
Stabilized supralinear network dynamics
account for stimulus-induced changes of

noise variability in the cortex

Guillaume Hennequin@1, Yashar Ahmadian?2,3,4,5, Daniel B. Rubin?2,6, Máté Lengyel†1 and Kenneth D. Miller†2,3
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Summary

Variability and correlations in cortical activity are ubiquitously modulated by stimuli. Correlated variability1

is quenched following stimulus onset across multiple cortical areas, suppressing low-frequency components of2

the LFP and of Vm-LFP coherence. Modulation of Fano factors and correlations in area MT is tuned for stimulus3

direction. What circuit mechanisms underly these behaviors? We show that a simple model circuit, the stochastic4

Stabilized Supralinear Network (SSN), robustly explains these results. Stimuli modulate variability by modifying5

two forms of e�ective connectivity between activity pa�erns that characterize excitatory-inhibitory (E/I) circuits.6

Increases in the strength with which activity pa�erns inhibit themselves reduce correlated variability, while in-7

creases in feedforward connections between pa�erns (transforming E/I imbalance into balanced fluctuations)8

increase variability. These results suggest an operating regime of cortical dynamics that involves fast fluctuations9

and fast responses to stimulus changes, unlike previous models of variability suppression through suppression of10

chaos or networks with multiple a�ractors.11

Neuronal activity throughout cerebral cortex is variable, both12

temporally during epochs of stationary dynamics and across13

repeated trials despite constant stimulus or task conditions14

(So�ky and Koch, 1993; Churchland et al., 2010). Moreover,15

variability is modulated by a variety of factors, most notably16

by external sensory stimuli (Churchland et al., 2010; Kohn17

and Smith, 2005; Ponce-Alvarez et al., 2013), planning and ex-18

ecution of limb movements (Churchland et al., 2006, 2010),19

and a�ention (Cohen and Maunsell, 2009; Mitchell et al.,20

2009). Modulation of variability occurs at the level of single-21

neuron activity, e.g. membrane potentials or spike counts22

(Finn et al., 2007; Poulet and Petersen, 2008; Gentet et al.,23

2010; Churchland et al., 2010; Tan et al., 2014), but also in the24

pa�erns of joint activity across populations, as seen in mul-25

tiunit activity or the local field potential (LFP) (Tan et al.,26

2014; Chen et al., 2014; Lin et al., 2015). Variability modu-27

lation shows stereotypical pa�erns: not only does the on-28

set of a stimulus quench variability overall, and in particu-29

lar correlated variability that is “shared” across many neu-30

rons (modeled as fluctuations in firing rates and typically31

found to be low-dimensional; Lin et al., 2015; Goris et al.,32

2014; Ecker et al., 2014, 2016; Churchland et al., 2010), but33

the degree of variability reduction can also depend on the34

tuning of individual cells. For example, in area MT, variabil-35

ity is quenched more strongly in cells that respond best to36

the stimulus, and correlations decrease more among neurons37

with similar stimulus preferences (Ponce-Alvarez et al., 2013;38

Lombardo et al., 2015). Although these pa�erned modula-39
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tions of variability are increasingly included in quantitative40

analyses of neural recordings (Renart and Machens, 2014), it41

is still unclear what they imply about the dynamical regime42

in which the cortex operates.43

Three di�erent dynamical mechanisms have been proposed44

to explain some selected aspects of cortical variability. The45

so-called “balanced network” model (van Vreeswijk and46

Sompolinsky, 1998; Renart et al., 2010) has been highly suc-47

cessful at explaining in general the asynchronous and irregu-48

lar nature of action potential firing in cortical neurons under49

normal operating conditions (So�ky and Koch, 1993). How-50

ever, very strong, very fast inhibitory feedback in the bal-51

anced network suppresses correlated rate fluctuations away52

from that stable state (van Vreeswijk and Sompolinsky, 1998;53

Renart et al., 2010; Tetzla� et al., 2012), leaving only fast vari-54

ability due to irregular spiking. Because the shared vari-55

ability is already eliminated, stimuli cannot modulate that56

variability. This has been rectified in models in which not57

only the spiking of neurons but also their underlying fir-58

ing rates are variable. In “a�ractor models”, the network59

noisily wanders among multiple possible stable states (“at-60

tractors”) in the absence of a stimulus, thus operating in61

a marginally stable state characterized by shared variabil-62

ity. Stimuli then suppress this shared variability by pinning63

fluctuations to the vicinity of one particular a�ractor (Blu-64

menfeld et al., 2006; Litwin-Kumar and Doiron, 2012; Deco65

and Hugues, 2012; Ponce-Alvarez et al., 2013; Doiron and66

Litwin-Kumar, 2014; Mochol et al., 2015). In chaotic network67

models (Sompolinsky et al., 1988), strong firing rate fluctu-68

ations are typically low-dimensional (hence “shared”), and69

certain types of stimuli can suppress chaos, thus quenching70

across-trial variability (Molgedey et al., 1992; Bertschinger71

and Natschlger, 2004; Sussillo and Abbo�, 2009; Rajan et al.,72

2010). While both the a�ractor and the chaotic mechanisms73

can explain the general phenomenon of stimulus-induced re-74

duction of variability, only the former has been proposed to75

explain the stimulus-tuning of variability reduction – and76

even that required considerable fine tuning of parameters to77

keep it in the “metastable” regime, in which the system stays78

near a�ractors yet noise can move the system between them79

(Ponce-Alvarez et al., 2013).80

Here we explored a qualitatively di�erent model of cortical81

dynamics, the stabilized supralinear network (SSN; Ahma-82

dian et al., 2013; Rubin et al., 2015). In the SSN, single neu-83

rons have supralinear input/output (I/O) curves (Priebe and84

Ferster, 2008), which yields a transition between two regimes85

at the level of circuit dynamics. For weak external inputs,86

network dynamics are stable even without inhibition. For87

stronger inputs, firing rates grow towards steeper parts of88

the I/O curves, leading to potential instability due to grow-89

ing recurrent excitation, but feedback inhibition dynamically90

cancels the destabilising e�ect of this supralinearity, thus91

keeping the network in a fundamentally stable (as opposed92

to a metastable or chaotic) operating regime. This stabiliza-93

tion is achieved by a “loose” cancellation of moderately large94

E and I inputs, in contrast to the balanced network model,95

in which there is a precise cancellation of very large E/I in-96

puts. We showed (Rubin et al., 2015) that the SSN natu-97

rally explains many cortical nonlinear behaviors, including98

sublinear summation of responses to di�erent stimuli (“nor-99

malization”, Carandini and Heeger, 2012), surround suppres-100

sion, and their nonlinear changes in behavior with stimu-101

lus strength. These behaviors cannot arise in the balanced102

network, because in that regime responses must be linear103

functions of the external input (though see Mongillo et al.,104

2012). Importantly, the SSN also presents a promising candi-105

date for understanding variability modulation: its loose E/I106

balance is such that inhibitory feedback is weak enough for107

shared network variability to subsist over a broad range of108

input strengths, and we also expect its nonlinear collective109

behaviour to lead to a non-trivial modulation of this shared110

variability with the stimulus.111

Here we show that, indeed, the SSN in the inhibition-112

stabilized regime increasingly and gradually suppresses113

correlated rate variability with increasing external input114

strength, rather than eliminating it like the balanced net-115

work. As a result, the SSN naturally and robustly explains116

modulation of cortical variability, including its tuning depen-117

dence. We first analyzed variability in the simplest stochas-118

tic instantiation of the SSN, with two unstructured popula-119

tions of excitatory (E) and inhibitory (I) cells, and found that120

an external stimulus could strongly modulate the variabil-121

ity of population activities. In particular, the model predicts122

stimulus-induced quenching of variability, as well as a re-123

duction of the low-temporal-frequency coherence between124

local population activity and single-cell responses, as found125

experimentally (Poulet and Petersen, 2008; Churchland et al.,126

2010; Chen et al., 2014; Tan et al., 2014). Furthermore, tuning-127

dependent modulations of Fano factors and noise correla-128

tions by stimuli arise robustly in a more detailed architecture129

with structured connectivity, and are consistent with those130

found in area MT of the awake monkey (Ponce-Alvarez et al.,131

2013).132

Mechanistically, input-induced modulation of variability in133

the SSN originates from input-dependent changes in e�ec-134

tive connectivity between neurons, which themselves arise135

from the presence of nonlinear neuronal input/output func-136

tions. To dissect these mechanisms, we first analyzed a sim-137

ple model of one E and one I population. We decomposed138

the e�ective connectivity into two types of input-dependent139

interactions between a pair of E and I activity pa�erns. One140

is a self-connection of an activity pa�ern onto itself, which141

more strongly suppresses variability as it becomes increas-142

ingly inhibitory, summarizing the e�ect of growing feedback143

inhibition. In the inhibition-stabilized regime, these connec-144

tions grow more strongly inhibitory with increasing exter-145

nal input due both to the overall strengthening of e�ective146

connections and to the relatively faster growth of I vs. E fir-147

ing rates, and thus of I vs. E e�ective connection strengths,148

that arises from the dynamics that keep the network sta-149

ble. The other type of interaction is a feedforward connec-150

tion from one activity pa�ern to another, which causes small151

di�erences between E and I cell activity to drive joint activ-152

ity of E and I cells (“balanced amplification”, Murphy and153

Miller, 2009). These feedforward connections also grow with154

increasing external input strength, enhancing variability. We155
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show that variability enhancements dominate for low levels156

of input (which might be below the levels of spontaneous ac-157

tivity), but suppression of variability via inhibitory feedback158

always dominates for larger inputs. The same insights gener-159

alized to a more complex architecture to explain the tuning-160

dependent reduction of variability by interactions between a161

small number of E and I activity pa�ern-pairs.162

Our results have important implications beyond o�ering a163

new mechanistic understanding of cortical variability: the164

SSN is distinguished by dynamics in which the network re-165

sponds to input changes on fast time scales comparable to166

those of isolated cells, rather than on much longer time167

scales created by recurrent excitation, which tend to gov-168

ern dynamics in multi-a�ractor and chaotic networks (Mur-169

phy and Miller, 2009). This regime of fast fluctuations o�ers170

distinct computational advantages (Hennequin et al., 2014a),171

and seems to characterize at least mouse V1 (Reinhold et al.,172

2015).173

Results174

Single neurons in sensory areas respond supralinearly175

to their inputs. Plo�ing momentary firing rates, r ,176

versus average membrane potentials, Vm, o�en reveals177

an approximate threshold power-law relationship (Fig-178

ure 1B): r ⇡ kbVm � V0cn+, where k is some scaling constant;179

V0 ⇡ �70 mV is a threshold that o�en approximates, and180

that we will always take equal to, the cell’s resting poten-181

tial Vrest; bxc+ = x if x � 0 and = 0 otherwise; and the182

exponent n ranges from 1 to 5 in V1 (Priebe and Ferster,183

2008). Importantly, this approximation is accurate over the184

entire dynamic range of neurons under normal spontaneous185

or stimulus-evoked conditions, i.e. neuronal responses rarely186

saturate at high firing rates. Accordingly, we modeled Vm187

dynamics as a simple low-pass filtering of synaptic inputs188

obtained as a weighted sum of presynaptic firing rates and189

external inputs (Experimental Procedures and SI):190

⌧i V̇i =� Vi(t) + Vrest + hi(t) + noise

+
X

j2E cells

Wij rj(t)�
X

j2I cells

Wij rj(t) (1)

where Vi denotes the Vm of neuron i, ⌧i is its membrane time191

constant (20 ms and 10 ms for excitatory and inhibitory cells,192

respectively), Vrest = �70 mV is a resting potential,Wij is the193

(positive or zero) strength of the synaptic connection from194

neuron j to neuron i, hi(t) is the potentially time-varying but195

deterministic component of external input, and the momen-196

tary firing rate of cell i is given by197

ri(t) = kbVi(t)� Vrestcn+ (2)

with n = 2 (Figure 1B; see also SI for an extension to other198

exponents). This is the stabilized supralinear network model199

studied in (Ahmadian et al., 2013; Rubin et al., 2015), but for-200

mulated with voltages rather than rates as the dynamical201

variables (the two formulations are mathematically equiva-202

lent when all neurons have the same time constant, Miller203

and Fumarola, 2011) and with noise added.204

As experiments support Equation 2 when both membrane205

potentials and spike counts are averaged in 30 ms time206

bins (Priebe and Ferster, 2008), Vm here stands for a coarse-207

grained (low-pass filtered) version of the raw somatic mem-208

brane potential, and in particular it does not incorporate the209

action potentials themselves. Thus the e�ective time resolu-210

tion of our model was around 30 ms which allowed study-211

ing the e�ects of inputs that did not change significantly212

on timescales shorter than that. Accordingly, in Equation 1213

we assumed that external noise had a time constant ⌧noise =214

50 ms, in line with membrane potential and spike count au-215

tocorrelation timescales found across the cortex (Azouz and216

Gray, 1999; Berkes et al., 2011; Murray et al., 2014).217

We focused on analysing how the intrinsic dynamics of218

the network shaped external noise to give rise to stimulus-219

dependent pa�erns of response variability. We studied a pro-220

gression of connectivity architectures W of increasing com-221

plexity, all involving two separate populations of excitatory222

and inhibitory neurons. We also validated our results in large223

scale simulations of spiking neuronal networks.224

Variability of population activity: modulation by exter-225

nal input226

We first considered a simple circuit motif: an excitatory (E)227

unit and an inhibitory (I) unit, recurrently coupled and re-228

ceiving the same mean external input h as well as their own229

independent noise (Figure 1A). In this simple network, the230

two units represent two randomly connected populations of231

E and I neurons, a canonical model of cortical networks (Vo-232

gels et al., 2005). Thus, their time-varying activity, VE(t) and233

VI(t), represent the momentary population-average mem-234

brane potential of all the E and I cells respectively. While235

these population-level quantities cannot be compared di-236

rectly with the intracellularly recorded membrane potentials237

of individual cells, we used their average to model the extra-238

cellularly recorded LFP. Despite its simplicity, this architec-239

ture accounted well for the overall population response prop-240

erties in the larger networks with more detailed connectivity241

pa�erns that we analyzed later.242

The connectivitymatrix in this reducedmodel takes the form243

W =
✓

WEE �WEI
WIE �WII

◆
(3)

whereWAB is the magnitude of the connection from the unit244

of type B (E or I) to that of type A. The W terms were245

chosen such that the collective dynamics of the network re-246

mained stable for any input despite the strongly supralin-247

ear input-output functions of individual neurons (Equation 2,248

Figure 1B; see also Experimental Procedures).249

Activity in the network exhibited temporal variability due250

to the noisy input. We found that the external, steady in-251

put h strongly modulated both the mean, V E/I, and the252

(co)variance of the fluctuations in VE and VI (Figure 1C-E).253

When h = 0, there was no input to drive the network, and VE254

and VI hovered around Vrest = �70 mV, fluctuating virtually255

independently with standard deviations essentially match-256
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Figure 1. Activity variability in a reduced, two-population model of a supralinear stabilized network. (A) The network is com-
posed of two recurrently connected units, summarizing the activity of two populations of excitatory (red) and inhibitory (blue) neurons. Both
units receive private noise and a common constant input h. (B) Threshold-quadratic gain function determining the relationship between
membrane potential and momentary firing rate of model neurons (Equation 2). (C) Sample VE/I traces for both units (top), as the input is
increased in steps from h = 0 to 2 mV to 15 mV (bo�om). (D)Dependence of population activity statistics on stimulus strength h. Top: mean
E and I firing rates; middle: mean VE/I; bo�om: standard deviation of VE/I fluctuations. The comparison with a purely feedforward network
(W = 0) is shown in gray. (E) Population Vm auto- and cross-correlograms in stationary conditions, when h = 2 mV and h = 15 mV (black
and green, respectively, cf. marks in panels C-D). In both input conditions, VE and VI fluctuations are highly correlated, inhibition lagging
behind excitation by a fewms. Note also that VE/I fluctuations are faster for h = 15 mV. (F) LFP power spectrum for low input (h = 2 mV) and
high input (h = 15 mV) conditions. The LFP is modelled as an average of VE and VI, weighted by assumed relative population sizes (80% E,
20% I). Strong input mostly suppresses low frequencies. In (D), (E) and (F), dots show the results of 1000 second-long numerical simulations
of Equation 1, and solid lines show theoretical predictions derived analytically using novel nonlinear techniques (Hennequin and Lengyel,
in prep.).

ing those that would arise without recurrent connections257

(W = 0, gray line in Figure 1D, bo�om). For a somewhat258

larger input, h = 2 mV, both E and I populations fired at259

moderate rates (3-4 Hz) (Figure 1D, top), but now also exhib-260

ited large and synchronous population Vm fluctuations (Fig-261

ure 1C, black circle mark). For yet larger inputs (h = 15 mV),262

fluctuations remained highly correlated but were strongly263

quenched in their magnitude (Figure 1C, green circle mark).264

Figure 1D shows how the temporal (or, equivalently, the265

across-trial) mean and variability of activities varied over266

a broad range of input strengths. We observed that, with267

growing external input, population mean Vm grew linearly268

or supralinearly for small inputs, but for larger inputs grew269

strongly sublinearly, with V I growing faster than V E (Fig-270

ure 1D, middle; Ahmadian et al., 2013; Rubin et al., 2015).271

Variability in both VE and VI typically increased for small272

inputs, peaking around this transition between supralinear273

and sublinear growth, and then decreased with increasing274

input (Figure 1D, bo�om). These e�ects were robust over275

a broad range of network parameters (gain functions, con-276

nection weights, input gains and correlations), as long as277

they ensured dynamical stability (Supplementary Figures S1278

and S2). Although the precise amplitude and position of the279

peak of Vm variance depended on network parameters, the280

overall non-monotonic shape of variability modulation was281

largely conserved. In particular, we could show analytically282

that variability suppression occurs earlier (for smaller input283

h) in networks with strong connections, or, for fixed over-284

all connection strength, in networks that are dominated by285

feedback inhibition (WEIWIE � WEEWII; SI). More generally,286

we found that the firing rates at the peak of variability are287

typically low (2.5 Hz on average over a thousand randomly288

parameterized stable networks, and below 6 Hz for 90% of289

them; cf. SI). Since these rates are comparable to cortical290

spontaneous firing rates, this predicts that increased sensory291

drive should generally result in variability quenching in cor-292

tical LFPs.293

Importantly, input-modulation of variability required recur-294

rent network interactions. This was revealed by comparing295

our network to a purely feedforward circuit (W = 0) which296

exhibited qualitatively di�erent behaviour (Figure 1D, gray).297

In the feedforward circuit, mean Vm remained linear in h, so298

that mean rates rose quadratically with Vm or h, and fluctu-299

ations in Vm no longer depended on the input strength.300
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Figure 2. The origins of input-dependent modulation of variability. (A-C) Visualization of the influence of single-neuron leak and
e�ective connectivity on the (co-)variability of E/I activity in the two-population SSN of Figure 1. In (A), h = 0, so the only contributor to
the flow of trajectories is the leak in each population (green force field acting along the cardinal axes of E/I fluctuations – the flow is more
compressive along the I axis due to the shorter membrane time constant in I cells). This flow contains the di�usion due to input noise (cf.
example trajectory in gray), resulting in uncorrelated baseline E/I fluctuations (black ellipse – contour line of the joint normal distribution
of �VE and �VI at one standard deviation). In (B-C), the network is driven by a non-zero h, and the e�ective recurrent connectivity adds
to the leak to instate two types of force fields steering fluctuations: a restoring force field (green, generalizing the leak in (A)) and a shear
force field (orange). The relative contributions of the two force fields determine the size and elongation of the E/I covariance (solid black
ellipses). The black ellipse in (A) is reproduced in (B–C) for comparison (dashed ellipses). Triangular arrows are proportional in area to the
contribution they make to the total flow of fluctuations. The origin (�V = 0) corresponds to stationary mean population activity for the given
input strength h (see labels). (D) Illustration of the decomposition of the e�ective connectivity (for a given mean stimulus h) as couplings
between a di�erence-like pa�ern (le�) and a sum-like pa�ern (right; cf. rotated gray axes in (B-C)). For a given input h, the di�erence feeds
the sum with weight !FF (orange arrow), and the di�erence and sum pa�erns inhibit themselves with negative weight �d and �s respectively
(green arrows). These h-dependent couplings scale the corresponding force fields in (A-C) (note color consistency). (E) Input-dependence of
|!FF| (top, orange) and |�d| and |�s| (bo�om, green).

Changes in e�ective connectivity shape variability in301

the SSN302

The e�ects of input h on variability could be understood from303

the way it modified the e�ective connectivity of the circuit.304

An e�ective connection quantifies the impact of a small mo-305

mentary change in the Vm of the presynaptic neuron on the306

total input in its postsynaptic partner. Formally, we derived307

e�ective connectivity from a linearization of Equations 1308

and 2: we start with the steady state mean voltage V i for309

the given mean input h, and analyze the dynamics of each310

neuron’s small, momentary, noise-induced deviations �Vi(t)311

from V i :312

⌧i �V̇i = ��Vi +
X

j2E cells

W e�
ij (h) �Vj �

X

j2I cells

W e�
ij (h) �Vj + noise (4)

where the e�ective connection strength,313

W e�
ij (h) = 2k Wij bV j(h)� Vrestc+ (5)

was proportional to themean activation of unit j, which itself314

depended on the input h as seen above (cf. Figure 1D, mid-315

dle). This growth of e�ective connectivity with increasing V316

arose because of the supralinear input/output function: the317

e�ective connectivity W e�
ij (h) is the biophysical weight Wij318

multiplied by the gain of the presynaptic cell – the change319

in its firing rate per change in its voltage – which is the ever-320

increasing slope of its input/output function (Figure 1B).321

How are changes in e�ective connectivity translated into322

changes in variability? For zero input, h = 0, the e�ective323

connections are zero, so we should expect behavior as if the324

neurons were uncoupled (W = 0), as observed (Figure 1D,325

compare blue and red lines with gray lines at h = 0). With326

increasing h, the e�ective connectivity strengthens, but – as327

growth of V becomes sublinear – grows more rapidly for328

inhibitory than for excitatory weights, reflecting the faster329

growth of VI over VE (Figure 1D, middle). This greater rel-330

ative growth of inhibitory response is a robust outcome of331

the network maintaining stability despite increasing e�ec-332

tive connectivity (Ahmadian et al., 2013; Rubin et al., 2015).333

These changes in e�ective connectivity can have conflicting334

e�ects: the increasingly strong weights can increase excita-335

tory or driving e�ects that amplify fluctuations and increase336

variability (Murphy and Miller, 2009), but they and the rel-337

atively stronger inhibition also increase inhibitory e�ects,338

suppressing fluctuations and decreasing variability (Renart339

et al., 2010; Tetzla� et al., 2012). The actual behavior of the340

network was mixed: variability first increased and then de-341
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creased as the input grew (Figure 1D, bo�om). This sug-342

gests a changing balance of the variability-amplifying and343

-a�enuating e�ects of changing e�ective connectivity.344

What determines this changing balance? To study this, we345

examined the flow of Vm trajectories, visualized in the plane346

of joint �VE and �VI fluctuations (Figure 2A-C). In general, Vm347

trajectories underwent di�usion driven by the external input348

noise (Figure 2A, gray trajectory). With no external mean349

drive (h = 0), e�ective connectivity being negligible, the only350

contribution to the flow of activity was the leak in the E and351

I populations – the��Vi term in Equation 4 (Figure 2A, green352

arrows). Leak created a restoring “force field” by pulling both353

E and I activities back towards rest with their characteristic354

time constants (Figure 2A, green arrows, growing linearly as355

one moves away from the origin against their pointing di-356

rection) and thus contained di�usion so that it had a finite357

(co)variance (Figure 2A, black ellipse).358

With increasing mean external drive h, the e�ective connec-359

tivity of the network also began to contribute to the dynam-360

ics and thus to the total flow. While the connectivity be-361

tween E and I populations was fully recurrent, it could be362

conveniently decomposed into a set of simpler interactions363

among a pair of joint E-I activity pa�erns, one a weighted364

di�erence and the other a weighted sum of E and I activities365

(rotated gray axes in Figure 2B-C; Murphy and Miller, 2009,366

see also Supplementary Figure S2E). First, both pa�erns in-367

hibited themselves through negative self-couplings�d and�s368

(Figure 2D, green arrows). These “restoring forces” included369

the e�ects of both leak and recurrent feedback, and acted370

along the sum and di�erence axes now, rather than on E and371

I cells separately (compare green arrows between Figure 2A372

and B). Second, the di�erence pa�ern fed the sumwith an ef-373

fective feed-forward coupling !FF (Figure 2D, orange arrow).374

This e�ect, known as balanced amplification (Murphy and375

Miller, 2009; Hennequin et al., 2014b), created a “shear” force376

field (Figure 2B-C, orange arrows, growing linearly along the377

di�erence axis, but unchanged by movement along the sum378

axis) acting on Vm fluctuations such that excursions away379

from E-I balance (movements along the di�erence axis) were380

transported along the sum direction.381

While the purely restorative force field at h = 0 shaped net-382

work variability simply by containing di�usion (Figure 2A),383

the combination of shear and restoring forces at h > 0384

steered di�usion di�erentially along the sum and di�erence385

directions, resulting in various pa�erns of correlated E/I Vm386

variability (Figure 2B-C, black ellipses). Importantly, these387

forces depended on the input (compare Figure 2B and C) as388

their magnitude was scaled by the coupling terms character-389

izing e�ective connectivity, !FF, �d and �s, which in turn fun-390

damentally depended on the input (Equation 5, Figure 2E).391

This is the origin of input-dependent variability in the SSN.392

In the small-input regime, we found that the feedforward393

coupling !FF typically grew quickly (Figure 2E, orange)394

whereas the negative self-couplings �s and �d tended to395

grow more slowly, or to even weaken transiently (Figure 2E,396

green; this transient weakening of self-coupling was atypi-397

cal in randomly instantiated networks, SI). These two e�ects398

combined to yield an initial increase in Vm variability for in-399

creasing external drive. For example, for the particular pa-400

rameters used in the simulations shown in Figures 1 and 2,401

there was li�le restoring force but strong shear along the sum402

axis for h = 2 mV, leading to an overall strong accentuation403

of (co-)variability of E and I activities (Figure 2B). For larger404

inputs, both the feedforward and self-couplings grew with h,405

but the increasing quenching e�ect of self-couplings domi-406

nates the expanding e�ect of balanced amplification, leading407

generically to a pronounced net decrease in overall variabil-408

ity (Figure 1D, bo�om; Figure 2C). For example, in the limit409

of slow noise, the summed E/I variance has a simple form410

that includes a term explicitly capturing the opposing e�ects411

of self couplings and balanced amplification: |!FF|2
|�s|2 |�d|2 . This412

term growswith the square of!FF but is divided by four pow-413

ers of �, indicating that self-couplings, if su�iciently strong,414

will dominate balanced amplification (for a derivation, and415

the more general case, see SI).416

All the e�ects mentioned above were robust to changes in417

parameters, which we could show both through inspection418

of analytical formulae for activity variability and through nu-419

merical explorations of a thousand networks with randomly420

chosen parameters (SI).421

Variability quenching speeds up activity fluctuations422

The growing restoring force also sped up the network dy-423

namics, which was seen in the sharpening of the VE/I auto-424

correlograms by large external inputs (Figure 1E). This was425

because the e�ective time constant with which fluctuations426

decay in the network is inversely proportional to the restor-427

ing force (Murphy and Miller, 2009). This speeding up was428

also reflected in the drop of LFP power at low frequencies429

(Figure 1F), in line with experimental data (Poulet and Pe-430

tersen, 2008; Tan et al., 2014; Chen et al., 2014). At higher431

frequencies, this drop was over-compensated by the ampli-432

fying e�ect of the shear force and by the emergence of weak433

resonance, resulting in larger LFP power relative to the low-434

input condition. Such a pa�ern of changes in the LFP has435

indeed been found in V1 of the awake macaque between436

evoked and spontaneous activity, although there was over-437

all more power at high frequencies in both conditions than438

our model predicted (Tan et al., 2014). This may simply stem439

from an increased contribution of fast “spiking noise” at high440

firing rates in the cortex, which could not be captured by441

this population-level model but emerged naturally in a more442

detailed model of the same 2-population architecture using443

individual spiking neurons, as we show in the following.444

Variability reduction in a network of spiking neurons:445

impact of input noise correlations446

In order to study variability in single neurons and at the level447

of spike counts, we implemented the two-population archi-448

tecture of Figure 1A in a network of spiking neurons (Exper-449

imental Procedures). The network consisted of 4000 E neu-450

rons and 1000 I neurons, randomly connected with low prob-451

6

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted December 14, 2016. . https://doi.org/10.1101/094334doi: bioRxiv preprint 

https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/


uncorrelated input noise (⇢ = 0)

exc.

stimulus onset

A

B

C

D

E F

inh.

0
20
40
60

-70

-60

-70

-60

1 s

neuron 1, neuron 2

correlated input noise (⇢ = 1)

0
5

10
15

⇢

1

1.2

1.4

1.6

0

1

0 5 10 15

private

shared 1

2

0 5 10 15

10�4

10�2

100

MODEL
⇢ = 0.2

DATA

0

0.2

0.4

0.6

1 10 1 10

ra
te

[H
z]

LF
P
[m

V
]

V
m
[m

V
]

m
ea

n
ra
te

[H
z]

0

1

Fa
no

fa
ct
or

va
ria

bi
lit
y
in

sp
ik
e
co

un
ts

input h [mV]

V
m
st
d.

[m
V
]

input h [mV]

LF
P
po

w
er

spont.
evoked

V
m
-L
FP

co
he

re
nc

e

frequency [Hz] frequency [Hz]

Figure 3. The modulation of variability in a randomly connected SSN. (A) Top: raster plot of spiking activity, for 40 (out of 4 000)
excitatory neurons (red) and 10 (out of 1 000) inhibitory neurons (blue) when external input noise is private to each neuron (⇢ = 0). The
dashed vertical line marks the onset of stimulus, when h switches from 2 mV to 15 mV. Bo�om: momentary population firing rate. The
inset shows two overlaid segments on a magnified vertical scale. (B) Top: LFP (momentary population-averaged Vm). Insets magnify two
segments with the same LFP scale, to visualise the relative drop in LFP variability following stimulus increase. Bo�om: Vm of two randomly
chosen units. (C-D) Same as (A-B) with external noisy inputs fully correlated across neurons (⇢ = 1). (E)Mean firing rates (top le�), private
vs. shared parts of single-cell spike count variability as estimated by factor analysis (bo�om le�), spike count Fano factors (top right) and Vm

std. (bo�om right) as a function of the external input h, for various values of the input correlation ⇢ (black to orange, 0 to 1 in steps of 0.2),
and averaged over the E population. (F) Top: LFP power in spontaneous conditions and evoked conditions (black and green, respectively,
cf. marks in panel C); Bo�om: average (±s.e.m.) spectral coherence between single-cell Vm and the LFP; Le�: model; Right: data from V1 of
the awake monkey, reproduced from Tan et al., 2014. Firing rates, LFP, and Vm traces in panels A-E were smoothed with a Gaussian kernel
of 50 ms width. In panel E, spikes were counted in 100 ms bins.

ability, and with weights chosen such that the mean connec-452

tivity to an E or I neuron matched that to an E or I unit, re-453

spectively, in the reducedmodel. Each neuron emi�ed action454

potentials stochastically with an instantaneous rate given by455

Equation 2 (this additional stochasticity accounted for the456

e�ects of unmodelled fluctuations in synaptic inputs that oc-457

cur on timescales faster than the 30 ms e�ective time resolu-458

tion of our model). The external input to the network again459

included a constant term, h, and a noise term that was tem-460

porally correlated on a 50 ms timescale, and also spatially461

correlated with a uniform correlation across neurons, ⇢. We462

systematically varied h and ⇢ to study their e�ects on the463

variability of responses in both spike count Fano factors and464

membrane potentials.465

At the population level, for any level of input noise corre-466

lation ⇢, the network behaved as predicted by the reduced467

model. Neurons fired irregularly (Figure 3A, C, top) with fir-468

ing rates that grew superlinearly with small input h but sub-469

linearly with stronger input (Figure 3E, top le�). Moreover,470

fluctuations in E and I population activities were strongly471

synchronized (Figure 3A and C, bo�om), and variability of472

these population-averaged rates and of the LFP (population-473

averagedVm) decreasedwith increasing h (although their ab-474

solute scale did depend on ⇢; Figure 3A and C, bo�om and B475

and D, top).476

In contrast, variability reduction at the level of single neu-477

rons depended on the input noise correlation ⇢. Single-478

neuron variability quenching occured only when neurons479

shared part of their input noise, i.e. when ⇢ was su�iciently480

large (Figure 3B and D, bo�om). For small ⇢, individual Vm481

variances (Figure 3E, bo�om right) had only a weak depen-482

dence on h (and, in fact, slightly grew with h, which could483

7

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted December 14, 2016. . https://doi.org/10.1101/094334doi: bioRxiv preprint 

https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/


be explained by growing firing rates and hence increasing484

variance in synaptic input). With larger ⇢, Vm variances de-485

creased with increasing h, mirroring the quenching of LFP486

variability. In all cases, changes in Vm variability were di-487

rectly reflected in Fano factors: strong h quenched spiking488

variability only for su�iciently large ⇢ (Figure 3E, top right).489

Indeed, Fano factors werewell approximated by 1+C·var(Vm)490

with some constant C, provided firing rates were not too491

small (Hennequin and Lengyel, in prep.). Note that changes492

in Fano factor with varying ⇢ could not be accounted for by493

changes in mean firing rates, which indeed had no depen-494

dence on ⇢ (overlapping colored lines in Figure 3E, top le�).495

The role of input correlations in variability quenching can be496

understood based on a decomposition of total spike count497

variability in each cell into a private noise term and a term498

that is shared with the other cells (Figure 3E, bo�om le�;499

here, shared and private variability are dimensionless and500

sum up to the average spike count Fano factor; see ‘Factor501

analysis’ section in Experimental Procedures). While the pri-502

vate noise term only depended on the private noise level in503

the input, the shared term depended on fluctuations in pop-504

ulation activity. In turn, these population-wide fluctuations505

were fed by correlated input noise across neurons, and it was506

this shared variability that could be shaped by the interac-507

tions between E/I populations as predicted by the reduced508

model. Thus, when input correlations were small, single-509

neuron variability was dominated by private noise with only510

minimal shared variability to be suppressed by increasing h511

(for ⇢ = 0, shared variability goes from 0.02 for h = 2 mV, to512

0.01 for h = 15mV; cf. almost flat solid black line in Figure 3E,513

bo�om le�). As a consequence, no quenching of single-cell514

variability could occur (and in fact, since private variability515

grew with mean firing rate, single-neuron variability grew516

with h). LFP fluctuations were small, reflecting the small517

shared noise, because the uncorrelated private noise was ef-518

fectively averaged out. In contrast, when input correlations519

were large, shared variability became substantial, leading to520

larger overall LFP fluctuations and larger reduction in single-521

cell variability by increasing input, h. This pa�ern of stim-522

ulus strength primarily modulating shared but not private523

variability is consistent with experimental findings in several524

cortical areas (Churchland et al., 2010).525

Our model also accounted for the stimulus-induced modula-526

tion of the power spectrum and cross-coherence of LFP and527

single-cell Vm fluctuations, as observed in V1 of the awake528

monkey (Figure 3F; Tan et al., 2014). Consistent with the re-529

sults obtained in the reduced rate model (Figure 1F), strong530

external input reduced the LFP power at low frequencies, and531

increased it at higher frequencies (Figure 3F, top le�). This532

increase resulted from two e�ects. First, there was a small533

increase of LFP power at moderately high frequencies (Fig-534

ure 1F), due to the input-induced increase in balanced am-535

plification (shear force) outweighing the input-induced de-536

crease in self-inhibition (restoring force) at those frequen-537

cies. Second the larger firing rates associated with strong538

inputs contributed additional fluctuations in synaptic drive539

on fast timescales due to stochastic spiking, thus increasing540

the relative variability in the LFP in higher frequency bands.541

This asymmetric modulation of LFP power at low and high542

frequencies is also seen in the experimental data (Figure 3F,543

top right). Moreover, as strong input suppressed shared vari-544

ability at low frequencies, the private noise in the activity of545

each neuron made a proportionately larger contribution to546

its overall variability at those frequencies, leading to a drop547

in Vm-LFP coherence specifically at those frequencies where548

the suppression of population variability occurred, as seen in549

experiments (Figure 3F, bo�om).550

Stimulus-dependent suppression of variability in an551

SSN with structured connectivity552

Neuronal recordings in area MT have shown that Fano fac-553

tors drop at the onset of the stimulus (dri�ing gratings or554

plaids) in almost every neuron, which was well accounted555

for by the randomly connected networks we studied above.556

However, in the experiments, variability did not drop uni-557

formly across cells, but exhibited non-trivial dependencies on558

stimulus tuning (Ponce-Alvarez et al., 2013; Lombardo et al.,559

2015). Similar e�ects were also observed in V1 of the anes-560

thetized cat (Lin et al., 2015). This could not be explained561

by randomly connected architectures, and so we extended562

our model to include tuning-dependence in connectivity and563

input noise correlations.564

We revisited the rate-based dynamics of Equation 1, now in565

an architecture in which the preferred stimulus of E/I neu-566

ron pairs varied systematically around a “ring” represent-567

ing some angular stimulus variable, such as motion direc-568

tion (Figure 4A; Experimental Procedures). The average in-569

put to a cell (either E or I) was composed of a constant base-570

line, which drove spontaneous activity in the network, and571

a term that depended on the angular distance between the572

stimulus direction and the preferred direction (PD) of the573

cell, and that scaled with stimulus strength, c (Figure 4C) —574

with c varying from 0 to 1 (increasing c represents increas-575

ing stimulus contrast). Input noise correlations depended576

on tuning di�erences (Experimental Procedures): cells with577

similar tuning received correlated inputs which in MT likely578

originate from upstream visual areas, such as V1, where ac-579

tivity fluctuations typically exhibit similar tuning-dependent580

correlations (Tsodyks et al., 1999; Kenet et al., 2003; Hansen581

et al., 2012; Ecker et al., 2010, 2014). Moreover, the strength582

of recurrent connections also depended on the di�erence in583

preferred direction between pre- and postsynaptic neurons,584

with the same tuning width for all connections whether ex-585

citatory or inhibitory (Figure 4B). This common tuning was586

based on the finding that, for the circular variable of orien-587

tation in cat V1, the excitation and inhibition that cells in588

layers 2-4 receive have the same tuning (Mariño et al., 2005;589

Martinez et al., 2002; Anderson et al., 2000). Themodel there-590

fore di�ered from so-called “ring a�ractor” models which591

rely on similar topographic connectivity but with inhibition592

having wider tuning that excitation (Goldberg et al., 2004;593

Ben-Yishai et al., 1995; Ponce-Alvarez et al., 2013). This led594

to another important di�erence (discussed in Murphy and595

Miller, 2009): while a�ractor networks show sustained activ-596

ity a�er stimulation even once the stimulus is removed, our597
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Figure 4. Across-trial variability in a ring SSN. (A) Schematics of the ring architecture. Excitatory and inhibitory neurons are laid
out on a ring, their angular position ultimately determining their preferred stimulus (expressed here as preferred stimulus direction, PD)
relative to the stimulus, assumed to be at 0� without loss of generality. (B) Synaptic connectivity follows circular Gaussian profiles with
peak strengths that depend on the type of pre- and post-synaptic populations (excitatory or inhibitory). (C) Each neuron receives a constant
input with a baseline (black line, c = 0), which drives spontaneous activity, and a tuned component with a bell-shaped dependence on the
neuron’s preferred direction and proportional to stimulus strength c (dark and light green, c = 0.5 and c = 1 respectively). Neurons also
receive spatially and temporally correlated noise, with spatial correlations that decrease with tuning di�erence (see Figure 5D). (D) Single-
trial network activity (E cells), in response to a step increase and decrease in stimulus strength (going from c = 0 to c = 1 and back to
c = 0). Neurons are arranged on the y-axis according to their preferred stimulus. (E) Reduction in membrane potential variability across
10 independent trials for an E cell tuned to the stimulus direction (le�, corresponding to orange mark in D) or to the opposite direction
(right, brown mark in D). (F) Reduction of spike count Fano factor following stimulus onset for the same two neurons as in (E). Spikes were
counted in 100 ms time windows centered on the corresponding time points. (G)Mean firing rates (le�), std. of voltage fluctuations (center)
and Fano factors (right) as a function of the neuron’s preferred stimulus, at three di�erent levels of stimulus strength (cf. panel C). Black
lines in panel E and dots in panels F-G are based on numerical simulations over of 500 trials. Shaded areas in E and solid lines in F-G show
analytical approximations (Hennequin and Lengyel, in prep.).

network returned to baseline activity within a single mem-598

brane time constant (Figure 4D). As we show below, this dy-599

namical regime is also characterized by fundamentally dif-600

ferent pa�erns of response variability than a�ractor dynam-601

ics. Finally, to model spike count statistics, we assumed602

the same doubly-stochastic spiking mechanism as described603

above (Figure 3), but with spikes having no influence on the604

dynamics given by Equation 1 (we describe a fully spiking605

model later in Figure 8).606

In the absence of visual input (c = 0), the input noise and607

mean baseline drove spatially pa�erned fluctuations in mo-608

mentary firing rates around a few Hz (Figure 4D) with large609

across-trial variability in single-cell Vm (Figure 4E), imply-610

ing super-Poisson variability in spike counts, i.e. Fano factors611

greater than 1 (Figure 4F). Visual stimulation drove a hill of612

network activity around the stimulus direction (Figure 4D),613

resulting in tuning curves of similar widths for di�erent stim-614

ulation strengths (Figure 4G, le�). Variability in both Vm and615

spike counts was strongly reduced compared to spontaneous616

conditions (Figure 4E-F), with variability reduction both for617

cells whose rate was increased by the stimulus (Figure 4E-618

F, le�) and for those whose rate was una�ected (Figure 4E-F,619

right), as noted acrossmany cortical areas (Churchland et al.,620

2010), but with a more pronounced reduction for cells whose621

preferred direction was close to the stimulus (Figure 4G). No-622

tably, as in the randomly connected network of Figure 3, vari-623

ability suppression in the ring model required finite spatial624

correlations in the input noise (Supplementary Figure S5).625

The e�ects of shear and restoring forces on bump dy-626

namics explain structured pa�erns of variability627

To understand the origin and mechanism of variability sup-628

pression in the ring architecture, we examined how recurrent629

interactions shaped the structure of Vm co-variability across630

the network. The most prominent feature of population ac-631
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Figure 5. Di�erential reduction of variability in the three principal dimensions of bump kinetics. (A) 100 ms-long sample
of Vm fluctuations across the network in evoked conditions (le�, “true activity”, c = 1), to which we fi�ed a circular-Gaussian function
Vi(t) = �a0 + a(t) exp[(cos(✓i � µ(t)) � 1)/�(t)2] across the excitatory population in each time step (center). This fit captured most of the
variability in Vm (right). (B) The three principal modes of bump kinetics: small changes (red arrows) in location (top), amplitude (middle)
and width (bo�om) of the activity bump result in the hill of network activity deviating from the prototypical bump (gray shadings). Plots
on the right show how the activity of each neuron changes due to these modes of bump kinetics. (C) Time series of µ, a and � extracted
from the fit. (D) Ongoing fluctuations in each of the three bump parameters contribute a template matrix of Vm covariances among E cells
(color maps), obtained from (the outer product of) the di�erential pa�erns on the right of panel B. The strong (anti-)correlation between a
and � contribute a fourth e�ective template. These templates sum up to a total covariance matrix (“bump kinetics”), which captures the
key qualitative features of the full Vm covariance matrix (“full”). The covariance matrix of the input noise (“input”) is also shown above for
reference. (See text for arrows.) (E) Le�: three planes of spatially pa�erned E/I activity in which the recurrent dynamics of the network
approximately decoupled (SI), corresponding approximately to the three modes of bump kinetics (compare axis insets to the di�erential
pa�erns in panel B, right). Arrows show forces (orange: shear, green: restoring), ellipses show output covariances due to single-cell leak only
(dashed) or full recurrent dynamics (solid), as in Figure 2B–C. Middle: dependence of forces on stimulus strength. Green curves show the
average of the self-inhibitory couplings, |�d| and |�s| (�d and �s are shown individually in Supplementary Figure S4). Orange curves show
the feedforward (shear force) coupling, |!FF|. Right: the variance in the E population (projection of the solid ellipse onto the x-axis in each
plane) as a function of the input strength c.

tivity was a “bump” of high Vm in the cells with preferred di-632

rections near the stimulus direction, and lower activity in the633

surround (Figure 5A). Accordingly, most of the shared vari-634

ability (⇠ 90%; Figure S4) arose from the variability in the635

location µ, amplitude a and width � of this bump (Figure 5A636

and C). Each of these small transformations resulted in a pat-637

tern of momentary deviation of network activity from the638

propotypical bump (Figure 5B, right). In turn, the momen-639

tary fluctuations caused by these ongoing transformations640

(Figure 5C) contributed distinct spatial templates of covari-641

ance (Figure 5D). For example, sideways motion of the bump642

increased the firing rates of all the cells with preferred di-643

rections on one side of the stimulus direction, and decreased644

firing rates for all cells on the other side (Figure 5B, top). This645

resulted in positive correlations between cells with preferred646

directions on the same side of the stimulus direction, and647

negative correlations for cells on opposite sides (Figure 5D,648

µ-template; Moreno-Bote et al., 2014). Fluctuations in bump649

amplitude generated modest positive covariances that were650

somewhat greater between cells tuned near the stimulus di-651

rection (Figure 5D, middle le�). In contrast, fluctuations in652

the width of the bump generated large positive covariances,653

especially between cells tuned near the opposite direction654

(Figure 5D, bo�om le�). As the nonlinear interactions among655

neurons result in strong normalization of overall activity in656

the dynamical regime of our network (Ahmadian et al., 2013;657

Rubin et al., 2015), fluctuations in amplitude and width were658

strongly (negatively) correlated, which contributed a distinct659

pa�ern of covariance: strong negative correlations for all660

pairs but those tuned to the stimulus (blue template in Fig-661

ure 5D, le�).662

Taken together, the ongoing ji�er in bump location, ampli-663

tude and width contributed a highly structured pa�ern of664

response covariances, which accounted for most of the struc-665

ture in the full covariance matrix of the network (Figure 5D,666
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compare “bump kinetics” with “full”). In particular, bump ki-667

netics explained the comparatively stronger reduction of Vm668

variance for cells tuned near 0� (compare Figure 4G, middle,669

with the diagonal of the full covariance matrix indicated by670

the filled arrow in Figure 5D). Moreover, the recurrent dy-671

namics generated negative correlations in the Vm fluctua-672

tions of cells with opposite tuning, despite such pairs receiv-673

ing positively correlated inputs (Figure 5D, “input” vs. “bump674

kinetics”, secondary diagonal with open arrow).675

Bump kinetics were not only useful to phenomenologically676

capture most of the covariability in the network, but they677

were also identified approximately as the most accurate low-678

dimensional summary of the recurrent dynamics by formal679

reduction techniques (SI). Reducing the dynamics of our680

model to these three motion modes revealed that the same681

forces that shaped variability in the two-population archi-682

tecture also explained the more detailed pa�erns of variabil-683

ity reduction in the ring architecture (Figure 5E). However,684

while the two-populationmodel only involved forces in a sin-685

gle plane describing population-averaged E and I activities686

(Figure 2B–C), the ring architecture induced forces in three687

di�erent such planes involving three pairs of activity pat-688

terns in the E and I populations (Figure 5E, insets along plane689

axes) that corresponded almost exactly to the three modes of690

bump kinetics (Figure 5B; the “bump amplitude pa�ern” dif-691

fers slightly, due to the requirement that it be orthogonal to692

the other two pa�erns).693

As fluctuations in the external input were correlated among694

similarly tuned neurons irrespective of their E/I nature (“in-695

put” covariance matrix in Figure 5D), they instated corre-696

lated baseline Vm fluctuations in the E and I populations697

in each of the three planes where most variability was con-698

fined (Figure 5E, elongated dashed ellipses, obtained by ne-699

glecting the e�ect of recurrent connectivity). As in the two-700

population model, the recurrent interactions modified both701

the restoring and shear forces (green and orange arrows in702

Figure 5E), which in turn amplified baseline Vm variabil-703

ity (solid ellipses). Pa�erns of momentary E/I imbalance704

(e.g. resulting from the E bump having moved more than705

the I bump) were strongly amplified into balanced pa�erns706

(Figure 5E, orange arrows, or “shear force”), and restoring707

forces acted to quench both imbalanced and balanced fluctu-708

ations (green arrows). These forces depended on the e�ective709

connectivity, which in turn depended on stimulus strength710

c (Figure 5E, center) such that restoring forces increased711

steadily with c, while shear forces saturated already at low712

values of c – just as seen in the two-population model (Fig-713

ure 2E). Overall, restoring forces became increasingly domi-714

nant over shear forces, resulting in a reduction of variability715

in each of the three modes of bump kinetics with increas-716

ing c (Figure 5E, right). This reduction occured at di�erent717

rates in the three modes, such that at high c variability was718

mostly caused by fluctuations in bump width, thus explain-719

ing the U-shape of Vm variance (Figure 4G, middle). Note720

that this yields interesting predictions for changes in the721

tuning of variances and covariances across the full range of722

stimulus strengths: in essence, a smooth morphing from the723

spontaneous covariance, for very low contrast, to the high-724

contrast covariance (Figure 7A, right). Moreover, as vari-725

ability quenching occured predominantly in these three spa-726

tially very smooth activity modes, suppression of variabil-727

ity in single neurons could only occur provided these modes728

explained a su�iciently large fraction of the total network729

variance. This in turn required the input noise to contain730

spatially smooth correlations (Supplementary Figure S5).731

Di�erences between the SSN and a�ractor models732

For a direct comparison of the SSN with a�ractor dynam-733

ics, we implemented a canonical model of a�ractor dynam-734

ics that have also been suggested to account for stimulus-735

modulated changes in variability (Ponce-Alvarez et al., 2013),736

and matched it to our model such that it produced similar737

tuning curves and overall levels of variability (Supplemen-738

tary Figure S6). In contrast with the richer pa�erns of vari-739

ability generated by our model, a�ractor dynamics showed740

a more limited repertoire, dominated solely by sideways mo-741

tion of the bump. Moreover, restoring forces induced by at-742

tractor dynamics dominated over the shear forces at all stim-743

ulus strengths. As a result, the sign of membrane potential744

covariances depended on whether two cells had their pre-745

ferred directions on the same side of the stimulus direction746

(Figure 5D, µ-template), but not otherwise on the di�erence747

between their preferred directions.748

These di�erences in membrane potential covariances also749

carried over to spike count noise correlations that are exper-750

imentally more readily accessible. Most prominently, the at-751

tractor network predicted large negative correlations for cells752

tuned to opposite directions, whereas the SSN predicted pre-753

dominantly positive correlations with only very weak nega-754

tive correlations (Figure 6A-B). We note that it might seem755

trivial to eliminate negative correlations in the a�ractor net-756

work by invoking an additional (potentially extrinsic) mech-757

anism that adds a single source of shared variability across758

neurons. This would result in a uniform (possibly stimulus759

strength-dependent) positive o�set to all correlations (Lin760

et al., 2015). However, the two models also exhibited dif-761

ferences that would not be explained even by this additional762

mechanism. Specifically, in the SSN, spike count correlations763

for pairs with a fixed di�erence in preferred directions (fixed764

�PD) depended only weakly on the stimulus direction (in765

Figure 6A-B, lines parallel to the lower-le� to upper-right di-766

agonal represent pairs with a fixed �PD, while a change in767

stimulus direction for a given pair corresponds to movement768

along such a line; also note similarities between the three769

panels in Figure 6E). In contrast, in the a�ractor network at770

high stimulus strength, spike-count correlations for a pair of771

fixed �PD can depend strongly on stimulus direction (Fig-772

ure 6B, F). Moreover, while both models predicted noise cor-773

relations to generally decrease with�PD, stimulus strength774

simply scaled this decrease in the SSN approximately uni-775

formly (Figure 6E), but interactedwith�PD inmore complex776

ways in the a�ractor network, such that correlations could777

change proportionately more or less for di�erent cell pairs778

(Figure 6F).779
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Figure 6. The SSN and ring a�ractor network make distinct predictions for spike count noise correlations. (A) Spike count
correlation matrices in the SSN, for three values of stimulus strength (border color black: c = 0; dark green: c = 0.15; light green: c = 1). X-
and y-axes of each matrix are preferred directions (PDs) of two cells, relative to stimulus direction taken equal to 0. (B) Same as (A), for the
ring a�ractor network. (C) Spike count correlations in the SSN and a�ractor network most strongly di�er along particular “cross-sections”
of the correlation matrices (do�ed line segments). (D) The segments shown in (C) correspond to scenarios in which the stimulus direction
exactly bisects the (smaller) angle between the preferred directions of the two recorded cells (top), or is opposite (middle) or orthogonal
(bo�om) to this direction. Each di�erence between preferred directions,�PD, corresponds to a specific position on the do�ed segments in
(C). (E) Spike count correlations as a function of�PD, along the segments shown in the corresponding matrices in (C) at di�erent stimulus
strengths (colors as in A-B). (F) Same as (E), for the ring a�ractor network.

Comparison to variability of responses in MT780

In our ring SSN model of directional tuning, the most robust781

e�ect concerning variability modulation by stimuli is a com-782

paratively stronger drop in Fano factor and Vm variance in783

the neurons most strongly driven by the stimulus. Although784

this “U shape” of variability quenching was also recorded in785

area MT of the awake macaque for some types of stimuli786

(namely coherent plaids; cf. top panel of Figure 1B in Ponce-787

Alvarez et al., 2013), other sets of stimuli instead resulted788

in an M-shaped profile of Fano factor reduction (see also789

Lombardo et al., 2015). Specifically, stimulus onset quenched790

variability more strongly in cells tuned to either the stimu-791

lus direction or the opposite one, compared to neurons tuned792

to the orthogonal directions (Figure 7C, center). A similar793

M shape was apparent for spike count correlations between794

similarly tuned neurons, as a function of their (common) pre-795

ferred direction (Figure 7C, right).796

We found that our model could also exhibit such an M-797

shaped modulation of both Fano factors and pairwise corre-798

lations at high stimulus strength (Figure 7B). This occurred799

when the network was set up such that cells tuned to the op-800

posite direction became near-silent (Figure 7B, le�), which801

typically required the tuning of the external input to be spa-802

tially as narrow as, or narrower than, that of the recur-803

rent connectivity. In this case, the mean Vm of cells tuned804

to the opposite direction became comparable to, or smaller805

than, the rectification threshold Vrest in Equation 2, such that806

nearly half of their membrane potential fluctuations did not807

pass the rectification and thus had no e�ect on momentary808

firing rate fluctuations. Even the part of membrane potential809

fluctuations which passed the rectification threshold were810

diminished in the output by the small gain of the power-law811

neuronal nonlinearity close to its threshold. Thus, although812

the membrane potential fluctuations were larger for these813

cells than for orthogonally tuned neurons (Figure 7A, cen-814

ter), a substantial fraction of these fluctuations dissipated815

below threshold or were diminished by the small neuronal816

gain, yielding a lower firing rate variance. In fact, this loss817

of firing rate variance more than overcame the e�ect of di-818

viding by very small firing rates in computing Fano factors819

for these neurons (Figure 7B, center). A similar nonlinear ef-820

fect caused spike count correlations among similarly tuned821

neurons to exhibit an M-shape modulation at high stimulus822

strength (Figure 7B, right).823

All our main results were reproduced in a sparsely connected824

spiking model of area MT, similar to that of Figure 3 but with825

an underlying ring architecture as in Figure 4 (Experimen-826
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Figure 7. A ring SSN accounts for the stimulus dependence of across-trial variability in area MT. (A) Vm mean (le�) and std.
(center) as a function of the model neuron’s preferred direction, for increasing values of stimulus strength c. The full Vm covariance matrices
are shown on the right for the E population, box color indicating c. (B) Mean firing rates (le�), spike count Fano factors (center) and spike
count correlations between similarly tuned neurons (right), as a function of the neuron’s preferred direction. (C) Experimental data (awake
monkey MT) adapted from Ponce-Alvarez et al. (2013), with average firing rates (le�), average Fano factors (center) and average spike count
correlations among similarly tuned cells (right), as a function of the the cell’s preferred direction (PD, relative to stimulus at 0�). Data is
shown for spontaneous (pre-stimulus, black) and evoked (c = 1 stimulus, green) activity periods. Error bars denote s.e.m. Dots in panels
A-B were obtained from 400 s epochs of simulated stationary activity, and denote averages among cells with similar tuning preferences (PD
di�erence<18�); solid lines show analytical approximations (Hennequin and Lengyel, in prep.). In panels B-C, spikes were counted in 100 ms
bins.

tal Procedures). Single neurons fired action potentials asyn-827

chronously and irregularly during both spontaneous and828

evoked conditions (Figure 8A). Mean firing rates had an ap-829

proximately invariant tuning to stimulus direction across830

stimulus strengths c (Figure 8D), and saturated strongly at831

large values of c (not shown). Moreover, both membrane po-832

tential variances and Fano factors decreased at stimulus on-833

set (Figure 8B-C), and this drop in variability was also tuned,834

thus reproducing the M-shaped modulation of Fano factors835

and spike count correlations of the rate model (Figure 8E-G).836

Consistentwith the analyses of bump kinetics and of the ran-837

domly connected spiking network, factor analysis revealed838

that stimulus quenched shared, but not private, variability in839

single neurons (Figure 8H). This indicated that the insights840

we obtained from studying simplified network architectures841

about the conditions for observing variability quenching in842

single neurons also applied to the ring architecture.843

Discussion844

We studied themodulation of variability in a stochastic, non-845

linear model of cortical circuit dynamics. We focussed on a846

simple circuit motif that captured the essence of cortical net-847

works: noisy excitatory and inhibitory populations interact-848

ing in a recurrent but stable way despite expansive single-849

neuron nonlinearities. This stochastic stabilized supralinear850

network (SSN) reproduced key aspects of variability in the851

cortex. During spontaneous activity, i.e. for weak external852

inputs, model neurons showed large and relatively slow syn-853

chronous fluctuations in their membrane potentials, which854

were quenched and decorrelated by stronger stimuli. The855

model thus explains and unifies a large body of experimental856

observations made in diverse systems under various condi-857

tions (Churchland et al., 2006, 2010; Finn et al., 2007; Poulet858

and Petersen, 2008; Gentet et al., 2010; Poulet et al., 2012; Tan859

et al., 2014; Chen et al., 2014). Moreover, the drop in vari-860

ability was tuned to specific stimulus features in a model of861

areaMT, also capturing recent experimental findings (Ponce-862

Alvarez et al., 2013; Lin et al., 2015; Lombardo et al., 2015). The863

SSN also captures ubiquitous phenomena involving nonlin-864

ear response summation to multiple stimuli, including nor-865

malization, surround suppression, and their dependencies on866

stimulus contrast (Rubin et al., 2015). Together these results867

suggest that the “loosely balanced” SSN captures key ele-868

ments of the operating regime of sensory cortex.869

Our analysis relied on the reduction of the complex mesh870

of recurrent, feedback-driven interactions among multiple871
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Figure 8. Variability suppression in a spiking networkmodel of areaMT. (A) Raster plot of spiking activity in excitatory neurons, ar-
ranged vertically according to preferredmotion direction (PD). Activity is shown for 4 s around stimulus onset (dashed vertical line). (B) Fano
factor time course for two E cells respectively tuned to the stimulus direction (orange mark in panel A) and to the opposite direction (brown
mark), obtained from 1000 independent trials. (C) Single-trial Vm traces for the two cells shown in (B). One trial stands out in color, and 9
other trials are shown in gray to illustrate reduction of variability both within- and across trials. (D–G) Mean firing rates (D), Fano factors
(E), Vm std. (F) and spike count correlations between similarly tuned cells (G), as a function of preferred direction (PD), at 3 di�erent levels
of stimulus strength c (color-coded as indicated in D). (H) Factor analysis performed on spike counts (Experimental Procedures), separating
the private (black) from the shared (blue, “network”) contributions to spike count variability in every neuron. Shown here are mean private
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c, and averaged among cells with similar tuning preferences (PD di�erence<18�). In panels C and F, Vm fluctuations were first smoothed
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neuronal populations into two types of e�ective connections872

among activity pa�erns (Murphy and Miller, 2009): a self-873

connection that, when including the single-cell leak (the ten-874

dency of isolated neurons to return to rest) as well as network875

synapses, must be inhibitory in a network that has stable876

steady-state responses to steady input, and which thus con-877

stitutes a “restoring force” that contains or quenches vari-878

ability; and a feedforward pa�ern of connections between879

activity pa�erns that instantiates “balanced amplification”,880

amplifying small momentary disturbances of the E/I bal-881

ance into large but balanced responses, and which can be882

thought of as a “shear force” boosting response variability.883

Crucially, this e�ective network connectivity depends on the884

mean firing rates of the E and I cells through the nonlinear885

response properties of the single neurons, and therefore de-886

pends on the strength of the external input. Balanced am-887

plification typically dominates during spontaneous activity888

(i.e. for small to moderate inputs), increasing variability rel-889

ative to that of isolated cells with the same external input;890

while for larger inputs, inhibitory self-connections become891

dominant, quenching this spontaneous variability (whether892

the peak of variability lies at spontaneous or at external in-893

put levels somewhat below or above those of spontaneous894

activity remains unclear). Importantly, these insights car-895

ried over to the higher dimensional, structured ring archi-896

tecture used to model MT responses, providing the logical897

link between the network’s bumps of population activity898

in response to tuned inputs and the resulting structured,899

contrast-dependent pa�erns of variability it generated.900

The SSN reproduces (Ahmadian et al., 2013; Rubin et al.,901

2015) much of the phenomenology of the “normalization902

model” of cortical responses (Carandini and Heeger, 2012)903

and provides a circuit substrate for it. In the normalization904

model and the SSN, responses to multiple stimuli add sub-905

linearly, and as one stimulus becomes stronger than another,906

the response to their simultaneous presentation becomes907

“winner-take-all”, more andmore dominated by the response908

to the stronger stimulus alone. This behavior predicts some909

aspects of variability suppression: a stronger mean input910

drive relative to the noise input leads to greater suppression911

of the noise’s contribution to the neuron’s response.912

Further factors modulating variability913

We analyzed variability modulation solely as arising from in-914

trinsic network interactions, but other factors may also con-915

tribute (Doiron et al., 2016). External inputs may be modu-916

lated; for example, the drop with contrast in LGN Fano fac-917

tors has been argued to underlie Vm variability decreases in918

V1 simple cells (Sadagopan and Ferster, 2012; but see Malina919

et al., 2016). However, since high contrast stimuli also cause920

firing rates to increase in LGN, the total variance of LGN-to-921

V1 inputs (scaling with the product of the LGN Fano factor922

and mean rate) is modulated far less by contrast. This pro-923
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vides some justification for our model choice that input vari-924

ance did not scale with contrast. Cellular factors may also925

modulate variability. For example, inhibitory reversal poten-926

tial or spike threshold may set boundaries limiting voltage927

fluctuations, whichwouldmore strongly limit voltage fluctu-928

ations in more hyperpolarized or more depolarized states re-929

spectively; conductance increases will reduce voltage fluctu-930

ations; and dendritic spikes may contribute more to voltage931

fluctuations in some states than others (Stuart and Sprus-932

ton, 2015). A joint treatment of external input, cellular, and933

recurrent e�ects may be needed to explain, for example, why934

Vm variability appears strongest near the preferred stimulus935

in anaesthetized cat V1 (Finn et al., 2007), or why overall Vm936

variability grows with visual stimulation in some neurons of937

awake macaque V1 (Tan et al., 2014).938

Neuromodulators (and presumably anesthetics) can alter the939

input/output gain of single neurons as well as synaptic e�ica-940

cies (Disney et al., 2007; Marder, 2012), yielding changes in941

e�ective connectivity that may in turn explain brain state-942

dependent changes in cortical variability (Poulet and Pe-943

tersen, 2008; Ecker et al., 2014; Lin et al., 2015; Mochol et al.,944

2015; Lombardo et al., 2015). Our approach, deriving changes945

in variability directly from changes in e�ective connectiv-946

ity, o�ers a framework for also understanding these forms of947

variabilitymodulation. Modifications of actual synaptic con-948

nections also alter e�ective connectivity, so our e�orts are949

complementary to those of previous studies that focussed950

on the consequences for correlations of di�erent anatomical951

connectivity pa�erns (Kriener et al., 2008; Tetzla� et al., 2012;952

Ostojic, 2014; Hennequin et al., 2014b).953

The dynamical regime of cortical activity954

We found that variability quenching in the stochastic SSN955

robustly occurred as the input pushed the dynamics to956

stronger and stronger inhibitory dominance. Consistent957

with this, with increasing strength of external input the ra-958

tio of inhibition to recurrent excitation received by SSN cells959

increases (Rubin et al., 2015), as also observed in layers 2/3 of960

mouse S1, in recordings in non-optogenetically-excited pyra-961

midal cells, with increasingly strong optogenetic excitation962

of other pyramidal cells (Shao et al., 2013). This distinguishes963

the SSN from the balanced network (van Vreeswijk and Som-964

polinsky, 1998), for which this ratio would be fixed for a given965

pa�ern of external input to cells, regardless of the strength966

of activation. The two models are also distinguished by the967

nonlinear behaviors seen in SSN and cortex but not in the968

balanced network (discussed in Introduction). Finally, the969

balanced network predicts that external input alone is very970

much larger than the net input (recurrent plus external). In971

contrast, the SSN allows external and net input to be com-972

parable, as observed in intracellular recordings in V1 layer 4973

when the external thalamic input is revealed by suppressing974

cortical spiking (Ferster et al., 1996; Chung and Ferster, 1998;975

Lien and Scanziani, 2013; Li et al., 2013).976

Two proposals have beenmade previously to explain quench-977

ing of variability by a stimulus: a stimulus may quench978

multi-a�ractor dynamics to create single-a�ractor dynam-979

ics (Blumenfeld et al., 2006; Litwin-Kumar and Doiron, 2012;980

Deco and Hugues, 2012; Ponce-Alvarez et al., 2013; Doiron981

and Litwin-Kumar, 2014; Mochol et al., 2015); and a stimulus982

may quench chaotic dynamics to produce non-chaotic dy-983

namics (Molgedey et al., 1992; Bertschinger and Natschlger,984

2004; Sussillo and Abbo�, 2009; Rajan et al., 2010; Laje and985

Buonomano, 2013). In a ring architecture, our model di�ers986

from multi-a�ractor dynamics in two fundamental ways.987

First, a�ractor dynamics yields pa�erns of network variabil-988

ity originating almost exclusively from sideways motion of989

the activity bump (Supplementary Figure S6), leading to an990

M-shaped profile of Fano factor suppression. Although our991

model could also reproduce this M shape (Figures 7 and 8),992

it also exhibited substantial fluctuations in bump amplitude993

and width, producing a richer – yet still low-dimensional –994

basis of variability pa�erns which more typically combined995

to give Fano factors profiles a “U” shape (Figure 4). In-996

deed, coherent plaids or random dot stimuli in the macaque997

(Ponce-Alvarez et al., 2013; Lombardo et al., 2015) as well as998

in the marmoset (Sam Solomon, personal communication)999

result in a pronounced U-shaped modulation of Fano factors1000

in MT. Our analysis suggested that the SSN can produce ei-1001

ther M- or U-shaped modulations depending on the tuning1002

width of inputs relative to that of connectivity, but that in1003

both cases membrane potential variability will still have a1004

U-shaped profile (Figures 7 and 8), which could be tested in1005

future experiments. Second, pa�erns of bump motion also1006

led to very di�erent pa�erns of covariances and correlations1007

across the population in the two models (Figure 5D). For1008

strong input, a�ractor dynamics exclusively predict negative1009

correlations for all cell pairs whose preferred stimuli are on1010

opposite sides of the stimulus (Figure 6B,F; top le� and bot-1011

tom right quadrants of the µ covariance matrix in Figure 5D1012

and Supplementary Figure S6; Ponce-Alvarez et al., 2013;1013

Wimmer et al., 2014), while the SSN predicts that cells with1014

similar tuning will be positively correlated even if the stim-1015

ulus lies between their preferred stimuli (Figure 6A,E; Fig-1016

ure 5D, center and corners of the full covariance matrix). So1017

far, correlations have not been reported as parametric func-1018

tions of both the stimulus and the tuning di�erences of cells,1019

or only in the context of a�entional manipulations (Cohen1020

and Newsome, 2008), leaving these predictions to be tested1021

in future experiments. Thus, our work suggests a principled1022

approach to use data on cortical variability to identify the1023

dynamical regime in which the cortex operates.1024

More generally, our results also propose a very di�erent dy-1025

namical regime underlying variability quenching than the1026

multi-a�ractor or chaos-suppressionmodels. The SSNdi�ers1027

from these in exhibiting a single stable state in all conditions1028

– spontaneous, weakly-driven, strongly-driven – whereas1029

the others show this only when strongly driven. Further-1030

more, quenching of variability and correlations in the SSN1031

is highly robust, arising from two basic properties of corti-1032

cal circuits: inhibitory stabilization of strong excitatory feed-1033

back (Tsodyks et al., 1997; Ozeki et al., 2009), and supralinear1034

input/output functions in single neurons (Priebe and Ferster,1035

2008). In contrast, models of multi-a�ractor or chaotic dy-1036

namics can either account only for the modulation of aver-1037

age pairwise correlations (Mochol et al., 2015), or else require1038
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considerable fine tuning of connections (Litwin-Kumar and1039

Doiron, 2012; Ponce-Alvarez et al., 2013) to account for more1040

detailed correlation pa�erns. Moreover, as studied thus far1041

they typically ignore Dale’s law (the separation of E and I1042

neurons) and its consequences for variability, e.g. balanced1043

amplification (Rajan et al., 2010; Ponce-Alvarez et al., 2013;1044

Mochol et al., 2015) (but see Harish and Hansel, 2015; Kad-1045

mon and Sompolinsky, 2015).1046

Other di�erences of dynamical regime suggest further exper-1047

imental tests. Mechanisms of chaos control typically lead1048

to quenching of across-trial variability at stimulus onset,1049

but not within-trial variability across time (Sussillo and Ab-1050

bo�, 2009; Rajan et al., 2010; Laje and Buonomano, 2013), as1051

could be assayed by measures of variability in sliding win-1052

dows across time. Both the SSN and multi-a�ractor mod-1053

els predict quenching of both forms of variability. In chaotic1054

models, the transition from high- to low-variability is sud-1055

den with increasing external input strength (Rajan et al.,1056

2010), while the transition in the SSN will be, and in multi-1057

a�ractor models may be, gradual. In the high-variability1058

spontaneous state and for weakly-driven states (i.e. for a low-1059

contrast stimulus), the chaotic and multi-a�ractor scenarios1060

both predict slow dynamics (relative to cellular or synaptic1061

time constants), measurable as long auto-correlation times1062

for neural activity (Sompolinsky et al., 1988; Sussillo and Ab-1063

bo�, 2009; Rajan et al., 2010; Laje and Buonomano, 2013) and1064

as slow responses to stimulus changes. Dynamics in these1065

scenarios may become fast in the high-input, low-variability1066

state. In contrast, the SSN typically predicts fast dynamics in1067

both high-variability and low-variability states (Supplemen-1068

tary Figure S2A). Even when the SSN shows some slowing1069

at the lowest levels of input, due to the restoring-force cou-1070

plings dipping below 1 (as in Figure 2E; the relaxation time1071

in a direction with restoring coupling � is ⌧/|�| where ⌧ is a1072

cellular time constant), it transitions to fast dynamics (|�|’s1073

� 1) for relatively weak input for which variability is still1074

high relative to the high-input state (Supplementary Figure1075

S2A) – a key distinction from the other models. Consistent1076

with the SSN, in mouse V1, the decay of response back to1077

spontaneous levels (or lower) a�er optogenetically-induced1078

sudden stimulus o�set is fast, occuring over 10 ms (Reinhold1079

et al., 2015).1080

In summary, the SSN robustly captures multiple aspects of1081

stimulus modulation of correlated variability and suggests1082

a dynamical regime that uniquely captures a wide array of1083

behaviors of sensory cortex.1084

Experimental procedures1085

The values of all the parameters mentioned below are listed1086

in Table 1.1087

Rate model1088

Our rate-based networks contained NE excitatory and NI in-1089

hibitory units, yielding a total N ⌘ NE + NI. The circuit dy-1090

namics were governed by Equation 1, which we rewrite here1091

for convenience:1092

dVi

dt
=

1
⌧i

0

@�Vi + Vrest +
X

j2E cells

WijkbVj � V0cn+

�
X

j2I cells

WijkbVj � V0cn+ + hi(t)

1

A + ⌘i(t) (6)

where ⌘i(t) modelled fluctuations in external inputs (see be-1093

low, “Input noise”). In all the figures of the main text, the1094

exponent of the power-law nonlinearity was set to n = 2.1095

The SI explores more general scenarios.1096

Mean external drive In the reduced rate model of Fig-1097

ure 1, each unit received the same constant mean input h. In1098

the ring model, the mean input to neuron i was the sum of1099

two components,1100

hi(✓s) = b + c · Amax · exp
✓
cos(✓i � ✓s)� 1

`2stim

◆
(7)

The first term b = 2 mV is a constant baseline which drove1101

spontaneous activity. The second term modelled the pres-1102

ence of a stimulus moving in direction ✓s in the visual field1103

as a circular-Gaussian input bump of width `stim centered1104

around ✓s and scaled by a factor c (increasing c represents in-1105

creasing stimulus contrast), taking values from 0 to 1, times1106

a maximum amplitude Amax. We assumed for simplicity that1107

E and I cells are driven equally strongly by the stimulus,1108

though this could be relaxed.1109

Input noise The input noise term ⌘i(t) in Equation 6 was1110

modelled as a multivariate Ornstein-Uhlenbeck process:1111

⌧noise d⌘ = �⌘ dt +
p
2⌧noiseΣnoised⇠ (8)

where d⇠ is a collection of N independent Wiener processes1112

and Σnoise is an N ⇥ N input covariance matrix. Note that1113

Equation 8 implies h⌘i(t)⌘j(t + ⌧ )it = ⌃noise
ij e�|⌧ |/⌧noise .1114

In the reduced model, noise terms were chosen uncorrelated,1115

i.e. ⌃noise
ij = �2

↵(i)�ij (where �ij = 1 if i = j and 0 otherwise),1116

↵(i) is the E/I type of neuron i, and �2
↵ is the variance of noise1117

fed to population ↵ 2 { E,I} (see Equation 10 below). In the1118

ring model, the noise had spatial structure, with correlations1119

among neurons that decreased with the di�erence in their1120

preferred directions following a circular-Gaussian:1121

⌃noise
ij = �↵(i)�↵(j) exp

✓
cos(✓i � ✓j)� 1

`2noise

◆
(9)

where ✓i and ✓j are the preferred directions of neurons i and1122

j (be they exc. or inh.), and `noise is the correlation length1123

(Table 1). The noise amplitude was given the natural scaling1124

�↵ = �0,↵

r
1 +

⌧↵
⌧noise

(↵ 2 {E, I}) (10)

such that, in the absence of recurrent connectivity (W = 0),1125

the input noise alone would have driven Vm fluctuations of1126
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standard deviation �0,E or �0,I, measured in mV, in the E or I1127

cells, respectively. We chose values of �0,E that yielded spon-1128

taneous Fano factors in the range 1.3-1.5 where appropriate,1129

and chose �0,I = �0,E/2 to make up for the di�erence in mem-1130

brane time constants between E and I cells (Table 1).1131

Connectivity The synaptic weight matrix in the reduced1132

model was given by Equation 3 with synaptic strengths listed1133

in Table 1. In the ring model, connectivity fell o� with dis-1134

tance on the ring, following a circular-Gaussian profile:1135

Wij / exp

 
cos(✓i � ✓j)� 1

`2syn

!
(11)

The connectivity matrixW was further rescaled in each row1136

and in each quadrant, such that the sum of incoming E and1137

I weights onto each E and I neuron (4 cases) matched the1138

values ofWEE,WIE,WEI andWII in the reduced model.1139

Simulated spike counts To relate the firing rate model1140

to spiking data (Figures 4, 6 and 7), we assumed action po-1141

tentials to be emi�ed as inhomogeneous (doubly-stochastic)1142

Poisson processes with time-varying rate kbVm � Vrestcn+.1143

Spikes did not “re-enter” the dynamics of Equation 6, accord-1144

ing to which neurons influence each other through their fir-1145

ing rates. Spikes were counted in 100 ms time bins and spike1146

count statistics such as Fano factors and pairwise correla-1147

tions were computed the standard way.1148

Theory of variability To compute the moments of Vm1149

analytically, we used i) a linear theory which assumes1150

small fluctuations (the single-neuron gain function is Taylor-1151

expanded to first order around the mean; Equation 4) and re-1152

turns closed-form analytical results through standard multi-1153

variate Ornstein-Uhlenbeck theory (e.g. Renart et al. (2010);1154

Tetzla� et al. (2012); Hennequin et al. (2012); see SI for de-1155

tails), and ii) a nonlinear theory which does not rely on lin-1156

earization, can handle large fluctuations and non-stationary1157

transients, by assuming that variability in Vm is jointly Gaus-1158

sian across neurons. We have used the nonlinear theory1159

throughout the figures in this paper to smooth out the data1160

points obtained numerically. The details will be published1161

elsewhere (Hennequin and Lengyel, in prep.).1162

Mathematical definition of the “shear and restoring1163

forces” To uncover the structure of the forces acting on1164

activity fluctuations, we focused on the linearized dynam-1165

ics of Equation 4 and performed a Schur decomposition of1166

the Jacobian matrix which included both the single-neuron1167

leak and the e�ective connectivity (Murphy andMiller, 2009;1168

Hennequin et al., 2012). In the reducedmodel, this amounted1169

to expressing the dynamics of the E and I units in a di�er-1170

ent coordinate system, comprised of the two axes of E/I im-1171

balance (therea�er called di�erence mode) and total activity1172

(sum mode) depicted in Figure 2A–C. In that basis, the ef-1173

fective connectivity matrix – in which we also included the1174

leak term – had a triangular (i.e. feedforward) structure. The1175

diagonal contained the two eigenvalues of the e�ective con-1176

nectivity matrix, and were interpreted as “restoring forces”1177

due to their e�ect of pulling activity along each axis back to1178

the mean. The upper triangular element of the Schur ma-1179

trix was interpreted as a “shear force”, because it induced1180

an e�ective connection from the di�erence mode onto the1181

summode, resulting in the orange force field depicted in Fig-1182

ure 2B–C. We note that the Schur vectors are not pure, but1183

instead weighted, sum and di�erence modes. Moreover, the1184

elements of the Schur triangle are complex numbers in gen-1185

eral; nevertheless, the intuition built in Figure 2 holds in the1186

complex case too, because only the moduli of these complex1187

numbers ma�er in computing total variability (in the limit of1188

slow input noise). This is all detailed in the SI, together with1189

explicit formulas for the input dependence of both shear and1190

restoring forces, as well as how each force a�ects variability1191

in the network. The SI also explains the higher-dimensional1192

Schur decomposition performed on the e�ective ring connec-1193

tivity (Figure 5), which is similar conceptually but demanded1194

more involved treatment.1195

Spiking model1196

Dynamics In the spiking model, neuron i emi�ed spikes1197

stochastically with an instantaneous probability equal to1198

kbVi � Vrestcn+, consistent with how (hypothetical) spikes1199

were modelled in the rate-based case (cf. above). Presynaptic1200

spikes were filtered by synaptic dynamics into exponentially1201

decaying postsynaptic currents (E or I):1202

daj
dt

= �
aj
⌧syn

+
X

tj

�(t � tj � �) (12)

where the tj’s are the firing times of neuron j, ⌧syn = 2 ms,1203

and � = 0.5 ms is a small axonal transmission delay (which1204

also enables the distribution of the simulations onto multi-1205

ple compute cores following Morrison et al., 2005, using cus-1206

tom so�ware wri�en in OCaml and linked to the MPI par-1207

allelization library). Synaptic currents then contributed to1208

membrane potential dynamics according to1209

⌧i
dVi

dt
= �Vi +

X

j2E cells

Jij aj(t)�
X

j2I cells

Jij aj(t)+hi(t)+⌘i(t) (13)

where the synaptic e�icacies Jij are described below, and the1210

noise term ⌘i was modelled exactly as in the rate-based sce-1211

nario. In Figure 3, the input noise covariance was simply1212

⌃noise
ij = �2

noise
⇥
�ij(1� ⇢) + ⇢

⇤
. In Figure 8, input correlations1213

were given again by Equation 9.1214

Connectivity In Figure 3, for each neuron i, we drew1215

pENE excitatory and pINI inhibitory presynaptic partners,1216

uniformly at random. Connection densities were set to pE =1217

0.1 and pI = 0.4 respectively. The corresponding synap-1218

tic weights took on values Jij ⌘ W↵�/(⌧synp�N�) where1219

{↵,�} 2 {E, I} denote the populations towhich neuron i and1220

j belong respectively, andW↵� are the connections in the re-1221

duced model (Table 1). This choice was such that, for a given1222

set of mean firing rates in the E and I populations, average E1223
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and I synaptic inputs to E and I cells match the correspond-1224

ing recurrent inputs in the rate-based model. Synapses that1225

were not drawn were obviously set to Jij = 0.1226

To wire the spiking ring network of Figure 8, for each neuron1227

i we also drew pENE excitatory and pINI inhibitory presynap-1228

tic partners, though no longer uniformly. Instead, we drew1229

them from a (discrete) distribution over presynaptic index j1230

given by:1231

pi(j) / exp

 
cos(✓i � ✓j)� 1

`2syn

!
(14)

whichmirrored the dependence ofWij on angular distance in1232

the rate model (cf. Equation 11). In Equation 14, “/” means1233

this distribution is not normalized; we used simple box (re-1234

jection) sampling to draw from it. Synapses that were drawn1235

took on the same valuesW↵�/(⌧synp�N�) as in the randomly1236

connected network (cf. above), again to achieve approximate1237

correspondance with the rate model.1238

Factor analysis1239

We performed factor analysis of spike counts, normalized by1240

the square root of the mean spike count for each neuron.1241

This normalization was such that the diagonal of the spike1242

count covariance matrix C contained all the single-neuron1243

Fano factors, which is the usual measure of variability in1244

spike counts. In the ring model, such a normalization also1245

prevented C from being contaminated by a rank-1 pa�ern of1246

network covariance merely reflecting the tuning of single-1247

neuron firing rates (the “Poisson” part of variability, which1248

indeed scales with the mean count), but instead expressed1249

covariability in the above-Poisson part of variability in pairs1250

of cells. Factor analysis decomposes C as Cprivate + Cshared,1251

where Cshared has much lower rank than Cprivate. Here, since1252

we could simulate to model long enough to get a very good1253

estimate of the spike count covariance matrix C, we per-1254

formed factor analysis by direct eigendecomposition of C,1255

thus definingCshared =
Pk

i=1 �iviv>i whereby the top k eigen-1256

vectors v1, … , vk ofC contributed to shared variability in pro-1257

portion of the corresponding eigenvalues �i . We kept k = 11258

eigenmode for the two-population model of Figure 3, as we1259

found the first eigenvalue ofC to be singled out (much larger1260

than all other eigenvalues) across all values of ⇢ and h. For1261

the ring model of Figure 8, between 3 (for large c) and 5 (for1262

small c) eigenvalues of C stood out. We chose to keep k = 51263

modes in order to conservatively estimate the drop in shared1264

variability.1265
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Symbol Figs. 1-2 Fig. 3 Figs. 4-6 Fig. 7 Fig. 8 Unit Description

NE 1 4000 50 16000 - Number of excitatory units
NI 1 1000 50 4000 - Number of inhibitory units
⌧E 20 ms Membrane time constant (E neurons)
⌧I 10 ms Membrane time constant (I neurons)

⌧noise 50 ms Noise correlation time constant
k 0.3 mV�n · s�1 Nonlinearity gain
n 2 - Nonlinearity exponent

Vrest -70 mV Resting potential
V0 -70 mV Rectification threshold potential
WEE 1.25 mV· s E ! E connection weight (or sum thereof)
WIE 1.2 mV· s E ! I connection weight (or sum thereof)
WEI 0.65 mV· s I ! E connection weight (or sum thereof)
WII 0.5 mV· s I ! I connection weight (or sum thereof)
�0,E 0.2 1 1 1.5 mV Input noise std. for E cells
�0,I 0.1 0.5 0.5 0.75 mV Input noise std. for I cells
`syn - 45� 80� deg. Connectivity lengthscale in ring net.
`stim - 60� 80� deg. Stimulus tuning lengthscale of the input
`noise - 60� 80� deg. Input noise correlation length
✓s - 0� deg. Stimulus direction
b - 2 mV Input baseline

Amax - 20 30 mV Maximum input modulation
⌧syn - 2 - 2 ms Synaptic time constant in spiking net.
pE - 0.1 - 0.1 - E ! · connection probability
pI - 0.4 - 0.4 - I ! · connection probability

Table 1. Parameters used in our simulations.
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S1 Recap of model setup

We consider the stochastic and nonlinear rate model of Equation 1 of the main text. To simplify
notations, we assume V

rest

= 0mV without loss of generality as it can be absorbed in the external
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input, and rewrite:
·

E

T

dV
dt = ≠V(t) + kWÂV(t)Ên

+

+ h(t) + ÷(t) (S1)

with n > 1 (n = 2 throughout the main text). In Equation (S1), ÂxÊn
+

denotes the pointwise
application of the threshold power-law nonlinearity to the vector x, that is, ÂxÊn

+

is the vector
whose ith element is xni if xi > 0, or 0 otherwise; T is a diagonal matrix of relative membrane time
constants measured in units of ·

E

; W is a matrix of synaptic connections, made of N
E

positive
columns (corresponding to excitatory presynaptic neurons) and N

I

negative columns (inhibitory
neurons) for a total size of N = N

E

+ N

I

; h(t) is a possibly time-varying but deterministic
external input to neuron i; and ÷ is a multivariate Ornstein-Uhlenbeck process with separable
spatiotemporal correlations given by

È÷(t)÷(t+ ·)Ít = e

≠|· |/·÷
�÷ (S2)

where �÷ is the covariance matrix of the input noise and ·÷ is its correlation time. In particular,
we are going to study how ·÷ and correlations in �÷ a�ect network variability. We adopt the
following notations for relative time constants:

q © ·

I

·

E

and r © ·÷

·

E

(S3)

In general, recurrent processing in the network is prone to instabilities due to the expansive,
non-saturating V

m

-rate relationship in single neurons. However, there are generous portions of
parameter space in which inhibition dynamically stabilizes the network. We refer to this case
as the “supralinear stabilized network”, or SSN (Ahmadian et al., 2013; Rubin et al., 2015).

S2 Mean responses in the stabilized supralinear regime

S2.1 Recap of Ahmadian et al. (2013)’s theoretical analysis

Our analysis of the stochastic SSN developed in Section S3 will show that the modulation of
variability relies on the nonlinear behavior of mean responses to varying inputs (Figure 1D of the
main text), which were studied previously (Ahmadian et al., 2013). In particular, the transition
from superlinear integration of small inputs to sublinear responses to larger inputs (Figure 1 of
the main text) could be explained using simple scaling arguments, which we briefly reproduce
here. Note that here we have written the circuit dynamics in voltage form (Equation (S1)),
while Ahmadian et al., 2013 chose a slightly di�erent rate form; accordingly, the equations
we now derive di�er from the original equations in their form, but not in their nature (in fact
steady state solutions studied in Ahmadian et al., 2013 are mathematically equivalent in the two
formulations, and moreover when T is proportional to the identity matrix, dynamic solutions
are also exactly equivalent (Miller and Fumarola, 2011)).

This section is devoted to mean responses, therefore we neglect the input noise ÷ for now. We
thus write the deterministic dynamics of the mean potentials V i as

·

E

T

dV
dt = ≠V+ kWÂVÊn

+

+ hg (S4)

and ask how neurons collectively respond to a constant external stimulus h fed to them through
a vector g ≥ O(1) of feedforward weights. Perhaps after some transient, and assuming the
network is stable (see below), the network settles in a steady state V which must obey the
following fixed point equation, obtained by setting the l.h.s. of Equation (S4) to zero:

V = hg+ kWÂVÊn
+

(S5)
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As in the main text, we focus on the case of a threshold-quadratic nonlinearity, n = 2, though the
following derivations can be extended to arbitrary n > 1. Following Ahmadian et al. (2013), we
begin by writing W © ÂJ where Â = ÎWÎ for some matrix norm Î · · · Î, and the dimensionless
vector J has ÎJÎ = 1. We also define dimensionless mean voltage and input respectively as

y © 2kÂV (S6)
– © 2kÂh (S7)

(note that the definition of – di�ers from that in Ahmadian et al., 2013 by a factor of 2). With
these definitions, the fixed point equation for the mean potentials, Equation (S5), becomes

y = –g+ 1
2JÂyÊ2

+

(S8)

Network responses to small inputs When – is small (i.e. h is small, given fixed connectivity
strength Â), it is easy to see that

y ¥ –g+O(–2) (S9)
In essence, the fixed point Equation (S8) is already the first-order Taylor expansion of y for
small – (indeed, the recurrent term JÂyÊ2

+

is O(–2), self-consistently). Thus, for small input –,
membrane potentials scale linearly with –, and firing rates are quadratic in –, merely reflecting
the single-neuron nonlinearity. In other words, the network behaves mostly as a relay of its
feedforward inputs, with only minor corrections due to recurrent interactions.

More generally, by repeatedly substituting the right side of Eq. S8 for y in Eq. Eq. S8, we arrive
at the expansion

y = –g+ 1
2J

E

–g+ 1
2J

7
–g+ 1

2J Â· · · Ê2
+

8
2

+

F
2

+

(S10)

The net result involves a series of terms of order –, –

2, –

4 . . . , which can be expected to converge
for small – (– π 1).

Network responses to larger inputs For large – (– ∫ 1), the expansion of Eq. S10 will
not converge and so cannot describe responses. Physically this tends to correspond to the
excitatory subnetwork becoming unstable by itself. At the level of the fixed point equation
S8, recurrent processing involves squaring V, passing it through the recurrent connectivity,
adding the feedforward input, squaring the result again, . . . , which for large enough input and
purely excitatory connectivity would yield activity that grows arbitrarily large. A finite-activity
solution is achieved through stabilization by inhibitory feedback. Mathematically, for this to
occur, the recurrent term JÂyÊ2

+

must cancel the linear dependence of y on – in Eq. S8 (since
any linear dependence would be squared by the right side of Eq. S8, then squared again, . . . , to
yield an explosive series like Eq. S10). That is, we must have

1
2JÂyÊ2

+

= ≠–g+O(
Ô

–) (S11)

such that (again from Equation (S8))

y ≥ O(
Ô

–) (S12)

at most. This means that membrane potentials scale at most as
Ô

–, i.e. firing rates scale at
most linearly in –. However, in many cases, firing rates too will be sublinear in –. This is
best examplified in the context of our two-population E/I model, by following Ahmadian et al.
(2013) and introducing the notation:

�
E

©
1
≠J

≠1

g

2

E

DetJ = J

II

g

E

≠ J

EI

g

I

(S13)

�
I

©
1
≠J

≠1

g

2

I

DetJ = J

IE

g

E

≠ J

EE

g

I

(S14)
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(note that we only consider networks in which DetJ > 0, as it must for stabilization to occur
for all input levels –, Ahmadian et al. (2013)). Equation (S11) can then be rewritten as

ÂyÊ2
+

= 2–

DetJ

A
�
E

�
I

B

+O(
Ô

–) (S15)

Now, depending on the choice of parameters (recurrent weights J and feedforward weights g), �
E

in particular can be negative. Since ÂyeÊ2+ is positive, it must be that the sublinear term O(
Ô

–)
dominates over the (negative) linear term 2�

E

–/DetJ, at least over some range of – over which
the E firing rate is non-zero. In this case, Ây

E

Ê2
+

behaves roughly as
Ô

– over some range1 before
it gets pushed to zero, and accordingly y

E

must be approximately
ÒÔ

– over the same range,
i.e. the E unit responds strongly sublinearly. Ahmadian et al. (2013) referred to this regime
of eventual decrease of y

E

with increasing stimulus strength as “supersaturation”, and showed
that it occurs for physiologically plausible parameter regimes. Our choice of parameters for the
two-population model of the main text falls within this class of strongly sublinear E responses
(�

E

< 0), but we will show in Section S3 that the SSN displays the same input modulation of
variability irrespective of the sign of �

E

.

In summary, the SSN responds superlinearly to small inputs, and sublinearly to larger inputs.
Firing rates become at most linear (but will be sublinear if �

E

< 0) with large inputs. Ac-
cordingly, membrane potentials show a transition from linear to (potentially strongly) sublinear
responses to increasing inputs. Moreover, this transition occurs for – ≥ O(1).

S2.2 What do we expect for typical networks?

In the context of the reduced two-population model of the main text, we now complement the
above theoretical arguments with a numerical analysis of the SSN’s responses across a wide range
of parameters, in order to form a picture of the “typical” behavior of the SSN in physiologically
realistic regimes. We will later (Section S3) reuse these numerical explorations to show that the
modulation of variability by external input in the SSN is robust to changes of parameters.

The dynamics of the trial-averaged dimensionless “population voltages” are given by

·

E

ẏ

E

= ≠y

E

+ 1
2

1
J

EE

Ây
E

Ê2
+

≠ J

EI

Ây
I

Ê2
+

2
+ –g

E

(S16)

·

I

ẏ

I

= ≠y

I

+ 1
2

1
J

IE

Ây
E

Ê2
+

≠ J

II

Ây
I

Ê2
+

2
+ –g

I

It is di�cult to get good estimates of the values of the 6 free parameters (feedforward weights and
recurrent weights) directly from biology. Therefore, our approach is to construct a large number
of networks by randomly sampling these parameters within broad intervals, and rejecting those
networks that produce unphysiological responses according to conservative criteria that we detail
below. We then examine the behavior of each of these networks and perform statistics on the
various kinds of responses that have been identified in the theoretical analysis of Section S2.1.

We thus constructed 1000 networks by sampling both feedforward weights {g–} and recurrent
weights {J–—} (for –,— œ {E, I}) uniformly from the interval [0.1; 1], and subsequently normal-
izing their (vector) LŒ-norm such that max(g–) = max(J–—) = 1. We then sampled the overall
connectivity strength Â (cf. Section S2.1) from the interval [0.1; 10]. This interval was based on
rough estimates of the average number of input connections from the local network per neuron
(between 200 and 1000), average PSP amplitude (between 0.1 mV and 0.5 mV) and decay time

1Talking about how yE scales with large – actually stops making sense when �E < 0 precisely because for
large enough – the E unit stops firing; but the point here is that because yE must decrease at some point, it will
necessarily become strongly sublinear in – over some range before it starts to decrease.
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constants (5 to 20 ms), giving a range of connectivity strengths – which in our model is the
product of these three quantities – between 0.1 and 10 mV/Hz.

Instead of choosing a range of – and simulating the dynamics of Equation (S16) to compute
mean voltages, we instead observed that y

I

increases monotonically with – and for each network
we chose a range of y

I

corresponding to mean I firing rates ((y
I

/2Â)2/k) in the range [0; 200] Hz,
thus assuming that mean I responses above 200 Hz would be unphysiological. For each y

I

in this
discretized range we solved for y

E

analytically by noting that the input – can be eliminated from
the pair of fixed-point equations (Equation (S16) with l.h.s. set to zero), yielding a fixed-point
curve in the (y

E

, y

I

) plane:
�
I

y

E

2 + 2g
I

y

E

= �
E

y

I

2 + 2g
E

y

I

(S17)

Given y

I

it is easy to solve this quadratic equation for y

E

. We rejected those parameters sets
for which we encountered either i) complex solutions for y

E

, or ii) real but unstable solutions,
as assessed by the stability conditions TrJ < 0 and DetJ > 0.01 (with the Jacobian matrix
J defined in Equations (S19) and (S21)), or iii) stable solutions that involved E firing rates
((y

E

/2Â)2/k) either greater than 200 Hz, or smaller than 1 Hz for the largest value of y
I

. Finally,
for each fixed point (y

E

, y

I

), we computed the corresponding – from either of the two fixed-point
equations (Equation (S16) with l.h.s. set to zero), e.g. – =

#
y

E

≠ (J
EE

y

E

2 ≠ J

EI

y

I

2)/2
$
/g

E

. This
procedure was numerically much more e�cient than simulating the dynamics of Equation (S16)
until convergence to steady-state.

The parameters of the retained networks spanned a large chunk of the invervals in which they
were sampled (Figure S1A and B). Because stability for large – requires DetJ > 0, i.e. J

EI

J

IE

>

J

EE

J

II

, the largest of all sampled J–—’s was often either J

EI

or J

IE

which then, due to the
LŒ-norm normalization, assumed a value of one (Figure S1A). We also observed that the input
weight g

E

was often larger than g

I

(Figure S1B). About 90% of the sampled networks has �
E

> 0,
implying ≥ Ô

– scaling of y
E

and y

I

for large – (example in Figure S1D, top). In these networks,
E and I rates were linear in – for – large enough, and so were also linear in each other when large
enough (Figure S1E, black). The rest of the networks (10%) had �

E

< 0 and therefore showed
supersaturation of the E firing rate for large input (Figure S1D, bottom) and E responses that
were sublinear in I responses (Figure S1E, orange).

It is worth noting that for networks with small overall connectivity strength Â, the proportion
of �

E

< 0 and �
E

> 0 cases tend to even out (Figure S1C). This is because, for supersaturating
networks, the peak E firing rate is inversely proportional to Â

2 (Ahmadian et al., 2013), so for
large Â the peak firing rate is low and therefore the final value of r

E

reached for r

I

= 200 Hz
likely falls below our threshold of 1 Hz, resulting in a rejection of the parameter set.

In sum, the nonlinear properties of the SSN’s responses to growing inputs, summarized in
Section S2.1, are robust to changes in parameters so long as these keep the network in a regime
“not too unphysiological” in a conservative sense. Using the same collection of sampled networks,
we will show below that the modulation of variability with input described in the main text is
equally robust to parameter changes.

S3 Activity variability in the two-population SSN model

In this section, we derive the theoretical results regarding activity variability in the two-population
model of the main text. We use these analytical results to demonstrate robustness of our results
to changes in parameters, which we also verify numerically using the collection of networks with
randomly sampled parameters introduced in Section S2.2.
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S3.1 Linearization of the dynamics

We now consider the noisy dynamics of the two-population model of the main text in which the
E and I units represent the average activity of large E and I populations. To study variability
analytically, we linearize Equation (S1) around the mean, thus examining the local behavior of
small fluctuations ”V:

·

E

T

d”V

dt = A(–) ”V(t) + ÷(t) (S18)

with A(–) © ≠I+W

e�(–) (S19)

The e�ective connectivity W

e� depends on the (dimensionless) input – through its dependence
on mean responses, following

W

e�

ij (–) = JijÂyj(–)Ê+ for i, j œ {E, I} (S20)

where we have used the definition of the dimensionless voltage y and dimensionless connections
J introduced in Section S2.1. With our notations, the Jacobian matrix

J (–) © T

≠1

A(–) (S21)

is unitless, so that, e.g., the interpretation of a real negative eigenvalue ⁄ of J is that the
corresponding eigenmode decays asymptotically with time constant ·

E

/|⁄| as a result of the
recurrent dynamics. We parameterize the input noise covariance as

+
÷(t) ÷(t+ ·)T

,
=

3
1 + 1

r

4
e

≠|· |/·÷

A
c

2

E

c

EI

c

EI

c

2

I

B

with c

EI

© fl

EI

c

E

c

I

(S22)

such that, in the limit of small – – in which the network is e�ectively unconnected, because ÂyÊ
in Equation (S20) is small – the E unit has variance c2

E

; the I unit then has variance 1+r
q+r c

2

I

. The
parameter fl

EI

determines the correlation between input noise to the E and I units.

S3.2 General result

As shown in the appendix, the full output covariance matrix � © È”V ”V

TÍ can be calculated
by solving a set of linear equations, which yields:

� = (1 + r)(1 ≠ rTrJ )
≠TrJDetA(q ≠ qrTrJ + r

2DetA)

A
�ı
EE

�ı
EI

�ı
EI

�ı
II

B

(S23)

with

�ı
EE

= c

2

E

3
qDetA

1 ≠ rTrJ +A

2

II

4
+ c

2

I

A

2

EI

≠ 2c
EI

A

EI

A

II

(S24)

�ı
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2

I

A
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≠1DetA
1 ≠ rTrJ +A
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2
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EI
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(S25)

�ı
EI

= c

2

E

A

IE

A

II

+ c

2

I

A

EI

A

EE

≠ 2c
EI

3
A

EE

A

II

≠ rTrJDetA
2(1 ≠ rTrJ )

4
(S26)

In Equations (S23) to (S26), each term that depends on A or J depends implicitly on the
(dimensionless) constant input – delivered to both E and I populations, because A (or J )
depends on mean voltages (through Equation (S20)) which themselves depend on –. Note also
that, for the network to be stable at a given input level –, the Jacobian matrix J (–) should
obey TrJ < 0 and DetJ > 0 (with the latter equivalent to DetA > 0).
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Among other things, we will analyze the behaviour of the total variance, i.e. the trace of � given
by

Tr(�) = (1 + r)—(A)(1 ≠ rTrJ ) + DetA(qc2
E

+ q

≠1

c

2

I

)
≠TrJDetA (q ≠ qrTrJ + r

2DetA) (S27)

with A defined in Equation (S19) and

—(A) © (A2

IE

+A

2

II

)c2
E

+ (A2

EI

+A

2

EE

)c2
I

≠ 2(A
IE

A

EE

+A

EI

A

II

)c
EI

(S28)

S3.3 Analysis in simplified scenarios

In order to understand what Equation (S27) tells us about the modulation of variability with
the input –, we make a couple of assumptions that greatly simplify the expression for the total
variance with little loss of generality. First, we consider the limit of slow2 input noise which we
find empirically is approached rather fast, with ·÷ = 50 ms already giving a close approximation
given ·

E

= 20 ms and ·

E

= 10 ms. Next, we assume that

c

E

= c

I

Ÿ

© c (S29)

and fl

EI

= 0, i.e. the E and I units have uncorrelated input fluctuations of equal amplitude (the
impact of positive input correlations, fl

EI

> 0, will be discussed in Section S3.4). With these
two assumptions, the total variance simplifies into

Tr(�) = c

2

—

0

(A)
DetA2

(S30)

which provides a good basis for discussion. Here we defined c

2

—

0

(A) to be —(A) with c

EI

set to
zero. The typical behavior of —

0

(A)1/2 and DetA is shown in Figure S2A. Both can be expressed
as a function of mean responses using Equations (S19) and (S20):

—

0

(A) = Ÿ

2(J
EE

y

E

≠ 1)2 + Ÿ

2(J
EI

y

I

)2 + (J
IE

y

E

)2 + (1 + J

II

y

I

)2 (S31)
DetA2 = [(J

IE

y

E

)(J
EI

y

I

) + (1 ≠ J

EE

y

E

)(1 + J

II

y

I

)]2 (S32)

Note that to simplify notations we have dropped the Â·Ê
+

that should surround every y. Based
on these expressions, we now examine the behavior of variability in the small and large – limits
and show that the total variance should typically grow and then decay with increasing –, and
therefore should exhibit a maximum which empirically we find occurs for – ≥ 1.

Behavior of the total variance for small – Using Equations (S30) to (S32), we find the
slope of the total variance at – = 0 to be

d
d–

Tr(�)
----
–=0

= 2c2
1
g

E

J

EE

≠ Ÿ

2

g

I

J

II

2
(S33)

Thus, when the noise power fed to inhibitory cells is su�ciently small, Ÿ = c

I

/c

E

will be small
enough that the expression in Equation (S33) will stay positive, and therefore total variability
will grow with small increasing –. Indeed, we find that this happens for most (> 90%) of
the randomly sampled networks of Section S2.2 with Ÿ as large as 1/2 (Figure S2A, bottom).
Moreover, restricting the analysis to the E unit gives d�

EE

/d–|–=0

= 2c2g
E

J

EE

which is always
2The other limit (fast noise, ·÷ æ 0) also greatly simplifies Equation (S27), but would not make much sense

in the context of this study, since Equation (S1) is meant to model the dynamics of the voltage on a timescale
Ø 30 ms, which is the timescale on which a threshold power-law relationship between voltage and rate has been
measured in cat V1. Therefore, the input noise that we explicitly model here is meant to capture the slowly
fluctuating components of external inputs, the fast components having been “absorbed” into the threshold power-
law gain function.
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positive, independently of Ÿ. Thus, for slow enough input noise, the variability in the E unit
always increases with small –.

We can extend this argument to slightly larger values of – by further inspecting the numerator
and denominator in Equation (S30). Although the first term in the numerator, (J

EE

y

E

≠ 1)2,
originally decays with – as y

E

grows from 0 to 1/J
EE

, the other three terms always grow with
– as long as mean voltages do, and thus we expect the numerator to typically grow. This is
indeed what we find in all sampled networks (Figure S2A). On the other hand, the denominator
(Equation (S32)) is the square of the sum of two terms, the first one initially small and growing,
and the second one initially large and decaying. Indeed, the second term starts at 1 for – = 0,
because the y terms are all zero, and then decays to zero as the network enters the inhibition-
stabilized (ISN) regime and the e�ective excitatory feedback gain J

EE

y

E

becomes larger than
one3 (Tsodyks et al., 1997; Ozeki et al., 2009). Thus, due to this partial cancellation of growing
and decaying terms, we expect the denominator to either decrease, or grow very slowly, with
increasing – (Figure S2A), until it starts growing faster (see arguments below for the large –

case) in the very rough neighborhood of the ISN transition. All in all, the ratio of a fast growing
numerator to a slower growing denominator suggests that the total variance should robustly
grow with small increasing – (Figure S2A, bottom).

Behavior of the total variance for large – As the input grows, so do the mean (dimension-
less) voltages y

E

and y

I

at least over some range of –. Therefore, we expect both the numerator
and the denominator that make up the total variance in Equation (S30) to grow with large
enough and increasing –. However, loosely speaking, the numerator grows as y

2 while the de-
nominator grows as y4, which can be seen by inspecting Equations (S31) and (S32). Thus, their
ratio should decrease roughly as 1/y2.

This argument can be made more rigorous in the case �
E

> 0, i.e. when the E unit does
not supersaturate. In this case, from Equation (S15) we have y

E

¥ 
2�

E

–/DetJ and y

I

¥
2�

I

–/DetJ for – large enough. Therefore, in the large – limit, the numerator and denominator
of Equation (S30) behave as

—

0

(A) ¥ 2
DetJ

Ë
(J2

IE

+ Ÿ

2

J

2

EE

)�
E

+ (J2

II

+ Ÿ

2

J

2

EI

)�
I

È
– (S34)

DetA2 ¥ 4�
E

�
I

–

2 (S35)

respectively, therefore the total variance (their ratio) decreases as 1/–. For �
E

< 0, the large
– limit is irrelevant strictly speaking, as in this limit Ây

E

Ê
+

and r

E

go to zero. In this case the
total variance does not decrease asymptotically but reaches a finite limit of c2

#
1 + (qJ

EI

/J

II

)2
$
.

However, we find empirically that the peak of variability always occurs well before the onset
of supersaturation, in a regime where both y

E

and y

I

are still growing with – while remaining
roughly proportional to each other (Figure S1E), so that the argument made above can be
repeated: the total variance decreases as 1/y2 for a while after having peaked.

Where does variability peak? The above arguments, derived for slow noise ·÷ æ Œ, show
that growing inputs typically increase, and then suppress, total variability in the two-population
SSN. Thus, total variability (and even more certainly, variability in the E unit) typically ex-
hibits a maximum for some intermediate value of –. We find empirically that, even for finite
·÷, the location of this variance peak is well approximated by its location in the limit of fast
inhibition, q æ 0, which we can estimate analytically. Indeed, in this limit, the I cell responds

3In this regime, JEEyE > 1 … AEE > 0 implies instability of the excitatory subnetwork in isolation, and
therefore the need for dynamic, stabilizing feedback inhibition (hence the name “inhibition-stabilized network”).
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instantaneously to changes in E activity and input noise, such that

”V

I

(t) = J

IE

y

E

”V

E

(t) + ÷

I

(t)
1 + J

II

y

I

(S36)

Consequently, ”V

E

now obeys one-dimensional dynamics given by

·

E

”V̇

E

= ≠⁄”V

E

(t) + ÷

e�

(t) (S37)

where
⁄ = 1 + y

E

(DetJ y

I

≠ J

EE

)
1 + J

II

y

I

(S38)

and ÷

e�

is a noise process (a linear combination of ÷

E

and ÷

I

) with temporal correlation length ·÷

and a variance that is empirically irrelevant for the arguments below4 In this case, the variance
of ”V

E

is inversely proportional to ⁄(1r +⁄), and therefore should be maximum at the input level
– that minimizes ⁄. Observing from Figure S1E that y

E

and y

I

are roughly proportional over
a large range of – (for �

E

< 0), if not the entire range (for �
E

> 0), we can make the following
approximation:

⁄ ≠ 1 Ã y

I

(DetJy
I

≠ J

EE

)
1 + J

II

y

I

(S39)

whose minimum is straightforward to calculate and is attained for

y

I

= 1
J

II

Q

a
Û

J

EI

J

IE

DetJ ≠ 1

R

b (S40)

We find that the – of maximum variance in the E unit is indeed very well approximated by
the – at which y

I

reaches the threshold value of Equation (S40), especially in the absence of
input correlations (fl

EI

= 0, Figure S2B, left). For correlated noisy inputs, the criterion of
Equation (S40) deteriorates slightly but still consistently provides an upper bound on the – of
maximum E variance (Figure S2B, right).

Interestingly, the criterion for maximum variance in Equation (S40) is equivalent to a criterion
about the e�ective IæI connection, given by W

e�

II

© 2kÂV
I

Ê
+

W

II

(cf. main text Equation (6)).
Specifically, at the peak of variance we expect to have

W

e�

II

=
Û

1
1 ≠ —

≠ 1 with — © W

EE

W

II

W

EI

W

IE

(S41)

where — < 1 is in some sense the ratio of what contributes positively to the activity of the E
cell (product of self-excitation W

EE

with disinhibition W

II

) to what contributes negatively to
it (the product W

IE

W

EI

quantifying the strength of the E æ I æ E inhibitory feedback loop).
Thus, in networks with inhibition-dominated connectivity, i.e. ones in which — π 1, we expect
W

e�

II

to reach the criterion of Equation (S41) earlier as the input grows (this argument implictly
assumes that the rate of growth of W e�

II

itself doesn’t depend too much on —, which we could
confirm numerically).

Finally, we note that since variability peaks for – ≥ O(1) and y ≥ O(1), networks with stronger
connectivity (large Â) will exhibit a peak of variance for smaller external input h (because
– Ã Âh) – and this peak will occur for lower voltages/firing rates (because V Ã y/Â).

4The variance of the e�ective noise process is proportional to 1 + J2
IEyI

2

(1+JIIyI)2
, and so has some dependence

on – especially for small – before yI grows large. However, empirically, the quality of the approximation in
Equation (S39) – which is derived under the assumption of constant e�ective noise variance – suggests we can
neglect this e�ect.
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S3.4 E�ects of input correlations

To see the e�ect of input correlations on variability, we return to the expression for �
EE

in
Equation (S27), assume again that ·÷ æ Œ and c

E

= cI
Ÿ = c, but now with fl

EI

”= 0. We thus
obtain:

�
EE

= c

2

A

2

II

+ Ÿ

2

A

2

EI

DetA2

≠ 2c2fl
EI

ŸA

II

A

EI

DetA2

(S42)

Thus, total E variability is equal to that without input correlation (the first term), minus a
positive term proportional to fl

EI

. Thus, positive input correlations always decrease variability
in the E unit (and, in particular, its peak; Figure S2C, right), while negative correlations increase
it. Moreover, the subtracted term has the same large-– behavior as the first term, because the
two terms share the same denominator and for large alpha both numerators are O(y

I

2). Thus,
input correlations should not a�ect the qualitative, decreasing behaviour of E variance for large
increasing inputs. For small – and large fl

EI

, however, we expect A2

II

+ Ÿ

2

A

2

EI

≠ 2fl

EI

ŸA

II

A

EI

to
grow much more slowly than A

2

II

+ Ÿ

2

A

2

EI

; and indeed, in the extreme case fl

EI

= 1, the total
numerator becomes (1 + (J

II

≠ ŸJ

EI

)y
I

)2, which can even decrease transiently with increasing
– if ŸJ

EI

> J

II

(this occurs in about half of our thousand networks). This, in e�ect, shifts the
peak of E variability to smaller values of – (Figure S2C, left).

The situation for the I unit is a bit di�erent, as input correlations a�ect the I variance di�erently
depending on whether the network has already made the transition to the ISN regime. Indeed,
under the same assumptions as above, the I variance is given by

�
II

= c

2

Ÿ

2

A

2

EE

+A

2

IE

DetA2

≠ 2c2fl
EI

ŸA

EE

A

IE

DetA2

(S43)

In the ISN regime, A
EE

> 0, so that input correlations decrease I variability, just as it does
for E variability as seen above. For small enough inputs, however, the network is not yet an
ISN (A

EE

< 0), so that the e�ect of correlations is reversed: larger input correlations increase I
variability.

In sum, input correlations modify the fine details of how large the variance grows and how early it
peaks with increasing inputs, but they do not modify the qualitative aspects – in particular, the
non-monotonic behavior – of variability modulation with external inputs in this two-population
SSN model.

S3.5 Mechanistic aspects: Schur decomposition

We now unpack the mechanistic aspects of variability modulation described in the main text,
i.e. give mathematically precise meaning to the “forces” of Figure 2 (main text) acting on input
fluctuations. We do this through a Schur decomposition (see e.g. Murphy and Miller, 2009
and its supplementary material in particular) of the 2-population model’s Jacobian matrix in
Equation (S21):

J (–) = U(–)T
Schur

(–)U(–)ı with T

Schur

(–) ©
A

⁄s wFF
0 ⁄d

B

(S44)

where ·ı denotes the conjugate transpose, ⁄s and ⁄d are the two (either real or complex-
conjugate5) eigenvalues of J (–), and the columns of U are the (orthonormal) Schur vectors
such that UU

ı = U

ı
U = I. Expressing the E and I voltage fluctuations in the Schur basis as

z © U

ı
”V, their dynamics become

·

E

dz
dt = T

Schur

z+U

ı
T

≠1÷ (S45)

5The eigenvalues remain real over the entire input range for about half of the 1000 random networks studied
throughout (all with q = 1/2). In the second half, they go from real to complex-conjugate and then sometimes
to real again.
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In the case of the 2-population E/I architecture considered here (W given by Equation 4 of
the main text), the first Schur vector is a “sum mode” in the generalized sense (Murphy and
Miller, 2009), i.e. its excitatory and inhibitory components have the same sign6.This corresponds
to patterns of network activity in which the excitatory and inhibitory units are simultaneously
either more active or less active than average. The second Schur mode is a generalized “di�er-
ence mode” in that its excitatory and inhibitory components have opposive signs. (Hence the
notations ⁄s and ⁄d.) In theory, U depends on the input –, because J does. However, we
find that passed a relatively small value of –, the Schur vectors do not change much and are
indeed sum-like and di�erence-like across all thousand networks studied in Sections S2 and S3
(Figure S2E).

The Schur decomposition reveals through T

Schur

(–) a feedforward structure hidden in the ef-
fective, recurrent connectivity J (–): the di�erence mode feeds the sum mode with an e�ective
feedforward weight wFF (also a complex number if the eigenvalues have an imaginary compo-
nent), given by the upper right element of the triangular matrix T

Schur

. On top of this, both
patterns inhibit themselves with the corresponding negative weight ⁄d or ⁄s. Note that the sum
of squared moduli (squared Frobenius norm Î · Î2

F

) is preserved by the unitary transformation
J ‘æ U

ıJU © T

Schur

, such that ÎJ Î2
F

= ÎT
Schur

Î2
F

, i.e.

|wFF| =
Ò

ÎJ Î2
F

≠ (|⁄s|2 + |⁄d|2) (S47)

In the main text, we called the e�ect of ⁄s and ⁄d “restoring forces”, and that of wFF a “shear
force”, because of the way they contribute to the flow of dynamics in the E/I activity plane and
thus distort the ellipse of input fluctuations. Fluctuations are quenched along both the sum and
the di�erence axes, in proportion of ⁄s and ⁄d respectively, and fluctuations along the di�erence
axis are amplified along the sum axis in proportion of wFF.

The calculation of the network covariance matrix (Equation (S27)) can also be performed in
the Schur basis, and doing this sheds further light on the roles of ⁄d, ⁄s and wFF in shaping
variability. We begin by observing that

Tr (�) = Tr
!È”V ”V

TÍ"

= Tr (ÈUzz

ı
U

ıÍ)
= Tr (UÈzzıÍUı)
= Tr (ÈzzıÍ) (S48)

(the last step following from UU

ı = I). Thus, the total variance is preserved in the Schur basis.
Next, taking the Fourier transform of Equation (S45) and rearranging term yields

ẑ(Ê) = (iÊI ≠ T

Schur

)≠1

U

ı
T

≠1÷̂(Ê) (S49)

where ·̂ denotes the Fourier transform and Ê © 2fif·

E

is a dimensionless frequency. Moreover,
according to Parseval’s theorem we have

Tr (ÈzzıÍ) = 1
2fi·

E

⁄
+Œ

≠Œ
Tr (ẑẑı) dÊ (S50)

6 This holds when the eigenvalues of A are real. When they are complex conjugate, one can still perform a
real Schur decomposition by orthogonalizing the imaginary part of the eigenvector against the real part, which
yields

TSchur =
3

Re(⁄) a+
a≠ Re(⁄)

4
a± ©

wFF ±


wFF2 + 4 Im(⁄)2
2 (S46)

and the two Schur vectors in this case are also sum-like and di�erence-like, in this order. At this point (anticipating
a little bit on what follows this footnote), we note that in the imaginary case, there is a small feedback term
proportional to a≠ from the sum-mode to the di�erence-mode. Thus, the picture of the forces drawn in Figure 2
of the main text is incomplete. However, we will see that in the slow-noise limit (which gives a very good
approximation to the output covariance as seen in Section S3.3), the purely feedforward picture remains exact
provided one replaces wFF, ⁄d and ⁄r by their moduli.
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Thus, combining Equations (S48) to (S50) we get

Tr(�) = 2r
fi

⁄
+Œ

≠Œ

Tr
Ë
(iÊI ≠ T

Schur

)≠1

U

ı
˜�÷

U(iÊI ≠ T

Schur

)≠ı
È

1 + (rÊ)2 dÊ (S51)

where ˜�÷ © T

≠1

�÷T
≠1. To simplify the calculation we now assume uncorrelated input noise

terms, with the power of noise input to E and I balanced such that Ÿ = q and ˜�÷ = c

2(1+1/r)I,
leading to:

Tr(�) = (1 + r)c2
fi

⁄
+Œ

≠Œ

Tr
!
(iÊI ≠ T

Schur

)≠1(iÊI ≠ T

Schur

)≠ı
"

1 + (rÊ)2 dÊ (S52)

= (1 + r)c2
fi

⁄
+Œ

≠Œ

1
1 + (rÊ)2

A
1

|iÊ ≠ ⁄d|2 + 1
|iÊ ≠ ⁄s|2 + |wFF|2

|iÊ ≠ ⁄d|2|iÊ ≠ ⁄s|2
B

dÊ

where the second equality comes from having inverted the upper-triangular matrix iÊI≠T

Schur

analytically and taken its squared Frobenius norm. Carrying out the integral gives

Tr(�) = (1 + r)c2
A

1 ≠ r⁄r
s

≠⁄rs(1 ≠ 2r⁄rs + r

2|⁄s|2) +
1 ≠ r⁄r

d
≠⁄r

d(1 ≠ 2r⁄r
d + r

2|⁄d|2) (S53)

+ |wFF|2 [1 ≠ r(⁄s + ⁄d)]
≠(⁄s + ⁄d)|⁄s| |⁄d| [1 ≠ r(⁄s + ⁄d) + r

2|⁄s| |⁄d|]

B

(S54)

where ⁄r
s and ⁄r

d stand for the real parts of ⁄s and ⁄d respectively (they must both be negative
for the dynamics to be stable).

This expression simplifies in the slow noise limit, r æ Œ:7

Tr(�) ræŒ≠æ c

2

A
1

|⁄s|2 + 1
|⁄d|2 + |wFF|2

|⁄s|2|⁄d|2
B

(S55)

In this limit, the picture of the forces drawn in a plane of sum and di�erence activity (Figure 2
of the main text), assuming that they are real quantities, becomes accurate even when the
eigenvalues of J are complex-conjugate (in which case, as mentioned above in passing, the sum-
like mode feeds back onto the di�erence mode, although this interaction is much weaker than the
opposite one). Indeed, in Equation (S55), the elements of T

Schur

are reduced to their moduli,
so even when they are complex one can still interpret Equation (S55) as the total variance in a
system with the same real Schur vectors, real eigenvalues equal to ≠|⁄d| and ≠|⁄s| respectively,
and a real feedforward weight equal to |wFF|.
Equation (S55) shows in more details how the shear and restoring forces contribute to variability.
In loose terms, the total variance is a sum of two contributions: one that does not depend on
wFF and decreases with 1/|⁄|2, and one that grows with |wFF|2 but is also divided by a term of
order ⁄4 (where ⁄ is a loose notation to denote the overall magnitude of the eigenvalues). Thus,
as the input grows, the e�ect of the eigenvalues on variability becomes much stronger than that
of balanced amplification. Such a dominance can also be understood from the structure of the
force fields that negative self-couplings and balanced amplification induce. Restoring forces are
proportional to the distance from the origin: the stronger the momentary V

m

deviation from
mean in any direction, the stronger the pull towards the origin in the same direction (main text

7More generally, for arbitrary q, Ÿ and flEI, in the limit r æ Œ, Equation (S55) still holds, in precisely the same
form, but in terms of the eigenvalues and feedforward Schur weight of B(–) © c�≠ 1

2
÷ A(–) rather than of J (–).

This is because, in that limit, Tr(�) = c2ÎB≠1Î2
F. Note that q cannot a�ect the result in the limit ·÷ æ Œ; and

that when Ÿ = q and flEI = 0, then J (–) = B(–) and hence Equation (S55) holds. To see why Tr(�) = c2ÎB≠1Î2
F

in this limit: most simply, in the slow noise limit, one can think of the noise ÷(t) in Equation (S18) as a constant
input and solve for its steady state ”V = ≠A≠1÷, then form � =

+
”V”VT

,
.
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Figure 2C, green arrows). In contrast, shear forces grow along the di�erence axis while pointing
in the orthogonal, sum direction, such that larger deviations in the sum do not imply larger shear
force (main text Figure 2C, orange arrows). Thus, self-inhibition leads to exponential temporal
decay of activity fluctuations, whereas balanced amplification gives only linear growth. This
explains why, for large enough input, V

m

variability decreases with increasing input even when
all forces grow in magnitude at the same rate (Figure S2A).

Equation (S55) also shows that if one of the eigenvalues transiently weakens with increasing
input, then variability should transiently grow. This explains a large part of the variability
peak observed in the network of the main text, and indeed, it also predicts variability growth
in most of the thousand networks investigated here. However, there are cases where variability
transiently grows, without any weakening of eigenvalues (Figure S3A). In those cases, setting
wFF to 0 in Equation (S55) wrongly predicts purely decaying variability (compare dashed and
solid black lines in Figure S3A, bottom). Thus, in general, initial variability growth results from
the combined e�ects of weaker inhibitory self-couplings and strong balanced amplification.

S3.6 How do the “forces” depend on the input?

The input dependence of the shear (|wFF|) and restoring (|⁄s|, |⁄s|) forces can be understood
from the input dependence of mean responses (y

E

and y

I

), which were examined previously in
Section S2. First, at – = 0 (no input) the e�ective connectivity is zero, thus J = diag(≠1,≠q

≠1)
and therefore the two eigenvalues are ≠1 and ≠1/q. To see how the eigenvalues change with
the input, let us note that for a 2 ◊ 2 matrix, the sum of the eigenvalues is equal to the trace
of the matrix while their product is equal to its determinant. Thus, when both eigenvalues are
real (which they are for small enough –), both the arithmetic and geometric mean of |⁄s| and
|⁄d| can be related to the elements of J , which themselves depend directly on y

E

and y

I

. This
yields:

|⁄s|+ |⁄d| = q

≠1 [1 + q + (J
II

y

I

≠ qJ

EE

y

E

)] (S56)

and

|⁄s| |⁄d| = q

≠1 [1 + DetJ y

E

y

I

+ (J
II

y

I

≠ J

EE

y

E

)] (S57)

We see that, by both measures, the overall restoring force tends to grow with increasing input –,
because i) mean responses grow too, and therefore so does the product term in Equation (S57),
and ii) y

I

tends to grow larger than y

E

(Figure S1E), so that the weighted di�erence terms
inside round brackets in both Equations (S56) and (S57) increase, at least for large enough –.
However, when g

E

J

EE

> g

I

J

II

, the di�erence term in Equation (S57) will initially grow negative
with increasing – but small – –, before it increases again for larger –. This means that at least
one of the eigenvalues will decrease. In such a case, whether or not both eigenvalues decrease
transiently depends on the behavior of the di�erence term in Equation (S56). The requirement
for this di�erence term to decrease initially is qg

E

J

EE

> g

I

J

II

which is harder to satisfy especially
when inhibition is fast (q is small). Thus, we typically expect that one eigenvalue should decrease
(or, at least, its growth should be delayed) before growing again (Figure S2A).

As for the shear force, a similarly simple expression can be obtained in the case of real eigenvalues
by noting that the sum of squared eigenvalues in 2 ◊ 2 matrix J is equal to (TrJ )2 ≠ 2DetJ .
This observation yields

|wFF| =
Ò

ÎJ Î2
F

≠ (TrJ )2 + 2 DetJ
= q

≠1 (J
IE

y

E

+ qJ

EI

y

I

) (S58)

i.e. the shear force is proportional to a weighted average of mean V

m

responses in the E and I
units, which, in the SSN, shows linear growth for small – and sublinear growth for larger – (cf.
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Section S2 and Figure S1D). Thus, we have a situation in which the force that boosts variability
grows faster initially than those that quench variability, causing a transient increase in total
variance for small increasing inputs. For large –, all forces (|⁄s|, |⁄d| and wFF) grow as

Ô
–

(Figure S2A), because J is dominated by its J–—y— components and the y terms grow as
Ô

–

as seen in Section S2. Thus, the total variance in Equation (S55) should decay as 1/– in this
limit, consistent with what we concluded in Section S3.3.

When the eigenvalues of J turn complex-conjugate, Equations (S56) to (S58) above become
more complicated expressions, which nevertheless does not change the main insights.

S4 Analysis of the balanced ring network

S4.1 Reduced Schur decomposition

In this section we describe the mathematical details underlying Figure 5E of the main text. As
we did above for the two-population model (Section S3.5), we want to gain some mechanistic
understanding of how the input modulates variability in the ring SSN, through an analysis of the
“forces” that the network dynamics impose on the flow of fluctuations, thereby a�ecting noise
variability. To study fluctuations, we begin by linearising the dynamics of the network around
the fixed point induced by the external input (we fix the motion direction ◊s to 0¶ without loss
of generality). This leads to the same Equations (S18) and (S19) as above, where the e�ective
connectivity matrix W

e�(c) is now an N ◊N matrix that depends on the contrast variable c (cf.
Equation (8) in the main text). Next, we seek a low-dimensional reduction of those linearized
dynamics: we write ”V(t) = Uy(t) for some y œ RK and reduced orthonormal basis U œ RN◊K

with K π N , and look for dynamics of the form

ẏ = T

Schur

y+U

T÷ (S59)

where, for interpretability, T
Schur

œ RK◊K is constrained to be quasi-upper-triangular. The
covariance matrix � of ”V is then approximated by � ¥ U cov(y)UT, where cov(y) is ob-
tained from standard linear systems theory by solving a reduced-order Lyapunov equation (e.g.
Appendix A).

While methods exist that will perform the above model-order reduction to best approximate
the covariance of ”V, here we instead want to approximate the high-dimensional flow – i.e.
approximate the Jacobian J (c). A natural way of doing this would be to simply Schur-transform
the Jacobian J (c), and truncate the resulting Schur basis appropriately (e.g. look for the
columns of U for which the couplings in T

Schur

are non-negligible). Complications arise from
the Schur decomposition not being unique: prior to orthogonalizing the eigenvectors of J (c), we
are free to order them in any of N ! possible ways. This may undermine interpretability, because
although there might well exist an ordering that returns a very sparse matrix T

Schur

, leading to a
parsimonious description of the recurrent dynamics in terms of feedforward interactions between
a very small number of modes, we might never find such an ordering (e.g. a random ordering
typically leads to a dense matrix T

Schur

). Another complication relates to the fact that we
would like to “follow” those relevant Schur modes and their interactions as we vary the contrast
c (cf. Figure 5E, right), so we also require the ordering to lead to interpretable dynamics across
contrast levels. In some cases, there is a natural choice of ordering, e.g. by decreasing order of
the corresponding eigenvalue real parts, that may lead to a very sparse Schur triangle with a
nice interpretation (Murphy and Miller, 2009). Here, we found it very challenging to find good
exact Schur decompositions by hand, and we instead automatised the process of finding good
approximate Schur decompositions, as described below.

Here, we instead adopt the following approach. We capitalise on the fact that bump kinetics
capture most of the network fluctuations (cf. fitting procedure in Figure 5A-D; see also the PCA
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analysis in Figure S4A), so that we expect interactions between these three activity modes to
form the dominant part of the recurrent network interactions. Let N

E

= N

I

= M (we have one
excitatory and one inhibitory neuron at each of M = 50 sites on the ring) and let b

1

, b
2

and
b

3

be the three modes of bump motion (defined in RM ) corresponding to fluctuations in bump
location, width, and amplitude, respectively. We first orthonormalize these modes, which leaves
b

1

and b

2

una�ected but results in slight negative flanks in b

3

(Figure S4B). We then constrain
our truncated Schur basis to be made of 3 pairs of sum-like and di�erence-like modes of the
form:

U(c) =

Q

ccccccccccca

ø ø ø ø
–

1

(c)b
1

Ò
1 ≠ –

2

1

(c)b
1

. . . . . . –

3

(c)b
3

Ò
1 ≠ –

2

3

(c)b
3

¿ ¿ ¿ ¿

ø ø ø øÒ
1 ≠ –

2

1

(c)b
1

≠–

1

(c)b
1

. . . . . .

Ò
1 ≠ –

2

3

(c)b
3

≠–

3

(c)b
3

¿ ¿ ¿ ¿

R

dddddddddddb

œ RN◊6

(S60)
with –i(c) œ [0 : 1] for i œ {1, 2, 3}. (Thus, with the notation introduced above, we have
K = 6 π N .) By construction, these modes are orthonormal (UT

U = I œ R6◊6). We then seek
a real quasi-Schur factor with the following structure:

T

Schur

(c) =

Q

ccccccca

⁄

+

1

(c) Ê

FF

1

(c)
Ê

FB

1

(c) ⁄

≠
1

(c)
⁄

+

2

(c) Ê

FF

2

(c)
Ê

FB

2

(c) ⁄

≠
2

(c)
⁄

+

3

(c) Ê

FF

3

(c)
Ê

FB

3

(c) ⁄

≠
3

(c)

R

dddddddb

(S61)

where ⁄

±
i < 0 and all non-specified elements are set to zero. We then jointly optimise8 both

the three –i parameters, and all the ⁄ and Ê parameters (15 parameters in total), to min-
imise ÎU(c)TJ (c)U(c)≠T

Schur

(c)Î2
F

. We do this separately for each contrast level, resulting in
parameters –i, ⁄

±
i , Ê

FF

i , and Ê

FB

i with a smooth dependence on the contrast c (Figure S4C).

The green and orange arrows in Figure 5E (left) represent the flow induced by the negative
feedback interactions (given by ⁄

±
i in each plane) and that induced by the feedforward link

Ê

FF

i , respectively. While we included sum-to-di�erence feedback terms Ê

FB

i mostly because the
real Schur decomposition requires them9 and because it seemed to prevent the emergence of
degeneracies / local minima in the cost function, we found that they were eventually driven very
close to zero. We therefore set them to zero after optimization and in all subsequent analyses.
In Figure 5E (middle), green lines show the mean restoring force (⁄+

i + ⁄

≠
i )/2 in each plane,

while the orange lines show Ê

FF

i in each plane.

We also checked that the truncation retained the key qualitative aspects of the covariance matrix
(Figure S4D). We also tried to fit the full upper-triangular part of T

Schur

, but the extra allowed
interactions ended up not being used (a single, small feedforward weight from the “amplitude”
di�erence mode to the “width” sum mode was discovered, but it was much smaller than the
other feedforward interactions, and setting it to zero did not a�ect the resulting V

m

covariance
matrix qualitatively).

8We use straightforward re-parameterisation to enforce the constraints 0 < –i < 1, ÊFB
i < 0, and ⁄±

i < 0, to
turn the problem into an unconstrained minimization problem that converges within a few tens of quasi-Newton
iterations (BFGS algorithm).

9When some eigenvalues of J (c) are complex-conjugate, the real Schur decomposition cannot yield an exactly
triangular matrix TSchur, which will have some 2 ◊ 2 square matrices along its diagonal. Cf. footnote 6 above.

15

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted December 14, 2016. . https://doi.org/10.1101/094334doi: bioRxiv preprint 

https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/


S4.2 Comparison to a ring attractor model

We compared our ring SSN model to a version of the ring attractor model published in (Ponce-
Alvarez et al., 2013). The model was made of a single population with a similar ring topology,
and connectivity of the form

Wij = J

0

+ J

2

N

cos(◊i ≠ ◊j) (S62)

(which violates Dale’s law). The dynamics obeyed a similar Langevin equation as for the ring
SSN, namely

·

m

dV
dt = ≠V(t) +Wg [V(t)] + h+ ÷(t) (S63)

with a saturating firing rate nonlinearity g[·] applied pointwise to the elements of V,

g[V ] =
I

0 if V Æ 0
g

max

tanh (V/V
0

) if V > 0 (S64)

and a noise process ÷ identical to the one we used in the SSN (same spatial and temporal corre-
lations), with a variance adjusted so as to obtain Fano factors of about 1.5 during spontaneous
activity (Figure S6B, black). The external input had both a DC and a contrast-dependent mod-
ulated component: hi = I

0

+ c(1 ≠ ‘ + ‘ cos(◊i ≠ ◊s) where ◊s is the stimulus direction and ‘

controls the depth of the modulation.

We used the following parameters: g

max

= 100, J
0

= ≠40/g
max

, J
2

= 33/g
max

, I
0

= 2, ‘ = 0.1,
and V

0

= 10. Note that although the phenomenology and dynamical regime of this model was
consistent with that of Ponce-Alvarez et al. (2013) (Figure S6), the model di�ered in some of
the details: our dynamics were written in voltage form, not in rate form, we have only one unit
at each location on the ring (as opposed to small pools), and our input noise process has spatial
correlations to allow for a more direct and consistent comparison with the ring SSN.

Our analysis of variability in this ring attractor network is presented in Figure S6 in a format
identical to that of Figure 5 of the main text, and shows that shared variability is entirely
dominated by the fluctuations in the location of an otherwise very stable bump of activity.
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Appendices

A Derivation of the total variance in the 2-population model

In this section we derive the result of Equation (S23). We use the fact that the stationary
covariance matrix of a process governed by linear stochastic dynamics is given in algebraic form
by a Lyapunov equation. Specifically, when the spatial and temporal correlations in the noise
term ÷ in Equation (S18) are separable, we can augment the state space with two noise units
and write their (linear) Langevin dynamics as

·

E

d

A
”V

÷

B

=
A

A(h) I

0 ≠ ·E
·÷
I

B A
”V

÷

B

dt+
A

0 0
0 ·

E

Ò
2

·÷
B

B

d› (S65)

where d› is a unit-variance, spherical Wiener process, and B is the Cholesky factor of the desired
noise covariance matrix, that is, �÷ = BB

T (the ·

E

Ò
2/·÷ factor is such that this equality holds).

Then, from multivariate Ornstein-Uhlenbeck process theory (Gardiner, 1985), we know that the
covariance matrix of the compound process satisfies the following Lyapunov equation:

A
A I

0 ≠ ·E
·÷
I

B A
� �

�

T

�÷

B

+
A

� �

�

T

�÷

B A
A

T 0
I ≠ ·E

·÷
I

B

= ≠
A

0 0
0 2 ·E

·÷
BB

T

B

(S66)

where � is the covariance we are trying to compute. By vectorizing Equation (S66), neglecting
the bottom right quadrant (which by itself only confirms �÷ = BB

T as promised above), and
taking into account the symmetry, one ends up with a system of 7 coupled but linear equations
to solve for the 3 unknowns of � and the 4 unknowns of �. This can be done by hand using
some patience, or automatically using a symbolic solver such as Mathematica, and yields the
expression in Equation (S23).
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Figure S1: (related to Figure 1 of the main text) – Typical behavior of mean responses to

increasing inputs in the 2-population SSN. (A) Dimensionless recurrent weights {J–—}
for our 1000 randomly sampled networks; these are normalized such that the largest of the four
weights is one. Colors indicate the sign of �

E

. (B) Distribution of feedforward weights g
E

and
g

I

, also normalized for each network so that their maximum be one. (C) Overall connection
strength Â (such that W–— © ÂJ–—) vs. �

E

. (D) Example responses (dimensionless voltages y
E

and y

I

) to increasing inputs (dimensionless –), for a network with �
E

> 0 (top) and one with
�
E

< 0 showing supersaturation (bottom). (E) Mean E firing rate r
E

as a function of the mean
I firing rate r

I

, for a subset of networks; each point on these curves corresponds to a di�erent
input level, increased from zero to a maximum value chosen such that r

I

= 200 Hz.
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Figure S2: (related to Figure 2 of the main text) – Robustness of variability modulation

to changes in network parameters. We examined the modulation of variability by external
input in the 1000 randomly parameterized, 2-population networks of Figure S1. (A) Behavior of
|w

FF

|, |⁄
s

|, |⁄
d

|, ÎAÎ
F

, det(A) and the total variance (normalized to unit peak), as a function of
the (dimensionless) input –. The dashed green line is proportional to

Ô
–. Only a random subset

of the thousand random networks are shown. Following the same convention as in Figure S1,
cases with �

E

> 0 are shown in black, those with �
E

< 0 in orange. (B) Scatter plot of the –

at which the E variance reaches its maximum (“true value”), and that given by the approximate
criterion of Equation (S40) (which assumes very fast inhibition, i.e. q æ 0), for uncorrelated
(left, fl

EI

= 0) and fully correlated (right, fl

EI

= 1) input noise term to the E and I units.
(C) Scatter plot of the input – at which the E variance peaks (left), as well as the value of the
variance peak (right), for fl

EI

= 0 vs. fl

EI

= 1. (D) Mean E (red) and I (blue) firing rates (top)
and V

m

std. (bottom) for larger values of the power-law exponent n; parameters were otherwise
the same as in Figure 1 of the main text. (E) Orientation of the two Schur vectors for a subset of
the 1000 random networks. Their “sum-like” and “di�erence-like” nature emerges quite rapidly
for small – and then persists for larger –.
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Figure S3: (A) Example network showing transient increase in variability with increasing
external input h (black), without any substantial decrease in |⁄s| (lower green). The dashed
black line shows the predicted variability (Equation (S55)) assuming wFF = 0 uniformly, i.e.
taking into account only the magnitude of the restoring forces ⁄d and ⁄s. The gray line is
the prediction made by assuming fully correlated input noise terms with variance g

2

E and g

2

I
respectively for the E and I units. Variability in this case can be read o� the slope of the V

E

and V

I

curves (top), because input noise becomes equivalent to fluctuations in h to which the
network has time to respond. Neither of these two cases correctly predict the initial growth
of variability. (B) Mean firing rates (top), variances of firing rate fluctuations (middle) and
Fano factor (assuming Poisson spike emission on top of rate fluctuations), in the same network
as in (A). Note that the overall scale of super-Poisson variability (Fano factor minus one) is
arbitrary here, and in general depends on the counting window, autocorrelation time constants,
and the variance of the input noise. Parameters: ·÷ æ Œ, g

E

= 0.77, g
I

= 1, J
EE

= 0.38, J
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=
0.27, J

IE
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II

= 0.6,Â = 2.37.
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Figure S4: Approximating balanced ring dynamics in a low-dimensional subspace.

(A) PCA analysis on spontaneous V
m

activity (c = 0, black) and high-contrast evoked activity
(c = 20, orange); shown here is the cumulative percentage of variance explained by an increasing
number of retained principal components. Our of 100 components, between 3 and 5 components
are enough to explain more than 90% of the V

m

variance. (B) The top three PCs in evoked
activity (c = 20; solid lines) are almost identical to the 3 (orthonormalized) modes of joint
E/I bump kinetics (dashed lines). (C) Contrast dependence of the ⁄

±
i and Ê

FF

i parameters, as
obtained from the optimization procedure described in the text, which aims at finding the most
accurate, low-dimensional approximation to the (contrast-dependent) Jacobians in Schur form.
(D) Full V

m

covariance matrix � (left) compared with the covariance matrix �̃ obtained from
the low-dimensional projection of the network dynamics as explained in the text (right), for
c = 0 (top) and c = 20 (bottom). Only the excitatory-excitatory part of the covariance matrices
are represented here, but the other 3 quadrants are equally well approximated.
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Figure S5: Variability reduction in the ring SSN model depends on spatial and

temporal correlations in the input noise. Dependence of the network-averaged V

m

std.
(A–B) and Fano factor (C–D) on either the temporal correlation time constant ·

noise

in the
external input noise term (for fixed ¸

noise

= 60¶), or its spatial correlation length ¸

noise

(for
fixed ·

noise

= 50 ms), in the spontaneous (c = 0, black) and high-contrast (c = 20, green)
input regimes. Red arrows indicate the nominal parameter values used in the main text. The
bottom row shows the amount of relative variability suppression, as a percentage of the mean
spontaneous variability.
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Figure S6: Activity variability in a ring attractor network (related to Figure 5 of the
main text). (A–C) Tuning of mean firing rates, Fano factors, and V

m

std. in spontaneous
(c = 0, black) and evoked (c = 3, green) conditions. (D–F) Analogous to Figure 5D-F of the
main text, for the ring attractor network. The main contributor to activity variability in this
attractor network for strong stimulus is the sideways jittering of the activity bump.
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