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SUMMARY

Neurons in sensory cortex integrate multiple influ-
ences to parse objects and support perception.
Across multiple cortical areas, integration is charac-
terized by two neuronal response properties: (1) sur-
round suppression—modulatory contextual stimuli
suppress responses to driving stimuli; and (2)
‘‘normalization’’—responses tomultiple driving stim-
uli add sublinearly. These depend on input strength:
for weak driving stimuli, contextual influences facili-
tate or more weakly suppress and summation
becomes linear or supralinear. Understanding the
circuit operations underlying integration is critical
to understanding cortical function and disease. We
present a simple, general theory. A wealth of integra-
tive properties, including the above, emerge robustly
from four cortical circuit properties: (1) supralinear
neuronal input/output functions; (2) sufficiently
strong recurrent excitation; (3) feedback inhibition;
and (4) simple spatial properties of intracortical con-
nections. Integrative properties emerge dynamically
as circuit properties, with excitatory and inhibitory
neurons showing similar behaviors. In new record-
ings in visual cortex, we confirm key model predic-
tions.

INTRODUCTION

A key task of sensory cortex is to globally integrate localized sen-

sory inputs and internal signals to parse objects and support

perception. While the nature of this computation is not under-

stood, much is known about its manifestation in neuronal firing.

Sensory cortical neurons are selective for the structure of a stim-

ulus in their classical receptive field (CRF), a localized region of

sensory space. Such selectivity, e.g., orientation selectivity in

primary visual cortex (V1), is primarily determined by the

ensemble of feedforward inputs the cell receives (Priebe and
402 Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc.
Ferster, 2008). Modulation of responses by more global influ-

ences, including stimuli outside the CRF (Cavanaugh et al.,

2002a), additional stimuli within the CRF (Carandini and Heeger,

2012), or spatial attention (Reynolds andHeeger, 2009), primarily

alter the gain rather than selectivity of responses, suggesting a

key role of cortical circuitry in dynamically modulating response

gain.

The modulatory cortical circuit manifests in two properties

observed across multiple cortical areas:

(1) Sublinear response summation or ‘‘normalization’’. The

response to two stimuli shown simultaneously in the

CRF is typically closer to the average than the sum of

the responses to the two stimuli shown individually. That

is, the responses sumsublinearly. This has been observed

in monkeys in areas V1, MT, V4, IT, and MST as well as in

cat V1 and many noncortical structures (reviewed in Car-

andini and Heeger, 2012). However, when stimuli are

weak, cortical summation can become linear or supralin-

ear, as observed in MT (Heuer and Britten, 2002) and

MST (T. Oshiro et al., Program No. 360.19, 2013, Neuro-

science Meeting Planner, Soc. Neurosci., abstract).

(2) Surround suppression. Stimuli outside the CRF (in the

‘‘surround’’) typically suppress responses to CRF stimuli.

Surround suppression has been observed in multiple

cortical areas, including V1 and V2 in cats (Anderson

et al., 2001; Ozeki et al., 2009; Sengpiel et al., 1997;

Tanaka and Ohzawa, 2009; Vanni and Casanova, 2013;

Wang et al., 2009; Nienborg et al., 2013), mice (Song

and Li, 2008; Adesnik et al., 2012; Van den Bergh et al.,

2010), and monkeys (Cavanaugh et al., 2002a, 2002b;

Sceniak et al., 1999; Schwabe et al., 2010; Shushruth

et al., 2009; Van den Bergh et al., 2010), monkey visual

areas V4 (Sundberg et al., 2009), MT (Tsui and Pack,

2011), LIP (Falkner et al., 2010) and motor area frontal

eye fields (Cavanaugh et al., 2012), and areas serving

other sensory modalities (e.g., see Sachdev et al.,

2012). However, surround stimuli can facilitate responses

to weak center stimuli (e.g., Schwabe et al., 2010; Seng-

piel et al., 1997). Furthermore, even while CRF size re-

mains fixed across stimulus strengths (Song and Li,



2008), summation field size—the stimulus size giving

maximal response—shrinks monotonically with stimulus

strength, as observed in cat (Anderson et al., 2001;

Song and Li, 2008), monkey (Cavanaugh et al., 2002a;

Sceniak et al., 1999; Shushruth et al., 2009) and mouse

(Nienborg et al., 2013) V1 and in monkey V2 (Shushruth

et al., 2009) and MT (Tsui and Pack, 2011). Thus,

surrounding regions that are facilitating for weak CRF

stimuli become increasingly suppressive for stronger

CRF stimuli.

These response properties may reflect a canonical computa-

tion of cortical circuits (Carandini and Heeger, 2012), often sum-

marized phenomenologically as divisive normalization: each

neuron’s response is a supralinear ‘‘unnormalized response’’ to

driving CRF inputs divided by an increasing function of the un-

normalized responses of all neurons in a local network (Carandini

and Heeger, 2012). However, normalization cannot easily

describe facilitation of response to weak center inputs by sur-

round regions that cannot themselves drive response (though

see Cavanaugh et al., 2002a), so here we will use ‘‘normaliza-

tion’’ only to describe summation of CRF inputs and not surround

effects.

Here, we demonstrate a surprisingly simple circuit motif that

gives a new and unified circuit-level explanation of this canonical

computation. Previous circuit models of these phenomena (e.g.,

models reviewed in Carandini and Heeger, 2012; Schwabe et al.,

2010; Somers et al., 1998) have typically addressed normaliza-

tion or surround suppression, but not both. They have largely

relied on increases in inhibitory input to explain these phenom-

ena. Such increases have not been found in many normalization

phenomena (Carandini and Heeger, 2012), and inhibitory input

appears decreased in surround suppression (Ozeki et al.,

2009) (though see Adesnik et al., 2012; Haider et al., 2010,

addressed in Discussion). Consistent with this, inhibitory and

excitatory neurons behave similarly in our model, e.g., both

show normalization or suppression of responses, which arise

as collective network effects. Models of the contrast depen-

dence of surround suppression (Schwabe et al., 2010; Somers

et al., 1998) have assumed intrinsic properties of inhibitory cells

that rendered them ineffective at low contrasts. While such

mechanisms cannot be ruled out (e.g., Kapfer et al., 2007), our

unified model instead provides a network explanation of

contrast-dependent effects.

We have previously discussed one mechanism underlying our

model (Ahmadian et al., 2013). It is based on the fact that a

cortical neuron’s firing rate is well described by raising its input,

as reflected in its depolarization from rest, to a power greater

than 1. This power-law input-output (I/O) function arises when

the mean input to neurons is subthreshold, so that neurons fire

on input fluctuations about the mean (Hansel and van Vreeswijk,

2002; Miller and Troyer, 2002). The cell’s I/O function must ulti-

mately saturate, but at least in V1, neurons remain in the unsat-

urated, power-law region of the I/O function throughout the full

range of firing induced by visual stimuli, with powers in the range

2–5 (Priebe and Ferster, 2008).

This power-law presents a puzzle: how does cortex remain

stable? The gain of neurons—the change in output rate per
change in input, i.e., the I/O function’s slope—monotonically in-

creases with response level. Then, if excitatory neurons excite

one another, with increasing response level they will more and

more strongly amplify their own response fluctuations until, at

some ‘‘breakpoint’’ response level, the excitatory subnetwork

will become unstable. Activity would then explode until re-

sponses saturate, unless the network is stabilized by other fac-

tors such as feedback inhibition. A possibility is that excitatory

instability is never reached, because the breakpoint level is

beyond the dynamic range of cortical networks, or because

excitatory instability is prevented by mechanisms such as

short-term synaptic depression or hyperpolarizing voltage-acti-

vated conductances. However, simple calculations suggest

that the breakpoint occurs at relatively low rates (e.g., section

4 of the Supplemental Text of Ozeki et al., 2009), well within

cortical dynamic range and for which the effects of these mech-

anisms should be weak. Direct evidence also suggests excit-

atory-subnetwork instability in various cortical operating regimes

(London et al., 2010; Ozeki et al., 2009).

We showed (Ahmadian et al., 2013) that, in networks of excit-

atory (E) and inhibitory (I) neurons with power-law I/O functions,

stability can be dynamically maintained via feedback inhibition

even when response levels move beyond the breakpoint. The

network then is an ‘‘inhibition-stabilized network’’ (ISN), i.e.,

the excitatory subnetwork alone is unstable, but the network is

stabilized by feedback inhibition (Ozeki et al., 2009; Tsodyks

et al., 1997). Stabilization occurs over a broad parameter regime,

i.e., no parameter fine-tuning is required. Furthermore, this stabi-

lization causes a strong change in network operating regime,

from supralinear to sublinear response summation, as follows.

At low response levels below the breakpoint, i.e., for weak input

such as a very low-contrast visual stimulus, neuronal gains are

low, so effective synaptic strengths—the change in postsynaptic

rate per change in presynaptic rate—are weak. As a result, drive

from within the network is weak relative to external drive (math-

ematically, weak externally driven synapses drive network cells

that drive weak network synapses, so network drive is doubly

weak relative to external). With only weak interactions between

neurons, responses sum supralinearly, following the supralinear

I/O function of isolated cells: response to two simultaneously

presented stimuli exceeds the sum of the responses to each

stimulus presented alone. With increasing input strength, the

relative contribution of network drive grows until the breakpoint

is reached. Stabilization requires strong damping of the growth

of net input (E minus I) such that, in a broad parameter regime,

responses then sum sublinearly: the two-stimulus response is

less than the sum of the individual stimulus responses. Both E-

and I-cell neuronal responses sum sublinearly, an emergent

outcome of network dynamics, as opposed to the more intuitive

scenario that suppression in E cells results from increased I-cell

firing.

Thus, when individual neurons have supralinear input/output

functions, inhibitory stabilization drives a transition from weak

coupling and supralinear response summation for weak inputs

to ISN behavior and sublinear summation for strong inputs.

Here, we show how this ‘‘stabilized supralinear network’’ (SSN)

mechanism, along with mechanisms involving the spatial struc-

ture of connectivity, can give a unified explanation of a wide
Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc. 403



range of cortical behavior involving global integration of multiple

inputs.
RESULTS

We will focus on modeling V1 behavior, but also refer to other

cortical areas. We make several simplifying assumptions. We

model interactions in a single layer, e.g., layer 2/3 (L2/3), ignoring

interlaminar processing. We assume that the net effect of exter-

nally driven input (henceforth, ‘‘external input’’) to this layer is

excitatory. We consider only two cell types, E and I, ignoring sub-

types. We consider an ‘‘E/I pair’’—one E unit and one I unit—at

each position, where a ‘‘unit’’ can be thought of as a mutually

connected set of neurons. Wemodel neuronal firing rates, rather

than action potential (‘‘spike’’) generation, which suffice to un-

derstand many aspects of network behavior when spikes are

fired irregularly and asynchronously (Ermentrout and Terman,

2010; Murphy and Miller, 2009). These simplifications allow a

clear picture to emerge of simple laminar processing motifs

that explain a surprising amount of the complexity of cortical

responses.

We initially present simple models on a 1D ring or line to

highlight mechanisms, but subsequently study a 2D model

cortex. The model equations are as follows. Let x represent

position of an E/I pair on the model cortex. We let hðxÞ be

the shape and c the magnitude of external input, both taken

for simplicity as identical for E and I units. Increasing input

strength c represents increasing contrast, but with arbitrary

scale; its values should not be equated with contrast. We let

WEI(x1, x2) be the strength of connection from the I unit at

position x2 to the E unit at x1, and similarly WEE, WIE, and WII

represent E/E, E/I, and I/I connections, respectively. We

let rE(x) and rI(x) be the firing rates of, and IE(x) and II(x) the input

to, the E and I units at position x. Then the model equations

state:

1. The input to a unit is the linear sum of its external input and

its input from each cortical unit:

IEðxÞ= c hðxÞ+
X

x0
ðWEEðx; x0ÞrEðx0Þ+WEIðx; x0ÞrIðx0ÞÞ: (1)

IIðxÞ= c hðxÞ+
X

x0
ðWIEðx; x0ÞrEðx0Þ+WIIðx; x0ÞrIðx0ÞÞ: (2)

The sum over x0 ranges over all cortical positions.

2. The steady-state (SS) firing rate of a neuron for a given

fixed input is proportional to the input, with negative values

set to zero, raised to a power n (e.g., Figure 1B):

rSSE ðxÞ= k
�½IEðxÞ�+

�n
(3)

rSSI ðxÞ= k
�½IIðxÞ�+

�n
: (4)

Here, k is a constant, n>1, and [I]+ represents thresholding of I at

zero: [I]+ = I if I>0; =0, otherwise. k and n are generally taken iden-

tical for E and I cells for simplicity, to focus on emergent network

properties that arise even without cell-type differences.
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3. At any instant of time, each firing rate approaches its cur-

rent steady-state value with first-order dynamics:

tE
drEðxÞ
dt

= � rEðxÞ+ rSSE ðxÞ (5)

tI
drIðxÞ
dt

= � rIðxÞ+ rSSI ðxÞ: (6)

Note that steady-state values change in time as firing rates or

external inputs change.

Normalization in a 1D Ring Model
We first study an example of normalization: the response to the

superposition of two drifting gratings of different orientations.

When the gratings are of equal contrast, the response across

the V1 population is a sublinear multiple (� 0:5 to 0.7) of the

sum of the responses to the individual gratings, while as con-

trasts become unequal, the response approaches ‘‘winner-

take-all,’’ i.e., the lower-contrast grating has little impact on the

response (Busse et al., 2009; MacEvoy et al., 2009). This

‘‘cross-orientation suppression’’ arises at least in part through

sublinear summation of subcortical input to cortical cells (e.g.,

Priebe and Ferster, 2008; but see Sengpiel and Vorobyov,

2005). Nonetheless, given the likelihood that cortex also per-

forms normalization (Carandini and Heeger, 2012), we use this

simple experimental paradigm with linearly summing external in-

puts to study how the model cortex sums multiple inputs.

We consider a set of E/I pairs at a single position in visual

space with varying preferred orientations. Preferred orientation,

being a circular variable, is represented by the coordinate q of an

E/I pair on a ring (Figure 1A). An oriented stimulus grating induces

a Gaussian-shaped pattern of external input strengths peaked

at the corresponding preferred orientation. For superposed

gratings, the external inputs add linearly. The four connection

functions WXYðq1; q2Þ (X;Y˛fE; Ig) each depend only on the dif-

ference jq1 � q2j between preferred orientations. The excitation

and inhibition received by cells have similar orientation tuning

in cats V1 layers 2–4 (e.g., Mariño et al., 2005), so we give these

functions identical Gaussian shapes, but different strengths. We

have presented a few results from this model previously (Ahma-

dian et al., 2013), see Figure 1 legend. This simple model directly

illustrates the predicted transition from supralinear to sublinear

summation and shows that it can account for multiple aspects

of normalizing behavior.

With the increasing strength of a single grating stimulus, the

network shows the anticipated transition from dominantly exter-

nally driven (weakly coupled) to dominantly network-driven (Fig-

ures 1C–1E), with network input: (1) increasingly dominated by

inhibition (Figures 1C, 1D, and 1F) as observed in mouse S1

under excitatory drive to E cells (Shao et al., 2013) (similar

behavior occurs when simulating that protocol, Figure S3), and

(2) substantially cancelling external input to leave a slowly

growing net input (Figures 1C and 1D). For equal- and high-

strength orthogonal gratings, E and I units each add responses

sublinearly, with response to two gratings about 0.7 times the

sum of the individual responses (Figure 1G). Responses to

nonorthogonal gratings also add sublinearly (Figures S4A and

S4B), as in experiments (MacEvoy et al., 2009). With increasing
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Figure 1. Normalization in a Nonlinear Ring Model
(A) There are 180 E (red) and I (blue) units, with coordinates q on a ring corresponding to preferred orientations (1� to 180�, 180� = 0�). Lines between units

schematize connections between them. A stimulus grating evokes input chðqÞ equally to E and I units, with hðqÞ a unit-height Gaussian centered at the stimulus

orientation with SD sFF = 30�, except (J). We consider gratings at 45�, 135�, or both simultaneously.

(B) The power-law input/output function, k = 0:04, n= 2:0.

(C–F) Use a single-grating stimulus.

(C and D) Input to and firing rates of E (C) and I (D) units at stimulus center. With increasing external input strength c (x axis; dashed lines), network input (E, red and

I, blue) transitions from weak to dominating (insets), and substantially cancels external input, so net input (green) grows slowly. Firing rates (black; also shown in

Ahmadian et al., 2013) are proportional to net input squared.

(E and F) We consider the summed input received by all E (red) or I (blue) units. With increasing c, input to network (sum of absolute values of E and I input) is

increasingly network-driven (E; dashed, external input; solid, network input), and network input is increasingly inhibitory (F; y axis, EN/(EN + I), where I and EN are

inhibitory and network excitatory input, respectively).

(G) Sublinear response summation for multiple stimuli. Top two rows, responses of E (left, red) and I (right, blue) units across network to 45� (top) and 135� (2nd
row) stimulus, c= 50. Third row, responses to both stimuli presented simultaneously. Fourth row, responses from third row (black) versusmean (orange) and linear

sum (green) of responses to the two individual stimuli.

(G–I) We fit the response to two superposed stimuli of the E or I population as a weighted sum of the responses to the individual stimuli, with weights w1 and w2

determined by least-squared-error fitting. For equal-strength stimuli, w1 =w2hw. In (G), best-fit weights w indicated in row 3, with fit shown as gray curve.

(H) Increasingly winner-take-all responses for increasingly divergent contrasts of the two stimuli. Left, E firing rates across network; input strengths ðc1; c2Þ are
ð40; 40Þ, ð50; 30Þ, ð60; 20Þ, and ð70; 10Þ. Orange, response to 45� alone; green, to 135� alone; and black, to both superposed. Right, best-fit weights w1 (orange)

and w2 (green) for E population versus lnðc2=c1Þ, with c1 + c2 = 80.

(I) For equal-strength stimuli, best-fit weightw versus stimulus strength c= c1 = c2 for E (red) and I (blue) responses. Weak inputs add supralinearly. Modified from

Ahmadian et al. (2013).

Left inset, averaged responses of neurons in monkey area MT to two superposed CRF stimuli of indicated contrasts (averaged across main diagonal; each cell

normalized to its own maximum rate; this is Figure 9 of Heuer and Britten, 2002).

Right inset, model response of E unit at q = 45�, averaged over stimuli at 45�, 135� or at 135�, 45� having respective strengths c1 (x axis) and c2 (y axis).

(J) Width-tuning in orientation space. Response of E unit to stimuli of varying input width sFF for c from 10 to 50, normalized to maximum rate for given c. Shrinking

summation field size versus contrast was shown in Ahmadian et al. (2013).
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difference in stimulus strengths, summation becomes increas-

ingly winner-take-all (Figure 1H). Sublinear addition for equal-

strength gratings persists across a broad range of stimulus

strengths, but at the lowest strengths addition is instead supra-

linear (Figure 1I). The model results for two-input summation

across all pairs of stimulus strengths (Figure 1I, inset right)

closely match results in monkey visual cortical area MT (Heuer

and Britten, 2002) (Figure 1I, inset left). Model results for both

E and I cells across a large set of stimulus-strength pairs are

very well fit by phenomenological equations of the normalization

model (Busse et al., 2009; Carandini and Heeger, 2012) (E cells,

R2 = :974; I cells;R2 = :988; Figure S5). Note that inmost previous

models only E cells, not I cells, show normalization. These results

arise robustly across a reasonable range of parameters, e.g.,

Figure S6.

A cortical transition from sublinear to supralinear summation

for increasingly weak stimuli has thus far not been observed,

though a transition to linear summation is seen in MT (Heuer

and Britten, 2002) and MST (T. Oshiro et al., Program No.

360.19, 2013, Neuroscience Meeting Planner, Soc. Neurosci.,

abstract). In MT, average summation was linear when at least

one stimulus had contrast below that which drove half-maximal

response; behavior at the lowest contrasts was not separately

analyzed. The match of model and MT behavior (Figure 1I, inset)

suggests, but does not prove, that at the lowest contrasts MT,

like the model, sums supralinearly. In V1 cross-orientation sup-

pression, summation remains sublinear down to 6% contrast

(Busse et al., 2009). Thismight be explained by suppression orig-

inating in subcortical inputs rather than cortex (Priebe and Fer-

ster, 2008). In all cases, the weakest stimuli studied, or even

spontaneous activity, might suffice to drive the network out of

the supralinearly summating regime. Note that supralinear ef-

fects can be weaker for some parameters, e.g., see Figure 6D.

Normalization in the model is closely related to surround sup-

pression in the space of stimulus features (orientation). When

we vary the stimulus orientationwidth, thewidthgiving the largest

response—the orientation ‘‘summation field’’—shrinks with

increasing stimulus strength (Figure 1J), akin to the well-known

shrinkage with contrast of the summation field in visual space.

(The orientation summation field is distinct from the orientation

‘‘CRF’’ or tuning curve, which, like the visual-space CRF [Song

and Li, 2008], experimentally is invariant with contrast [Priebe

and Ferster, 2008].) Orientation summation field shrinkage

cannot be easily tested in V1, becausemanipulations of stimulus

orientation width either nonlinearly suppress input to cortex (un-

der simultaneous presentation of multiple orientations, Priebe

and Ferster, 2008) or alter other stimulus parameters, e.g., spatial

frequency or extent across visual space, that independently

affect response (under change of grating frequency or aspect

ratio). However, it could be tested using optogenetic stimulation

to activate broader or narrower sets of orientation columns or, in

terms of direction rather than orientation, by testing whether MT

directional summation fields shrink with increasing contrast.

In sum, the model for the first time provides a network expla-

nation of normalizing andwinner-take-all behavior of both E and I

cells. This arises through a transition with increasing stimulus

strength from external to internal sources of dominant input,

with internally generated input becoming increasingly inhibitory,
406 Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc.
and a corresponding transition from supralinear to sublinear

response summation.

Surround Suppression in a 1D Cortical Model
We now consider interactions between stimuli in different visual

positions, i.e., in the CRF and in the surround. We study a 1D line

of E/I pairs (Figure 2A), with line position representing CRF posi-

tion in visual space. We ignore other stimulus features, such as

orientation. A drifting luminance grating evokes a static external

input, chðxÞ, that has variable width (representing grating diam-

eter) and peak height c. This input is largely spatially flat, ignoring

grating phase, because we are considering the overall input to

the set of cells with varying phase preferences at a given spatial

position and because many layer 2/3 cells are ‘‘complex’’ cells

that are relatively insensitive to grating phase.

Because only E cells make long-range horizontal connections

in sensory cortex, we set the spatial range of I projections small

relative to E projections, abstracted as making I projections local

to each E/I pair. E projection strengths decrease with distance

with a Gaussian shape. For reasons discussed below, we take

E/ I projections tobespatiallywider thanE/E (moregenerally,

the ratio E/I=E/E of summed connection strengths should

increase with distance; anatomical ranges could be identical).

Spatial considerations now combine with the supralinear to

sublinear transition to create a richer set of phenomena. We

introducemodel behavior in two steps. First, we consider a linear

I/O function, which demonstrates spatially periodic behavior that

explains a number of experimental results. Then, we return to

power-law I/O functions, which yield contrast-dependent modu-

lation of this behavior.

Linear Model

Here, a linear I/O function replaces Equations 3 and 4:

rSSE ðxÞ= IEðxÞ, rSSI ðxÞ= IIðxÞ. A linear model gives a reasonable ac-

count of dynamics when firing rates are near their steady-state

values for a fixed input. Responses are expressed relative to

this steady-state value and so can become negative.We set syn-

aptic weights to make the network an ISN.

Input to cortex of increasing lengths evokes spatially oscil-

lating standing waves of activity (Figure 2B). Intuitively, active

neurons suppress their neighbors, which are less active, mean-

ing their neighbors are less suppressed (more active). If external

input is roughly equal across the activated region, then peaks of

the standing waves occur at the edges of the activity pattern,

which lacks suppression from one side (Adini et al., 1997). As a

result, the activity of the units at the center varies, with increasing

stimulus size, from a peak to a trough to a peak of the wave,

yielding second peaks in length tuning curves (Figure 2C) as

has been observed in firing rates (Sengpiel et al., 1997; Wang

et al., 2009, and see new experiments below) and inhibitory con-

ductances (Anderson et al., 2001). The periodic activity occurs at

‘‘resonant’’ spatial frequencies, the frequencies that the network

most strongly amplifies (Supplemental Text S2.1; see also Fig-

ures 5B and 5C). Sufficiently large and smoothly tapering inputs

(e.g., inputs windowed with a Gaussian envelope) lack power at

these frequencies, so no periodic activity results (Figures S7 and

S8). Given localized inhibitory connectivity, inhibitory resonant

frequencies arise only in an ISN (Supplemental Text S2.1.1). In

sum, the linear model accounts for surround suppression of
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Figure 2. Spatial Contextual Interactions in Linear Model

(A) Cartoon of 1D firing ratemodel of V1, used for Figures 2 and 3. E (red) and I (blue) units form a 1D grid, with grid position representing CRF visual space position.

Grid spacing 0.25� (Figure 2) or 0.33� (Figure 3). Drifting grating stimulus of given size drives input c times input profile hðxÞ of corresponding width, equally to E

and I units.

(B) Input to, and firing rate responses of, model units to stimuli of increasing length versus position of E/I pairs (x axis, degrees; 0, grid center). Top two rows,

gratings of increasing size (top) cause 1D input with shape hðxÞ (plots). Bottom two rows, E (red) and I (blue) firing rates across network, showing spatially periodic

activity.

(C) Length-tuning curves of units at stimulus center show surround suppression and second peaks (E, red and I, blue). Circles mark eight stimulus sizes shown in

(B). Note here, and in Figure 3, modulations of I units are relatively weak and y axes do not start at zero.
both E and I cells and spatially periodic activity and tuning

curves.

Nonlinear Spatial Model

A linear model cannot address qualitative changes in behavior

with stimulus contrast, because scaling the input (increasing

contrast) only scales responses. We now restore the power

law I/O function of Equations 3 and 4. The effects of the linear

model are retained, but now are contrast dependent.

As in Figure 1, the network transitions, with increasing input

strength, from dominantly externally driven to dominantly

network-driven, with network drive increasingly inhibition-domi-

nated (Figures 3A and 3B), corresponding to a transition from

non-ISN to ISN behavior (Figure S2D). I-unit aswell as E-unit reso-

nantspatial frequenciesappear in the ISN regime,with frequencies

that increase (wavelengths that decrease) with increasing input

strength (Figures S2E and 5D; Supplemental Text S2.3).

Correspondingly, spatially periodic activity and surround sup-

pression are not seen at the lowest contrast (stimulus strength),

but emerge with increasing contrast (Figure 3C). As contrast in-
creases, the spatial modulation of activity grows in amplitude

and shrinks in wavelength, and second peaks in length tuning

appear. These simple effects can explain a wide range of exper-

imental results: (1) the second peaks in the length tuning of I

conductance, discussed previously, arise for high-contrast, but

not for low-contrast stimuli (Anderson et al., 2001); (2) summation

field size (location of first peak in the length tuning curve) shrinks

with contrast (Anderson et al., 2001; Song and Li, 2008; Cava-

naugh et al., 2002a; Nienborg et al., 2013; Sceniak et al., 1999;

Shushruth et al., 2009; Tsui andPack, 2011) (Figure 3D), following

the shrinking resonancewavelength; (3) a high-contrast surround

stimulus can facilitate the response to a low-contrast center, but

suppress the response to a high-contrast center (Cavanaugh

et al., 2002a; Schwabe et al., 2010; Sengpiel et al., 1997) (Fig-

ure 3E), but (4) this effect depends on surround size (Figure 3E)

and shape (Figure S8B), whichmay explain varying results in pre-

vious studies (Cavanaugh et al., 2002a; Schwabe et al., 2010);

and note also that (5) I units develop wider summation fields

than E units (Figures 2C and 3D), as observed in rodent V1
Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc. 407
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Figure 3. Spatial Contextual Interactions with Supralinear, Power-Law Input/Output Functions

(A and B) Responses to full-field stimuli. Network transitions, with increasing input strength, from dominantly externally driven to network-driven (A), with network

drive increasingly inhibition-dominated (B). Conventions are as in Figures 1E and 1F.

(C) Length-tuning at multiple levels of input strength (c= 1; 6;11; 21; 31, schematized by gratings of increasing contrast, left). The two columns of plots for each of

E (left) and I (right) show firing rates across network for largest stimulus (left columns) and length-tuning curves for units at stimulus center (right columns). All

curves normalized to their maxima.

(D) Summation field size (first peak of length-tuning curve) shrinks with increasing stimulus strength. Values normalized to that at stimulus strength c= 100

(dashed line; 0.4�, E units; 1.7�, I units).
(E) Strong surround stimulus (c= 50) can switch from facilitative to suppressive with increasing center stimulus strength, depending on stimulus size. Center

stimulus fills c= 50 summation field, diameter 0.55� (E, left), 1.9� (I, right). Responses to center-only stimulus (thick lines) or with added surround for total stimulus

size ranging from 23 to 203 center size (legends).
(Adesnik et al., 2012). Again, these results arise robustly across a

reasonable range of parameters, e.g., Figure S6.

Several of these results seem to depend on E / I projections

being spatially wider than E / E, although our exploration of
408 Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc.
parameter space is limited, so we are not certain of this. When

these two projections have the same width, we have not seen

spatially periodic behavior, and for many parameters, summa-

tion field size does not shrink continuously with contrast, but
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(A–C) Periodicity in size-tuning curves (76 cells studied).

(A) Two examples of tuning curves, normalized to peak = 1. Data indicate mean ± SE as determined frommaximum likelihood estimation (Supplemental Methods

S1.4.2). Curves, best fit DoG (orange) and SSM (black) models. Tuning curves for all cells, Figure S10.

(B) Reciprocal of summed squared error (SSE) for DoG and SSM models for all neurons studied. Blue points (73 cells), SSM fit significantly better (p<0:01) than

DoG fit by nested F-test. Red points (three cells), p>0:01.

(C) Cross-validation (c-v) analysis. Histogram of number of cells showing given % change in median SSE (in predicting withheld data, across 100 c-v trials) for

SSM model relative to DoG model.

(D–F) Periodicity in position-tuning curves (74 cells). Conventions and statistical tests as in (A–C).

(D) Two examples of tuning curves. Tuning curves for all cells, Figure S11.

(E) Reciprocal of SSE for DoG and SSM models. Of 74 cells studied, 66 were significantly better fit by SSM model (blue points).

(F) C-v analysis. Details of statistical tests for all cells, Tables S1, S3, and S4 and Supplemental Methods S1.5.2.
instead jumps from no suppression to the size that saturates

external input (note, here I projections are far narrower than E

projections; when both have equal width, shrinkage occurs,

Figure 1J).

In sum, given connectivity that falls off with spatial distance

with I projections short-range compared to E, the transition

with increasing stimulus strength to inhibitory stabilization and

sublinear summation explains a great deal of contextual modu-

lation behavior of both E and I cells. The model predicts period-

icity in activity and tuning curves with wavelengths that shrink

and amplitudes that grow with contrast. This explains shrinkage

of summation fields and transitions from surround facilitation to

surround suppression with increasing contrast.

Experimental Tests I
We tested the predictions of periodic activity in single-unit extra-

cellular studies of neurons in anesthetized ferret V1.

We tested whether size tuning curves show periodicity for

high-contrast stimuli (Figures 4A–4C). Few previous studies

have carefully studied length tuning for lengths between summa-

tion field size and some large size (reviewed inWang et al., 2009),

though curves with periodicity have been reported (e.g., Seng-

piel et al., 1997; Wang et al., 2009). We presented drifting grat-

ings ranging in size from 1� to 30� diameter in 1� increments,

randomly interleaved. Tuning curves showed clear periodicity

(Figure 4A). We fit two models to tuning curves, a difference-

of-Gaussians (DoG) model for the center/surround receptive
field, which exhibits no spatial periodicity (Figure 4A, orange

curves), and a model adding a sinusoidal surround modulation

(SSM) to the DoG model (Figure 4A, black curves). To assay

whether the curves showed significant periodicity, we consid-

ered two tests. In 73 of 76 cells, the SSM fit was significantly bet-

ter (p<0:01) than the DoG fit (Figure 4B) according to a nested

F-test, which takes into account the SSM’s extra parameters.

Using cross-validation (fit each model to a randomly chosen

80% of the data, test model on remaining 20%, repeat 100

times), the SSM’s median sum-squared error (SSE) on the with-

held data was less than the DoG’s for 70/76 cells (Figure 4C;

p= 6:2310�15, 2-sided binomial test of null hypothesis that

each model is equally likely to have smaller median SSE for a

given cell; median of illustrated distribution significantly different

from zero, 2-sided Wilcoxon signed rank test, p= 1:04310�10).

We next tested spatial periodicity of the activity profile across

the cortical surface for high-contrast stimuli, an issue not previ-

ously studied to our knowledge (Figures 4D–4F). Ideally, one

would showa large drifting grating and sample responses of cells

at multiple spatial positions. Instead, we studied the response of

each single cell as we moved the drifting grating to multiple

randomly interleaved spatial positions. These positional tuning

curves showed clear periodicity (Figure 4D), with 66 of 74 better

fit by the SSM than the DoG model (p<0:01, nested F-test; Fig-

ure 4E). In the cross-validation test (Figure 4F), SSM errors

were less than DoG errors for 61 of 74 cells (p= 1:4310�8, bino-

mial test as above; median significantly different from zero,
Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc. 409
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(A) CM stimuli. Snapshot of 2D CM gratings used in experiments and corresponding spatially periodic 1D model input hðxÞ.
(B and C) Linear model of Figure 2. For E (B) and I (C) units, curves show response versus CM SF (solid lines) and power versus SF (omitting point at SF 0) of firing

rates across space for large (dashed-dot lines) and small (dotted lines) luminance stimuli (without CM). All peak at network resonant frequencies, derived

analytically (black dashed lines; Supplemental Text S2.1). Y axes, left, responses to CM stimulus; right, normalized power. X axes, SF in cycles/degree. Stimulus

diameters, small, 0.5�; large, 4.5� (E) or 5.25� (I).
(D) Nonlinear model of Figure 3. E (red) and I (blue) network resonant frequencies increase with input strength, as measured by preferred CM SF.

(E–G) Experimental measurements of contrast dependence of CM tuning (50 cells studied). Luminance grating had cell’s preferred orientation and SF. CM SF

tuning was studied at optimal CM orientation, at four luminance contrasts: 4%, 8%, 16%, and 64%.

(E) Normalized CM SF tuning curves for three example cells at the four contrast levels. Tuning curves for all cells, Figure S12.

(F) Mean preferred CM SF increases with stimulus contrast. Error bars, SEM. Data for two middle contrasts were not significantly different (two-sided Wilcoxon

rank-sum [WRS] test, p= 0:68) and so were grouped together for other tests. All other differences were significant (one-sided WRS test, n= 50 [low, high con-

trasts] or n=100 [medium contrast]): low versus medium, p<0:5310�4; low versus high, p<10�7; and middle versus high, p=0:046. * p<0:05 and ** p<10�4.

(legend continued on next page)
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p= 2:4310�7, Wilcoxon test as above). This result is particularly

surprising given an expectation that receptive field strengths

monotonically decrease with distance from their center.

Modeling and Experimental Test II: Contrast
Dependence of Network Frequency
The model predicts that the network resonant spatial fre-

quencies should increase with contrast (Figure 3). Such a fre-

quency increase would provide strong evidence that the periodic

behaviors are emergent properties of the network dynamics,

rather than fixed properties of the connections. Because we ex-

pected difficulty in accurately measuring oscillations in tuning

curves from responses to very low contrast stimuli, we employed

a different stimulus used by Tanaka and Ohzawa (2009) to probe

center-surround receptive field structure in cat V1: a contrast-

modulated sinusoidal grating.

For a given neuron, Tanaka and Ohzawa (2009) presented a

large drifting luminance grating covering center and surround,

with orientation and spatial frequency (SF) optimal for the CRF,

and superimposed a drifting sinusoidal contrast modulation

(CM) (Figure 5A, top). They studied the selectivity of the neuron’s

response to the CM orientation and SF. The neurons were quite

selective. The preferred CM spatial period was generally larger

than the period of the CRF’s preferred luminance SF (mean ±

SD, 2.1 ± 0.9 times larger), and there was a wide distribution of

relative angles between the preferred CM orientation and the

CRF’s preferred luminance orientation.

We model the CM as spatial periodicity in the input to cortex,

i.e., high- or low-contrast regions receive strong or weak input,

respectively (Figure 5A, bottom). The linear model shows CM

tuning with preferred spatial period equal to the period of the

resonant network activity, i.e., the optimal CM stimulus drives

the peaks, but not troughs of resonant activity (Figures 5B, 5C,

S2A, and S2B; Supplemental Text S2.1). This remains true in

the nonlinear model, in which the preferred CM SF, like the other

measures of network frequency, increases with stimulus con-

trast (Figures 5D and S2E; Supplemental Text S2.3). Thus, the

preferred CM SF provides an excellent and direct assay of the

network’s resonant frequency.

We tested the prediction that network resonant frequencies in-

crease with contrast, by studying the contrast dependence of

preferred CM SFs, previously measured only at high contrasts

(Tanaka and Ohzawa, 2009). We studied 50 cells at four lumi-

nance contrasts. Tuning curves for three example cells (Fig-

ure 5E) showed low-pass behavior at low contrast, but prefer-

ence for higher frequencies at higher contrasts. Like these

cells, 50% of studied cells preferred the lowest frequency tested

at the lowest contrast tested, while none preferred the lowest fre-

quency at the highest contrast tested. The mean preferred CM

SF across cells increased significantly with increasing contrast
(G) Pie chart summarizing population data, described in main text.

(H–J) For all three measures of network frequency—size tuning preferred SF (pSF

frequency tends to be 1–8 times larger than the cell’s luminance pSF, as the mod

nested F-test than DoGmodel for length and position tuning (excluding five cells w

for CM tuning.

(H) Scatterplot of size tuning pSF (y axis) versus luminance pSF (x axis), each in u

Green and black dashed lines,medians andmeans, respectively, of these distribu
(Figure 5F). The CM SF preferred at the lowest contrast tested

was lower than at the highest contrast for 72% of cells, the

same for 12%, and higher for 16% (Figure 5G; p= 2:5310�5

[ties discarded] or p= 9:0310�5 [ties divided equally], two-sided

binomial test assuming ‘‘lower’’ or ‘‘higher’’ equally likely for each

cell). We were also able to study length tuning across multiple

contrasts in a small number of cells (N= 16), with results consis-

tent with model predictions (Figures S9A–S9C).

All three experimental measures of network periodicity—

length tuning period, position tuning period, and preferred CM

SF—have periods, for high contrasts, dominantly in the range

1–8 times larger than the period of the CRF’s preferred lumi-

nance SF (Figures 5H–5J, and Tanaka and Ohzawa, 2009).

This is predicted by the model under a simple heuristic argu-

ment: a neuron’s summation field should fill nomore than 1/2 cy-

cle of the resonant spatial period, as a larger size would drive

suppressive troughs; while empirically, the high-contrast sum-

mation field typically contains 0.5–4 CRF preferred luminance

spatial periods (Teichert et al., 2007). This argument is supported

by our data, as illustrated for size-tuning period (Figure 5H):

mean and median summation field sizes are z1=2 of the size-

tuning period; and summation fields contain 0.5–4 luminance

spatial periods. The three different periods are not correlated

across cells, neither in experiments nor in a model with

stochastic connectivity presented below in Figure 6 (Figures

S9D and S9E). This presumably reflects different local subnet-

works of cells being recruited by each experimental paradigm.

Full Model
Thus far we have studied feature (orientation) effects and spatial

effects in separate 1D models. Here, we show that these results

can all arise in a single model of a large 2D patch of V1 and also

consider effects of more realistic stochasticity. Visual position

changes smoothly across the 2D patch and units have preferred

orientations given by a superposed orientation map (Figure 6A).

Connections and each unit’s parameters are chosen stochasti-

cally (which indicates that results are robust to parameter varia-

tions), with probability of a connection between two units of

given types 0.1 (E projections) or 0.5 (I projections) times the

product of unit-height Gaussian functions of positional distance

(qualitatively as in Figures 2 and 3) and of preferred orientation

difference (as in Figure 1). Dependence of connectivity on

preferred orientations is supported by evidence discussed for

Figure 1 and the fact that long-range horizontal excitatory con-

nections preferentially connect neurons of similar preferred

orientation (Gilbert and Wiesel, 1989). We have not tried to

tune the model other than to find a regime with reasonable sur-

round suppression (and in retrospect the chosen regime may

be suboptimal, Supplemental Methods S1.3.2). Our intent is sim-

ply to address qualitative results.
) (H, inset), position tuning pSF (I), and high-contrast CM pSF (J)—the network

el predicts. Histograms include all cells for which SSM model gave better fit by

ith luminance period larger than the full screen for length tuning) and all 50 cells

nits of summation field size. Histograms, distributions of data along each axis.

tions. Inset histogram, distribution along diagonals parallel to themain diagonal.
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Figure 6. A Large-Scale, Probabilistically Connected, 2D Model of V1

(A) We model a grid of 75375 E/I units. Retinotopic position progresses uniformly across the grid, spanning 16o316o. Preferred orientations are assigned

according to a superposed orientation map, illustrated.

(B) Strength of external versus network input and (C) EN/(EN + I) in response to preferred-orientation full-field gratings both behave similarly to 1D model

(all conventions and definitions as in Figure 3A for (B) and Figure 3B for (C). (B) and (C) show means, ± SD in (C), over E or I units at 25 randomly selected

locations.

(D) Transition from supralinear to sublinear summation in response to superposed full-field gratings with equal stimulus strength (x axis) and 90� difference in

orientations. Plot shows best-fit summation weight (w), averaged over 25 different pairs of orthogonal orientations (first grating equally spaced from 0� to 86.4�),
versus stimulus strengths for E (red) and I (blue) units. w computed from curves of average firing rates across units in each of 18 equal-sized bins of preferred

orientation. Conventions and definition of w as in Figure 1I.

(E) Mean length-tuning curves for c= 40 from all units that demonstrated significant surround suppression among 500 randomly sampled E/I units (surround

suppression index, [SSI], >0:25; 498 E and 304 I units). SSI = (rmax� rfull)/rmax, where rmax = maximum firing rate to stimuli shorter than (2/3)3 16�; rfull = response

to largest (16�) stimulus.

(F) Length-tuning for different levels of stimulus strength for 14 E and 14 I units, randomly selected. Each neuron is assigned a different color, yellow to red (E units)

or cyan to blue (I units).

(G) Summation field size shrinks with stimulus strength; E (top) and I (bottom) units, mean ± SD over 100 randomly selected grid locations.

(legend continued on next page)
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Figure 7. 2D Probabilistic Model: Further Results

(A) Histograms of differences between preferred luminance and CM orientations for E (red) and I (blue) units of Figure 6J for c= 40. The two preferred orientations

were completely uncorrelated (E units, r = 0:098, p= 0:33 and I units, r = 0:093, p= 0:36).

(B) Distribution of SSI (see legend of Figure 6E) for E (red) and I (blue, shown above E units) units at 500 randomly selected sites of Figure 6E. SSI = 0,

no suppression; SSI = 1, complete response suppression; and SSI <0, response facilitation. Mean ± SD, E units 0.75 ± 0.18 and I units 0.30 ± 0.35.

(C) Distribution of summation field sizes, same 500 E and 500 I units and colors as (B). Mean ± SD, E, 1.08� ± 0.18� and I, 4.97� ± 3.74�.
(D) Dependence of surround suppression on surround orientation for stimulus strength c= 40. Center stimulus at unit’s preferred orientation fills summation field;

surround at varying orientations relative to center stimulus (x axis) extends stimulus to total diameter 15.1� (70 grid spacings). Mean (solid lines) ± 1 SD (shaded

region) of responses of 50 randomly selected E (top) or I (bottom) units, each normalized to response to center stimulus alone.

(E) Orientation tuning of surround suppression decreases for low-strength center. Histograms show circular variances (C.V.’s) of 1 minus the normalized

orientation tuning curves of surround suppression (as in D) for the 50 E and 50 I units of (D), for center c= 40 (top) or c= 10 (bottom); surround c= 40 in both

conditions. Mean C.V. (x in figure) increases significantly at low center strength, indicating broader orientation tuning. Mean ± SD of C.V.’s for high (c= 40) and low

(c= 10) contrast and p values for difference between two distributions using 2-sided WRS test: all units, high 0:64±0:11, low 0:74±0:11, p= 2:6310�9; E units,

high 0:62±0:10, low 0:77±0:09, p= 6:3310�10; and I units, high 0:67±0:12, low 0:72±0:12, p= 0:034.
The model qualitatively reproduces all of the results of the

previous 1D models, but with more realistic variability. With

increasing stimulus strength, (1) input shifts from externally-

driven to network-driven (Figure 6B) with network input increas-

ingly inhibition-dominated (Figure 6C), as in Figures 1E, 1F, 3A,

and 3B; (2) response summation switches from supralinear to

sublinear (Figure 6D), as in Figure 1I; and (3) surround suppres-

sion and periodicity in length-tuning curves develop (Figure 6E,

average high-strength tuning curves; Figure 6F, sampling of

diverse tuning curves of individual units across input strengths)

and summation fields shrink (Figure 6G), as in Figures 3C and

3D. For weak center input strength, surround suppression

weakens, and for smaller surrounds, can switch to surround

facilitation (Figure 6H), as in Figure 3E. The periodicity in both
(H) Dependence of surround suppression on center stimulus strength and surrou

units. For each unit, the center stimulus exactly filled its summation field. Surrou

(I) Applying the same procedures to model data (100 randomly selected E units) as

and 90/100 units (position tuning, right) are better fit by SSMmodel thanDoGmod

Statistics for all units in Tables S4 and S5.

(J) Preferred CM SF versus stimulus strength for E (top) and I (bottom) units. Lumin

studied at 100 locations, the center and the 99 locations with preferred orientati

map). Mean (curves) ± SD (color). Due to limits of computing time, we studied

orientation tuning (Figure 7A) at fixed CM SF (0.3 cycles/degree).
length- and position-tuning curves is statistically significant (Fig-

ure 6I), as in the experimental data (Figures 4B and 4E). Preferred

CM SF increases with stimulus strength (Figure 6J), as in model

and experiment (Figures 5D–5G). Note that preferred CM SF for I

units is uniformly 0 for smaller stimulus strengths, consistent with

the linear model prediction that a nonzero I-unit resonant SF re-

quires an ISN (Supplemental Text S2.1.1).

The model also reveals new results. There is no correlation be-

tween luminance and CM preferred orientations (Figure 7A),

similar to experiments (Tanaka and Ohzawa, 2009). This is

because CM preferred orientation arises as a network effect

(the best orientation across 2D cortical space of the spatially pe-

riodic activity, determined in the model by random variations in

intracortical connections), whereas CRF preferred orientation is
nd size for four example E units chosen to represent the diversity seen across

nd stimulus strength c= 40.

to experimental data produces similar results: 98/100 units (length tuning, left)

el (p<0:01, nested F-test). All conventions and analyses as in Figures 4B and 4E.

ance grating is full-field at preferred orientation of center grid location. E/I units

on closest to the center location’s (all within 2�; spatially dispersed across the

CM SF tuning at fixed CM orientation (vertical across model cortex) and CM
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the luminance orientation that best drives a cell’s external input.

The model shows a relatively broad distribution of surround sup-

pression indices, akin to the variability observed experimentally

(e.g., Walker et al., 2000) (Figure 7B), and of I-unit summation

field sizes (Figure 7C), with I units having larger mean summation

fields and weaker mean surround suppression than E units, as in

Figures 2B, 2C, and 3C. Surround suppression is tuned for sur-

round orientation (Figure 7D), with tuning that is weaker for a low-

contrast versus high-contrast center (Figure 7E), both as

observed in V1 (Cavanaugh et al., 2002b; Sengpiel et al., 1997;

Ozeki et al., 2009).

DISCUSSION

The SSN provides a remarkably simple account, and the first

unifying circuit account, of a wide variety of behaviors across

multiple cortical areas. These include surround suppression,

normalization, and their dependencies on contrast and other

stimulus parameters (see multiple references in Introduction),

as well as spatial periodicity in activity and length tuning (Ander-

son et al., 2001; Tanaka and Ohzawa, 2009; Wang et al., 2009).

The model requires no fine tuning, producing qualitatively similar

behavior over broad parameter regimes. Our first experimental

tests provide strong support, for the first time demonstrating

systematic periodicity in high-contrast length-tuning and posi-

tion-tuning curves (the latter indirectly indicating spatial period-

icity in activity), as well as an increase in the underlying SF

of periodic activity with increasing contrast as measured by

preferred CM SF.

The model depends on very few assumptions, most impor-

tantly a supralinear I/O function for single neurons and suffi-

ciently strong recurrent excitation and feedback inhibition. It

differs from previous circuit models (e.g., Schwabe et al., 2010;

Somers et al., 1998, and models reviewed in Carandini and

Heeger, 2012) in providing a unified network explanation of mul-

tiple aspects of both contextual modulation and normalization,

exhibiting similar behaviors for both E and I cells, showing sup-

pression and normalization without increases in inhibition, and

explaining contrast-dependent behaviors without assuming a

class of I neurons that are ineffective at lower contrasts.

Connection to the Balanced Network
As discussed in more detail in Ahmadian et al. (2013), in both the

SSN and the balanced network model (van Vreeswijk and Som-

polinsky, 1998), the dynamics robustly lead inhibition to stabilize

excitation. However, the two models operate in very different re-

gimes. In the balanced network, both external and network-

driven inputs are very large, but are tightly balanced, leaving

only a far smaller residual input. This predicts external input

alone is much larger than net input, counter to results of isolating

external input by silencing cortex (Priebe and Ferster, 2008). Due

to tight balancing, the balanced network can only respond line-

arly to the input. In the SSN, inputs are not large, the balance

is loose, and nonlinear behavior like that seen in cortex can

result. In preliminary results with spiking models, SSN behavior

is reproduced while, like the balanced network, producing asyn-

chronous, irregular firing (D. Obeid and K.D.M., unpublished

data).
414 Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc.
Experimental Predictions
The model makes many experimental predictions beyond

those we tested: (1) for linearly adding external inputs, cortical

areas should show supralinear (weak input) or sublinear

(strong input) response summation; optogenetically stimulating

two distinct sets of neurons could ensure linear input addition;

(2) periodicity in length- and positional-tuning should decrease

in wavelength with increasing contrast, as shown here for CM

tuning; (3) periodicity in length- and positional-tuning should

attenuate or disappear as stimuli are changed from sharp-

edged to slowly tapering, while CM tuning persists; (4 & 5)

across a variety of normalization or suppression phenomena,

(4) E and I cells should show similar behavior (both normalized

or both suppressed); however, this may be confounded

by multiple I-cell subtypes with differing responses, so a

more robust prediction (Supplemental Text S2.2.3) is (5)

response suppression in E cells should be accompanied by

a decrease in the I conductance they receive; and (6) the sum-

mation field for directional tuning in MT should shrink with

contrast.

A seventh prediction is that ISN behavior should occur only for

lower spatial frequencies of input to I cells, along with sufficient

network activation to drive the network into the ISN regime (Sup-

plemental Text S2.2). A key ISN behavior is the ‘‘paradoxical’’

response of I cells: addition of excitatory drive to I cells causes

them to lower their firing rates in the new steady state (Ozeki

et al., 2009; Tsodyks et al., 1997). Thus, if channelrhodopsin-2

(ChRh2) were expressed in I neurons, and a light pattern of a

given SF were modulated or drifted at low temporal frequency

while a visual stimulus was presented, the network should

show paradoxical response only for sufficient visual contrast

and then only for spatial frequencies of light below a critical fre-

quency kcr (Figure 8). This predicts a sharp jump, with increasing

SF, of about 180� in the relative phase of E and I cell activities as

kcr is crossed, or more robustly (Supplemental Text S2.2.3), in

the relative phases of the E and I conductances received by E

cells.

We also note several caveats. In some species or areas, spon-

taneous activity may suffice to drive the network out of the

supralinearly summating regime. Periodicity in length- and posi-

tion-tuning curves depends on sharp-edged input, but this might

not correspond directly to stimulus shape: connection fan-in and

fan-out at previous stages could spatially smooth input from

sharp-edged stimuli, while processing (e.g., surround suppres-

sion) at previous stages could sharpen input edges for smoothly

tapering stimuli. Because I cells have wider summation fields

than E cells, intermediate stimulus sizes can suppress E cells,

but facilitate I cells (see Discussion of results of Haider et al.,

2010, below). In parameter regimes in which I projections are

not too narrow, both E and I cells can be surround suppressed

with increases in the inhibition they receive: inhibition from

new I cells recruited by a larger stimulus can outweigh loss of

inhibition from suppressed I cells. Other factors that can

dynamically change effective synaptic strengths–short-term

synaptic depression or facilitation, adaptation currents–may

add complexity to model behavior, but will not alter the basic

SSN distinction between weak- and strong-effective-synapse

regimes.
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Figure 8. Spatial-Frequency- and Contrast-

Dependent Paradoxical Response in the

2D Nonlinear Model

Slowly drifting, spatially sinusoidal modulatory

input is given to I units (e.g., by photostimulation

with ChRh2 expressed in I cells), in the presence of

varying levels of spatially uniform tonic visual input

driving both E and I units. ‘‘Paradoxical’’ ISN

behavior–I firing rates decreasing for increased

input to I units–manifests as E and I units modu-

lating in phase with one another. For weak tonic

input, the network is a non-ISN and units respond

nonparadoxically (modulatory input and I in phase,

E at opposite phase) for all modulatory spatial

frequencies. For high tonic input, network is an

ISN. Then low-spatial-frequency, but not high-

spatial-frequency modulation drives units para-

doxically (Supplemental Text S2.2 and Fig-

ure S2C). A more robust prediction is that these

changes in relative phase will occur in the excita-

tion and inhibition received by cells (Supplemental

Text S2.2.3). Modulatory input and E and I firing

rates are all shown normalized to both their mini-

mum and maximum values.
Does the SSN Model Apply to Rodent Cortex?
We have primarily modeled data from species with columnar

organization and maps of features such as preferred orientation.

Does ourmodel apply to species, such as rodents, that lack such

organization?

Recurrent excitation in rodents may be weaker than in species

with columnar organization, so that excitatory instability and the

transition to sublinear behavior may not occur. This is suggested

by results of Atallah et al. (2012) in mouse V1 L2/3: optogenetic

suppression of parvalbumin (PV)-expressing I cells increased

E-cell visual responses without any increase in the excitatory

conductance they received and with a nonparadoxical increase

in inhibitory conductance, suggesting a dearth of E/E coupling

and non-ISN behavior. This could explain why maps fail to

develop in rodents, as such failure can occur if local interactions

between neurons are suppressive (Kaschube, 2014). However,

engagement of L2/3 excitatory connectivity may vary with exper-

imental conditions or area. In rodent auditory cortex, locomotion

added drive to L1 I neurons, suppressing L2/3 E-cell firing

with a paradoxical suppression of inhibitory conductance they

received, suggesting an ISN (Zhou et al., 2014). Other results

suggest strong recurrent excitation and ISN-like behavior in L5

of rodent cortex (London et al., 2010; Stroh et al., 2013); rodent

response properties might be synthesized in deep layers by SSN

mechanisms and propagate to upper layers.

Adesnik et al. (2012) found in mouse V1 L2/3 that somato-

statin-expressing I cells (SOM cells) were surround facilitated,

while E and PV cells were suppressed, suggesting a non-ISN

in which increased SOM inhibition mediates suppression (Nien-

borg et al., 2013). However, suppression might decrease the net

inhibition (SOM + PV) cells receive, as in an ISN; optogenetic

suppression of SOM-cell spiking only moderately reduced E-

cell surround suppression; and another study found both SOM

and PV neurons were surround suppressed (Pecka et al.,

2014). The relative sparsity of SOM cells and increased propor-
tion of PV cells in macaque versus mouse V1 (reviewed in Nien-

borg et al., 2013) is another potentially significant species

difference.

A Conflicting Experiment?
The model suggests a resolution to the apparent conflict be-

tween two findings: inhibition decreased during surround sup-

pression (Ozeki et al., 2009); yet increased stimulus size in

windowed natural movies suppressed E cell firing, while

increasing the inhibition they receive and PV cell firing (Haider

et al., 2010). Haider et al. (2010) used small stimuli: for a given

cell, center stimulus size was that giving half-maximal response,

which for a Gaussian-shaped CRF is about 0.5-0.6 3 CRF size

(Supplemental Methods S1.3.4); large stimuli were three times

larger, or 1.5-1.8 3 CRF size (versus surrounds typically 10 3

CRF size in Ozeki et al., 2009). PV cells have larger summation

fields than E cells in mice (Adesnik et al., 2012) and our model

(Figure 7C). Thus, Haider et al. (2010)’s larger stimuli, (1) to E cells

might have size close to optimal for I cells; and (2) to I cells might

evoke more response than center stimuli, even if optimal size

were in between. Figure S14 shows how the model could simul-

taneously produce the results of both studies. The broad spatio-

temporal power spectrum of natural stimuli may also contribute:

paradoxical effects arise only at lower spatial frequencies

(Figure 8) and similar dependence might occur for temporal

frequency.

Extension to Other Cortical Properties
The network’s winner-take-all property for unequal-strength in-

puts may explain suppression of correlated neural variability

induced by a sensory stimulus or motor plan (Churchland

et al., 2010) or attention (Cohen and Maunsell, 2009; Mitchell

et al., 2009): increasing strength of other inputs (stimulus, plan,

or attention) suppresses the contribution of correlated neural

noise to neuronal output. Multiple attentional effects on neural
Neuron 85, 402–417, January 21, 2015 ª2015 Elsevier Inc. 415



responses arise if attention modulates inputs to a normalizing

circuit (e.g., Reynolds and Heeger, 2009); the SSNmodel is likely

to reproduce these effects. Future studies will address these

issues.

Attentional enhancement and modulatory suppression can be

understood as opposite turns of a ‘‘knob’’ that adjusts the gain of

‘‘balanced amplification’’ (Murphy andMiller, 2009), which arises

in the ISN regime: a small network shift toward inhibition (e.g.,

addition of modulatory E input to I cells) causes a large decrease

in both E- and I-cell responses, while a small shift toward excita-

tion causes large increases in both (these changes can be mul-

tiplicative, i.e., gain changes, in the SSN; Figure S13). Thus, a

function of strong cortical recurrence may be to provide modu-

latable amplification.

Conclusions
The SSN provides a powerful framework for understanding how

sensory cortex globally integrates multiple sources of input,

bottom-up and top-down, to produce neuronal responses and

ultimately perception. The computational function of these inte-

grative behaviors may now be more deeply probed by studying

how the underlying circuit processes more complex and natural

stimuli. Circuit changes that cause failures of this basic circuit

operation might manifest at multiple cortical levels from primary

sensation to higher cognition. Understanding such failures may

provide insight into disorders such as autism and schizophrenia,

which show deficits in contextual (Silverstein and Keane, 2011)

or global (Qian and Lipkin, 2011) processing and involve disrup-

tions in E/I balance (Yizhar et al., 2011; Yoon et al., 2010) that

could disrupt the balanced amplification underlying SSN modu-

lations. Indeed, schizophrenics show reduced visual surround

suppression that correlates with reduced gamma-amino-butyric

acid (GABA) concentration in visual cortex (Yoon et al., 2010),

while autistic subjects show increased variability in sensory re-

sponses (Dinstein et al., 2012), which might reflect failure of

normalization-induced variability suppression.

EXPERIMENTAL PROCEDURES

Animal care protocols conformed to NIH guidelines and were approved by the

Brandeis University Institutional Animal Care and Use Committee. Methods

are found in Supplemental Methods, section S1.
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Supplemental Information includes Supplemental Methods, Supplemental

Text, fourteen figures, and five tables and can be found with this article online

at http://dx.doi.org/10.1016/j.neuron.2014.12.026.
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