltage in the portions of the

cell membrane not generating action potentials, which appear to dominate the

voltage-sensitive-dye signal (Berger et al., 2007). The filter is used because we

are comparing to experimental data that does not resolve individual neurons.

The filter width is chosen to conservatively underestimate the point spread

function of the experimental images (Polimeni et al., 2005). We also compute

thecorrelation coefficient between frames of spontaneous activity and a control

pattern. This control pattern is constructed by starting with Fourier amplitudes

corresponding to the average power spectrum of the evoked orientation maps,

assigning random phases, and transforming back to real space. We then

subtract off any components in the space spanned by the evoked maps so

that the correlation with each evoked map is 0. The width of the distribution

of correlation coefficients depends strongly on the width of the Gaussian filter

used, and cannot be directly compared to the experiment because both the

filtering and the noise in the experimental system are unknown. The ratio of

the widths of the real and control distributions shows a gentler dependence

on the filter width (Figure S4) and is likely to be a better number to compare

to the experiment (further discussed in Supplemental Data S2.2).

SUPPLEMENTAL DATA

The supplemental data for this article include additional analysis and three

figures and can be found at http://www.neuron.org/supplemental/S0896-

6273(09)00128-7.
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