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Summary

Variability and correlations in cortical activity are ubiquitously modulated by stimuli. Correlated variability
is quenched following stimulus onset across multiple cortical areas, suppressing low-frequency components of
the LFP and of V,,-LFP coherence. Modulation of Fano factors and correlations in area MT is tuned for stimulus
direction. What circuit mechanisms underly these behaviors? We show that a simple model circuit, the stochastic
Stabilized Supralinear Network (SSN), robustly explains these results. Stimuli modulate variability by modifying
two forms of effective connectivity between activity patterns that characterize excitatory-inhibitory (E/I) circuits.
Increases in the strength with which activity patterns inhibit themselves reduce correlated variability, while in-
creases in feedforward connections between patterns (transforming E/I imbalance into balanced fluctuations)
increase variability. These results suggest an operating regime of cortical dynamics that involves fast fluctuations
and fast responses to stimulus changes, unlike previous models of variability suppression through suppression of

chaos or networks with multiple attractors.

Neuronal activity throughout cerebral cortex is variable, both
temporally during epochs of stationary dynamics and across
repeated trials despite constant stimulus or task conditions
(Softky and Koch, 1993; Churchland et al., 2010). Moreover,
variability is modulated by a variety of factors, most notably
by external sensory stimuli (Churchland et al., 2010; Kohn
and Smith, 2005; Ponce-Alvarez et al., 2013), planning and ex-
ecution of limb movements (Churchland et al., 2006, 2010),
and attention (Cohen and Maunsell, 2009; Mitchell et al.,
2009). Modulation of variability occurs at the level of single-
neuron activity, e.g. membrane potentials or spike counts
(Finn et al., 2007; Poulet and Petersen, 2008; Gentet et al.,
2010; Churchland et al., 2010; Tan et al., 2014), but also in the
patterns of joint activity across populations, as seen in mul-

tiunit activity or the local field potential (LFP) (Tan et al.,
2014; Chen et al., 2014; Lin et al., 2015). Variability modu-
lation shows stereotypical patterns: not only does the on-
set of a stimulus quench variability overall, and in particu-
lar correlated variability that is “shared” across many neu-
rons (modeled as fluctuations in firing rates and typically
found to be low-dimensional; Lin et al., 2015; Goris et al.,
2014; Ecker et al., 2014, 2016; Churchland et al., 2010), but
the degree of variability reduction can also depend on the
tuning of individual cells. For example, in area MT, variabil-
ity is quenched more strongly in cells that respond best to
the stimulus, and correlations decrease more among neurons
with similar stimulus preferences (Ponce-Alvarez et al., 2013;
Lombardo et al.,, 2015). Although these patterned modula-
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tions of variability are increasingly included in quantitative
analyses of neural recordings (Renart and Machens, 2014), it
is still unclear what they imply about the dynamical regime
in which the cortex operates.

Three different dynamical mechanisms have been proposed
to explain some selected aspects of cortical variability. The
so-called “balanced network” model (van Vreeswijk and
Sompolinsky, 1998; Renart et al., 2010) has been highly suc-
cessful at explaining in general the asynchronous and irregu-
lar nature of action potential firing in cortical neurons under
normal operating conditions (Softky and Koch, 1993). How-
ever, very strong, very fast inhibitory feedback in the bal-
anced network suppresses correlated rate fluctuations away
from that stable state (van Vreeswijk and Sompolinsky, 1998;
Renart et al., 2010; Tetzlaff et al., 2012), leaving only fast vari-
ability due to irregular spiking. Because the shared vari-
ability is already eliminated, stimuli cannot modulate that
variability. This has been rectified in models in which not
only the spiking of neurons but also their underlying fir-
ing rates are variable. In “attractor models”, the network
noisily wanders among multiple possible stable states (“at-
tractors”) in the absence of a stimulus, thus operating in
a marginally stable state characterized by shared variabil-
ity. Stimuli then suppress this shared variability by pinning
fluctuations to the vicinity of one particular attractor (Blu-
menfeld et al., 2006; Litwin-Kumar and Doiron, 2012; Deco
and Hugues, 2012; Ponce-Alvarez et al., 2013; Doiron and
Litwin-Kumar, 2014; Mochol et al., 2015). In chaotic network
models (Sompolinsky et al., 1988), strong firing rate fluctu-
ations are typically low-dimensional (hence “shared”), and
certain types of stimuli can suppress chaos, thus quenching
across-trial variability (Molgedey et al., 1992; Bertschinger
and Natschlger, 2004; Sussillo and Abbott, 2009; Rajan et al.,
2010). While both the attractor and the chaotic mechanisms
can explain the general phenomenon of stimulus-induced re-
duction of variability, only the former has been proposed to
explain the stimulus-tuning of variability reduction — and
even that required considerable fine tuning of parameters to
keep it in the “metastable” regime, in which the system stays
near attractors yet noise can move the system between them
(Ponce-Alvarez et al., 2013).

Here we explored a qualitatively different model of cortical
dynamics, the stabilized supralinear network (SSN; Ahma-
dian et al., 2013; Rubin et al., 2015). In the SSN, single neu-
rons have supralinear input/output (I/0) curves (Priebe and
Ferster, 2008), which yields a transition between two regimes
at the level of circuit dynamics. For weak external inputs,
network dynamics are stable even without inhibition. For
stronger inputs, firing rates grow towards steeper parts of
the 1/0 curves, leading to potential instability due to grow-
ing recurrent excitation, but feedback inhibition dynamically
cancels the destabilising effect of this supralinearity, thus
keeping the network in a fundamentally stable (as opposed
to a metastable or chaotic) operating regime. This stabiliza-
tion is achieved by a “loose” cancellation of moderately large
E and | inputs, in contrast to the balanced network model,
in which there is a precise cancellation of very large E/I in-
puts. We showed (Rubin et al., 2015) that the SSN natu-

rally explains many cortical nonlinear behaviors, including
sublinear summation of responses to different stimuli (“nor-
malization”, Carandini and Heeger, 2012), surround suppres-
sion, and their nonlinear changes in behavior with stimu-
lus strength. These behaviors cannot arise in the balanced
network, because in that regime responses must be linear
functions of the external input (though see Mongillo et al.,
2012). Importantly, the SSN also presents a promising candi-
date for understanding variability modulation: its loose E/I
balance is such that inhibitory feedback is weak enough for
shared network variability to subsist over a broad range of
input strengths, and we also expect its nonlinear collective
behaviour to lead to a non-trivial modulation of this shared
variability with the stimulus.

Here we show that, indeed, the SSN in the inhibition-
stabilized regime increasingly and gradually suppresses
correlated rate variability with increasing external input
strength, rather than eliminating it like the balanced net-
work. As a result, the SSN naturally and robustly explains
modulation of cortical variability, including its tuning depen-
dence. We first analyzed variability in the simplest stochas-
tic instantiation of the SSN, with two unstructured popula-
tions of excitatory (E) and inhibitory (1) cells, and found that
an external stimulus could strongly modulate the variabil-
ity of population activities. In particular, the model predicts
stimulus-induced quenching of variability, as well as a re-
duction of the low-temporal-frequency coherence between
local population activity and single-cell responses, as found
experimentally (Poulet and Petersen, 2008; Churchland et al.,
2010; Chen et al., 2014; Tan et al., 2014). Furthermore, tuning-
dependent modulations of Fano factors and noise correla-
tions by stimuli arise robustly in a more detailed architecture
with structured connectivity, and are consistent with those
found in area MT of the awake monkey (Ponce-Alvarez et al.,
2013).

Mechanistically, input-induced modulation of variability in
the SSN originates from input-dependent changes in effec-
tive connectivity between neurons, which themselves arise
from the presence of nonlinear neuronal input/output func-
tions. To dissect these mechanisms, we first analyzed a sim-
ple model of one E and one | population. We decomposed
the effective connectivity into two types of input-dependent
interactions between a pair of E and | activity patterns. One
is a self-connection of an activity pattern onto itself, which
more strongly suppresses variability as it becomes increas-
ingly inhibitory, summarizing the effect of growing feedback
inhibition. In the inhibition-stabilized regime, these connec-
tions grow more strongly inhibitory with increasing exter-
nal input due both to the overall strengthening of effective
connections and to the relatively faster growth of | vs. E fir-
ing rates, and thus of | vs. E effective connection strengths,
that arises from the dynamics that keep the network sta-
ble. The other type of interaction is a feedforward connec-
tion from one activity pattern to another, which causes small
differences between E and | cell activity to drive joint activ-
ity of E and | cells ("balanced amplification”, Murphy and
Miller, 2009). These feedforward connections also grow with
increasing external input strength, enhancing variability. We
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show that variability enhancements dominate for low levels
of input (which might be below the levels of spontaneous ac-
tivity), but suppression of variability via inhibitory feedback
always dominates for larger inputs. The same insights gener-
alized to a more complex architecture to explain the tuning-
dependent reduction of variability by interactions between a
small number of E and | activity pattern-pairs.

Our results have important implications beyond offering a
new mechanistic understanding of cortical variability: the
SSN is distinguished by dynamics in which the network re-
sponds to input changes on fast time scales comparable to
those of isolated cells, rather than on much longer time
scales created by recurrent excitation, which tend to gov-
ern dynamics in multi-attractor and chaotic networks (Mur-
phy and Miller, 2009). This regime of fast fluctuations offers
distinct computational advantages (Hennequin et al., 2014a),
and seems to characterize at least mouse V1 (Reinhold et al.,
2015).

Results

Single neurons in sensory areas respond supralinearly
to their inputs.  Plotting momentary firing rates, r,
versus average membrane potentials, Vi,, often reveals
an approximate threshold power-law relationship (Fig-
ure 1B): r & k| Vi, — Vo |7, where k is some scaling constant;
Vo & —70 mV is a threshold that often approximates, and
that we will always take equal to, the cell’s resting poten-
tial Vies; [x|. = x if x > 0 and = 0 otherwise; and the
exponent n ranges from 1 to 5 in V1 (Priebe and Ferster,
2008). Importantly, this approximation is accurate over the
entire dynamic range of neurons under normal spontaneous
or stimulus-evoked conditions, i.e. neuronal responses rarely
saturate at high firing rates. Accordingly, we modeled V,
dynamics as a simple low-pass filtering of synaptic inputs
obtained as a weighted sum of presynaptic firing rates and
external inputs (Experimental Procedures and SI):

T,'V,' =— V,'(t) + Viest + h,’(l’) + noise

s Wn() = Y Wyn() (1)
JEE cells Jj€Elcells

where V; denotes the V;, of neuron i, 7; is its membrane time
constant (20 ms and 10 ms for excitatory and inhibitory cells,
respectively), Viest = —70 mV is a resting potential, Wj; is the
(positive or zero) strength of the synaptic connection from
neuron j to neuron i, hi(t) is the potentially time-varying but
deterministic component of external input, and the momen-
tary firing rate of cell i is given by

ri(t) = k|_\/l(t) - vrestJir7 (2)

with n = 2 (Figure 1B; see also Sl for an extension to other
exponents). This is the stabilized supralinear network model
studied in (Ahmadian et al., 2013; Rubin et al., 2015), but for-
mulated with voltages rather than rates as the dynamical
variables (the two formulations are mathematically equiva-
lent when all neurons have the same time constant, Miller
and Fumarola, 2011) and with noise added.

As experiments support Equation 2 when both membrane
potentials and spike counts are averaged in 30 ms time
bins (Priebe and Ferster, 2008), Vi, here stands for a coarse-
grained (low-pass filtered) version of the raw somatic mem-
brane potential, and in particular it does not incorporate the
action potentials themselves. Thus the effective time resolu-
tion of our model was around 30 ms which allowed study-
ing the effects of inputs that did not change significantly
on timescales shorter than that. Accordingly, in Equation 1
we assumed that external noise had a time constant 7,4;se =
50 ms, in line with membrane potential and spike count au-
tocorrelation timescales found across the cortex (Azouz and
Gray, 1999; Berkes et al., 2011; Murray et al., 2014).

We focused on analysing how the intrinsic dynamics of
the network shaped external noise to give rise to stimulus-
dependent patterns of response variability. We studied a pro-
gression of connectivity architectures W of increasing com-
plexity, all involving two separate populations of excitatory
and inhibitory neurons. We also validated our results in large
scale simulations of spiking neuronal networks.

Variability of population activity: modulation by exter-
nal input

We first considered a simple circuit motif: an excitatory (E)
unit and an inhibitory (I) unit, recurrently coupled and re-
ceiving the same mean external input h as well as their own
independent noise (Figure 1A). In this simple network, the
two units represent two randomly connected populations of
E and | neurons, a canonical model of cortical networks (Vo-
gels et al., 2005). Thus, their time-varying activity, Ve(t) and
Vi(t), represent the momentary population-average mem-
brane potential of all the E and | cells respectively. While
these population-level quantities cannot be compared di-
rectly with the intracellularly recorded membrane potentials
of individual cells, we used their average to model the extra-
cellularly recorded LFP. Despite its simplicity, this architec-
ture accounted well for the overall population response prop-
erties in the larger networks with more detailed connectivity
patterns that we analyzed later.

The connectivity matrix in this reduced model takes the form
Wee —We

W = 3

( We —W ) ®

where Wyp is the magnitude of the connection from the unit
of type B (E or I) to that of type A. The W terms were
chosen such that the collective dynamics of the network re-
mained stable for any input despite the strongly supralin-

ear input-output functions of individual neurons (Equation 2,
Figure 1B; see also Experimental Procedures).

Activity in the network exhibited temporal variability due
to the noisy input. We found that the external, steady in-
put h strongly modulated both the mean, Vg, and the
(co)variance of the fluctuations in Vg and V; (Figure 1C-E).
When h = 0, there was no input to drive the network, and V¢
and V; hovered around Viest = —70 mV, fluctuating virtually
independently with standard deviations essentially match-
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Figure 1. Activity variability in a reduced, two-population model of a supralinear stabilized network. (A) The network is com-
posed of two recurrently connected units, summarizing the activity of two populations of excitatory (red) and inhibitory (blue) neurons. Both
units receive private noise and a common constant input h. (B) Threshold-quadratic gain function determining the relationship between
membrane potential and momentary firing rate of model neurons (Equation 2). (C) Sample Vg, traces for both units (top), as the input is
increased in steps from h = 0 to 2 mV to 15 mV (bottom). (D) Dependence of population activity statistics on stimulus strength h. Top: mean
E and | firing rates; middle: mean Vg/; bottom: standard deviation of V¢ fluctuations. The comparison with a purely feedforward network
(W =0) is shown in gray. (E) Population Vi, auto- and cross-correlograms in stationary conditions, when h = 2 mV and h = 15 mV (black
and green, respectively, cf. marks in panels C-D). In both input conditions, V& and V; fluctuations are highly correlated, inhibition lagging
behind excitation by a few ms. Note also that V¢, fluctuations are faster for h = 15 mV. (F) LFP power spectrum for low input (h = 2 mV) and
high input (h = 15 mV) conditions. The LFP is modelled as an average of V& and Vi, weighted by assumed relative population sizes (80% E,
20% I). Strong input mostly suppresses low frequencies. In (D), (E) and (F), dots show the results of 1000 second-long numerical simulations
of Equation 1, and solid lines show theoretical predictions derived analytically using novel nonlinear techniques (Hennequin and Lengyel,

in prep.).

ing those that would arise without recurrent connections
(W = 0, gray line in Figure 1D, bottom). For a somewhat
larger input, h = 2 mV, both E and | populations fired at
moderate rates (3-4 Hz) (Figure 1D, top), but now also exhib-
ited large and synchronous population V,, fluctuations (Fig-
ure 1C, black circle mark). For yet larger inputs (h = 15 mV),
fluctuations remained highly correlated but were strongly
quenched in their magnitude (Figure 1C, green circle mark).

Figure 1D shows how the temporal (or, equivalently, the
across-trial) mean and variability of activities varied over
a broad range of input strengths. We observed that, with
growing external input, population mean V,, grew linearly
or supralinearly for small inputs, but for larger inputs grew
strongly sublinearly, with V| growing faster than V¢ (Fig-
ure 1D, middle; Ahmadian et al., 2013; Rubin et al., 2015).
Variability in both V¢ and V; typically increased for small
inputs, peaking around this transition between supralinear
and sublinear growth, and then decreased with increasing
input (Figure 1D, bottom). These effects were robust over
a broad range of network parameters (gain functions, con-
nection weights, input gains and correlations), as long as
they ensured dynamical stability (Supplementary Figures S1
and S2). Although the precise amplitude and position of the
peak of V,, variance depended on network parameters, the

overall non-monotonic shape of variability modulation was
largely conserved. In particular, we could show analytically
that variability suppression occurs earlier (for smaller input
h) in networks with strong connections, or, for fixed over-
all connection strength, in networks that are dominated by
feedback inhibition (Wg Wig > Wee Wy SI). More generally,
we found that the firing rates at the peak of variability are
typically low (2.5 Hz on average over a thousand randomly
parameterized stable networks, and below 6 Hz for 90% of
them; cf. SI). Since these rates are comparable to cortical
spontaneous firing rates, this predicts that increased sensory
drive should generally result in variability quenching in cor-
tical LFPs.

Importantly, input-modulation of variability required recur-
rent network interactions. This was revealed by comparing
our network to a purely feedforward circuit (W = 0) which
exhibited qualitatively different behaviour (Figure 1D, gray).
In the feedforward circuit, mean V,, remained linear in h, so
that mean rates rose quadratically with V,, or h, and fluctu-
ations in Vi, no longer depended on the input strength.
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Figure 2. The origins of input-dependent modulation of variability. (A-C) Visualization of the influence of single-neuron leak and
effective connectivity on the (co-)variability of E/I activity in the two-population SSN of Figure 1. In (A), h = 0, so the only contributor to
the flow of trajectories is the leak in each population (green force field acting along the cardinal axes of E/I fluctuations — the flow is more
compressive along the | axis due to the shorter membrane time constant in | cells). This flow contains the diffusion due to input noise (cf.
example trajectory in gray), resulting in uncorrelated baseline E/I fluctuations (black ellipse — contour line of the joint normal distribution
of V& and &V, at one standard deviation). In (B-C), the network is driven by a non-zero h, and the effective recurrent connectivity adds
to the leak to instate two types of force fields steering fluctuations: a restoring force field (green, generalizing the leak in (A)) and a shear
force field (orange). The relative contributions of the two force fields determine the size and elongation of the E/I covariance (solid black
ellipses). The black ellipse in (A) is reproduced in (B-C) for comparison (dashed ellipses). Triangular arrows are proportional in area to the
contribution they make to the total flow of fluctuations. The origin (§V = 0) corresponds to stationary mean population activity for the given
input strength h (see labels). (D) Illustration of the decomposition of the effective connectivity (for a given mean stimulus h) as couplings
between a difference-like pattern (left) and a sum-like pattern (right; cf. rotated gray axes in (B-C)). For a given input h, the difference feeds
the sum with weight wrr (orange arrow), and the difference and sum patterns inhibit themselves with negative weight A\q and A respectively
(green arrows). These h-dependent couplings scale the corresponding force fields in (A-C) (note color consistency). (E) Input-dependence of
|wrr| (top, orange) and |Aq| and | 5| (bottom, green).

Changes in effective connectivity shape variability in effective connectivity Wgﬁ(h) is the biophysical weight Wj;

the SSN multiplied by the gain of the presynaptic cell — the change
in its firing rate per change in its voltage — which is the ever-
The effects of input hon variability could be understood from increasing slope of its input/output function (Figure 1B).

the way it modified the effective connectivity of the circuit.
An effective connection quantifies the impact of a small mo-
mentary change in the V,, of the presynaptic neuron on the
total input in its postsynaptic partner. Formally, we derived
effective connectivity from a linearization of Equations 1
and 2: we start with the steady state mean voltage V; for
the given mean input h, and analyze the dynamics of each

How are changes in effective connectivity translated into
changes in variability? For zero input, h = 0, the effective
connections are zero, so we should expect behavior as if the
neurons were uncoupled (W = 0), as observed (Figure 1D,
compare blue and red lines with gray lines at h = 0). With
increasing h, the effective connectivity strengthens, but — as
growth of V becomes sublinear — grows more rapidly for
inhibitory than for excitatory weights, reflecting the faster
growth of V| over Vg (Figure 1D, middle). This greater rel-
ative growth of inhibitory response is a robust outcome of
the network maintaining stability despite increasing effec-
tive connectivity (Ahmadian et al., 2013; Rubin et al., 2015).
These changes in effective connectivity can have conflicting
effects: the increasingly strong weights can increase excita-

neuron’s small, momentary, noise-induced deviations dV(t)
from V:

TV = —oVi+ > WETR) OV, — Y WE(h) 6V + noise (4)

JjEEcells JEl cells

where the effective connection strength,

W,f;ff(h) = 2k W [ Vi(h) — Viest)+ (5) torY or firiving effects that z%mplify fluctuations and increase

variability (Murphy and Miller, 2009), but they and the rel-

was proportional to the mean activation of unit j, which itself = atively stronger inhibition also increase inhibitory effects,
depended on the input h as seen above (cf. Figure 1D, mid- suppressing fluctuations and decreasing variability (Renart
dle). This growth of effective connectivity with increasing V et al., 2010; Tetzlaff et al., 2012). The actual behavior of the
arose because of the supralinear input/output function: the network was mixed: variability first increased and then de-
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creased as the input grew (Figure 1D, bottom). This sug-
gests a changing balance of the variability-amplifying and
-attenuating effects of changing effective connectivity.

What determines this changing balance? To study this, we
examined the flow of V,, trajectories, visualized in the plane
of joint Vg and 0V, fluctuations (Figure 2A-C). In general, V;,
trajectories underwent diffusion driven by the external input
noise (Figure 2A, gray trajectory). With no external mean
drive (h = 0), effective connectivity being negligible, the only
contribution to the flow of activity was the leak in the E and
| populations — the —dV; term in Equation 4 (Figure 2A, green
arrows). Leak created a restoring “force field” by pulling both
E and | activities back towards rest with their characteristic
time constants (Figure 2A, green arrows, growing linearly as
one moves away from the origin against their pointing di-
rection) and thus contained diffusion so that it had a finite
(co)variance (Figure 2A, black ellipse).

With increasing mean external drive h, the effective connec-
tivity of the network also began to contribute to the dynam-
ics and thus to the total flow. While the connectivity be-
tween E and | populations was fully recurrent, it could be
conveniently decomposed into a set of simpler interactions
among a pair of joint E-l activity patterns, one a weighted
difference and the other a weighted sum of E and | activities
(rotated gray axes in Figure 2B-C; Murphy and Miller, 2009,
see also Supplementary Figure S2E). First, both patterns in-
hibited themselves through negative self-couplings A\q and A,
(Figure 2D, green arrows). These “restoring forces” included
the effects of both leak and recurrent feedback, and acted
along the sum and difference axes now, rather than on E and
| cells separately (compare green arrows between Figure 2A
and B). Second, the difference pattern fed the sum with an ef-
fective feed-forward coupling wee (Figure 2D, orange arrow).
This effect, known as balanced amplification (Murphy and
Miller, 2009; Hennequin et al., 2014b), created a “shear” force
field (Figure 2B-C, orange arrows, growing linearly along the
difference axis, but unchanged by movement along the sum
axis) acting on V,, fluctuations such that excursions away
from E-I balance (movements along the difference axis) were
transported along the sum direction.

While the purely restorative force field at h = 0 shaped net-
work variability simply by containing diffusion (Figure 2A),
the combination of shear and restoring forces at h > 0
steered diffusion differentially along the sum and difference
directions, resulting in various patterns of correlated E/I V,,
variability (Figure 2B-C, black ellipses). Importantly, these
forces depended on the input (compare Figure 2B and C) as
their magnitude was scaled by the coupling terms character-
izing effective connectivity, wgr, Ay and As, which in turn fun-
damentally depended on the input (Equation 5, Figure 2E).
This is the origin of input-dependent variability in the SSN.

In the small-input regime, we found that the feedforward
coupling wer typically grew quickly (Figure 2E, orange)
whereas the negative self-couplings As and A4 tended to
grow more slowly, or to even weaken transiently (Figure 2E,
green; this transient weakening of self-coupling was atypi-
cal in randomly instantiated networks, SI). These two effects

combined to yield an initial increase in V;, variability for in-
creasing external drive. For example, for the particular pa-
rameters used in the simulations shown in Figures 1 and 2,
there was little restoring force but strong shear along the sum
axis for h = 2 mV, leading to an overall strong accentuation
of (co-)variability of E and I activities (Figure 2B). For larger
inputs, both the feedforward and self-couplings grew with h,
but the increasing quenching effect of self-couplings domi-
nates the expanding effect of balanced amplification, leading
generically to a pronounced net decrease in overall variabil-
ity (Figure 1D, bottom; Figure 2C). For example, in the limit
of slow noise, the summed E/I variance has a simple form
that includes a term explicitly capturing the opposing effects

of self couplings and balanced amplification: % This
term grows with the square of wgp but is divided by four pow-
ers of ), indicating that self-couplings, if sufficiently strong,
will dominate balanced amplification (for a derivation, and

the more general case, see Sl).

All the effects mentioned above were robust to changes in
parameters, which we could show both through inspection
of analytical formulae for activity variability and through nu-
merical explorations of a thousand networks with randomly
chosen parameters (SI).

Variability quenching speeds up activity fluctuations

The growing restoring force also sped up the network dy-
namics, which was seen in the sharpening of the Vg auto-
correlograms by large external inputs (Figure 1E). This was
because the effective time constant with which fluctuations
decay in the network is inversely proportional to the restor-
ing force (Murphy and Miller, 2009). This speeding up was
also reflected in the drop of LFP power at low frequencies
(Figure 1F), in line with experimental data (Poulet and Pe-
tersen, 2008; Tan et al,, 2014; Chen et al., 2014). At higher
frequencies, this drop was over-compensated by the ampli-
fying effect of the shear force and by the emergence of weak
resonance, resulting in larger LFP power relative to the low-
input condition. Such a pattern of changes in the LFP has
indeed been found in V1 of the awake macaque between
evoked and spontaneous activity, although there was over-
all more power at high frequencies in both conditions than
our model predicted (Tan et al., 2014). This may simply stem
from an increased contribution of fast “spiking noise” at high
firing rates in the cortex, which could not be captured by
this population-level model but emerged naturally in a more
detailed model of the same 2-population architecture using
individual spiking neurons, as we show in the following.

Variability reduction in a network of spiking neurons:
impact of input noise correlations

In order to study variability in single neurons and at the level
of spike counts, we implemented the two-population archi-
tecture of Figure 1A in a network of spiking neurons (Exper-
imental Procedures). The network consisted of 4000 E neu-
rons and 1000 | neurons, randomly connected with low prob-
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Figure 3. The modulation of variability in a randomly connected SSN. (A) Top: raster plot of spiking activity, for 40 (out of 4 000)
excitatory neurons (red) and 10 (out of 1000) inhibitory neurons (blue) when external input noise is private to each neuron (p = 0). The
dashed vertical line marks the onset of stimulus, when h switches from 2 mV to 15 mV. Bottom: momentary population firing rate. The
inset shows two overlaid segments on a magnified vertical scale. (B) Top: LFP (momentary population-averaged V). Insets magnify two
segments with the same LFP scale, to visualise the relative drop in LFP variability following stimulus increase. Bottom: Vi, of two randomly
chosen units. (C-D) Same as (A-B) with external noisy inputs fully correlated across neurons (p = 1). (E) Mean firing rates (top left), private
vs. shared parts of single-cell spike count variability as estimated by factor analysis (bottom left), spike count Fano factors (top right) and Vi,
std. (bottom right) as a function of the external input h, for various values of the input correlation p (black to orange, 0 to 1 in steps of 0.2),
and averaged over the E population. (F) Top: LFP power in spontaneous conditions and evoked conditions (black and green, respectively,
cf. marks in panel C); Bottom: average (£s.e.m.) spectral coherence between single-cell Vi, and the LFP; Left: model; Right: data from V1 of
the awake monkey, reproduced from Tan et al., 2014. Firing rates, LFP, and Vi, traces in panels A-E were smoothed with a Gaussian kernel
of 50 ms width. In panel E, spikes were counted in 100 ms bins.

ability, and with weights chosen such that the mean connec- model. Neurons fired irregularly (Figure 3A, C, top) with fir-
tivity to an E or | neuron matched that to an E or | unit, re- ing rates that grew superlinearly with small input A but sub-
spectively, in the reduced model. Each neuron emitted action linearly with stronger input (Figure 3E, top left). Moreover,
potentials stochastically with an instantaneous rate given by fluctuations in E and | population activities were strongly
Equation 2 (this additional stochasticity accounted for the synchronized (Figure 3A and C, bottom), and variability of
effects of unmodelled fluctuations in synaptic inputs that oc- these population-averaged rates and of the LFP (population-
cur on timescales faster than the 30 ms effective time resolu- averaged V,,,) decreased with increasing h (although their ab-
tion of our model). The external input to the network again solute scale did depend on p; Figure 3A and C, bottom and B
included a constant term, h, and a noise term that was tem- and D, top).

porally correlated on a 50 ms timescale, and also spatially
correlated with a uniform correlation across neurons, p. We
systematically varied h and p to study their effects on the
variability of responses in both spike count Fano factors and
membrane potentials.

In contrast, variability reduction at the level of single neu-
rons depended on the input noise correlation p. Single-
neuron variability quenching occured only when neurons
shared part of their input noise, i.e. when p was sufficiently
large (Figure 3B and D, bottom). For small p, individual V,,
At the population level, for any level of input noise corre- variances (Figure 3E, bottom right) had only a weak depen-
lation p, the network behaved as predicted by the reduced dence on h (and, in fact, slightly grew with h, which could
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be explained by growing firing rates and hence increasing
variance in synaptic input). With larger p, V;, variances de-
creased with increasing h, mirroring the quenching of LFP
variability. In all cases, changes in Vi, variability were di-
rectly reflected in Fano factors: strong h quenched spiking
variability only for sufficiently large p (Figure 3E, top right).
Indeed, Fano factors were well approximated by 1+C-var(V,,)
with some constant C, provided firing rates were not too
small (Hennequin and Lengyel, in prep.). Note that changes
in Fano factor with varying p could not be accounted for by
changes in mean firing rates, which indeed had no depen-
dence on p (overlapping colored lines in Figure 3E, top left).

The role of input correlations in variability quenching can be
understood based on a decomposition of total spike count
variability in each cell into a private noise term and a term
that is shared with the other cells (Figure 3E, bottom left;
here, shared and private variability are dimensionless and
sum up to the average spike count Fano factor; see ‘Factor
analysis’ section in Experimental Procedures). While the pri-
vate noise term only depended on the private noise level in
the input, the shared term depended on fluctuations in pop-
ulation activity. In turn, these population-wide fluctuations
were fed by correlated input noise across neurons, and it was
this shared variability that could be shaped by the interac-
tions between E/I populations as predicted by the reduced
model. Thus, when input correlations were small, single-
neuron variability was dominated by private noise with only
minimal shared variability to be suppressed by increasing h
(for p = 0, shared variability goes from 0.02 for h = 2 mV, to
0.01for h = 15 mV; cf. almost flat solid black line in Figure 3E,
bottom left). As a consequence, no quenching of single-cell
variability could occur (and in fact, since private variability
grew with mean firing rate, single-neuron variability grew
with h). LFP fluctuations were small, reflecting the small
shared noise, because the uncorrelated private noise was ef-
fectively averaged out. In contrast, when input correlations
were large, shared variability became substantial, leading to
larger overall LFP fluctuations and larger reduction in single-
cell variability by increasing input, h. This pattern of stim-
ulus strength primarily modulating shared but not private
variability is consistent with experimental findings in several
cortical areas (Churchland et al., 2010).

Our model also accounted for the stimulus-induced modula-
tion of the power spectrum and cross-coherence of LFP and
single-cell V;, fluctuations, as observed in V1 of the awake
monkey (Figure 3F; Tan et al., 2014). Consistent with the re-
sults obtained in the reduced rate model (Figure 1F), strong
external input reduced the LFP power at low frequencies, and
increased it at higher frequencies (Figure 3F, top left). This
increase resulted from two effects. First, there was a small
increase of LFP power at moderately high frequencies (Fig-
ure 1F), due to the input-induced increase in balanced am-
plification (shear force) outweighing the input-induced de-
crease in self-inhibition (restoring force) at those frequen-
cies. Second the larger firing rates associated with strong
inputs contributed additional fluctuations in synaptic drive
on fast timescales due to stochastic spiking, thus increasing
the relative variability in the LFP in higher frequency bands.

This asymmetric modulation of LFP power at low and high
frequencies is also seen in the experimental data (Figure 3F,
top right). Moreover, as strong input suppressed shared vari-
ability at low frequencies, the private noise in the activity of
each neuron made a proportionately larger contribution to
its overall variability at those frequencies, leading to a drop
in Vi,-LFP coherence specifically at those frequencies where
the suppression of population variability occurred, as seen in
experiments (Figure 3F, bottom).

Stimulus-dependent suppression of variability in an
SSN with structured connectivity

Neuronal recordings in area MT have shown that Fano fac-
tors drop at the onset of the stimulus (drifting gratings or
plaids) in almost every neuron, which was well accounted
for by the randomly connected networks we studied above.
However, in the experiments, variability did not drop uni-
formly across cells, but exhibited non-trivial dependencies on
stimulus tuning (Ponce-Alvarez et al., 2013; Lombardo et al.,
2015). Similar effects were also observed in V1 of the anes-
thetized cat (Lin et al.,, 2015). This could not be explained
by randomly connected architectures, and so we extended
our model to include tuning-dependence in connectivity and
input noise correlations.

We revisited the rate-based dynamics of Equation 1, now in
an architecture in which the preferred stimulus of E/I neu-
ron pairs varied systematically around a “ring” represent-
ing some angular stimulus variable, such as motion direc-
tion (Figure 4A; Experimental Procedures). The average in-
put to a cell (either E or I) was composed of a constant base-
line, which drove spontaneous activity in the network, and
a term that depended on the angular distance between the
stimulus direction and the preferred direction (PD) of the
cell, and that scaled with stimulus strength, ¢ (Figure 4C) —
with ¢ varying from 0 to 1 (increasing c represents increas-
ing stimulus contrast). Input noise correlations depended
on tuning differences (Experimental Procedures): cells with
similar tuning received correlated inputs which in MT likely
originate from upstream visual areas, such as V1, where ac-
tivity fluctuations typically exhibit similar tuning-dependent
correlations (Tsodyks et al., 1999; Kenet et al., 2003; Hansen
et al., 2012; Ecker et al., 2010, 2014). Moreover, the strength
of recurrent connections also depended on the difference in
preferred direction between pre- and postsynaptic neurons,
with the same tuning width for all connections whether ex-
citatory or inhibitory (Figure 4B). This common tuning was
based on the finding that, for the circular variable of orien-
tation in cat V1, the excitation and inhibition that cells in
layers 2-4 receive have the same tuning (Marifo et al., 2005;
Martinez et al., 2002; Anderson et al., 2000). The model there-
fore differed from so-called “ring attractor” models which
rely on similar topographic connectivity but with inhibition
having wider tuning that excitation (Goldberg et al., 2004;
Ben-Yishai et al., 1995; Ponce-Alvarez et al., 2013). This led
to another important difference (discussed in Murphy and
Miller, 2009): while attractor networks show sustained activ-
ity after stimulation even once the stimulus is removed, our
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Figure 4. Across-trial variability in a ring SSN. (A) Schematics of the ring architecture. Excitatory and inhibitory neurons are laid
out on a ring, their angular position ultimately determining their preferred stimulus (expressed here as preferred stimulus direction, PD)
relative to the stimulus, assumed to be at 0° without loss of generality. (B) Synaptic connectivity follows circular Gaussian profiles with
peak strengths that depend on the type of pre- and post-synaptic populations (excitatory or inhibitory). (C) Each neuron receives a constant
input with a baseline (black line, ¢ = 0), which drives spontaneous activity, and a tuned component with a bell-shaped dependence on the
neuron’s preferred direction and proportional to stimulus strength ¢ (dark and light green, ¢ = 0.5 and ¢ = 1 respectively). Neurons also
receive spatially and temporally correlated noise, with spatial correlations that decrease with tuning difference (see Figure 5D). (D) Single-
trial network activity (E cells), in response to a step increase and decrease in stimulus strength (going from ¢ = 0 to ¢ = 1 and back to
¢ = 0). Neurons are arranged on the y-axis according to their preferred stimulus. (E) Reduction in membrane potential variability across
10 independent trials for an E cell tuned to the stimulus direction (left, corresponding to orange mark in D) or to the opposite direction
(right, brown mark in D). (F) Reduction of spike count Fano factor following stimulus onset for the same two neurons as in (E). Spikes were
counted in 100 ms time windows centered on the corresponding time points. (G) Mean firing rates (left), std. of voltage fluctuations (center)
and Fano factors (right) as a function of the neuron’s preferred stimulus, at three different levels of stimulus strength (cf. panel C). Black
lines in panel E and dots in panels F-G are based on numerical simulations over of 500 trials. Shaded areas in E and solid lines in F-G show
analytical approximations (Hennequin and Lengyel, in prep.).

network returned to baseline activity within a single mem-
brane time constant (Figure 4D). As we show below, this dy-
namical regime is also characterized by fundamentally dif-
ferent patterns of response variability than attractor dynam-
ics. Finally, to model spike count statistics, we assumed
the same doubly-stochastic spiking mechanism as described
above (Figure 3), but with spikes having no influence on the
dynamics given by Equation 1 (we describe a fully spiking
model later in Figure 8).

In the absence of visual input (¢ = 0), the input noise and
mean baseline drove spatially patterned fluctuations in mo-
mentary firing rates around a few Hz (Figure 4D) with large
across-trial variability in single-cell V,, (Figure 4E), imply-
ing super-Poisson variability in spike counts, i.e. Fano factors
greater than 1 (Figure 4F). Visual stimulation drove a hill of
network activity around the stimulus direction (Figure 4D),
resulting in tuning curves of similar widths for different stim-
ulation strengths (Figure 4G, left). Variability in both V,;, and

spike counts was strongly reduced compared to spontaneous
conditions (Figure 4E-F), with variability reduction both for
cells whose rate was increased by the stimulus (Figure 4E-
F, left) and for those whose rate was unaffected (Figure 4E-F,
right), as noted across many cortical areas (Churchland et al.,
2010), but with a more pronounced reduction for cells whose
preferred direction was close to the stimulus (Figure 4G). No-
tably, as in the randomly connected network of Figure 3, vari-
ability suppression in the ring model required finite spatial
correlations in the input noise (Supplementary Figure S5).

The effects of shear and restoring forces on bump dy-
namics explain structured patterns of variability

To understand the origin and mechanism of variability sup-
pression in the ring architecture, we examined how recurrent
interactions shaped the structure of V,, co-variability across
the network. The most prominent feature of population ac-
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Figure 5. Differential reduction of variability in the three principal dimensions of bump kinetics. (A) 100 ms-long sample
of Vi fluctuations across the network in evoked conditions (left, “true activity”, ¢ = 1), to which we fitted a circular-Gaussian function
Vi(t) = —ao + a(t) exp[(cos(8; — p(t)) — 1)/a(t)’] across the excitatory population in each time step (center). This fit captured most of the
variability in Vi, (right). (B) The three principal modes of bump kinetics: small changes (red arrows) in location (top), amplitude (middle)
and width (bottom) of the activity bump result in the hill of network activity deviating from the prototypical bump (gray shadings). Plots
on the right show how the activity of each neuron changes due to these modes of bump kinetics. (C) Time series of u, a and o extracted
from the fit. (D) Ongoing fluctuations in each of the three bump parameters contribute a template matrix of Vi, covariances among E cells
(color maps), obtained from (the outer product of) the differential patterns on the right of panel B. The strong (anti-)correlation between a
and o contribute a fourth effective template. These templates sum up to a total covariance matrix (“bump kinetics”), which captures the
key qualitative features of the full Vi, covariance matrix (“full”). The covariance matrix of the input noise (“input”) is also shown above for
reference. (See text for arrows.) (E) Left: three planes of spatially patterned E/I activity in which the recurrent dynamics of the network
approximately decoupled (SI), corresponding approximately to the three modes of bump kinetics (compare axis insets to the differential
patterns in panel B, right). Arrows show forces (orange: shear, green: restoring), ellipses show output covariances due to single-cell leak only
(dashed) or full recurrent dynamics (solid), as in Figure 2B—C. Middle: dependence of forces on stimulus strength. Green curves show the
average of the self-inhibitory couplings, |A4| and |As| (Aq and As are shown individually in Supplementary Figure S4). Orange curves show
the feedforward (shear force) coupling, |wre|. Right: the variance in the E population (projection of the solid ellipse onto the x-axis in each
plane) as a function of the input strength c.

tivity was a “bump” of high V,, in the cells with preferred di- amplitude generated modest positive covariances that were
rections near the stimulus direction, and lower activity in the somewhat greater between cells tuned near the stimulus di-
surround (Figure 5A). Accordingly, most of the shared vari- rection (Figure 5D, middle left). In contrast, fluctuations in
ability (~ 90%; Figure S4) arose from the variability in the the width of the bump generated large positive covariances,
location i, amplitude a and width o of this bump (Figure 5A especially between cells tuned near the opposite direction
and C). Each of these small transformations resulted in a pat- (Figure 5D, bottom left). As the nonlinear interactions among
tern of momentary deviation of network activity from the neurons result in strong normalization of overall activity in
propotypical bump (Figure 5B, right). In turn, the momen- the dynamical regime of our network (Ahmadian et al., 2013;
tary fluctuations caused by these ongoing transformations Rubin et al., 2015), fluctuations in amplitude and width were
(Figure 5C) contributed distinct spatial templates of covari- strongly (negatively) correlated, which contributed a distinct
ance (Figure 5D). For example, sideways motion of the bump pattern of covariance: strong negative correlations for all
increased the firing rates of all the cells with preferred di- pairs but those tuned to the stimulus (blue template in Fig-
rections on one side of the stimulus direction, and decreased ure 5D, left).

firing rates for all cells on the other side (Figure 5B, top). This
resulted in positive correlations between cells with preferred
directions on the same side of the stimulus direction, and
negative correlations for cells on opposite sides (Figure 5D,
u-template; Moreno-Bote et al., 2014). Fluctuations in bump

Taken together, the ongoing jitter in bump location, ampli-
tude and width contributed a highly structured pattern of
response covariances, which accounted for most of the struc-
ture in the full covariance matrix of the network (Figure 5D,
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compare “bump kinetics” with “full”). In particular, bump ki-
netics explained the comparatively stronger reduction of V,,
variance for cells tuned near 0° (compare Figure 4G, middle,
with the diagonal of the full covariance matrix indicated by
the filled arrow in Figure 5D). Moreover, the recurrent dy-
namics generated negative correlations in the V,, fluctua-
tions of cells with opposite tuning, despite such pairs receiv-
ing positively correlated inputs (Figure 5D, “input” vs. “bump
kinetics”, secondary diagonal with open arrow).

Bump kinetics were not only useful to phenomenologically
capture most of the covariability in the network, but they
were also identified approximately as the most accurate low-
dimensional summary of the recurrent dynamics by formal
reduction techniques (SI). Reducing the dynamics of our
model to these three motion modes revealed that the same
forces that shaped variability in the two-population archi-
tecture also explained the more detailed patterns of variabil-
ity reduction in the ring architecture (Figure 5E). However,
while the two-population model only involved forces in a sin-
gle plane describing population-averaged E and | activities
(Figure 2B-C), the ring architecture induced forces in three
different such planes involving three pairs of activity pat-
ternsin the E and | populations (Figure 5E, insets along plane
axes) that corresponded almost exactly to the three modes of
bump kinetics (Figure 5B; the “bump amplitude pattern” dif-
fers slightly, due to the requirement that it be orthogonal to
the other two patterns).

As fluctuations in the external input were correlated among
similarly tuned neurons irrespective of their E/I nature (“in-
put” covariance matrix in Figure 5D), they instated corre-
lated baseline V;, fluctuations in the E and | populations
in each of the three planes where most variability was con-
fined (Figure 5E, elongated dashed ellipses, obtained by ne-
glecting the effect of recurrent connectivity). As in the two-
population model, the recurrent interactions modified both
the restoring and shear forces (green and orange arrows in
Figure 5E), which in turn amplified baseline V,, variabil-
ity (solid ellipses). Patterns of momentary E/l imbalance
(e.g. resulting from the E bump having moved more than
the I bump) were strongly amplified into balanced patterns
(Figure 5E, orange arrows, or “shear force”), and restoring
forces acted to quench both imbalanced and balanced fluctu-
ations (green arrows). These forces depended on the effective
connectivity, which in turn depended on stimulus strength
¢ (Figure 5E, center) such that restoring forces increased
steadily with c, while shear forces saturated already at low
values of ¢ — just as seen in the two-population model (Fig-
ure 2E). Overall, restoring forces became increasingly domi-
nant over shear forces, resulting in a reduction of variability
in each of the three modes of bump kinetics with increas-
ing c (Figure 5E, right). This reduction occured at different
rates in the three modes, such that at high c variability was
mostly caused by fluctuations in bump width, thus explain-
ing the U-shape of V,, variance (Figure 4G, middle). Note
that this yields interesting predictions for changes in the
tuning of variances and covariances across the full range of
stimulus strengths: in essence, a smooth morphing from the
spontaneous covariance, for very low contrast, to the high-
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contrast covariance (Figure 7A, right). Moreover, as vari-
ability quenching occured predominantly in these three spa-
tially very smooth activity modes, suppression of variabil-
ity in single neurons could only occur provided these modes
explained a sufficiently large fraction of the total network
variance. This in turn required the input noise to contain
spatially smooth correlations (Supplementary Figure S5).

Differences between the SSN and attractor models

For a direct comparison of the SSN with attractor dynam-
ics, we implemented a canonical model of attractor dynam-
ics that have also been suggested to account for stimulus-
modulated changes in variability (Ponce-Alvarez et al., 2013),
and matched it to our model such that it produced similar
tuning curves and overall levels of variability (Supplemen-
tary Figure S6). In contrast with the richer patterns of vari-
ability generated by our model, attractor dynamics showed
a more limited repertoire, dominated solely by sideways mo-
tion of the bump. Moreover, restoring forces induced by at-
tractor dynamics dominated over the shear forces at all stim-
ulus strengths. As a result, the sign of membrane potential
covariances depended on whether two cells had their pre-
ferred directions on the same side of the stimulus direction
(Figure 5D, pu-template), but not otherwise on the difference
between their preferred directions.

These differences in membrane potential covariances also
carried over to spike count noise correlations that are exper-
imentally more readily accessible. Most prominently, the at-
tractor network predicted large negative correlations for cells
tuned to opposite directions, whereas the SSN predicted pre-
dominantly positive correlations with only very weak nega-
tive correlations (Figure 6A-B). We note that it might seem
trivial to eliminate negative correlations in the attractor net-
work by invoking an additional (potentially extrinsic) mech-
anism that adds a single source of shared variability across
neurons. This would result in a uniform (possibly stimulus
strength-dependent) positive offset to all correlations (Lin
et al,, 2015). However, the two models also exhibited dif-
ferences that would not be explained even by this additional
mechanism. Specifically, in the SSN, spike count correlations
for pairs with a fixed difference in preferred directions (fixed
APD) depended only weakly on the stimulus direction (in
Figure 6A-B, lines parallel to the lower-left to upper-right di-
agonal represent pairs with a fixed APD, while a change in
stimulus direction for a given pair corresponds to movement
along such a line; also note similarities between the three
panels in Figure 6E). In contrast, in the attractor network at
high stimulus strength, spike-count correlations for a pair of
fixed APD can depend strongly on stimulus direction (Fig-
ure 6B, F). Moreover, while both models predicted noise cor-
relations to generally decrease with APD, stimulus strength
simply scaled this decrease in the SSN approximately uni-
formly (Figure 6E), but interacted with APD in more complex
ways in the attractor network, such that correlations could
change proportionately more or less for different cell pairs
(Figure 6F).
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Figure 6. The SSN and ring attractor network make distinct predictions for spike count noise correlations. (A) Spike count
correlation matrices in the SSN, for three values of stimulus strength (border color black: ¢ = 0; dark green: ¢ = 0.15; light green: ¢ = 1). X-
and y-axes of each matrix are preferred directions (PDs) of two cells, relative to stimulus direction taken equal to 0. (B) Same as (A), for the
ring attractor network. (C) Spike count correlations in the SSN and attractor network most strongly differ along particular “cross-sections”
of the correlation matrices (dotted line segments). (D) The segments shown in (C) correspond to scenarios in which the stimulus direction
exactly bisects the (smaller) angle between the preferred directions of the two recorded cells (top), or is opposite (middle) or orthogonal
(bottom) to this direction. Each difference between preferred directions, APD, corresponds to a specific position on the dotted segments in
(C). (E) Spike count correlations as a function of APD, along the segments shown in the corresponding matrices in (C) at different stimulus
strengths (colors as in A-B). (F) Same as (E), for the ring attractor network.

Comparison to variability of responses in MT

In our ring SSN model of directional tuning, the most robust
effect concerning variability modulation by stimuli is a com-
paratively stronger drop in Fano factor and V,, variance in
the neurons most strongly driven by the stimulus. Although
this “U shape” of variability quenching was also recorded in
area MT of the awake macaque for some types of stimuli
(namely coherent plaids; cf. top panel of Figure 1B in Ponce-
Alvarez et al., 2013), other sets of stimuli instead resulted
in an M-shaped profile of Fano factor reduction (see also
Lombardo et al., 2015). Specifically, stimulus onset quenched
variability more strongly in cells tuned to either the stimu-
lus direction or the opposite one, compared to neurons tuned
to the orthogonal directions (Figure 7C, center). A similar
M shape was apparent for spike count correlations between
similarly tuned neurons, as a function of their (common) pre-
ferred direction (Figure 7C, right).

We found that our model could also exhibit such an M-
shaped modulation of both Fano factors and pairwise corre-
lations at high stimulus strength (Figure 7B). This occurred
when the network was set up such that cells tuned to the op-
posite direction became near-silent (Figure 7B, left), which
typically required the tuning of the external input to be spa-
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tially as narrow as, or narrower than, that of the recur-
rent connectivity. In this case, the mean V,, of cells tuned
to the opposite direction became comparable to, or smaller
than, the rectification threshold Ve in Equation 2, such that
nearly half of their membrane potential fluctuations did not
pass the rectification and thus had no effect on momentary
firing rate fluctuations. Even the part of membrane potential
fluctuations which passed the rectification threshold were
diminished in the output by the small gain of the power-law
neuronal nonlinearity close to its threshold. Thus, although
the membrane potential fluctuations were larger for these
cells than for orthogonally tuned neurons (Figure 7A, cen-
ter), a substantial fraction of these fluctuations dissipated
below threshold or were diminished by the small neuronal
gain, yielding a lower firing rate variance. In fact, this loss
of firing rate variance more than overcame the effect of di-
viding by very small firing rates in computing Fano factors
for these neurons (Figure 7B, center). A similar nonlinear ef-
fect caused spike count correlations among similarly tuned
neurons to exhibit an M-shape modulation at high stimulus
strength (Figure 7B, right).

All our main results were reproduced in a sparsely connected
spiking model of area MT, similar to that of Figure 3 but with
an underlying ring architecture as in Figure 4 (Experimen-
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bins.

tal Procedures). Single neurons fired action potentials asyn-
chronously and irregularly during both spontaneous and
evoked conditions (Figure 8A). Mean firing rates had an ap-
proximately invariant tuning to stimulus direction across
stimulus strengths ¢ (Figure 8D), and saturated strongly at
large values of ¢ (not shown). Moreover, both membrane po-
tential variances and Fano factors decreased at stimulus on-
set (Figure 8B-C), and this drop in variability was also tuned,
thus reproducing the M-shaped modulation of Fano factors
and spike count correlations of the rate model (Figure 8E-G).
Consistent with the analyses of bump kinetics and of the ran-
domly connected spiking network, factor analysis revealed
that stimulus quenched shared, but not private, variability in
single neurons (Figure 8H). This indicated that the insights
we obtained from studying simplified network architectures
about the conditions for observing variability quenching in
single neurons also applied to the ring architecture.

Discussion

We studied the modulation of variability in a stochastic, non-
linear model of cortical circuit dynamics. We focussed on a
simple circuit motif that captured the essence of cortical net-
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works: noisy excitatory and inhibitory populations interact-
ing in a recurrent but stable way despite expansive single-
neuron nonlinearities. This stochastic stabilized supralinear
network (SSN) reproduced key aspects of variability in the
cortex. During spontaneous activity, i.e. for weak external
inputs, model neurons showed large and relatively slow syn-
chronous fluctuations in their membrane potentials, which
were quenched and decorrelated by stronger stimuli. The
model thus explains and unifies a large body of experimental
observations made in diverse systems under various condi-
tions (Churchland et al., 2006, 2010; Finn et al., 2007; Poulet
and Petersen, 2008; Gentet et al., 2010; Poulet et al., 2012; Tan
et al.,, 2014; Chen et al., 2014). Moreover, the drop in vari-
ability was tuned to specific stimulus features in a model of
area MT, also capturing recent experimental findings (Ponce-
Alvarezet al., 2013; Lin et al., 2015; Lombardo et al., 2015). The
SSN also captures ubiquitous phenomena involving nonlin-
ear response summation to multiple stimuli, including nor-
malization, surround suppression, and their dependencies on
stimulus contrast (Rubin et al., 2015). Together these results
suggest that the “loosely balanced” SSN captures key ele-
ments of the operating regime of sensory cortex.

Our analysis relied on the reduction of the complex mesh
of recurrent, feedback-driven interactions among multiple
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Figure 8. Variability suppression in a spiking network model of area MT. (A) Raster plot of spiking activity in excitatory neurons, ar-
ranged vertically according to preferred motion direction (PD). Activity is shown for 4 s around stimulus onset (dashed vertical line). (B) Fano
factor time course for two E cells respectively tuned to the stimulus direction (orange mark in panel A) and to the opposite direction (brown
mark), obtained from 1000 independent trials. (C) Single-trial Vi, traces for the two cells shown in (B). One trial stands out in color, and 9
other trials are shown in gray to illustrate reduction of variability both within- and across trials. (D-G) Mean firing rates (D), Fano factors
(E), Vin std. (F) and spike count correlations between similarly tuned cells (G), as a function of preferred direction (PD), at 3 different levels
of stimulus strength c (color-coded as indicated in D). (H) Factor analysis performed on spike counts (Experimental Procedures), separating
the private (black) from the shared (blue, “network”) contributions to spike count variability in every neuron. Shown here are mean private
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¢, and averaged among cells with similar tuning preferences (PD difference<18°). In panels C and F, Vi, fluctuations were first smoothed
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neuronal populations into two types of effective connections in response to tuned inputs and the resulting structured,
among activity patterns (Murphy and Miller, 2009): a self- contrast-dependent patterns of variability it generated.

connection that, when including the single-cell leak (the ten-
dency of isolated neurons to return to rest) as well as network
synapses, must be inhibitory in a network that has stable
steady-state responses to steady input, and which thus con-
stitutes a “restoring force” that contains or quenches vari-
ability; and a feedforward pattern of connections between
activity patterns that instantiates “balanced amplification”,
amplifying small momentary disturbances of the E/I bal-
ance into large but balanced responses, and which can be
thought of as a “shear force” boosting response variability.
Crucially, this effective network connectivity depends on the
mean firing rates of the E and | cells through the nonlinear
response properties of the single neurons, and therefore de-
pends on the strength of the external input. Balanced am-
plification typically dominates during spontaneous activity
(i.e. for small to moderate inputs), increasing variability rel-
ative to that of isolated cells with the same external input;
while for larger inputs, inhibitory self-connections become
dominant, quenching this spontaneous variability (whether
the peak of variability lies at spontaneous or at external in-
put levels somewhat below or above those of spontaneous
activity remains unclear). Importantly, these insights car-
ried over to the higher dimensional, structured ring archi-
tecture used to model MT responses, providing the logical
link between the network’s bumps of population activity

The SSN reproduces (Ahmadian et al., 2013; Rubin et al.,
2015) much of the phenomenology of the “normalization
model” of cortical responses (Carandini and Heeger, 2012)
and provides a circuit substrate for it. In the normalization
model and the SSN, responses to multiple stimuli add sub-
linearly, and as one stimulus becomes stronger than another,
the response to their simultaneous presentation becomes
“winner-take-all”, more and more dominated by the response
to the stronger stimulus alone. This behavior predicts some
aspects of variability suppression: a stronger mean input
drive relative to the noise input leads to greater suppression
of the noise’s contribution to the neuron’s response.

Further factors modulating variability

We analyzed variability modulation solely as arising from in-
trinsic network interactions, but other factors may also con-
tribute (Doiron et al., 2016). External inputs may be modu-
lated; for example, the drop with contrast in LGN Fano fac-
tors has been argued to underlie V,, variability decreases in
V1 simple cells (Sadagopan and Ferster, 2012; but see Malina
et al., 2016). However, since high contrast stimuli also cause
firing rates to increase in LGN, the total variance of LGN-to-
V1 inputs (scaling with the product of the LGN Fano factor
and mean rate) is modulated far less by contrast. This pro-

14


https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/094334. this version posted December 14, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

vides some justification for our model choice that input vari-
ance did not scale with contrast. Cellular factors may also
modulate variability. For example, inhibitory reversal poten-
tial or spike threshold may set boundaries limiting voltage
fluctuations, which would more strongly limit voltage fluctu-
ations in more hyperpolarized or more depolarized states re-
spectively; conductance increases will reduce voltage fluctu-
ations; and dendritic spikes may contribute more to voltage
fluctuations in some states than others (Stuart and Sprus-
ton, 2015). A joint treatment of external input, cellular, and
recurrent effects may be needed to explain, for example, why
Vin variability appears strongest near the preferred stimulus
in anaesthetized cat V1 (Finn et al., 2007), or why overall V,,
variability grows with visual stimulation in some neurons of
awake macaque V1 (Tan et al., 2014).

Neuromodulators (and presumably anesthetics) can alter the
input/output gain of single neurons as well as synaptic effica-
cies (Disney et al., 2007; Marder, 2012), yielding changes in
effective connectivity that may in turn explain brain state-
dependent changes in cortical variability (Poulet and Pe-
tersen, 2008; Ecker et al., 2014; Lin et al., 2015; Mochol et al.,
2015; Lombardo et al., 2015). Our approach, deriving changes
in variability directly from changes in effective connectiv-
ity, offers a framework for also understanding these forms of
variability modulation. Modifications of actual synaptic con-
nections also alter effective connectivity, so our efforts are
complementary to those of previous studies that focussed
on the consequences for correlations of different anatomical
connectivity patterns (Kriener et al., 2008; Tetzlaff et al., 2012;
Ostojic, 2014; Hennequin et al., 2014b).

The dynamical regime of cortical activity

We found that variability quenching in the stochastic SSN
robustly occurred as the input pushed the dynamics to
stronger and stronger inhibitory dominance. Consistent
with this, with increasing strength of external input the ra-
tio of inhibition to recurrent excitation received by SSN cells
increases (Rubin et al., 2015), as also observed in layers 2/3 of
mouse ST, in recordings in non-optogenetically-excited pyra-
midal cells, with increasingly strong optogenetic excitation
of other pyramidal cells (Shao et al., 2013). This distinguishes
the SSN from the balanced network (van Vreeswijk and Som-
polinsky, 1998), for which this ratio would be fixed for a given
pattern of external input to cells, regardless of the strength
of activation. The two models are also distinguished by the
nonlinear behaviors seen in SSN and cortex but not in the
balanced network (discussed in Introduction). Finally, the
balanced network predicts that external input alone is very
much larger than the net input (recurrent plus external). In
contrast, the SSN allows external and net input to be com-
parable, as observed in intracellular recordings in V1 layer 4
when the external thalamic input is revealed by suppressing
cortical spiking (Ferster et al., 1996; Chung and Ferster, 1998;
Lien and Scanziani, 2013; Li et al., 2013).

Two proposals have been made previously to explain quench-
ing of variability by a stimulus: a stimulus may quench
multi-attractor dynamics to create single-attractor dynam-
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ics (Blumenfeld et al., 2006; Litwin-Kumar and Doiron, 2012;
Deco and Hugues, 2012; Ponce-Alvarez et al., 2013; Doiron
and Litwin-Kumar, 2014; Mochol et al., 2015); and a stimulus
may quench chaotic dynamics to produce non-chaotic dy-
namics (Molgedey et al., 1992; Bertschinger and Natschlger,
2004; Sussillo and Abbott, 2009; Rajan et al., 2010; Laje and
Buonomano, 2013). In a ring architecture, our model differs
from multi-attractor dynamics in two fundamental ways.
First, attractor dynamics yields patterns of network variabil-
ity originating almost exclusively from sideways motion of
the activity bump (Supplementary Figure S6), leading to an
M-shaped profile of Fano factor suppression. Although our
model could also reproduce this M shape (Figures 7 and 8),
it also exhibited substantial fluctuations in bump amplitude
and width, producing a richer - yet still low-dimensional -
basis of variability patterns which more typically combined
to give Fano factors profiles a “U” shape (Figure 4). In-
deed, coherent plaids or random dot stimuli in the macaque
(Ponce-Alvarez et al., 2013; Lombardo et al., 2015) as well as
in the marmoset (Sam Solomon, personal communication)
result in a pronounced U-shaped modulation of Fano factors
in MT. Our analysis suggested that the SSN can produce ei-
ther M- or U-shaped modulations depending on the tuning
width of inputs relative to that of connectivity, but that in
both cases membrane potential variability will still have a
U-shaped profile (Figures 7 and 8), which could be tested in
future experiments. Second, patterns of bump motion also
led to very different patterns of covariances and correlations
across the population in the two models (Figure 5D). For
strong input, attractor dynamics exclusively predict negative
correlations for all cell pairs whose preferred stimuli are on
opposite sides of the stimulus (Figure 6B,F; top left and bot-
tom right quadrants of the i covariance matrix in Figure 5D
and Supplementary Figure S6; Ponce-Alvarez et al., 2013;
Wimmer et al., 2014), while the SSN predicts that cells with
similar tuning will be positively correlated even if the stim-
ulus lies between their preferred stimuli (Figure 6A,E; Fig-
ure 5D, center and corners of the full covariance matrix). So
far, correlations have not been reported as parametric func-
tions of both the stimulus and the tuning differences of cells,
or only in the context of attentional manipulations (Cohen
and Newsome, 2008), leaving these predictions to be tested
in future experiments. Thus, our work suggests a principled
approach to use data on cortical variability to identify the
dynamical regime in which the cortex operates.

More generally, our results also propose a very different dy-
namical regime underlying variability quenching than the
multi-attractor or chaos-suppression models. The SSN differs
from these in exhibiting a single stable state in all conditions
- spontaneous, weakly-driven, strongly-driven — whereas
the others show this only when strongly driven. Further-
more, quenching of variability and correlations in the SSN
is highly robust, arising from two basic properties of corti-
cal circuits: inhibitory stabilization of strong excitatory feed-
back (Tsodyks et al., 1997; Ozeki et al., 2009), and supralinear
input/output functions in single neurons (Priebe and Ferster,
2008). In contrast, models of multi-attractor or chaotic dy-
namics can either account only for the modulation of aver-
age pairwise correlations (Mochol et al., 2015), or else require
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considerable fine tuning of connections (Litwin-Kumar and
Doiron, 2012; Ponce-Alvarez et al., 2013) to account for more
detailed correlation patterns. Moreover, as studied thus far
they typically ignore Dale’s law (the separation of E and |
neurons) and its consequences for variability, e.g. balanced
amplification (Rajan et al., 2010; Ponce-Alvarez et al., 2013;
Mochol et al., 2015) (but see Harish and Hansel, 2015; Kad-
mon and Sompolinsky, 2015).

Other differences of dynamical regime suggest further exper-
imental tests. Mechanisms of chaos control typically lead
to quenching of across-trial variability at stimulus onset,
but not within-trial variability across time (Sussillo and Ab-
bott, 2009; Rajan et al., 2010; Laje and Buonomano, 2013), as
could be assayed by measures of variability in sliding win-
dows across time. Both the SSN and multi-attractor mod-
els predict quenching of both forms of variability. In chaotic
models, the transition from high- to low-variability is sud-
den with increasing external input strength (Rajan et al.,
2010), while the transition in the SSN will be, and in multi-
attractor models may be, gradual. In the high-variability
spontaneous state and for weakly-driven states (i.e. for a low-
contrast stimulus), the chaotic and multi-attractor scenarios
both predict slow dynamics (relative to cellular or synaptic
time constants), measurable as long auto-correlation times
for neural activity (Sompolinsky et al., 1988; Sussillo and Ab-
bott, 2009; Rajan et al., 2010; Laje and Buonomano, 2013) and
as slow responses to stimulus changes. Dynamics in these
scenarios may become fast in the high-input, low-variability
state. In contrast, the SSN typically predicts fast dynamics in
both high-variability and low-variability states (Supplemen-
tary Figure S2A). Even when the SSN shows some slowing
at the lowest levels of input, due to the restoring-force cou-
plings dipping below 1 (as in Figure 2E; the relaxation time
in a direction with restoring coupling X is 7/|A| where T is a
cellular time constant), it transitions to fast dynamics (|A|’s
> 1) for relatively weak input for which variability is still
high relative to the high-input state (Supplementary Figure
S2A) - a key distinction from the other models. Consistent
with the SSN, in mouse V1, the decay of response back to
spontaneous levels (or lower) after optogenetically-induced
sudden stimulus offset is fast, occuring over 10 ms (Reinhold
et al., 2015).

In summary, the SSN robustly captures multiple aspects of
stimulus modulation of correlated variability and suggests
a dynamical regime that uniquely captures a wide array of
behaviors of sensory cortex.

Experimental procedures

The values of all the parameters mentioned below are listed
in Table 1.

Rate model

Our rate-based networks contained Ng excitatory and N in-
hibitory units, yielding a total N = Ng + N;. The circuit dy-
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namics were governed by Equation 1, which we rewrite here
for convenience:

v, 1
dt

Tj

- D Wiklyi -

Jj€El cells

—Vi+ Vi + > WiklV; — V!
JEE cells

Vo T+ hi(t) | +mi(t) (6)

where 1);(t) modelled fluctuations in external inputs (see be-
low, “Input noise”). In all the figures of the main text, the
exponent of the power-law nonlinearity was set to n = 2.
The Sl explores more general scenarios.

Mean external drive In the reduced rate model of Fig-
ure 1, each unit received the same constant mean input h. In
the ring model, the mean input to neuron i was the sum of
two components,

) 7)

The first term b = 2 mV is a constant baseline which drove
spontaneous activity. The second term modelled the pres-
ence of a stimulus moving in direction 6; in the visual field
as a circular-Gaussian input bump of width f;,, centered
around 0, and scaled by a factor c (increasing c represents in-
creasing stimulus contrast), taking values from 0 to 1, times
a maximum amplitude Ap,y. We assumed for simplicity that
E and I cells are driven equally strongly by the stimulus,
though this could be relaxed.

cos(f; — 6) — 1
12

stim

hi(fs) = b+ ¢ - Amax - €Xp (

Input noise The input noise term 7;(t) in Equation 6 was
modelled as a multivariate Ornstein-Uhlenbeck process:

Tnoise A1) = —mp dt + st (8)

where d£ is a collection of N independent Wiener processes
and X" is an N x N input covariance matrix. Note that
Equation 8 implies (n;(t)n;(t + 7)) = ZE"isee_‘TVT"m.

In the reduced model, noise terms were chosen uncorrelated,
ie. X% = g2, 0; (where 6 = 1if i = j and 0 otherwise),
a(i) is the E/l type of neuron i, and o is the variance of noise
fed to population « € { E,I} (see Equation 10 below). In the
ring model, the noise had spatial structure, with correlations
among neurons that decreased with the difference in their
preferred directions following a circular-Gaussian:
cos(t); — 0;) — 1

— . ) ©

noise

Z;}Oise = Ta(i)Taj) EXP (

where 0; and 0; are the preferred directions of neurons i and
Jj (be they exc. or inh.), and £, is the correlation length
(Table 1). The noise amplitude was given the natural scaling

=
1+ 2

(a € {E,1}) (10)

Oq = 00«
Thoise

such that, in the absence of recurrent connectivity (W = 0),
the input noise alone would have driven V,, fluctuations of
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standard deviation oo or gy, measured in mV, in the E or |
cells, respectively. We chose values of o  that yielded spon-
taneous Fano factors in the range 1.3-1.5 where appropriate,
and chose 0 = 0¢ /2 to make up for the difference in mem-
brane time constants between E and | cells (Table 1).

Connectivity The synaptic weight matrix in the reduced
model was given by Equation 3 with synaptic strengths listed
in Table 1. In the ring model, connectivity fell off with dis-
tance on the ring, following a circular-Gaussian profile:

0;—0,) —

Wj; o< exp (
syn
The connectivity matrix W was further rescaled in each row
and in each quadrant, such that the sum of incoming E and
I weights onto each E and | neuron (4 cases) matched the
values of Wgg, Wi, Wg and W, in the reduced model.

Simulated spike counts To relate the firing rate model
to spiking data (Figures 4, 6 and 7), we assumed action po-
tentials to be emitted as inhomogeneous (doubly-stochastic)
Poisson processes with time-varying rate k| Vi, — Viest]”
Spikes did not “re-enter” the dynamics of Equation 6, accord-
ing to which neurons influence each other through their fir-
ing rates. Spikes were counted in 100 ms time bins and spike
count statistics such as Fano factors and pairwise correla-
tions were computed the standard way.

Theory of variability To compute the moments of V,,
analytically, we used i) a linear theory which assumes
small fluctuations (the single-neuron gain function is Taylor-
expanded to first order around the mean; Equation 4) and re-
turns closed-form analytical results through standard multi-
variate Ornstein-Uhlenbeck theory (e.g. Renart et al. (2010);
Tetzlaff et al. (2012); Hennequin et al. (2012); see Sl for de-
tails), and ii) a nonlinear theory which does not rely on lin-
earization, can handle large fluctuations and non-stationary
transients, by assuming that variability in V,, is jointly Gaus-
sian across neurons. We have used the nonlinear theory
throughout the figures in this paper to smooth out the data
points obtained numerically. The details will be published
elsewhere (Hennequin and Lengyel, in prep.).

Mathematical definition of the “shear and restoring
forces” To uncover the structure of the forces acting on
activity fluctuations, we focused on the linearized dynam-
ics of Equation 4 and performed a Schur decomposition of
the Jacobian matrix which included both the single-neuron
leak and the effective connectivity (Murphy and Miller, 2009;
Hennequin et al., 2012). In the reduced model, this amounted
to expressing the dynamics of the E and | units in a differ-
ent coordinate system, comprised of the two axes of E/I im-
balance (thereafter called difference mode) and total activity
(sum mode) depicted in Figure 2A-C. In that basis, the ef-
fective connectivity matrix — in which we also included the
leak term — had a triangular (i.e. feedforward) structure. The
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diagonal contained the two eigenvalues of the effective con-
nectivity matrix, and were interpreted as “restoring forces”
due to their effect of pulling activity along each axis back to
the mean. The upper triangular element of the Schur ma-
trix was interpreted as a “shear force”, because it induced
an effective connection from the difference mode onto the
sum mode, resulting in the orange force field depicted in Fig-
ure 2B-C. We note that the Schur vectors are not pure, but
instead weighted, sum and difference modes. Moreover, the
elements of the Schur triangle are complex numbers in gen-
eral; nevertheless, the intuition built in Figure 2 holds in the
complex case too, because only the moduli of these complex
numbers matter in computing total variability (in the limit of
slow input noise). This is all detailed in the SI, together with
explicit formulas for the input dependence of both shear and
restoring forces, as well as how each force affects variability
in the network. The Sl also explains the higher-dimensional
Schur decomposition performed on the effective ring connec-
tivity (Figure 5), which is similar conceptually but demanded
more involved treatment.

Spiking model

Dynamics In the spiking model, neuron i emitted spikes
stochastically with an instantaneous probability equal to
k| Vi — Viest]”, consistent with how (hypothetical) spikes
were modelled in the rate-based case (cf. above). Presynaptic
spikes were filtered by synaptic dynamics into exponentially
decaying postsynaptic currents (E or I):

da;
dt

R ()

Tsyn

(12)

4

where the t’s are the firing times of neuron j, 75,n = 2 ms,
and § = 0.5 ms is a small axonal transmission delay (which
also enables the distribution of the simulations onto multi-
ple compute cores following Morrison et al., 2005, using cus-
tom software written in OCaml and linked to the MPI par-
allelization library). Synaptic currents then contributed to
membrane potential dynamics according to

av,
W= Ve Yl - Y Jya)+ b0 (13

JEE cells JjEl cells

where the synaptic efficacies J; are described below, and the
noise term 7; was modelled exactly as in the rate-based sce-
nario. In Figure 3, the input noise covariance was simply
Ty = o2 1o [05(1 = p) + p]. In Figure 8, input correlations
were given again by Equation 9.

Connectivity In Figure 3, for each neuron i, we drew
peNe excitatory and p/N, inhibitory presynaptic partners,
uniformly at random. Connection densities were set to pg =
0.1 and p; = 0.4 respectively. The corresponding synap-
tic weights took on values J; Was/(TsynpsN3) where
{a, B} € {E, I} denote the populations to which neuron i and
J belong respectively, and W, are the connections in the re-
duced model (Table 1). This choice was such that, for a given
set of mean firing rates in the E and | populations, average E


https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/094334. this version posted December 14, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

and | synaptic inputs to E and | cells match the correspond-
ing recurrent inputs in the rate-based model. Synapses that
were not drawn were obviously set to Jj; = 0.

To wire the spiking ring network of Figure 8, for each neuron
i we also drew pg N excitatory and pi N, inhibitory presynap-
tic partners, though no longer uniformly. Instead, we drew
them from a (discrete) distribution over presynaptic index j
given by:

- (1)

pili) o exp <cos(01 0)) 1>

syn
which mirrored the dependence of Wj; on angular distance in
the rate model (cf. Equation 11). In Equation 14, “x” means
this distribution is not normalized; we used simple box (re-
jection) sampling to draw from it. Synapses that were drawn
took on the same values W, /(TsynpgN3) as in the randomly
connected network (cf. above), again to achieve approximate

correspondance with the rate model.

Factor analysis

We performed factor analysis of spike counts, normalized by
the square root of the mean spike count for each neuron.
This normalization was such that the diagonal of the spike
count covariance matrix C contained all the single-neuron
Fano factors, which is the usual measure of variability in
spike counts. In the ring model, such a normalization also
prevented C from being contaminated by a rank-1 pattern of
network covariance merely reflecting the tuning of single-
neuron firing rates (the “Poisson” part of variability, which
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indeed scales with the mean count), but instead expressed
covariability in the above-Poisson part of variability in pairs
of cells. Factor analysis decomposes C as Cprivate + Cshared;
where Cghareq has much lower rank than Cpiyaee. Here, since
we could simulate to model long enough to get a very good
estimate of the spike count covariance matrix C, we per-
formed factor analysis by direct eigendecomposition of C,
thus defining Cqhared = ZL )\iviv,-T whereby the top k eigen-
vectors vy, ..., vi of C contributed to shared variability in pro-
portion of the corresponding eigenvalues \;. We kept k = 1
eigenmode for the two-population model of Figure 3, as we
found the first eigenvalue of C to be singled out (much larger
than all other eigenvalues) across all values of p and h. For
the ring model of Figure 8, between 3 (for large c) and 5 (for
small ¢) eigenvalues of C stood out. We chose to keep k = 5
modes in order to conservatively estimate the drop in shared
variability.
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‘ Symbol ‘ Figs. 1-2 | Fig. 3 | Figs. 4-6 | Fig. 7 | Fig. 8 Unit Description ‘
Ne 1 4000 50 16000 = Number of excitatory units
M 1 1000 50 4000 - Number of inhibitory units
TE 20 ms Membrane time constant (E neurons)
T 10 ms Membrane time constant (I neurons)
Thoise 50 ms Noise correlation time constant
k 0.3 mV~"-s~" | Nonlinearity gain
n 2 = Nonlinearity exponent
Viest -70 mV Resting potential
Vo -70 mV Rectification threshold potential
Wee 1.25 mV-s E — E connection weight (or sum thereof)
Wie 1.2 mV- s E — | connection weight (or sum thereof)
WE 0.65 mV-s | — E connection weight (or sum thereof)
Wi 0.5 mV- s | — | connection weight (or sum thereof)
00 0.2 1 1 1.5 mV Input noise std. for E cells
0o, 0.1 0.5 0.5 0.75 mV Input noise std. for | cells
Lsyn 45° 80° deg. Connectivity lengthscale in ring net.
Pty 60° 80° deg. Stimulus tuning lengthscale of the input
Lroise 60° 80° deg. Input noise correlation length
0s 0° deg. Stimulus direction
b 2 mV Input baseline
Amax 20 30 mV Maximum input modulation
Tsyn - 2 - 2 ms Synaptic time constant in spiking net.
PE - 0.1 - 0.1 - E — - connection probability
o] - 0.4 - 0.4 - | — - connection probability

Table 1. Parameters used in our simulations.
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S1 Recap of model setup

We consider the stochastic and nonlinear rate model of Equation 1 of the main text. To simplify
notations, we assume Vies¢ = 0 mV without loss of generality as it can be absorbed in the external
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input, and rewrite:

T = =V(t) + KW V(8)]} +h(t) +n() (S1)

with n > 1 (n = 2 throughout the main text). In Equation (S1), [x]} denotes the pointwise
application of the threshold power-law nonlinearity to the vector x, that is, [x]7 is the vector
whose i** element is xi if x; > 0, or 0 otherwise; T is a diagonal matrix of relative membrane time
constants measured in units of 7g; W is a matrix of synaptic connections, made of Ng positive
columns (corresponding to excitatory presynaptic neurons) and Ny negative columns (inhibitory
neurons) for a total size of N = Ng + Ny; h(t) is a possibly time-varying but deterministic
external input to neuron ¢; and 7 is a multivariate Ornstein-Uhlenbeck process with separable
spatiotemporal correlations given by

(ntn(t+7)), = M, (52)

where X, is the covariance matrix of the input noise and 7, is its correlation time. In particular,
we are going to study how 7, and correlations in 3, affect network variability. We adopt the
following notations for relative time constants:

Tn

(S3)

qg=— and r
TE TE
In general, recurrent processing in the network is prone to instabilities due to the expansive,
non-saturating Vi,-rate relationship in single neurons. However, there are generous portions of
parameter space in which inhibition dynamically stabilizes the network. We refer to this case
as the “supralinear stabilized network”, or SSN (Ahmadian et al., 2013; Rubin et al., 2015).

S2 Mean responses in the stabilized supralinear regime

S2.1 Recap of Ahmadian et al. (2013)’s theoretical analysis

Our analysis of the stochastic SSN developed in Section S3 will show that the modulation of
variability relies on the nonlinear behavior of mean responses to varying inputs (Figure 1D of the
main text), which were studied previously (Ahmadian et al., 2013). In particular, the transition
from superlinear integration of small inputs to sublinear responses to larger inputs (Figure 1 of
the main text) could be explained using simple scaling arguments, which we briefly reproduce
here. Note that here we have written the circuit dynamics in voltage form (Equation (S1)),
while Ahmadian et al., 2013 chose a slightly different rate form; accordingly, the equations
we now derive differ from the original equations in their form, but not in their nature (in fact
steady state solutions studied in Ahmadian et al., 2013 are mathematically equivalent in the two
formulations, and moreover when T is proportional to the identity matrix, dynamic solutions
are also exactly equivalent (Miller and Fumarola, 2011)).

This section is devoted to mean responses, therefore we neglect the input noise 17 for now. We
thus write the deterministic dynamics of the mean potentials V; as

dv - -
and ask how neurons collectively respond to a constant external stimulus h fed to them through
a vector g ~ O(1) of feedforward weights. Perhaps after some transient, and assuming the
network is stable (see below), the network settles in a steady state V which must obey the
following fixed point equation, obtained by setting the Lh.s. of Equation (S4) to zero:

V =hg +kW|V] (5)
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As in the main text, we focus on the case of a threshold-quadratic nonlinearity, n = 2, though the
following derivations can be extended to arbitrary n > 1. Following Ahmadian et al. (2013), we

begin by writing W = ¢J where ¢ = ||[W]| for some matrix norm || - - - ||, and the dimensionless
vector J has ||J|| = 1. We also define dimensionless mean voltage and input respectively as
y = 2k V (S6)
a = 2kph (S7)

(note that the definition of « differs from that in Ahmadian et al., 2013 by a factor of 2). With
these definitions, the fixed point equation for the mean potentials, Equation (S5), becomes

1
y =ag+ §Jb’fi (S8)

Network responses to small inputs When « is small (i.e. h is small, given fixed connectivity
strength 1), it is easy to see that
Yy~ ag+ 0(042) (S9)

In essence, the fixed point Equation (S8) is already the first-order Taylor expansion of y for
small « (indeed, the recurrent term J|y |2 is O(a?), self-consistently). Thus, for small input «,
membrane potentials scale linearly with «, and firing rates are quadratic in «, merely reflecting
the single-neuron nonlinearity. In other words, the network behaves mostly as a relay of its
feedforward inputs, with only minor corrections due to recurrent interactions.

More generally, by repeatedly substituting the right side of Eq. S8 for y in Eq. Eq. S8, we arrive

at the expansion
2

2
ag—I—%J {ag—}—;J L...ﬁLJ (S10)

_l’_
The net result involves a series of terms of order «, o, o ..., which can be expected to converge

for small o (o < 1).

1
= 7,]
y ag—i—2

Network responses to larger inputs For large o (o > 1), the expansion of Eq. S10 will
not converge and so cannot describe responses. Physically this tends to correspond to the
excitatory subnetwork becoming unstable by itself. At the level of the fixed point equation
S8, recurrent processing involves squaring V, passing it through the recurrent connectivity,
adding the feedforward input, squaring the result again, ..., which for large enough input and
purely excitatory connectivity would yield activity that grows arbitrarily large. A finite-activity
solution is achieved through stabilization by inhibitory feedback. Mathematically, for this to
occur, the recurrent term J|y|2 must cancel the linear dependence of y on « in Eq. S8 (since

any linear dependence would be squared by the right side of Eq. S8, then squared again, ..., to
yield an explosive series like Eq. S10). That is, we must have

1

FIly)i = —og+ O(va) (S11)

such that (again from Equation (S8))

y ~ O(Va) (S12)

at most. This means that membrane potentials scale at most as /«, i.e. firing rates scale at
most linearly in «. However, in many cases, firing rates too will be sublinear in «. This is
best examplified in the context of our two-population E/I model, by following Ahmadian et al.
(2013) and introducing the notation:

QE = (—J_lg)EDetJ = JHgE — JEIgI (S13)
O = (—Jilg)l Detd = Jigge — JrEg! (814)
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(note that we only consider networks in which DetJ > 0, as it must for stabilization to occur
for all input levels «, Ahmadian et al. (2013)). Equation (S11) can then be rewritten as

2a Q
2 E
= @) S15
¥)} = o ( o >+ (Va) (515)
Now, depending on the choice of parameters (recurrent weights J and feedforward weights g), Qg
in particular can be negative. Since |7, |2 is positive, it must be that the sublinear term O(y/a)
dominates over the (negative) linear term 2Qpa/DetJ, at least over some range of o over which
the E firing rate is non-zero. In this case, |yg |2 behaves roughly as \/a over some range' before

it gets pushed to zero, and accordingly ¥ must be approximately m over the same range,
i.e. the E unit responds strongly sublinearly. Ahmadian et al. (2013) referred to this regime
of eventual decrease of i with increasing stimulus strength as “supersaturation”, and showed
that it occurs for physiologically plausible parameter regimes. Our choice of parameters for the
two-population model of the main text falls within this class of strongly sublinear E responses
(Qp < 0), but we will show in Section S3 that the SSN displays the same input modulation of
variability irrespective of the sign of Q.

In summary, the SSN responds superlinearly to small inputs, and sublinearly to larger inputs.
Firing rates become at most linear (but will be sublinear if Qp < 0) with large inputs. Ac-
cordingly, membrane potentials show a transition from linear to (potentially strongly) sublinear
responses to increasing inputs. Moreover, this transition occurs for a ~ O(1).

S2.2 What do we expect for typical networks?

In the context of the reduced two-population model of the main text, we now complement the
above theoretical arguments with a numerical analysis of the SSN’s responses across a wide range
of parameters, in order to form a picture of the “typical” behavior of the SSN in physiologically
realistic regimes. We will later (Section S3) reuse these numerical explorations to show that the
modulation of variability by external input in the SSN is robust to changes of parameters.

The dynamics of the trial-averaged dimensionless “population voltages” are given by

. 1 _ _
el = e + 5 (Jeplve )} - Julni ) +agn (S16)
. 1
= Uit g (JIE e — Ju Wlﬁ) +agr

It is difficult to get good estimates of the values of the 6 free parameters (feedforward weights and
recurrent weights) directly from biology. Therefore, our approach is to construct a large number
of networks by randomly sampling these parameters within broad intervals, and rejecting those
networks that produce unphysiological responses according to conservative criteria that we detail
below. We then examine the behavior of each of these networks and perform statistics on the
various kinds of responses that have been identified in the theoretical analysis of Section S2.1.

We thus constructed 1000 networks by sampling both feedforward weights {g,} and recurrent
weights {J,3} (for «, 8 € {E,I}) uniformly from the interval [0.1; 1], and subsequently normal-
izing their (vector) Loo-norm such that max(g,) = max(J,3) = 1. We then sampled the overall
connectivity strength ¢ (cf. Section S2.1) from the interval [0.1;10]. This interval was based on
rough estimates of the average number of input connections from the local network per neuron
(between 200 and 1000), average PSP amplitude (between 0.1 mV and 0.5 mV) and decay time

!Talking about how 7y scales with large o actually stops making sense when Qr < 0 precisely because for
large enough « the E unit stops firing; but the point here is that because y must decrease at some point, it will
necessarily become strongly sublinear in «. over some range before it starts to decrease.
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constants (5 to 20 ms), giving a range of connectivity strengths — which in our model is the
product of these three quantities — between 0.1 and 10 mV /Hz.

Instead of choosing a range of o and simulating the dynamics of Equation (S16) to compute
mean voltages, we instead observed that 7 increases monotonically with o and for each network
we chose a range of 7/; corresponding to mean I firing rates ((77;/2¢)%/k) in the range [0;200] Hz,
thus assuming that mean I responses above 200 Hz would be unphysiological. For each 7; in this
discretized range we solved for 7; analytically by noting that the input « can be eliminated from
the pair of fixed-point equations (Equation (S16) with L.h.s. set to zero), yielding a fixed-point
curve in the (7, 7;) plane:

Y’ + 200k = Qev;” + 2987 (S17)

Given 7 it is easy to solve this quadratic equation for 7. We rejected those parameters sets
for which we encountered either i) complex solutions for 7, or ii) real but unstable solutions,
as assessed by the stability conditions TrJ < 0 and DetJ > 0.01 (with the Jacobian matrix
J defined in Equations (S19) and (S21)), or iii) stable solutions that involved E firing rates
((y/21)? k) either greater than 200 Hz, or smaller than 1 Hz for the largest value of 77;. Finally,
for each fixed point (7, 7;), we computed the corresponding « from either of the two fixed-point
equations (Equation (S16) with Lh.s. set to zero), e.g. & = [y, — (JerUr? — Jr1?2)/2] /gr. This
procedure was numerically much more efficient than simulating the dynamics of Equation (S16)
until convergence to steady-state.

The parameters of the retained networks spanned a large chunk of the invervals in which they
were sampled (Figure S1A and B). Because stability for large a requires DetJ > 0, i.e. JgrJig >
JegJu, the largest of all sampled J,3’s was often either Jgr or Jig which then, due to the
L-norm normalization, assumed a value of one (Figure S1A). We also observed that the input
weight gg was often larger than g; (Figure S1B). About 90% of the sampled networks has Qp > 0,
implying ~ /a scaling of 7 and 7; for large o (example in Figure S1D, top). In these networks,
E and I rates were linear in « for « large enough, and so were also linear in each other when large
enough (Figure S1E, black). The rest of the networks (10%) had Qg < 0 and therefore showed
supersaturation of the E firing rate for large input (Figure S1D, bottom) and E responses that
were sublinear in I responses (Figure S1E, orange).

It is worth noting that for networks with small overall connectivity strength 1, the proportion
of Qg < 0 and Qg > 0 cases tend to even out (Figure S1C). This is because, for supersaturating
networks, the peak E firing rate is inversely proportional to 12 (Ahmadian et al., 2013), so for
large 1) the peak firing rate is low and therefore the final value of 7y reached for 71 = 200 Hz
likely falls below our threshold of 1 Hz, resulting in a rejection of the parameter set.

In sum, the nonlinear properties of the SSN’s responses to growing inputs, summarized in
Section S2.1, are robust to changes in parameters so long as these keep the network in a regime
“not too unphysiological” in a conservative sense. Using the same collection of sampled networks,
we will show below that the modulation of variability with input described in the main text is
equally robust to parameter changes.

S3 Activity variability in the two-population SSN model

In this section, we derive the theoretical results regarding activity variability in the two-population
model of the main text. We use these analytical results to demonstrate robustness of our results
to changes in parameters, which we also verify numerically using the collection of networks with
randomly sampled parameters introduced in Section S2.2.
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S3.1 Linearization of the dynamics

We now consider the noisy dynamics of the two-population model of the main text in which the
E and I units represent the average activity of large E and I populations. To study variability
analytically, we linearize Equation (S1) around the mean, thus examining the local behavior of
small fluctuations dV:

TET% = A(a) 0V (t) +n(t) (S18)
with  A(a) = I+ W (q) (S19)

The effective connectivity W depends on the (dimensionless) input a through its dependence
on mean responses, following

Wel(a) = Jylp;(a))s  for i,je{E,I} (520)

where we have used the definition of the dimensionless voltage y and dimensionless connections
J introduced in Section S2.1. With our notations, the Jacobian matrix

J(a) =T A(a) (S21)

is unitless, so that, e.g., the interpretation of a real negative eigenvalue A of J is that the
corresponding eigenmode decays asymptotically with time constant 7g/|\| as a result of the
recurrent dynamics. We parameterize the input noise covariance as

1 2
nt)ynit+n)T) = (1 + ) e |71/ < ‘E C%I > with  cgr = pricecr (S22)
r CEI Cr

such that, in the limit of small & — in which the network is effectively unconnected, because ||

in Equation (S20) is small — the E unit has variance c&; the I unit then has variance ;%c%. The

parameter pgr determines the correlation between input noise to the E and I units.

S3.2 General result

As shown in the appendix, the full output covariance matrix 3 = (§V 6VT) can be calculated
by solving a set of linear equations, which yields:

5 (L+7)(1 = rTr) (zaE 2@) ($23)

 —TrJDetA(q — qrTrJ + r2DetA) \ Zf;  Xf
with
e = (T + AR ) + AR — 2emrApr A (s24)
= (% + A%E> + cp Ay — 2cprAis Agg (S25)
St = cp A An + ¢t AprAgg — 2cE1 (AEEAII - m) (S26)

In Equations (5S23) to (S26), each term that depends on A or J depends implicitly on the
(dimensionless) constant input « delivered to both E and I populations, because A (or J)
depends on mean voltages (through Equation (S20)) which themselves depend on «. Note also
that, for the network to be stable at a given input level «, the Jacobian matrix J(a) should
obey TrJ < 0 and DetJ > 0 (with the latter equivalent to DetA > 0).
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Among other things, we will analyze the behaviour of the total variance, i.e. the trace of X given
by
B(A)(1 —rTrJ) + DetA(gcg + ¢ 1c?)

Tr(X) = (1 2
') =(1+r) —TrJDetA (q — qgr'TrJ + r?DetA) (527)
with A defined in Equation (S19) and
B(A) = (Afg + ATk + (AR + Afp)ef — 2(AiArg + AptAn)ce (S28)

S3.3 Analysis in simplified scenarios

In order to understand what Equation (S27) tells us about the modulation of variability with
the input «, we make a couple of assumptions that greatly simplify the expression for the total
variance with little loss of generality. First, we consider the limit of slow? input noise which we
find empirically is approached rather fast, with 7, = 50 ms already giving a close approximation
given g = 20 ms and 75 = 10 ms. Next, we assume that
cr
cp=—=c S29
E= (529)
and pgr = 0, i.e. the E and I units have uncorrelated input fluctuations of equal amplitude (the
impact of positive input correlations, pgr > 0, will be discussed in Section S3.4). With these
two assumptions, the total variance simplifies into
Bo(A)
Tr(E)=c* ——% S30
'(®) =< peiaz (530)
which provides a good basis for discussion. Here we defined ¢?By(A) to be B(A) with cgp set to
zero. The typical behavior of fy(A)'/2? and DetA is shown in Figure S2A. Both can be expressed
as a function of mean responses using Equations (S19) and (S20):

Bo(A) = &*(Jpryy — 1) + £2(Je1v1)? + (Jieyp)? + (1 + Juy,)? (S31)
DetA? = [(JigTg) (Jerd;) + (1 — Jeeyp) (1 + Juy)] (S32)

Note that to simplify notations we have dropped the |-|; that should surround every 7. Based
on these expressions, we now examine the behavior of variability in the small and large a limits
and show that the total variance should typically grow and then decay with increasing o, and
therefore should exhibit a maximum which empirically we find occurs for o ~ 1.

Behavior of the total variance for small « Using Equations (S30) to (S32), we find the
slope of the total variance at & = 0 to be
d

@TT(E)

. = 202 (gEJEE — KQQIJH) (833)
a=

Thus, when the noise power fed to inhibitory cells is sufficiently small, Kk = ¢;/cg will be small
enough that the expression in Equation (S33) will stay positive, and therefore total variability
will grow with small increasing «. Indeed, we find that this happens for most (> 90%) of
the randomly sampled networks of Section S2.2 with k as large as 1/2 (Figure S2A, bottom).
Moreover, restricting the analysis to the E unit gives d¥gg/do|,_, = 2¢%gp JJeg which is always

2The other limit (fast noise, 7, — 0) also greatly simplifies Equation (S27), but would not make much sense
in the context of this study, since Equation (S1) is meant to model the dynamics of the voltage on a timescale
> 30 ms, which is the timescale on which a threshold power-law relationship between voltage and rate has been
measured in cat V1. Therefore, the input noise that we explicitly model here is meant to capture the slowly
fluctuating components of external inputs, the fast components having been “absorbed” into the threshold power-
law gain function.
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positive, independently of x. Thus, for slow enough input noise, the variability in the E unit
always increases with small a.

We can extend this argument to slightly larger values of « by further inspecting the numerator
and denominator in Equation (S30). Although the first term in the numerator, (Jggyp — 1),
originally decays with « as 7 grows from 0 to 1/Jgg, the other three terms always grow with
« as long as mean voltages do, and thus we expect the numerator to typically grow. This is
indeed what we find in all sampled networks (Figure S2A). On the other hand, the denominator
(Equation (S32)) is the square of the sum of two terms, the first one initially small and growing,
and the second one initially large and decaying. Indeed, the second term starts at 1 for a = 0,
because the 7 terms are all zero, and then decays to zero as the network enters the inhibition-
stabilized (ISN) regime and the effective excitatory feedback gain Jrgpyy becomes larger than
one? (Tsodyks et al., 1997; Ozeki et al., 2009). Thus, due to this partial cancellation of growing
and decaying terms, we expect the denominator to either decrease, or grow very slowly, with
increasing o (Figure S2A), until it starts growing faster (see arguments below for the large «
case) in the very rough neighborhood of the ISN transition. All in all, the ratio of a fast growing
numerator to a slower growing denominator suggests that the total variance should robustly
grow with small increasing o (Figure S2A, bottom).

Behavior of the total variance for large @  As the input grows, so do the mean (dimension-
less) voltages 7 and 7; at least over some range of o. Therefore, we expect both the numerator
and the denominator that make up the total variance in Equation (S30) to grow with large
enough and increasing a. However, loosely speaking, the numerator grows as 7> while the de-
nominator grows as 7%, which can be seen by inspecting Equations (S31) and (S32). Thus, their
ratio should decrease roughly as 1/72.

This argument can be made more rigorous in the case Q2 > 0, i.e. when the E unit does
not supersaturate. In this case, from Equation (S15) we have 7y ~ /2Qga/DetJ and 7; ~
V201 /Detd for a large enough. Therefore, in the large « limit, the numerator and denominator
of Equation (S30) behave as

2
Bo(A) ~ 55 |(Jis + K2 TBe) % + (i + K2 TR o (S34)
DetA? ~ 40002 (S35)

respectively, therefore the total variance (their ratio) decreases as 1/a. For Qg < 0, the large
a limit is irrelevant strictly speaking, as in this limit |7 |+ and 7g go to zero. In this case the
total variance does not decrease asymptotically but reaches a finite limit of ¢? [1 + (¢Jg1/ JH)Q].
However, we find empirically that the peak of variability always occurs well before the onset
of supersaturation, in a regime where both 7 and 7; are still growing with « while remaining
roughly proportional to each other (Figure S1E), so that the argument made above can be
repeated: the total variance decreases as 1/72 for a while after having peaked.

Where does variability peak? The above arguments, derived for slow noise 7,, — 0o, show
that growing inputs typically increase, and then suppress, total variability in the two-population
SSN. Thus, total variability (and even more certainly, variability in the E unit) typically ex-
hibits a maximum for some intermediate value of . We find empirically that, even for finite
Ty, the location of this variance peak is well approximated by its location in the limit of fast
inhibition, ¢ — 0, which we can estimate analytically. Indeed, in this limit, the I cell responds

3In this regime, Jegyp > 1 < Agg > 0 implies instability of the excitatory subnetwork in isolation, and
therefore the need for dynamic, stabilizing feedback inhibition (hence the name “inhibition-stabilized network”).
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instantaneously to changes in E activity and input noise, such that

_ JEypVEe(t) +m(?)

ovi(t S36
i(?) 1+ Juy (836)
Consequently, Vg now obeys one-dimensional dynamics given by
TEWE = —)\WE(t) =+ Ueff(t) (837)
where o (Dt v — J
A=14+ yr(Detd 1, — Jgg) (S38)

1+ Juy;

and 7eg is a noise process (a linear combination of g and 7;) with temporal correlation length 7,
and a variance that is empirically irrelevant for the arguments below® In this case, the variance
of §Vg is inversely proportional to /\(% + ), and therefore should be maximum at the input level
« that minimizes A\. Observing from Figure S1E that 7 and 7; are roughly proportional over
a large range of « (for Qp < 0), if not the entire range (for Qr > 0), we can make the following
approximation:

yI(DetJyI — JEE)

1+ Juy

whose minimum is straightforward to calculate and is attained for

1 Je1JiE
D=7\ Dets (540)

We find that the o of maximum variance in the E unit is indeed very well approximated by
the o at which 7; reaches the threshold value of Equation (S40), especially in the absence of
input correlations (pgr = 0, Figure S2B, left). For correlated noisy inputs, the criterion of
Equation (S40) deteriorates slightly but still consistently provides an upper bound on the « of
maximum E variance (Figure S2B, right).

A—1x

(S39)

Interestingly, the criterion for maximum variance in Equation (S40) is equivalent to a criterion
about the effective I—1 connection, given by W& = 2k V| Wi (cf. main text Equation (6)).
Specifically, at the peak of variance we expect to have

1 ) WeeWn
welt —  J—— 1 th = ———
1 with § WeitWig

-5
where § < 1 is in some sense the ratio of what contributes positively to the activity of the E
cell (product of self-excitation Wgg with disinhibition Wip) to what contributes negatively to
it (the product WigWgr quantifying the strength of the E — I — E inhibitory feedback loop).
Thus, in networks with inhibition-dominated connectivity, i.e. ones in which § <« 1, we expect
WER to reach the criterion of Equation (S41) earlier as the input grows (this argument implictly
assumes that the rate of growth of Wﬁﬁ itself doesn’t depend too much on 3, which we could
confirm numerically).

(S41)

Finally, we note that since variability peaks for a ~ O(1) and y ~ O(1), networks with stronger
connectivity (large ) will exhibit a peak of variance for smaller external input h (because
a o 1h) — and this peak will occur for lower voltages/firing rates (because V o y/4)).

2 7 2
4The variance of the effective noise process is proportional to 1 + (111}“317*1/%&,
on « especially for small a before 7, grows large. However, empirically, the quality of the approximation in
Equation (S39) — which is derived under the assumption of constant effective noise variance — suggests we can

neglect this effect.

and so has some dependence
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S3.4 Effects of input correlations

To see the effect of input correlations on variability, we return to the expression for Ygg in
Equation (S27), assume again that 7, — oo and cg = % = ¢, but now with pgr # 0. We thus
obtain:
QA%I + KQA%I _ 2 RAHAEI
DetA2 © PRI DetA2
Thus, total E variability is equal to that without input correlation (the first term), minus a
positive term proportional to pgr. Thus, positive input correlations always decrease variability
in the E unit (and, in particular, its peak; Figure S2C, right), while negative correlations increase
it. Moreover, the subtracted term has the same large-a behavior as the first term, because the
two terms share the same denominator and for large alpha both numerators are O(7;2). Thus,
input correlations should not affect the qualitative, decreasing behaviour of E variance for large
increasing inputs. For small v and large pgr, however, we expect A%I + H2A%I — 2pp1k A1 Agr to
grow much more slowly than A% + k2A%;; and indeed, in the extreme case pr; = 1, the total
numerator becomes (1 + (Ji1 — xJg1)7;)?, which can even decrease transiently with increasing
a if kJgr > Jip (this occurs in about half of our thousand networks). This, in effect, shifts the
peak of E variability to smaller values of a (Figure S2C, left).

EEE =cC (842)

The situation for the I unit is a bit different, as input correlations affect the I variance differently
depending on whether the network has already made the transition to the ISN regime. Indeed,
under the same assumptions as above, the I variance is given by

2 HZA]%E + A%E KAERAIE

DetA2 DetA2
In the ISN regime, Agg > 0, so that input correlations decrease I variability, just as it does
for E variability as seen above. For small enough inputs, however, the network is not yet an
ISN (Agg < 0), so that the effect of correlations is reversed: larger input correlations increase I
variability.

Yn=c 2¢*pg1 (543)

In sum, input correlations modify the fine details of how large the variance grows and how early it
peaks with increasing inputs, but they do not modify the qualitative aspects — in particular, the
non-monotonic behavior — of variability modulation with external inputs in this two-population

SSN model.

S3.5 Mechanistic aspects: Schur decomposition

We now unpack the mechanistic aspects of variability modulation described in the main text,
i.e. give mathematically precise meaning to the “forces” of Figure 2 (main text) acting on input
fluctuations. We do this through a Schur decomposition (see e.g. Murphy and Miller, 2009
and its supplementary material in particular) of the 2-population model’s Jacobian matrix in
Equation (S21):

J (@) = U()Tschur (@) U(a)* with  Tgepur(@) = < )(‘)S u;\b:iF ) (S44)

where -* denotes the conjugate transpose, Ag and Agq are the two (either real or complex-
conjugate’) eigenvalues of J(«a), and the columns of U are the (orthonormal) Schur vectors
such that UU* = U*U = 1. Expressing the E and I voltage fluctuations in the Schur basis as
z = U* 0V, their dynamics become

dz _
7o g; = Tsehz + U'T n (S45)
5The eigenvalues remain real over the entire input range for about half of the 1000 random networks studied
throughout (all with ¢ = 1/2). In the second half, they go from real to complex-conjugate and then sometimes
to real again.
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In the case of the 2-population E/I architecture considered here (W given by Equation 4 of
the main text), the first Schur vector is a “sum mode” in the generalized sense (Murphy and
Miller, 2009), i.e. its excitatory and inhibitory components have the same sign®. This corresponds
to patterns of network activity in which the excitatory and inhibitory units are simultaneously
either more active or less active than average. The second Schur mode is a generalized “differ-
ence mode” in that its excitatory and inhibitory components have opposive signs. (Hence the
notations Ag and Ag.) In theory, U depends on the input «, because J does. However, we
find that passed a relatively small value of «, the Schur vectors do not change much and are
indeed sum-like and difference-like across all thousand networks studied in Sections S2 and S3
(Figure S2E).

The Schur decomposition reveals through Tgeny,(«) a feedforward structure hidden in the ef-
fective, recurrent connectivity J(«): the difference mode feeds the sum mode with an effective
feedforward weight wrr (also a complex number if the eigenvalues have an imaginary compo-
nent), given by the upper right element of the triangular matrix Tgepy,. On top of this, both
patterns inhibit themselves with the corresponding negative weight Ag or As. Note that the sum
of squared moduli (squared Frobenius norm || - [|%) is preserved by the unitary transformation
J = U*JU = Tsepur, such that | T]|Z = | Tschur||3, i-e.

fwer] = VITIE = (A2 + 1 Aal) (547)

In the main text, we called the effect of Ay and Ay “restoring forces”, and that of wgrp a “shear
force”, because of the way they contribute to the flow of dynamics in the E/I activity plane and
thus distort the ellipse of input fluctuations. Fluctuations are quenched along both the sum and
the difference axes, in proportion of Ag and Agq respectively, and fluctuations along the difference
axis are amplified along the sum axis in proportion of wgp.

The calculation of the network covariance matrix (Equation (S27)) can also be performed in
the Schur basis, and doing this sheds further light on the roles of A\q, As and wygr in shaping
variability. We begin by observing that

= Tr ((zz")) (S48)

(the last step following from UU* = I). Thus, the total variance is preserved in the Schur basis.
Next, taking the Fourier transform of Equation (S45) and rearranging term yields

Z(w) = (iwl — Tsehur) "UT 1 (w) (S49)
where * denotes the Fourier transform and w = 27 f7g is a dimensionless frequency. Moreover,
according to Parseval’s theorem we have

1 +0o0
Tr ((zz*)) = Tr (22*) dw (S50)

21TE J—0o

5 This holds when the eigenvalues of A are real. When they are complex conjugate, one can still perform a
real Schur decomposition by orthogonalizing the imaginary part of the eigenvector against the real part, which
yields

_ [ Re(N) a4 _ wrr & \/wrr? +4Im(X)?2
Tschur = ( a_ Re(}\) at+ = 2 (846)

and the two Schur vectors in this case are also sum-like and difference-like, in this order. At this point (anticipating
a little bit on what follows this footnote), we note that in the imaginary case, there is a small feedback term
proportional to a_ from the sum-mode to the difference-mode. Thus, the picture of the forces drawn in Figure 2
of the main text is incomplete. However, we will see that in the slow-noise limit (which gives a very good
approximation to the output covariance as seen in Section S3.3), the purely feedforward picture remains exact
provided one replaces wrr, Ag and A, by their moduli.
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Thus, combining Equations (S48) to (S50) we get

Tr(X)

2 /+oo Tr [(iwI — Tsehur) U0 (i1 — TSChur)_*} d (S51)
o w

T Jooo 1+ (rw)?
where in = T_lﬁnT_l. To simplify the calculation we now assume uncorrelated input noise

terms, with the power of noise input to £ and I balanced such that x = ¢ and in =c2(1+1/r),
leading to:

Tr(E) = M /Jroo Tr ((ZWI - TSchur)_l(iWI — TSchur)_*)

v —oo 14+ (rw)?

14+r)c? [t 1 1 1 wrr|?
=<)/ 5|+ 5+ = 5+ — ‘§F.’ 5| dw
T —0o 14 (rw)? \ |iw — Ad] liw — Ag| liw — Ag|?|iw — Ag

where the second equality comes from having inverted the upper-triangular matrix ‘wl — Tschyr
analytically and taken its squared Frobenius norm. Carrying out the integral gives

dw (S52)

1—7rAL 1 —7rA\;
() = (1 2 8 d
H(E) = re (—Ag(l TS VNI P WE) IS v s v Wi SR
1 "LUFF’2 [1 — T()\s + )\d)] (854)
—(As + Ad)[As| [Aa] [L = 7(As + Ad) + r2[As| [Adl]

where AL and A} stand for the real parts of Ag and A4 respectively (they must both be negative
for the dynamics to be stable).

This expression simplifies in the slow noise limit, r — co:’

r—oo 9 1 1 |’U7F‘F‘|2

=) e <|As|2 e |As|2|Ad|2> (5%9)
In this limit, the picture of the forces drawn in a plane of sum and difference activity (Figure 2
of the main text), assuming that they are real quantities, becomes accurate even when the
eigenvalues of J are complex-conjugate (in which case, as mentioned above in passing, the sum-
like mode feeds back onto the difference mode, although this interaction is much weaker than the
opposite one). Indeed, in Equation (S55), the elements of Tgchyr are reduced to their moduli,
so even when they are complex one can still interpret Equation (S55) as the total variance in a
system with the same real Schur vectors, real eigenvalues equal to —|Ag| and —|As| respectively,
and a real feedforward weight equal to |wgy|.

Equation (S55) shows in more details how the shear and restoring forces contribute to variability.
In loose terms, the total variance is a sum of two contributions: one that does not depend on
wpr and decreases with 1/|A|?, and one that grows with |wpr|? but is also divided by a term of
order A* (where X is a loose notation to denote the overall magnitude of the eigenvalues). Thus,
as the input grows, the effect of the eigenvalues on variability becomes much stronger than that
of balanced amplification. Such a dominance can also be understood from the structure of the
force fields that negative self-couplings and balanced amplification induce. Restoring forces are
proportional to the distance from the origin: the stronger the momentary V;, deviation from
mean in any direction, the stronger the pull towards the origin in the same direction (main text

"More generally, for arbitrary ¢, x and pgr, in the limit r — oo, Equation (S55) still holds, in precisely the same
form, but in terms of the eigenvalues and feedforward Schur weight of B(«a) = cE;%A(a) rather than of J(«).
This is because, in that limit, Tr(X) = ¢?||B~'||&. Note that ¢ cannot affect the result in the limit 7, — oco; and
that when s = ¢ and pgr = 0, then J (o) = B(«) and hence Equation (S55) holds. To see why Tr(X2) = ¢?||B™*||%
in this limit: most simply, in the slow noise limit, one can think of the noise n(¢) in Equation (S18) as a constant
input and solve for its steady state 6V = —A~'n, then form ¥ = <6V6VT>‘
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Figure 2C, green arrows). In contrast, shear forces grow along the difference axis while pointing
in the orthogonal, sum direction, such that larger deviations in the sum do not imply larger shear
force (main text Figure 2C, orange arrows). Thus, self-inhibition leads to exponential temporal
decay of activity fluctuations, whereas balanced amplification gives only linear growth. This
explains why, for large enough input, V, variability decreases with increasing input even when
all forces grow in magnitude at the same rate (Figure S2A).

Equation (S55) also shows that if one of the eigenvalues transiently weakens with increasing
input, then variability should transiently grow. This explains a large part of the variability
peak observed in the network of the main text, and indeed, it also predicts variability growth
in most of the thousand networks investigated here. However, there are cases where variability
transiently grows, without any weakening of eigenvalues (Figure S3A). In those cases, setting
wprp to 0 in Equation (S55) wrongly predicts purely decaying variability (compare dashed and
solid black lines in Figure S3A, bottom). Thus, in general, initial variability growth results from
the combined effects of weaker inhibitory self-couplings and strong balanced amplification.

S3.6 How do the “forces” depend on the input?

The input dependence of the shear (Jwgr|) and restoring (|As|, |As|) forces can be understood
from the input dependence of mean responses (7 and 7;), which were examined previously in
Section S2. First, at a = 0 (no input) the effective connectivity is zero, thus J = diag(—1, —¢ 1)
and therefore the two eigenvalues are —1 and —1/q. To see how the eigenvalues change with
the input, let us note that for a 2 x 2 matrix, the sum of the eigenvalues is equal to the trace
of the matrix while their product is equal to its determinant. Thus, when both eigenvalues are
real (which they are for small enough «), both the arithmetic and geometric mean of |Ag| and
|Aa| can be related to the elements of 7, which themselves depend directly on 7y, and 7;. This
yields:

Asl+1Xdal = ¢ '[1+q+ (Juy — ¢Jerp)] (S56)
and

Al IAal = ¢ ' [L+Detd gy + (Julr — Jeeln)] (S57)

We see that, by both measures, the overall restoring force tends to grow with increasing input «,
because i) mean responses grow too, and therefore so does the product term in Equation (S57),
and ii) 7; tends to grow larger than 7 (Figure S1E), so that the weighted difference terms
inside round brackets in both Equations (S56) and (S57) increase, at least for large enough a.
However, when ggJgg > g1Ji1, the difference term in Equation (S57) will initially grow negative
with increasing — but small — «, before it increases again for larger «. This means that at least
one of the eigenvalues will decrease. In such a case, whether or not both eigenvalues decrease
transiently depends on the behavior of the difference term in Equation (S56). The requirement
for this difference term to decrease initially is qgrJrg > grJir which is harder to satisfy especially
when inhibition is fast (¢ is small). Thus, we typically expect that one eigenvalue should decrease
(or, at least, its growth should be delayed) before growing again (Figure S2A).

As for the shear force, a similarly simple expression can be obtained in the case of real eigenvalues
by noting that the sum of squared eigenvalues in 2 x 2 matrix J is equal to (TrJ)? — 2DetJ.
This observation yields

wer| = \/IT |2 — (TrT)? + 2 DetJ
= ¢ ' (Jielr + qJe1yr) (S58)
i.e. the shear force is proportional to a weighted average of mean V;, responses in the E and 1

units, which, in the SSN, shows linear growth for small o and sublinear growth for larger « (cf.
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Section S2 and Figure S1D). Thus, we have a situation in which the force that boosts variability
grows faster initially than those that quench variability, causing a transient increase in total
variance for small increasing inputs. For large «, all forces (|Ag], |Ag| and wpr) grow as v/«
(Figure S2A), because J is dominated by its Japyp components and the y terms grow as Va
as seen in Section S2. Thus, the total variance in Equation (S55) should decay as 1/a in this
limit, consistent with what we concluded in Section S3.3.

When the eigenvalues of J turn complex-conjugate, Equations (S56) to (S58) above become
more complicated expressions, which nevertheless does not change the main insights.

S4 Analysis of the balanced ring network

S4.1 Reduced Schur decomposition

In this section we describe the mathematical details underlying Figure 5FE of the main text. As
we did above for the two-population model (Section S3.5), we want to gain some mechanistic
understanding of how the input modulates variability in the ring SSN, through an analysis of the
“forces” that the network dynamics impose on the flow of fluctuations, thereby affecting noise
variability. To study fluctuations, we begin by linearising the dynamics of the network around
the fixed point induced by the external input (we fix the motion direction 5 to 0° without loss
of generality). This leads to the same Equations (S18) and (S19) as above, where the effective
connectivity matrix W (¢) is now an N x N matrix that depends on the contrast variable ¢ (cf.
Equation (8) in the main text). Next, we seek a low-dimensional reduction of those linearized
dynamics: we write 6V (t) = Uy(t) for some y € R¥ and reduced orthonormal basis U € RV*¥
with K < N, and look for dynamics of the form

y = TSchury + UT?? (859)

where, for interpretability, Tgee € RE*E is constrained to be quasi-upper-triangular. The

covariance matrix 3 of §V is then approximated by ¥ a~ Ucov(y) UT, where cov(y) is ob-
tained from standard linear systems theory by solving a reduced-order Lyapunov equation (e.g.
Appendix A).

While methods exist that will perform the above model-order reduction to best approximate
the covariance of dV, here we instead want to approximate the high-dimensional flow — i.e.
approximate the Jacobian [J(c). A natural way of doing this would be to simply Schur-transform
the Jacobian J(c), and truncate the resulting Schur basis appropriately (e.g. look for the
columns of U for which the couplings in Tgepn,y are non-negligible). Complications arise from
the Schur decomposition not being unique: prior to orthogonalizing the eigenvectors of J(c), we
are free to order them in any of N! possible ways. This may undermine interpretability, because
although there might well exist an ordering that returns a very sparse matrix Tgchyr, leading to a
parsimonious description of the recurrent dynamics in terms of feedforward interactions between
a very small number of modes, we might never find such an ordering (e.g. a random ordering
typically leads to a dense matrix Tgchyr). Another complication relates to the fact that we
would like to “follow” those relevant Schur modes and their interactions as we vary the contrast
¢ (cf. Figure 5E, right), so we also require the ordering to lead to interpretable dynamics across
contrast levels. In some cases, there is a natural choice of ordering, e.g. by decreasing order of
the corresponding eigenvalue real parts, that may lead to a very sparse Schur triangle with a
nice interpretation (Murphy and Miller, 2009). Here, we found it very challenging to find good
exact Schur decompositions by hand, and we instead automatised the process of finding good
approximate Schur decompositions, as described below.

Here, we instead adopt the following approach. We capitalise on the fact that bump kinetics
capture most of the network fluctuations (cf. fitting procedure in Figure 5A-D; see also the PCA
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analysis in Figure S4A), so that we expect interactions between these three activity modes to
form the dominant part of the recurrent network interactions. Let Ny = Ny = M (we have one
excitatory and one inhibitory neuron at each of M = 50 sites on the ring) and let by, by and
b3 be the three modes of bump motion (defined in RM) corresponding to fluctuations in bump
location, width, and amplitude, respectively. We first orthonormalize these modes, which leaves
b; and by unaffected but results in slight negative flanks in bs (Figure S4B). We then constrain
our truncated Schur basis to be made of 3 pairs of sum-like and difference-like modes of the

form:
T T T T
a1(c)by 1 —a2(c)by as(c)bs 1 —a3(c)bs
1 1 1 3
U(e) = c RNx6
T T T T
1 —a2(c)by —ai(c)by 1 —a2(c)bs —as(c)bs
\ 3 3
(S60)

with a;(c) € [0 : 1] for ¢ € {1,2,3}. (Thus, with the notation introduced above, we have
K =6 < N.) By construction, these modes are orthonormal (UTU = I € R%*6). We then seek
a real quasi-Schur factor with the following structure:

A (c)
wi®(c)

wit(c)

A (o)
A3 (c)
w3 > (c)

w5 (c)

TSchur(C) = /\2— (C)

(S61)

A (c)
w3 > (c)

wi" (c)
Az (€)

where A?[ < 0 and all non-specified elements are set to zero. We then jointly optimise® both
the three a; parameters, and all the A and w parameters (15 parameters in total), to min-
imise |U(¢)T T (c)U(c) — Tsenur(c)||%. We do this separately for each contrast level, resulting in

parameters o, A;, wZF F and wZF B with a smooth dependence on the contrast ¢ (Figure S4C).

The green and orange arrows in Figure S5E (left) represent the flow induced by the negative
feedback interactions (given by )\;t in each plane) and that induced by the feedforward link
wi'F, respectively. While we included sum-to-difference feedback terms w2 mostly because the
real Schur decomposition requires them? and because it seemed to prevent the emergence of
degeneracies / local minima in the cost function, we found that they were eventually driven very
close to zero. We therefore set them to zero after optimization and in all subsequent analyses.
In Figure 5E (middle), green lines show the mean restoring force (A + \;)/2 in each plane,

while the orange lines show w!'™ in each plane.

We also checked that the truncation retained the key qualitative aspects of the covariance matrix
(Figure S4D). We also tried to fit the full upper-triangular part of Tschyr, but the extra allowed
interactions ended up not being used (a single, small feedforward weight from the “amplitude”
difference mode to the “width” sum mode was discovered, but it was much smaller than the
other feedforward interactions, and setting it to zero did not affect the resulting V}, covariance
matrix qualitatively).

8We use straightforward re-parameterisation to enforce the constraints 0 < o < 1, wi® < 0, and A?E <0, to
turn the problem into an unconstrained minimization problem that converges within a few tens of quasi-Newton
iterations (BFGS algorithm).

9When some eigenvalues of J(c) are complex-conjugate, the real Schur decomposition cannot yield an exactly
triangular matrix Tschur, which will have some 2 x 2 square matrices along its diagonal. Cf. footnote 6 above.
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S4.2 Comparison to a ring attractor model

We compared our ring SSN model to a version of the ring attractor model published in (Ponce-
Alvarez et al., 2013). The model was made of a single population with a similar ring topology,
and connectivity of the form

Wij =Jy+ % COS(QZ' — 9]) (862)

(which violates Dale’s law). The dynamics obeyed a similar Langevin equation as for the ring
SSN, namely

dv
Tm g, = —V(t)+Wg[V()]+h+n(t) (S63)
with a saturating firing rate nonlinearity g[-] applied pointwise to the elements of V,
0 if V<0
9vl= { Gmatanh (V/Vy) if V > 0 (864)

and a noise process 7 identical to the one we used in the SSN (same spatial and temporal corre-
lations), with a variance adjusted so as to obtain Fano factors of about 1.5 during spontaneous
activity (Figure S6B, black). The external input had both a DC and a contrast-dependent mod-
ulated component: h; = Iy + ¢(1 — € + ecos(0; — 65) where 05 is the stimulus direction and €
controls the depth of the modulation.

We used the following parameters: gmax = 100, Jo = —40/gmax, J2 = 33/Gmax, Lo = 2, € = 0.1,
and Vy = 10. Note that although the phenomenology and dynamical regime of this model was
consistent with that of Ponce-Alvarez et al. (2013) (Figure S6), the model differed in some of
the details: our dynamics were written in voltage form, not in rate form, we have only one unit
at each location on the ring (as opposed to small pools), and our input noise process has spatial
correlations to allow for a more direct and consistent comparison with the ring SSN.

Our analysis of variability in this ring attractor network is presented in Figure S6 in a format
identical to that of Figure 5 of the main text, and shows that shared variability is entirely
dominated by the fluctuations in the location of an otherwise very stable bump of activity.
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Appendices

A Derivation of the total variance in the 2-population model

In this section we derive the result of Equation (S23). We use the fact that the stationary
covariance matrix of a process governed by linear stochastic dynamics is given in algebraic form
by a Lyapunov equation. Specifically, when the spatial and temporal correlations in the noise
term 1 in Equation (S18) are separable, we can augment the state space with two noise units
and write their (linear) Langevin dynamics as

0 0
TEd< 5§>:<Aéh) %I><5:>dt+<o TE\/Z’B>d€ (S65)

where d€ is a unit-variance, spherical Wiener process, and B is the Cholesky factor of the desired
noise covariance matrix, that is, 3, = BBT (the m5./2/7, factor is such that this equality holds).

Then, from multivariate Ornstein-Uhlenbeck process theory (Gardiner, 1985), we know that the
covariance matrix of the compound process satisfies the following Lyapunov equation:

A I s A = A\(AT 0\ (0 0 <6
o =1 )\ ar s, )T{ar s, )\ 1 —z1 )=\ 0 2mBBr | (66

where ¥ is the covariance we are trying to compute. By vectorizing Equation (S66), neglecting
the bottom right quadrant (which by itself only confirms 3, = BBT as promised above), and
taking into account the symmetry, one ends up with a system of 7 coupled but linear equations
to solve for the 3 unknowns of ¥ and the 4 unknowns of A. This can be done by hand using
some patience, or automatically using a symbolic solver such as Mathematica, and yields the
expression in Equation (523).
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Figure S1: (related to Figure 1 of the main text) — Typical behavior of mean responses to
increasing inputs in the 2-population SSN. (A) Dimensionless recurrent weights {J,3}
for our 1000 randomly sampled networks; these are normalized such that the largest of the four
weights is one. Colors indicate the sign of Qg. (B) Distribution of feedforward weights gg and
g1, also normalized for each network so that their maximum be one. (C) Overall connection
strength ¢ (such that W, = ¥J,g) vs. Q. (D) Example responses (dimensionless voltages 7y,
and 7;) to increasing inputs (dimensionless «), for a network with Qg > 0 (top) and one with
Qg < 0 showing supersaturation (bottom). (E) Mean E firing rate 7y as a function of the mean
I firing rate 77, for a subset of networks; each point on these curves corresponds to a different
input level, increased from zero to a maximum value chosen such that 7; = 200 Hz.

19


https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/094334. this version posted December 14, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

A Qe > 0 (90%) B a of max. Vg variance a of max. V& variance
100 100
- 100 =
£ 10 T 10 10
= 1] 4 =
01 ¥ :
5 1 1
100 8
= 10 ] 0.1 0.1
- 1 ’ 0.1 1 10 100 0.1 1 10 100
0.1 true value true value
C a of max. Vg variance max. Vg variance
100 100 100
ﬁv 10 -
1 Il 10
0.1 g 10
=
N 100 s
= 10
< 1 0.1 : 1
01 0.1 1 10 100 1 10 100
’ with PEI = 0 with PEI = 0
— D E
< — 409 p=3 1 n=4 0
4+ N ] ] S
= L. 20 - 4
© | | exc.
° 0 o T ' a T J % 04
S 1 : 5 43
> I 1 5
E = 1\ \ 2
> =05 ’j \, —J\u 5 o
5 Ty Teen ] Pwmme
= o 0 y T J y T J ::; 7% T
~F 0 10 0 10 8 0.1 1 10 100
a input h [mV] input h [mV] a

Figure S2: (related to Figure 2 of the main text) — Robustness of variability modulation
to changes in network parameters. We examined the modulation of variability by external
input in the 1000 randomly parameterized, 2-population networks of Figure S1. (A) Behavior of
|wrr|, [As], [Adl, [|Alr, det(A) and the total variance (normalized to unit peak), as a function of
the (dimensionless) input .. The dashed green line is proportional to y/a. Only a random subset
of the thousand random networks are shown. Following the same convention as in Figure S1,
cases with g > 0 are shown in black, those with Qg < 0 in orange. (B) Scatter plot of the «
at which the E variance reaches its maximum (“true value”), and that given by the approximate
criterion of Equation (S40) (which assumes very fast inhibition, i.e. ¢ — 0), for uncorrelated
(left, pgr = 0) and fully correlated (right, pgr = 1) input noise term to the E and I units.
(C) Scatter plot of the input v at which the E variance peaks (left), as well as the value of the
variance peak (right), for pgr = 0 vs. pg1 = 1. (D) Mean E (red) and I (blue) firing rates (top)
and Vi, std. (bottom) for larger values of the power-law exponent n; parameters were otherwise
the same as in Figure 1 of the main text. (E) Orientation of the two Schur vectors for a subset of
the 1000 random networks. Their “sum-like” and “difference-like” nature emerges quite rapidly
for small v and then persists for larger «.
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Figure S3: (A) Example network showing transient increase in variability with increasing
external input h (black), without any substantial decrease in |Ag| (lower green). The dashed
black line shows the predicted variability (Equation (S55)) assuming wgr = 0 uniformly, i.e.
taking into account only the magnitude of the restoring forces Aq and As. The gray line is
the prediction made by assuming fully correlated input noise terms with variance g3 and g7
respectively for the E and I units. Variability in this case can be read off the slope of the V'
and V| curves (top), because input noise becomes equivalent to fluctuations in h to which the
network has time to respond. Neither of these two cases correctly predict the initial growth
of variability. (B) Mean firing rates (top), variances of firing rate fluctuations (middle) and
Fano factor (assuming Poisson spike emission on top of rate fluctuations), in the same network
as in (A). Note that the overall scale of super-Poisson variability (Fano factor minus one) is
arbitrary here, and in general depends on the counting window, autocorrelation time constants,
and the variance of the input noise. Parameters: 7, — 0o, gr = 0.77,g1 = 1, Jgg = 0.38, Jg1 =
0.27, Jig = 1, Jir = 0.6, = 2.37.

21


https://doi.org/10.1101/094334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/094334. this version posted December 14, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

A B E neurons | neurons C D
B 100 o 4 —
0] ) - wemmsas &
i ] L B
2 60 c=0 . 0ot 2 =
x .
g 20 PCs 0 1 | wf* c=20 0 ¢
>° 0 & 5 » o ' | 1 >
= f T 1 f T 1 -
12345678 -180 0 180 -180 0 180 0 10 20 full Schur
number o S input strength ¢ 'm COV. approx
ber of PC PD [°] PD [°] i h Vv, pp

Figure S4: Approximating balanced ring dynamics in a low-dimensional subspace.
(A) PCA analysis on spontaneous V, activity (¢ = 0, black) and high-contrast evoked activity
(c = 20, orange); shown here is the cumulative percentage of variance explained by an increasing
number of retained principal components. Our of 100 components, between 3 and 5 components
are enough to explain more than 90% of the V,, variance. (B) The top three PCs in evoked
activity (¢ = 20; solid lines) are almost identical to the 3 (orthonormalized) modes of joint
E/I bump kinetics (dashed lines). (C) Contrast dependence of the A and w!'F parameters, as
obtained from the optimization procedure described in the text, which aims at finding the most
accurate, low-dimensional approximation to the (contrast-dependent) Jacobians in Schur form.
(D) Full V,, covariance matrix 3 (left) compared with the covariance matrix 3 obtained from
the low-dimensional projection of the network dynamics as explained in the text (right), for
¢ =0 (top) and ¢ = 20 (bottom). Only the excitatory-excitatory part of the covariance matrices
are represented here, but the other 3 quadrants are equally well approximated.
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Figure S5: Variability reduction in the ring SSN model depends on spatial and
temporal correlations in the input noise. Dependence of the network-averaged Vi, std.
(A-B) and Fano factor (C-D) on either the temporal correlation time constant Tpeise in the
external input noise term (for fixed fnoise = 60°), or its spatial correlation length fypise (for
fixed Theise = 50 ms), in the spontaneous (¢ = 0, black) and high-contrast (¢ = 20, green)
input regimes. Red arrows indicate the nominal parameter values used in the main text. The
bottom row shows the amount of relative variability suppression, as a percentage of the mean
spontaneous variability.
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Figure S6: Activity variability in a ring attractor network (related to Figure 5 of the
main text). (A—C) Tuning of mean firing rates, Fano factors, and V;, std. in spontaneous
(¢ = 0, black) and evoked (¢ = 3, green) conditions. (D—F) Analogous to Figure 5D-F of the
main text, for the ring attractor network. The main contributor to activity variability in this
attractor network for strong stimulus is the sideways jittering of the activity bump.
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