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SUMMARY

In what regime does the cortical circuit operate? Our
intracellular studies of surround suppression in cat
primary visual cortex (V1) provide strong evidence
on this question. Although suppression has been
thought to arise from an increase in lateral inhibition,
we find that the inhibition that cells receive is
reduced, not increased, by a surround stimulus.
Instead, suppression is mediated by a withdrawal
of excitation. Thalamic recordings and previous
work show that these effects cannot be explained
by a withdrawal of thalamic input. We find in theoret-
ical work that this behavior can only arise if V1 oper-
ates as an inhibition-stabilized network (ISN), in
which excitatory recurrence alone is strong enough
to destabilize visual responses but feedback inhibi-
tion maintains stability. We confirm two strong tests
of this scenario experimentally and show through
simulation that observed cell-to-cell variability in
surround effects, from facilitation to suppression,
can arise naturally from variability in the ISN.

INTRODUCTION

Considerable evidence suggests that stimulus selectivity in

primary sensory cortex emerges largely from the organization

of feed-forward thalamic connections (Bruno and Sakmann,

2006; Ferster and Miller, 2000; Priebe and Ferster, 2008; Wilent

and Contreras, 2005). And yet, anatomically, primary sensory

cortex appears to be dominated by recurrent connections (Bin-

zegger et al., 2004; Stepanyants et al., 2008). Here, we demon-

strate that the circuitry of primary visual cortex (V1) operates in

a regime that may reconcile these two views.

Theorists have proposed several functions for recurrent

cortical connections. In attractor models of orientation selectivity

in V1 (Ben-Yishai et al., 1995; Somers et al., 1995), strong excit-

atory recurrence constrains the set of stable cortical activity

patterns (the network’s ‘‘attractors’’) to a small (low-dimensional)

subset of the large (high-dimensional) set of all possible patterns.

Which one appears in response to a stimulus is determined by

a correspondingly low-dimensional subset of stimulus features,
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such as orientation or spatial frequency, while all other stimulus

features are ignored. The degree to which V1 responses closely

reflect feed-forward input, however, argues against this idea

(Ferster and Miller, 2000; Priebe and Ferster, 2008).

In a second proposal, recurrent connections strongly amplify

feed-forward inputs so that most of the stimulus-evoked depo-

larization in layer 4 neurons originates intracortically (Douglas

et al., 1995). Anatomically, thalamic inputs may constitute only

a fraction of the total synapses in layer 4 of sensory cortex

(Peters and Payne, 1993). Physiological experiments suggest,

however, that recurrence only modestly amplifies (Chung and

Ferster, 1998; Ferster et al., 1996) or even damps (Bruno and

Sakmann, 2006; Pinto et al., 2003) the thalamic drive.

In a third proposal, strong recurrent excitation and inhibition

tightly balance one another so that the net input to each neuron

is only a fraction of either input alone (van Vreeswijk and Som-

polinsky, 1998). This balance can explain the large variability of

cortical spiking (Shadlen and Newsome, 1994) and is consistent

with the balanced changes in excitation and inhibition that may

occur as activity states change (Haider et al., 2006; Higley and

Contreras, 2006; but see Waters and Helmchen, 2006).

Here, we provide evidence that, during visual stimulation, cat

visual cortex operates as an inhibition-stabilized network (Tso-

dyks et al., 1997), or ISN. In this regime, which includes the

balanced network models, excitatory recurrence is so strong

as to be unstable if inhibition is fixed, but is stabilized by inhibi-

tory feedback. Experimental evidence for the ISN arises from

our study of surround suppression. Although surround suppres-

sion is nominally a form of lateral inhibition, intracellular record-

ings failed to reveal the expected pattern of synaptic inputs.

Only the ISN model can resolve this apparent paradox.

In many cortical cells, stimuli surrounding the classical recep-

tive field, or center, suppress spike responses to simultaneously

presented center stimuli. The orientation tuning of this suppres-

sion (Cavanaugh et al., 2002; DeAngelis et al., 1994; Jones et al.,

2002; Li and Li, 1994; Ozeki et al., 2004), its timing (Knierim and

Van Essen, 1992; Smith et al., 2006), susceptibility to adaptation

(Durand et al., 2007; Webb et al., 2005), and spatial extent (Ange-

lucci et al., 2002; Bair et al., 2003) all suggest that suppression

originates intracortically, through local horizontal connections

or feedback from higher areas. Since these connections are

largely excitatory, however, they are typically assumed to act

through local inhibitory interneurons to increase inhibition in

surround-suppressed cells.
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We have found instead that surround stimuli decrease both the

inhibition and excitation received by suppressed cells. We show

that these decreases cannot be accounted for by suppression of

input from the lateral geniculate nucleus (LGN) and therefore

must arise from intracortical input. How can an increase of intra-

cortical input to the local circuit decrease both excitation and

inhibition? Previous work has established that an ISN can lead

to such a decrease (Tsodyks et al., 1997), and we show theoret-

ically that an ISN is the only solution to this apparent paradox. In

addition, we test and confirm two predictions of the ISN model

regarding the time course of surround-evoked inhibition and

the source of synaptic input to surround-suppressed cells.

The ISN provides a framework within which strong recurrence

may be reconciled with feed-forward models of cortical selec-

tivity. The ISN’s strong recurrence can support complex compu-

tations (Latham and Nirenberg, 2004), yet allow neuronal

responses to change smoothly with changing feed-forward

input, and thus reflect the full, high-dimensional space of

possible input patterns. Feed-forward inputs may determine

neuronal tuning to a center stimulus, whereas the local recurrent

circuitry helps set the gain through the balance between strong

excitation and stabilizing inhibition. This balance may in turn be

modulated by stimulus context, cortical state changes, or top-

down influences.

RESULTS

Excitatory and Inhibitory Inputs Underlying Surround
Suppression in V1 Cells
Cortical cells were classified as surround suppressed if an

increase in stimulus size beyond the classical receptive field

caused a statistically significant reduction in firing rate (Experi-

mental Procedures). In the simple cell in Figure 1, a 10-fold

increase in stimulus size reduced the spike response by >80%

(F1 component; Figures 1A and 1B). The underlying reduction

in membrane potential responses was much smaller (DC

component, 40%; F1 component, 30%) and, like the spike

responses, was selective for the orientation of the surround stim-

ulus. A surround stimulus oriented 90� from the optimal evoked

little suppression (Figure 1C).

To investigate the mechanisms underlying this suppression

(Figure 2), we measured stimulus-evoked changes in membrane

conductance by injecting different levels of steady current into

the cell (Figure 2B). Total membrane conductance (Figure 2C)

was derived from the slope of the I-V relationship constructed

at each point in time, and changes in excitatory and inhibitory

conductance (Figures 2D and 2E) were derived from estimates

of synaptic reversal potentials applied to the membrane equa-

tion (Anderson et al., 2000). Surprisingly, the surround stimulus

reduced total conductance—and both the excitatory and

inhibitory conductance—in an orientation-selective manner

(Figure 2H).

Membrane potential measurements were made from 67

cortical cells; conductance measurements were made in the

34 cells that showed surround suppression in their spike

responses. For each of the four measures—firing rate, membrane

potential, and excitatory and inhibitory conductance—we plotted

response amplitude for center-plus-surround stimulation against
that for center-only stimulation (Figure 3). In each plot, the amount

of surround suppression for a given cell is indicated by how far

each point lies below the diagonal. Several trends can be

observed.

First, as expected from previous extracellular studies (Cava-

naugh et al., 2002; DeAngelis et al., 1994; Li and Li, 1994; Ozeki

et al., 2004), suppression in firing rate and membrane potential is

much greater for the iso-oriented surround (Figures 3A and 3B)

than for the cross-oriented surround (Figures 3E and 3F).

Second, as it does for many other response properties (Priebe

and Ferster, 2008), including length tuning (Anderson et al.,

2001), spike threshold generally amplifies surround suppression

and its sensitivity to orientation, size, and contrast in spike

responses relative to membrane potential responses (Figures

3A, 3B, S1, and S2). This effect is quantified and fit to a power-

law threshold nonlinearity in Figure S3.

Third, in surround-suppressed cells, iso-oriented surround

stimulation on average caused a reduction in both excitation

and inhibition (51% and 38%; Figures 3C and 3D) rather than

the increase in inhibition expected from standard models of

lateral inhibition. Excitation was reduced by >25% in 85% of

surround-suppressed cells; inhibition was reduced by >25% in

A

B

C

Figure 1. Membrane Potential Responses of a Surround-Suppressed

Simple Cell to Drifting Grating Stimuli

(A) A grating optimal in size, orientation, and spatial frequency covered the clas-

sical receptive field (2� diameter, 2 Hz temporal frequency, 64% contrast). K+-

gluconate solution in the recording pipette. Dashed line: mean response to

a blank stimulus.

(B) The grating diameter was increased to cover the receptive field surround (20�

diameter).

(C) The portion of the grating covering the receptive field surround was rotated

orthogonal to the cell’s preferred orientation.
Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc. 579
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65% of such cells. These conductance measurements were not

likely distorted by action potentials, since similar results were ob-

tained when voltage-gated Na+ and K+ channels (and GABAB-

mediated inhibition) were blocked with intracellular QX-314

and Cs+ (Figures 3C and 3D, closed symbols; Figure S4).

Fourth, both excitation and inhibition are tuned for surround

orientation (Figure S5), but the tuning was stronger for excitation

than for inhibition. Changing the surround from iso- to cross-

orientation reduced excitatory suppression in 21 of 23 cells

(one-sided binomial test, p < 0.0001); over all cells, average

suppression fell from 54% (Figure 3C) to 24% (Figure 3G) (one-

sided paired t test, p < 0.0001). Changing the surround orienta-

tion reduced inhibitory suppression in 16 of 23 cells (p < 0.05);

average suppression fell from 42% (Figure 3D) to 27%

(Figure 3H) (p < 0.06).

The standard lateral inhibition models make a critical predic-

tion regarding the synaptic inputs underlying surround suppres-

sion—that suppression in membrane potential is driven by, and

therefore should be strongly correlated with, an increase in

inhibition. To test this prediction, we plotted suppression in

membrane potential against suppression in excitation and

inhibition (Figures 4A and 4B), quantifying suppression using

a suppression index: the percentage by which the surround

stimulus decreases the response to the center stimulus (SI =

1 – Rcenter+surround/Rcenter). SI = 0 represents no suppression,

SI = 1 represents complete suppression, SI > 1 represents

suppression below the spontaneous level, and SI < 0 represents

facilitation. Using this measure, the standard lateral inhibition

models would predict that the points in Figure 4B fall along

a line of negative slope and intercept 0. In contrast to this predic-

tion, suppression in membrane potential was not at all corre-

lated with an increase in inhibition (Figure 4B, r = 0.08, p >

0.54). Instead, suppression in membrane potential was strongly

correlated with—and thus appears to be driven by—a decrease

in excitation (Figure 4A, r = 0.80, p < 0.00001). The lack of nega-

tive correlation between SI of membrane potential and SI of inhi-

bition seems surprising. This expected negative correlation may

be counteracted, however, by a positive correlation in sup-

pressed cells between suppression in excitation and suppres-

sion in inhibition (Figure 7, below) that arises because a more

strongly suppressive stimulus more strongly reduces all

synaptic inputs.

Comparison of Surround Suppression in LGN and Cortex
If a decrease in excitation—rather than an increase in inhibition—

drives surround suppression, what drives the decrease in excita-

tion? One possibility is a withdrawal of feed-forward input from

LGN cells, which themselves show surround suppression (Bonin

et al., 2005; Jones et al., 2000; Naito et al., 2007; Solomon et al.,

2002; Sun et al., 2004). To test this possibility, we asked whether

the strength, orientation selectivity, and size tuning of surround

suppression in LGN cells match those of cortical simple

cells, which receive a substantial portion of their input from the

LGN.

To study how LGN responses change during cortical surround

suppression, it is important to use the same stimuli in LGN and

cortex. The center stimuli we used for measuring suppression

in cortical cells were, by definition, optimal in size for these cells,

and were therefore two to three times larger than the centers of

geniculate receptive fields at comparable retinal eccentricities

(<5�). These stimuli by themselves generate significant surround

suppression in LGN cells (Jones et al., 2000). As a result, the

surround suppression that we observed in LGN cells using

A

B

C

D

E

F G H

Figure 2. Steady-State Measurements of Surround Suppression

in V1

(A) Cycle-averaged spike responses of a simple cell to a blank stimulus,

a center-only stimulus, and center-plus-surround stimuli with three different

surround orientations. K+-gluconate solution in the recording pipette.

(B) Cycle-averaged membrane potential responses (spikes removed) with

three different levels of injected current. Gray traces (barely visible): membrane

potential reconstructed from conductance measurements.

(C–E) Stimulus-evoked changes in total membrane conductance and excit-

atory and inhibitory conductances derived from responses in (B). Dashed lines:

mean of the blank responses.

(F–H) Firing rate (F1 component), peak membrane potential (DC + F1), and

peak excitatory (red) and inhibitory (blue) conductances (DC + F1) versus

surround orientation (relative to center). Error bars (SEM) are barely visible.

Horizontal lines: blank and center-only responses (shading = SEM).
580 Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc.
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center stimuli optimized for cortex was much weaker and less

orientation selective than in a previous study using center stimuli

optimized for the LGN (Naito et al., 2007). Nevertheless, these

stimuli are most appropriate for understanding the changes in

thalamic input generated during cortical surround suppression.

Spike responses were recorded from 18 LGN cells (13 X and

5 Y) using center stimuli at two orthogonal orientations and

surround stimuli at seven orientations relative to the center.

From these responses, we calculated normalized and averaged

responses across cells as a function of surround orientation

A C DB

E G HF

Figure 3. Surround Suppression across the V1 Population

(A–D) Center-plus-surround response amplitude (surround at preferred orientation) plotted against center-only response amplitude for (A) firing rate (F1 compo-

nent for 47 simple cells; DC component for 20 complex cells), (B) change in peak membrane potential, (C) change in peak excitatory conductance (21 simple;

13 complex), and (D) change in peak inhibitory conductance. For each graph, responses are measured relative to blank responses. Circle and square symbols:

simple and complex cells; open and closed symbols: K+-based or Cs+-based/QX-314 solution in recording pipette. In (A) and (B), cyan symbols indicate cells that

showed no statistically significant suppression (17 simple; 6 complex).

(E–H) Same as (A)–(D), but with surround at the orthogonal orientation. (E) and (F), same population as (A) and (B); (G) and (H), 14 simple and 9 complex cells.

A B

Figure 4. The Relationship between Surround

Suppression in Membrane Potential and Synaptic

Conductance

(A) Suppression index (SI = 1 – Rcenter+surround/Rcenter) for

membrane potential plotted against SI for excitatory conduc-

tance. Open symbols: surround at the preferred orientation

(21 simple; 13 complex); closed symbols: surround at the

orthogonal orientation (17 simple; 6 complex).

(B) Same as (A) for inhibitory conductance.
Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc. 581



Neuron

V1 Operates as an Inhibition-Stabilized Network
(Figures 5A and S6) and plotted suppression indices (SI) for iso-

and cross-oriented surround stimuli against one another

(Figure 5D). For comparison, similar plots were constructed for

the membrane potential and excitatory synaptic input to simple

cells (Figures 5B and 5E, 5C and 5F).

None of the properties of surround suppression in the LGN

matched those of suppression in the cortex. First, the amplitude

of suppression generated by an iso-oriented surround is far

smaller for LGN cells (20%) than it is for the membrane potential

(42%; Wilcoxon, p < 0.001) or excitatory conductance (48%; p <

0.001) of surround-suppressed simple cells, as can be seen by

comparing the 0� points in Figures 5A, 5B (black), and 5C. The

surround-induced reduction in LGN responses is more similar

to the 8% reduction in membrane potential responses of

nonsuppressed cortical cells (Figure 5B, cyan), though signifi-

cantly different (p < 0.05).

Second, the orientation tuning of surround suppression is

much weaker in LGN cells than it is in cortical cells (Figures

5A–5C). Orientation selectivity for individual cells can be seen

in plots of suppression index for cross-orientation (SIcross)

against the index for iso-orientation (SIiso). In the LGN, these

two measures are strongly correlated; that is, SI is similar at

iso- and cross-orientation (Figure 5D, r = 0.66, p < 0.004). In

the cortex, the correlation is weak; that is, SI is much stronger

at the iso-orientation than at the cross-orientation (Figure 5E,

r = 0.22, p > 0.14; Figure 5F, r = 0.36, p > 0.20).

Third, size tuning is much narrower in LGN cells than it is in

cortical cells (Jones et al., 2000). Starting with optimal center

A B C

D E F

Figure 5. Comparison of Surround Suppression in LGN and V1

(A) Orientation tuning of firing rate for seven surround orientations (relative to center orientation), normalized to the center-only response and averaged across

18 LGN cells. The size of the center stimulus was optimal for cortical cells, and not for LGN cells (see text). Normalized responses to iso-oriented and cross-

oriented surround (mean ± SEM): 0.80 ± 0.04 and 0.89 ± 0.03.

(B) Orientation tuning of membrane potential, normalized and averaged across V1 simple cells. Black and cyan indicate surround-suppressed and nonsup-

pressed cells. Center-normalized responses to iso-oriented and cross-oriented surround: suppressed, 0.58 ± 0.04 and 0.88 ± 0.03; nonsuppressed, 0.92 ±

0.03 and 0.95 ± 0.02.

(C) Excitatory conductance in surround-suppressed simple cells. Center-normalized responses: iso-oriented surround, 0.52 ± 0.06; cross-oriented surround,

0.73 ± 0.04.

(D) Suppression indices (SI) derived from firing rate in LGN cells for iso- and cross-oriented surround plotted against one another.

(E) Same as (D) for membrane potential in surround-suppressed (black, n = 30) and nonsuppressed (cyan, n = 17) simple cells.

(F) Excitatory conductance in surround-suppressed simple cells. Dashed lines: linear regressions.
582 Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc.



Neuron

V1 Operates as an Inhibition-Stabilized Network
A
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Figure 6. An Inhibition-Stabilized Network Model of Surround Suppression

(A) Two populations of cells, excitatory (E) and inhibitory (I), make recurrent and reciprocal connections. Each receives excitatory feed-forward input driven by the

receptive field center and lateral excitatory input driven by the receptive field surround.

(B) The sequence of events that follow when a surround stimulus (assumed for simplicity to stimulate only I cells) is added to a pre-existing center stimulus (not

shown). After a transient increase in the activity of the I cells (b, c), activity in both the E and I cells decreases (d) relative to the initial level evoked by center stimulus

alone (a). Colors code activity level.

(C) The temporal sequence of changes in activity of E and I cells (red and blue).

(D and E) Phase-plane diagram of the network activity (D) in the presence of the center stimulus and (E) when the surround stimulus is added (dotted line).

(F) Same as (E) for a non-ISN.
stimuli for LGN cells (0.4�–2� in diameter), half-maximal suppres-

sion occurred with annuli of 1�–2� in thickness (data not shown).

By contrast, for simple cells, optimal center stimuli were 2�–4� in

diameter and half-maximal suppression occurred for annuli of

2�–5� in thickness (Figure S1). In other words, for the center

stimuli used in the cortex, geniculate neurons are already almost

maximally surround suppressed. Note that when stimuli with

optimal sizes for LGN cells were presented, surround suppres-

sion was stronger but less tuned to surround orientation (iso-

orientation: 49%; cross-orientation: 47%), in accordance with

previous studies.

Together, these observations—that geniculate surround

suppression is substantially weaker, less orientation tuned, and

peaks at smaller stimulus diameters than cortical suppres-

sion—make it unlikely that the LGN is the source of the strong,

orientation-selective surround suppression in the cortex.

An ISN Model of Surround Suppression
To understand the possible mechanisms underlying these

experimental results, we explored the behavior of simple mathe-

matical models of the cortical circuit and found that only one

cortical architecture can explain the surround-induced reduction

in excitation and inhibition: an inhibition-stabilized network, or

ISN (Tsodyks et al., 1997). We first modeled a cortical orientation
column with two populations of cells (Figure 6A), one excitatory

(E) and one inhibitory (I), each making recurrent connections onto

themselves and reciprocal connections onto each other (Tso-

dyks et al., 1997; Wilson and Cowan, 1972). The column also

receives external input from two sources: center stimuli activate

the E and I cells through feed-forward inputs from the LGN and/

or other cortical cells; surround stimuli preferentially activate the I

cells through lateral excitatory connections. These lateral

connections could have several possible sources: layer 6 cells,

which preferentially target inhibitory cells in layer 4 (McGuire

et al., 1984; West et al., 2006) and have been implicated in length

tuning (Bolz and Gilbert, 1986); laterally projecting neurons within

area 17 (Angelucci et al., 2002), which target both inhibitory and

excitatory cells (McGuire et al., 1991); or neurons in higher

cortical areas (Angelucci et al., 2002; Bair et al., 2003).

This overall structure closely resembles previously described

models of surround suppression (Dragoi and Sur, 2000;

Schwabe et al., 2006; Somers et al., 1998). Our model, however,

operates as an ISN, which makes it distinct in its balance of excit-

atory and inhibitory connections and in its dynamics. To be an

ISN (Tsodyks et al., 1997), a network must satisfy two properties

(Supplemental Text, Section 1.2). First, recurrent excitatory

connections must be so strong as to be unstable during visual

stimulation. That is, if the activities of inhibitory interneurons
Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc. 583
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were fixed at their mean responses to the stimulus and could not

vary in response to fluctuations of excitatory cells’ firing, recurrent

excitation would drive the excitatory cells either to saturation or to

very low firing rates. Second, when the activity of inhibitory inter-

neurons is allowed to vary normally, inhibition stabilizes the

network and allows it to respond to graded stimuli with graded

levels of activity. When these two constraints are met, an increase

in external, excitatory input to the inhibitory cells paradoxically

causes a decrease in their firing rates in the new steady state (Tso-

dyks et al., 1997), which leads model cells to behave like the cells

recorded in our experiments. We will later show that the ISN is the

only architecture that can explain our experimental results.

To probe the model, we first apply an optimally oriented center

stimulus, which excites the E cells more strongly than the I cells

(Figures 6B and 6C). The stimulus is turned on well prior to time

t = –100 ms, so that at t = –50 ms the network has reached its

steady-state response to the center stimulus. At t = –40 ms, an

iso-oriented surround stimulus is introduced, which activates

excitatory cells outside the column. For simplicity, we first

assume that these excitatory cells connect exclusively to the I

cells. The following sequence of events occurs. (1) External exci-

tation to the I cells from the surround pathway increases (Figures

6Ba and 6Ca). (2) Activity in the I cells increases (Figures 6Bb and

6Cb). (3) Inhibition to the E cells increases. (4) Activity in the

E cells decreases (Figures 6Bc and 6Cc). (5) This decrease with-

draws excitation to the I cells as well as to the E cells. The

sequence to this point will occur in almost any recurrent network.

Most importantly, however, if and only if the network is an ISN,

the reduction in recurrent excitation to the I cells will be larger

than the initial (sustained) increase in external excitation from

the surround pathway that started the process (Supplemental

Text, Section 2). As a result, (6) in the new steady state, the

activity of both the E and I cells is reduced (Figures 6Bd and

6Cd), capturing the experimental results in Figures 2–4.

To model the network behavior in more detail, we let rE and rI

represent the average firing rates of the E and I cells, and let iE
and iI represent their external inputs (each being the sum of

center and surround inputs). At any moment in time, the firing

rates move toward the values fE(rE,rI,iE) and fI(rE,rI,iI), which are

characterized by two properties: they are increasing functions

of excitatory inputs (rE and iE or iI) and decreasing functions of

inhibitory input (rI). A common choice is fE(rE,rI,iE) = gE(wEErE –

wEIrI + iE) (and similarly for fI), where gE() is a sigmoid function,

and wEE and wEI are positive numbers representing the strength

of E-to-E and I-to-E connections. The dynamics are obtained by

assuming that each population’s activity moves toward the

steady state (as defined by the instantaneous inputs) with the

time constants tE and tI:

tE

d

dt
rE = � rE + fEðrE ;rI;iEÞ; (1)

tI

d

dt
rI = � rI + fIðrE ;rI;iIÞ: (2)

These equations can be derived from, and reasonably replicate

the behavior of, spiking models (e.g., Ermentrout, 1998).

We characterize the behavior of the model in the phase plane,

i.e., the plot of rI versus rE in Figure 6D (Tsodyks et al., 1997;
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Wilson and Cowan, 1972). We first draw the nullclines. The inhib-

itory (I) nullcline (Figure 6D, blue) is the set of points for which

drI/dt = 0, and represents the values of rI that result when rE is

clamped at different values. From Equation 2 and the properties

of fI, we can see that to maintain drI/dt = 0, any increase in rE must

be compensated by an increase in rI. The I nullcline must there-

fore have positive slope; it approaches zero slope at upper and

lower limits where the sigmoid-shaped fI changes little with rE.

The inhibitory subnetwork by itself is stable: with rE held fixed

at any value, after a brief, vertical perturbation away from the

nullcline, the network state moves vertically back to the nullcline

(Figure 6D, vertical arrows). This stability arises because drI/dt

decreases with rI, so that drI/dt < 0 everywhere above the I

nullcline and drI/dt > 0 everywhere below it.

Similarly, the excitatory (E) nullcline (Figure 6D, red) is the set of

points for which drE/dt = 0, and represents the values of rE that

resultwhen rI isclamped atdifferent values. The shape of the E null-

cline is more complex than that of the I nullcline. From Equation 1,

when vfE=vrE >1, drE/dt increases with rE, so rI must increase with

rE to maintain drE/dt = 0, and the nullcline must have a positive

slope; whereas when vfE=vrE <1, drE/dt decreases with rE, and

the nullcline must have a negative slope. Because drE/dt

decreases with rI, drE/dt < 0 everywhere above the E nullcline

and drE/dt > 0 everywhere below it. Thus, where the nullcline has

negative slope, if rI is held fixed, rE moves horizontally back to

the nullcline after a small, horizontal perturbation (Figure 6D, hori-

zontal black arrows); whereas in positive-sloping regions of the

nullcline, rE moves still further away toward stable regions of nega-

tive slope (gray arrows). Unlike the inhibitory subnetwork, then, the

excitatory subnetwork is intrinsically unstable in some regions

(those with positive slope), from which activity would be driven to

either low or high saturated firing rates if rI were fixed.

Under physiological conditions, inhibition and excitation are

both free to vary, and the network’s steady state, or fixed point,

lies at the intersection of the two nullclines, where both drE/dt = 0

and drI/dt = 0 (Figure 6D, black point). We can now restate the

first requirement for being an ISN: the excitatory subnetwork is

unstable at the fixed point, i.e., the two nullclines intersect on

the positive-sloping portion of the E nullcline. The second

requirement—that inhibition stabilize the network—requires

that the nullclines intersect at a point where the slope of the I null-

cline is more positive than that of the E nullcline (Supplemental

Text, Section 1.2). With both requirements fulfilled, the network

is stable: after a small perturbation in any direction away from

the fixed point, the network ultimately settles back to the fixed

point along a trajectory (Figure 6D, green arrows) determined

by local network trends indicated by the black and gray arrows.

We can now understand how a surround stimulus can

generate the experimentally observed decrease in both excita-

tion and inhibition. We assume that the predominant effect of

activating the surround pathway is to increase external excitation

to I cells. The result is a rise in the I nullcline (Figure 6E, dashed

line), which follows directly from Equation 2: with rE fixed, if the

external excitation to the I cells increases, rI must increase to

keep drI/dt = 0. Because the slope of the E nullcline is positive

and the slope of the I nullcline is yet more positive at their point

of intersection, an upward movement of the I nullcline shifts

the center-only fixed point (Figure 6E, black point) down and to
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A B Figure 7. Surround Effects in a Multineuron

ISN Model

(A) Suppression indices (SI; iso-oriented surround)

of excitation and inhibition plotted against one

another for 100 randomly chosen neurons from

a multineuron ISN model. Five cells fall outside

the plot. Colors code SI of membrane potential.

(B) Experimentally measured SIs of excitatory and

inhibitory conductance plotted against one

another (data from Figure 4). Circles and triangles:

surround effects at iso- and cross-orientation.

In the model, cells have SI > 1 for membrane

potential ([A], black points; meaning surround

suppresses response below baseline) whenever

total inhibition evoked by center-plus-surround

stimulus exceeds total excitation. In real neurons,

reversal potential nonlinearities can suppress

effects of inhibition on membrane potential so

that SI remains < 1.
the left (gray point). Just as we have observed experimentally, in

the new steady state evoked by the surround stimulus, activity in

both the E and I cells declines relative to the original steady state

evoked by the center stimulus alone.

Most importantly, if the network were not an ISN, then the E

nullcline would have negative slope at the center-only fixed point

(Figure 6F), and the surround stimulus would shift the fixed point

up and to the left, increasing activity in the I cells while lowering

activity in the E cells. Thus, a decrease in the activity of both the E

and I cells will occur if and only if the center-only fixed point is

located on the positive-sloping portion of the E nullcline, that

is, if and only if the network is an ISN (Tsodyks et al., 1997).

Note that these results also hold if, in addition to driving the I

cells, the surround stimulus weakly excites the E cells

(Figure 6A, dashed line). In this case (which seems likely), the

surround stimulus will move both the I and E nullclines upwards.

In an ISN, however, as long as the upward motion of the I null-

cline predominates, the fixed point will still move down and to

the left, decreasing both E and I activity (Figure 6E).

In the ISN, immediately after the I nullcline moves upward, the

network state still sits momentarily at the old, center-only fixed

point. Because this point now lies below the nullcline, drI/dt

becomes positive. The inhibitory firing rate, rI, will therefore

initially increase before it ultimately decreases toward the new

center-plus-surround fixed point (Figure 6E, green arrow),

thereby generating the transient increase in inhibition seen in

Figure 6C. This prediction is addressed experimentally below.

Although we have not explicitly modeled the orientation selec-

tivity of surround suppression, we have assumed that the E and I

cells, and the surround inputs, all have similar orientation prefer-

ence (Dragoi and Sur, 2000; Schwabe et al., 2006; Somers et al.,

1998). Thus, as the orientation of the surround stimulus is varied

away from the preferred, the surround input, and therefore

surround suppression, decreases.

Cell-to-Cell Variability of Surround
Suppression in an ISN
The model in Figure 6 represents the average firing rates of the E

and I cell populations with only one parameter each (rE and rI) and

so cannot capture the diversity of neuronal behavior observed
experimentally. We therefore constructed a multineuron model

in which the external inputs and intracortical connections varied

from cell to cell (Experimental Procedures; Supplemental Text,

Section 3). Suppression in excitation and inhibition varies from

cell to cell in the model (Figure 7A), as it does in the data

(Figure 7B). One significant difference between the two plots,

however, is that cells above the diagonal are common in the

model and less so in the data. These are surround-facilitated

cells (Li and Li, 1994; Walker et al., 2000), which we observed,

but for which we did not measure conductance. They therefore

do not appear in the data. The diversity of behavior in the multi-

neuron model and data suggests that suppression and facilita-

tion may represent different segments of a continuum of

surround effects. This continuum may not be randomly orga-

nized: surround-facilitated cells tend to cluster spatially (Yao

and Li, 2002) and to be a specific anatomical subtype (Song

and Li, 2008).

Experimental Tests of the ISN Model’s Predictions
In addition to a steady-state reduction in excitation and inhibition

(Figure 2), the ISN model makes two testable predictions. First,

prior to reaching its steady state, ISNs (and not non-ISNs) should

show a transient increase in inhibition (Figure 6C). To test this

prediction, we recorded from 35 surround-suppressed cortical

cells while presenting a stimulus that abruptly increased in

size, from initially covering the receptive field center to covering

its center and surround. In six of these cells (one simple and five

complex), the recordings were sufficiently stable to measure

membrane conductance at the temporal frequencies of

10–20 Hz required to detect a transient change. Each cell

showed a transient increase in inhibition of 30–50 ms duration

(Figure 8). Where tested (five complex cells), the transient was

only evoked by a surround stimulus of the preferred orientation

(Figures 8A and 8B). In two cells (Figures 8A and 8B), the

surround stimulus transiently increased excitation as well as inhi-

bition, which will occur in the ISN model when the surround input

excites both the E and I cells. For the simple cell in Figure 8C, we

varied the starting spatial phase of the grating so that the

increase in stimulus size occurred during different phases of

the response. No matter whether the surround stimulus was
Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc. 585
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switched on during the depolarizing (second and third columns)

or the hyperpolarizing (fourth and fifth columns) phase of the

response, the inhibitory conductance increased transiently

before both conductances decreased to their new steady-state

levels. This transient increase in inhibition suggests that the

surround stimulus evokes a brief response in the I cells, followed

by a sustained decline. There need be no concomitant transient

response in the E cells (Bair et al., 2003), however, since any

transient increase in excitation may be balanced by the transient

increase in inhibition.

A second prediction of the ISN model comes from its property

that surround suppression arises from a withdrawal of intracort-

ical excitation: cells can be strongly surround suppressed only if

they receive a significant portion of their excitatory input from

other cortical cells. Conversely, cells that receive most of their

excitation from the LGN can show little suppression. By compar-

ison, if surround suppression arose from an increase in synaptic

inhibition, any V1 cell could be suppressed regardless of the

source of its excitation. Additionally, the ISN model predicts

that for cells in which LGN input predominates, what little

surround suppression is observed should, like the suppression

in the LGN (Figure 5), be largely untuned for the surround orien-

tation.

We tested these predictions in the 47 simple cells. Our proxy

for the proportion of excitatory input each cell received from

the cortex is a closely correlated measure, 1 – DCnull/DCpref,

where DCnull/DCpref is the ratio of the mean depolarization

evoked by center gratings of the orthogonal (null) and preferred

A

C

B

Figure 8. Transient Increase in Inhibitory Conductance

Responses of cells to sudden addition of a surround stimulus (arrows) to a center stimulus that began 500 ms earlier (250 ms before traces start). The iso-oriented

surround is presented at the same phase as the center. Gratings drifted at 4 Hz. Black, membrane potential recorded with different currents injected; red and blue,

changes in excitatory and inhibitory conductance; gray, reconstruction of membrane potential from derived conductances. K+-gluconate solution in recording

pipette.

(A and B) Responses of two complex cells. A transient increase in conductance (asterisks) occurred in response to iso-oriented but not cross-oriented surround.

(C) Simple cell tested with iso-oriented surround added at four different response phases (starting center phase shifted by 90� for each successive stimulus). All

evoked transient increase in conductance.
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C D

Figure 9. Comparison of Population Data with Predic-

tions of the ISN Model

(A) Suppression indices of membrane potential for the iso-

oriented surround (SIiso) in 47 simple cells (30 surround-sup-

pressed; 17 nonsuppressed) plotted against cortical input

index (CII), which correlates well with percent of excitatory

input received from cortex (versus LGN), see text. Only cells

with CII > 0.25 (vertical dashed line), suggesting >25% cortical

input, show strong suppression. Arrow shows mean SIiso for

18 LGN cells, which is comparable to mean values for cortical

cells with little cortical input and for nonsuppressed cortical

cells.

(B) Same as (A) for orientation selectivity of suppression (SIiso –

SIcross), the difference between suppression induced by iso-

oriented and cross-oriented surround. Arrow shows mean

value of SIiso – SIcross for 18 LGN cells.

(C and D) SIiso and SIiso – SIcross for membrane potential

plotted against latency of response to electrical stimulation

of the LGN ([C], 13 simple and 10 complex; [D], 13 simple

and 5 complex). Cells with short latencies (<2.3 ms) receive

some excitation directly from LGN (monosynaptic); cells with

long latencies (>2.8 ms) receive no monosynaptic input from

LGN (polysynaptic). Regression lines are derived from

surround-suppressed cells only. Arrows as in (A) and (B).

(A–D) Circle and square symbols, simple and complex cells;

black and cyan symbols, surround-suppressed and nonsup-

pressed cells.
(pref) orientations (Finn et al., 2007). Consistent with the ISN

model, only cells with significant cortical input (Figure 9A,

1 – DCnull/DCpref > 0.25) showed strong surround suppression

(SIiso > 0.4), or strongly orientation-selective suppression

(Figure 9B, SIiso – SIcross > 0.4). Note that about half of the cells

that receive significant cortical input did not show strong or

strongly orientation-selective suppression. Such cell-to-cell vari-

ability can be explained by the variability of weights and inputs in

the multi-neuron ISN model (Figure 7A).

Another indication of the sources of a cell’s excitation is the

latency of the membrane potential response to electrical stimu-

lation of the LGN: cells with latencies above 2.8 ms receive input

only from other cortical cells; cells with latencies below 2.3 ms

receive some proportion of their input directly from the LGN

(Chung and Ferster, 1998). In a subset of experiments, we

measured this latency and, as predicted by the model, both

the strength and orientation selectivity of suppression increased

with latency (Figures 9C and 9D; SIiso: r = 0.73, p < 0.01; SIiso –

SIcross: r = 0.64, p < 0.04). In agreement with these results, cells

located in thalamo-recipient cortical layers are less likely than

cells in upper layers to show strong suppression (Akasaki

et al., 2002; Jones et al., 2000; Walker et al., 2000).

A third prediction of the ISN model is that surround suppres-

sion should be little affected by local blockade of synaptic inhibi-

tion. Blocking inhibition in a small number of cells should have

little effect on the overall balance of excitation and inhibition in

the cortical column, and so the remaining part of the ISN should

operate as before. Thus, even for the cells in which inhibition has
been removed, the surround stimulus will reduce net excitation

and evoke surround suppression. Previous experiments with

iontophoretic application of bicuculline (Ozeki et al., 2004)

support this prediction. Unlike local blockade of inhibition, global

blockade cannot easily be used to test the model. Because of the

ISN’s strong excitatory recurrence, even small global attenua-

tions of inhibition can yield a sudden instability (Chagnac-Amitai

and Connors, 1989). Similar behavior, however, could emerge in

a non-ISN: e.g., if the E nullcline were as in Figure 6D, but the

fixed point were in the leftmost negative-sloping region, inhibi-

tory blockade could cause a sudden jump across the positive-

sloping region to the rightmost negative-sloping region.

Finally, the model and data make a strong prediction that the

local inhibitory interneurons mediating surround suppression

should themselves be surround suppressed, which has been

observed directly (Song and Li, 2008). In contrast, the standard

models of lateral inhibition (non-ISNs) predict that the surround

stimulus would increase activity of inhibitory interneurons.

Alternative Models
So far, we have assumed for simplicity that the only direct effect

of the surround stimulus is to increase external excitation to the

local circuit. In this case, we showed that an ISN—and not a non-

ISN—can replicate the observed surround-evoked decrease in

inhibition, due to the paradoxical response of the I cells to

external excitation (Tsodyks et al., 1997). We now generalize

this result. We consider all combinations of surround-driven
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input, including increases or decreases in external excitation or

inhibition, and show that no plausible non-ISN scenario can

account for the data.

We assume a model in which the firing rate of the E cells moves

toward the value fE(rE,rI,iE) = gE(wEErE – wEIrI + EE – IE) (Equation

1). Here, EE and IE are the external, excitatory and inhibitory input

to the E cells, with iE = EE – IE. Surround-evoked changes in

parameters are denoted by the prefix D. We denote the argu-

ment of gE by DE, the drive to the E cells.

We consider an arbitrary, surround-driven change in external

inputs, requiring only that their net effect be suppressive:

DrE < 0. Then both nullclines may move in response to the

surround (unlike in Figure 6, where only the I nullcline moved).

The surround-evoked change in inhibition to the E cells is

DITOT = wEIDrI + DIE, which we re-express by decomposing

DrI into two components. The first component, DrI1, is the

vertical movement in the phase plane from the old (center-only)

fixed point to the new E nullcline with rE fixed. Since on the null-

cline rE = gE(DE) and rE is fixed, DE must be unchanged, and

therefore DrI1 = (DEE – DIE)/wEI. The second component, DrI2,

corresponds to the leftward movement along the new E nullcline

to the new fixed point. DrI2 = kDrE, where k is the average slope of

the E nullcline between the rEs of the old and the new fixed point.

k is positive for an ISN and negative for a non-ISN. In Supple-

mental Text (Section 2), this analysis is extended to compute

changes in all firing rates and synaptic inputs.

From DITOT = wEI(DrI1 + DrI2) + DIE, we find DEE – DITOT= –wEIkDrE.

This equation expresses a simple intuition. The total change in

drive that produces the suppression in firing rate, DrE, is DDE =

wEEDrE + DEE – DITOT, or DDE = wEEDrE – wEIkDrE. If the decrease

in feedback excitation, wEEDrE, were exactly equal to DDE, it

would entirely account for the change DrE, so all other changes

in input to E cells would have to sum to zero. If wEIkDrE > 0,

the reduction in feedback excitation is too weak to account for

DrE and must be supplemented by decrease in other input.

This is the non-ISN case: the excitatory subnetwork alone is

stable, meaning that if rE were artificially decreased without

allowing other changes, sufficient feedback excitation would

remain to drive rE back to its original fixed point. If wEIkDrE < 0,

the reduction in feedback excitation is too strong and must

be supplemented by increase in other input. This is the ISN

case: the excitatory subnetwork alone is unstable, meaning

that in response to the same decrease in rE, so much feedback

excitation would be withdrawn that rE would fall still further.

The equation says that all other changes in input to the E cells

must exactly cancel this excess or deficit of feedback excitation:

DEE – DITOT = –wEIkDrE, or DITOT = DEE + wEIkDrE.

We conclude that DITOT > DEE in a non-ISN, but DITOT < DEE

in an ISN. In an ISN, one surprising consequence is another

paradoxical behavior: just as addition of external excitation to

I cells leads to a reduction in the total excitation they receive,

addition of external inhibition to E cells causes a reduction

in the total inhibition they receive, because of the induced

decrease in rI. In a non-ISN, the total inhibition received is

increased. More generally, the only way that a suppressive

surround stimulus can decrease inhibition in a non-ISN is if

it causes an even greater decrease in external excitation to

E cells.
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Thus, there are only two possible scenarios in which the

surround-evoked reduction in inhibition could arise from a non-

ISN. First, surround suppression might be driven entirely by with-

drawal of external excitation from LGN and/or cortex. As we

have shown, however, surround suppression in the LGN is too

weak and too weakly orientation tuned to account for cortical

surround suppression (Figure 5). Surround-evoked reduction in

external cortical input seems unlikely because cortical cells whose

receptive field centers lie within the surround stimulus should be

excited, not suppressed, by the surround stimulus. Finally, a with-

drawalof externalexcitationwouldnot generate the observed tran-

sient increase in inhibition (Figure 8) nor explain the lack of strong

suppression in cells receiving dominant LGN input (Figure 9).

Second, as seems likely, the surround stimulus might evoke

a combination of two changes in the external input to the

network: an orientation-independent withdrawal of LGN excita-

tion to E and I cells, which accounts for a weak, orientation-

untuned component of suppression, and an orientation-tuned

increase in external intracortical input, which accounts for the

strong, orientation-tuned component of suppression. The intra-

cortical input presumably includes external excitation to the local

circuit, predominantly to I cells but perhaps also to E cells. This

combination of inputs could generate a net withdrawal of

external excitation to E cells, allowing a decrease in their total

inhibition in a non-ISN. Such a decrease, however, would have

the wrong orientation tuning, being strongest at orientations

that evoked the least suppression, unlike in the data (Figure S5).

This mismatch in orientation tuning in a non-ISN can be seen

from the equation DITOT = DEE + wEIkDrE. Because k < 0 in

a non-ISN, the second term is positive and is largest where

suppression is strongest. The first term is negative and is either

untuned for orientation or least negative where suppression is

strongest (if external, intracortical input includes excitation to

E cells). Thus, the overall decrease in total inhibition is strongest

(DITOT is most negative) where suppression is weakest. This

scenario also predicts incorrectly that the orientation tuning of

excitatory and inhibitory suppression should be anticorre-

lated—strong suppression is evoked by stronger intracortical

input, which increases the bias of inhibitory suppression toward

the cross-orientation and of excitation toward the iso-orienta-

tion; instead, they are correlated (Figure S7; r = 0.46, p < 0.03).

Finally, while this scenario could allow a transient increase in

inhibition, it could not account for the observed transient

increase in excitation (Figure 8), unless the increase in external,

intracortical excitation preceded the withdrawal of external

LGN excitation, which seems implausible.

Unlike any of the non-ISN scenarios, the ISN readily produces

a suppression of total inhibition to E cells with the correct orienta-

tion tuning. The real circuit, of course, will be more complex, with

distinct inhibitory and excitatory subpopulations. The above argu-

ments, however, suggest that any model of surround suppression

must operate in the ISN regime to account for the data.

DISCUSSION

We have found that orientation-dependent surround suppres-

sion in V1 is accompanied by a decrease in both excitatory

and inhibitory input to V1 cells (Figures 1–4). This result cannot
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be explained by surround-induced withdrawal of feed-forward

input from the LGN: using similar stimuli in LGN as we used in

cortex, we found that surround suppression in the LGN is neither

strong enough nor well enough tuned for orientation to account

for V1 suppression (Figure 5). On the assumption that this V1

suppression is not driven by withdrawal of external intracortical

excitation to the local circuit, the results imply that V1 must be

operating as an inhibition-stabilized network, or ISN (Tsodyks

et al., 1997), in which recurrent excitation is strong enough to

be unstable by itself, but is stabilized by feedback inhibition

(Figure 6). When this ISN model includes multiple neurons with

random variations in connectivity and input, it reproduces the

full range of surround-induced behavior seen in V1 (Figure 7).

We have conducted two strong tests of the ISN model’s predic-

tions. First, the steady-state decrease in excitation and inhibition

caused by surround stimuli is preceded by a transient increase

in inhibition (Figure 8). Second, surround suppression is weak in

amplitude and weakly orientation tuned in cells that do not receive

significant recurrent excitatory input (Figure 9). Together, these

results provide strong evidence that V1 operates as an ISN.

In their studies of length tuning, Anderson et al. (2001)

observed concomitant reductions in excitation and inhibition

when a bar stimulus was lengthened along the axis of preferred

orientation (their Figure 6C, compare 2� to 4�, and 2� to 12�).

They also observed an increase in inhibition at an intermediate

length (8�), which was not tested in the current experiment. In

theoretical work, we have found that such a bimodal tuning of

inhibition, if not directly built in to LGN input or horizontal

connectivity, will arise only in the ISN regime (D. Rubin and

K.D.M., unpublished data). It is not clear whether the length

tuning of LGN cells (Cleland et al., 1983; Jones and Sillito,

1991) could account for cortical length tuning.

Consistent with a cortical origin for surround suppression, V1

surround suppression is delayed at least 10 ms after the onset of

the center response (Knierim and Van Essen, 1992; Smith et al.,

2006). By comparison, cross-orientation suppression from

within the receptive field center, which is likely subcortical in

origin (Li et al., 2006; Priebe and Ferster, 2006), is not delayed

(Smith et al., 2006). In addition, cortical surround suppression

more closely resembles responses of cortical cells than genicu-

late cells in its dependence on spatial and temporal frequency,

adaptation, and interocular transfer (DeAngelis et al., 1994;

Durand et al., 2007; Webb et al., 2005).

Previous Work on ISNs and on the Operating
Regime of Cortex
Wilson and Cowan (1972) were the first to propose that a stable

fixed point can exist on the unstable branch of the E nullcline.

Tsodyks et al. (1997) described the paradoxical ISN behavior

that increasing excitation to inhibitory cells decreases their firing

rates, which is just one facet of the intriguing dynamics of ISNs

(Murphy and Miller, 2009). Other models of sensory cortex

have operated in the ISN regime (Adini et al., 1997; Chelaru

and Dragoi, 2008; Pinto et al., 2003) but did not address the

question of whether this regime was required for the results.

Latham et al. (2000, Appendix B) argued that virtually all cortical

fixed points should lie on a positive-sloping portion of the E null-

cline, based on parameters from anatomy and slice recordings.
An alternative calculation based on in vivo parameters is less

conclusive, however (Supplemental Text, Section 4).

In balanced network models, strong excitation and inhibition

are tightly balanced, leaving only a much smaller net input

(Lerchner et al., 2006; van Vreeswijk and Sompolinsky, 1998;

Tsodyks and Sejnowski, 1995). While the balanced networks

generally operate as ISNs, ISNs need not be tightly balanced:

inhibition need only cancel enough excitation to yield stability.

Furthermore, many factors could offset input imbalances; for

example, intrinsic hyperpolarizing conductances could offset

excitation, while temporal offsets between excitation and inhibi-

tion could mitigate excess inhibition (Gabernet et al., 2005; Troyer

et al., 1998; Wilent and Contreras, 2005). In addition, a nonlinear

network may move in and out of the ISN regime depending on

mean firing rate, operating, for example, as a non-ISN during

spontaneous activity and an ISN when responding to a stimulus

(Latham et al., 2000; Pinto et al., 2003; Supplemental Text,

Section 4). In contrast, the balanced network models posit that

all activity regimes are in the tightly balanced state.

Large variability in cortical responses, which motivated the

balanced network models, does not by itself establish that

cortex operates either as a balanced network or an ISN. Given

uncorrelated inputs, the key requirement for large variability is

that the mean input be subthreshold, so that spikes are triggered

by fluctuations around the mean (Amit and Brunel, 1997; Troyer

and Miller, 1997). Alternatively, cortical variability could arise

from correlation among inputs (DeWeese and Zador, 2006).

Experimentally, the cortex appears ‘‘balanced’’ in that the

excitation and inhibition received by cells rise and fall together

in response to sensory stimuli (Anderson et al., 2000; Ferster,

1986) and during spontaneous changes in cortical state (Haider

et al., 2006; Higley and Contreras, 2006; but see Waters and

Helmchen, 2006). Excitation and inhibition will vary together in

both ISNs and non-ISNs if the sensory input, or change in state,

primarily modulates the excitatory drive to excitatory cells. If,

however, the input predominantly changes the drive to inhibitory

cells (or the inhibitory drive to excitatory cells), correlated move-

ment of excitation and inhibition should occur only in ISNs

(Supplemental Text, Section 2).

Conclusion
Cortical circuits are characterized by anatomically massive

recurrent connections (Binzegger et al., 2004; Stepanyants

et al., 2008), which must surely be critical to the computations

they perform. Inhibitory stabilization may be a general strategy

allowing the cortex to maintain excitation that is strong enough

to carry out complex computations and yet maintain stability

and operate with relatively low firing rates (Latham and Niren-

berg, 2004).

Despite these arguments, there has been little direct evidence

regarding the operating regime of cortex or other neuronal

circuits. We have provided evidence that at least one area of

the neocortex, V1, operates as an ISN when responding to

a stimulus. Our data do not address whether the network oper-

ates as an ISN at rest.

Recent work has suggested that in visual cortex (Finn et al.,

2007; Palmer and Miller, 2007; Priebe and Ferster, 2008) and

somatosensory cortex (Bruno and Sakmann, 2006), tuning
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properties of the classical receptive field, at least in layer 4, are

synthesized largely from feed-forward mechanisms. Recurrent

cortical connections may then set the gain of responses. Our

results argue that, during surround suppression, horizontal

connections and/or feedback connections from higher areas

modulate this gain by modulating the balance of excitation and

inhibition in the local recurrent network. Like attractor models

(Ben-Yishai et al., 1995; Somers et al., 1995), the ISN requires

strong recurrence; unlike attractor models, however, the ISN

does not strongly restrict the set of possible cortical responses

and enables any change in stimulus to evoke a change in

response. The organization of the local circuit in an ISN may

therefore allow neurons to provide a faithful, feed-forward-driven

representation of local stimulus patterns and still be modulated

by global stimulus properties or behavioral context. We specu-

late that such an ISN regime is likely to be the domain at least

of sensory and particularly primary sensory cortex, where a faith-

ful representation of inputs is needed.

EXPERIMENTAL PROCEDURES

Physiological Experiments

Intracellular current-clamp recordings were made from primary visual cortex of

anesthetized adult cats (Boudreau and Ferster, 2005). Anesthesia was induced

with ketamine and maintained with sodium thiopental. Eye movements were

minimized with vecuronium bromide, and animals were artificially ventilated.

All procedures were approved by the Northwestern University Animal Care

and Use Committee.

Stimulus-evoked changes in membrane conductance and its excitatory and

inhibitory components were measured by injecting steady currents of different

amplitudes during repeated visual stimulation (Anderson et al., 2000; Bou-

dreau and Ferster, 2005). For conductance measurements, Cs+ and QX-314

were introduced into the electrode to block active currents. For detailed

methods and a test of whether active currents or spiking distorted conduc-

tance measurements, see Figure S4.

Drifting sinusoidal grating stimuli (4 s duration) were presented monocularly

on a CRT monitor (Finn et al., 2007), centered on each neuron’s minimum

response field. The receptive field center size was taken to be the smallest

stimulus that evoked a strong spike response, but for which an annulus of

the same inner diameter evoked no spikes. Cells were classified as surround

suppressed if mean + SEM of the center-plus-surround firing rate response

was smaller than mean – SEM of the center-only response.

Spike responses were measured as the modulation (F1) component for simple

cells and as the mean (DC) component for complex cells. Cells were classified as

simple (F1/DC > 1)orcomplex (F1/DC < 1)asperSkottunetal. (1991). Membrane

potential and conductance responses were measured as the peak amplitude

relative to rest (DC+ F1)after removingspikes from the records bya median filter.

Steady-state surround suppression was measured using a center grating of

optimal size and orientation combined with annular gratings (20� outer dia-

meter, varying orientation) extending from the edge of the center grating

(Figures 1 and 2). Transient responses to the onset of surround stimuli (Figure 8)

were measured by turning on the surround stimulus 500 ms after the center.

LGN recordings (Figures 5 and S6) were made with tungsten electrodes

(A layers, eccentricity <5�). Center stimuli were optimal in size for the average

simple cell in the cortical population: 2� (or 4�) diameter for LGN cells with

receptive field centers smaller (or larger) than 1�. Electrical stimuli to the

LGN (200 ms, 0.5 mA, electrode negative) were delivered through tungsten

electrodes placed at the retinotopic location matching the cortical recording

electrode (Boudreau and Ferster, 2005; Chung and Ferster, 1998).

Model Simulations

Simulations were based on linear dynamical equations (Supplemental Text,

Section 1). The equations of the two-population model in Figure 6C were
590 Neuron 62, 578–592, May 28, 2009 ª2009 Elsevier Inc.
tE

d

dt
rE = � rE + wEErE �wEIrI + iE ;

tI

d

dt
rI = � rI + wIErE �wIIrI + iI;

where variables were defined above (Equations 1 and 2) and synaptic weights

(wEE, wEI, wIE, wII) are all positive. Parameters used were iE = 0, iI = 1, tE = 60 ms,

tI = 12 ms, wEE = 2, wEI = 4, wIE = 5, wII = 7. The multineuron simulation (Figure 7)

used N excitatory and N inhibitory neurons (N = 1000). Equations were as

above, except that the rates and inputs were each N-dimensional vectors

and the weights each N 3 N matrices. We began with a two-population model

that gave mean suppression as in the data (wEE = 1.8, wEI = 1.3, wIE = 2.4, wII =

1.8, iE = 4.0, iI = 1.6 for center stimulus; iE = 4.4, iI = 3.8 for center-plus-surround

stimulus). Mean inputs or weights of a given type were set equal to the two-

population inputs or 1/N times the two-population weights. With no variability,

each cell would behave exactly as the corresponding population in the two-

population model. To create variability, weights were set to zero with probability

0.95 and means of nonzero weights correspondingly multiplied by 20. Then

nonzero weights and all inputs were chosen from log-normal distributions

with standard deviations 2.75 times their means. To ensure network stability,

for each cell, recurrent excitatory weights received were scaled to set their

sum to the value it would have with no variability, and similarly for inhibitory

weights received. Cells with center responses negative or less than 1/4 the

center response in the two-population model had all center and surround inputs

and excitatory weights multiplied by 1.1 and inhibitory weights divided by 1.1;

responses were re-evaluated and the process repeated until there were no

such cells. See Supplemental Text, Section 3.

SUPPLEMENTAL DATA

The Supplemental Data include seven figures and additional discussion

models and their properties and can be found with this article online at

http://www.neuron.org/supplemental/S0896-6273(09)00287-6.
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