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Diffusive models of free recall have been recently introduced in the memory literature, but their 
potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory 
is considered, in which the psychological state of the subject is encoded as the instantaneous posi-
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the dependence of free-recall observables on the semantic properties of the words to be recalled. 
Besides predicting some well-known experimental features (forward asymmetry, semantic cluster-
ing, word-length effect), a novel prediction is obtained on the relationship between the contiguity 
effect and the syllabic length of words; shorter words, by way of their wider semantic range, are 
predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall 
data allows to confirm this prediction. 
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Free-recall experiments are a key tool for the controlled investigation 

of episodic memory. A typical free-recall experiment takes place in 

two stages: During the “presentation stage”, subjects are shown a list 

of words; during the “memory test”, they are requested to recall them 

in any order. 

Some of the main effects reported are: 

1. Power-law scaling: The number of retrieved items scales like a 

power law of the number of items in the list (Murray, Pye, & Hockley, 

1976).

2. Primacy and recency effects: The first and last words in the list are 

recalled better than the rest (Murdock, 1962).

3. Contiguity effect: Items contiguous within the list tend to be re-

called contiguously (Kahana, 1996).

4. Forward asymmetry: The tendency to recall items in forward 

order (already reported in Ebbinghaus, 1913).

5. Semantic clustering: Semantically related words tend to be re-

called successively (Bousfield & Sedgewick, 1944).

6. The word-length effect: Lists of shorter words are recalled better 

than lists of longer words (Baddeley, Thomson, & Buchanan, 1975). 

The contiguity effect, the recency effect, and several other phenom-

ena, are now well understood by means of retrieved-context theories of 

episodic memory, such as the temporal context model of Howard and 

Kahana (2002). In these theories, the recovery of a memory is medi-

ated by the recovery of its “temporal context,” and temporal contexts 

are modeled through a matrix representation that undergoes a linear 

evolution in time.

While the effectiveness of these theories is undisputed, recently 

Romani, Pinkoviezky, Rubin, and Tsodyks (2013) have introduced 

a somewhat different approach to the modeling of free recall. After 

studying the process of memory retrieval on a mechanistic neural 

model, they introduced the idea of an “average graph” of attractors, 

and modeled free recall as diffusion on that graph (Romani et al., 2013, 

Appendix A2).

A “graph” is a mathematical object usually depicted as a set of dots 

(called nodes) joined by lines (called edges, see Figure 1, Panel A). In 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(3) • 201-213202

the approach of Romani et al. (2013), the psychological state corre-

sponding to each word is modeled as a node in a graph. The number N 

of nodes in the graph is thus the number of words in the list. 

Retrieval is effected by a diffusive particle moving over the graph. 

At each moment in time, the particle’s position is at one of the nodes in 

the graph, and the subject’s psychological state is encoded as the cur-

rent position of the particle. The particle moves from node to node by 

travelling along the available edges of the graph. If the currently occu-

pied node is an endpoint of multiple edges, one edge will be chosen at 

random amongst them, and will be travelled along by the particle (see 

Figure 1, Panel A). One says that the particle is diffusing over the graph, 

this type of motion being known as diffusion. 

For example, if there are three edges departing from the currently 

occupied node, each will have a 1/3 probability of being chosen, and 

each choice will lead the diffusive particle to move on to a different 

node. Whenever the particle moves on to a certain node, the word as-

sociated to that node is recalled. Diffusion is terminated when the path 

self-intersects.

Romani et al. (2013) introduced this theory as a toy version of their 

neural-network model, and used it to compute explicitly the power-

law scaling of retrieval. The calculation of this power law (as done in 

Romani et al., 2013, Appendix A2) assumes that the average graph over 

which diffusion takes place is complete—that is, every pair of distinct 

nodes is connected by an edge, as in Panel A of Figure 1 (for a simple 

introduction to graphs, see Frieze & Karonski, 2016). As a result, the 

power-law exponent is found to be ½, which is indeed close to experi-

mental values. 

This is a substantial result that may not have been as easy to ob-

tain through more conventional theories, and, as such, it encourages 

further exploration of graph methods in the study of free recall. This 

motivated the present paper. While the argument of Romani et al. 

(2013) is sufficient to extract the power-law exponent, it is far from 

providing a general understanding of free recall. In this paper, a more 

versatile graph-based theory is proposed, which proves able to provide 

an explanation for several known effects and to predict a new effect 

emerging from experimental data. 

I begin by introducing, in the next section, a more realistic family of 

graph models, allowing for both missing edges and multiple meanings, 

and I proceed to demonstrate that the resulting theory exhibits both 

semantic clustering and forward asymmetry. I then recall some well-

established results from linguistics concerning the correlation between 

meaning and word-length. Applying these to the diffusive-particle 

model yields a whole new prediction on the correlation between word-

length and the contiguity effect. This prediction is tested through an 

original analysis of archival free-recall data. I then show that the under-

lying mechanism can easily explain another well-known feature of free 

recall, the word-length effect. To conclude, I discuss the application of 

the diffusive-particle approach to some further aspects of free recall. 

A Semantic Graph With Random 
Edges

When a pair of semantically related words (e.g., pear and apple) is em-

bedded in the list to be recalled, the related words are often recalled 

contiguously. This tendency to successively recall semantically related 

words is known as semantic clustering (Bousfield & Sedgewick, 1944). 

The toy model that Romani et al. (2013) described is unable to re-

produce such an effect or any other phenomenon strictly dependent on 

semantics. This is no longer true, however, if we relax the assumption 

that the graph is complete—that is, if we remove some of the edges. The 

pairs of words linked by edges can then be interpreted as being seman-

tically connected; we may thus refer to the graph as a semantic graph. 

If the recall process is modeled in terms of diffusion on a seman-

tic graph, semantic clustering is inevitable; two nodes that are more 

closely connected are more likely to be visited successively by any dif-

fusive process. This holds true independently of the serial positions of 

the words whose meaning was found at the nodes.

A simple example of this is shown in Panel B of Figure 1. The red 

word is connected only to the green and brown words; by necessity, 

red will be recalled contiguously to green and/or to brown, even when 

those two words are located far from red within the list. 

Since missing edges are now being allowed, the question arises 

of which edges should be assumed to be missing, and which should 

survive. In principle, a cluster analysis of textual corpora may help with 

this estimate; for example, words that appear mostly at close distance 

from each other may be assumed to be semantically related and the 

corresponding nodes to be linked by an edge. The criteria for such 

an analysis, however, involve an inevitable degree of arbitrariness. 

Moreover, because semantic associations are built through individual 

experience, they vary from subject to subject over any population. 

Uncertainty and variability may both be taken into account by as-

suming the edges to be chosen probabilistically. The semantic graph 

is then a probabilistic graph with a fixed number (N) of nodes but a 

random choice of the edges. 

Figure 1.

Panel A: free recall as diffusion through a complete graph; 
the gray lines are the edges of the graph, the colored 
spots are the nodes, and a possible trajectory is shown as 
a sequence of black arrows. Panel B: free recall as diffusion 
through a noncomplete graph; the word depicted as a red 
node is now linked only to the green and brown words; as a 
consequence, red must be recalled contiguously with green 
or brown, whatever their serial position in the list (semantic 
clustering).
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In principle, this means that any graph with N nodes (including 

the complete graph) has some probability of being the semantic graph. 

Call P(G) the probability that a specific graph G is the semantic graph. 

The distribution P(G) encodes the probabilistic structure of semantics. 

The quantities we would like to predict (recall probabilities) can be 

computed by simulating trajectories on each possible graph G; results 

must then be averaged over all such graphs, and the averaging weighed 

with the factor P(G). 

Graph models of free recall may thus become helpful, among other 

things, as part of an endeavor to elucidate the semantic graph empiri-

cally. The connections between various semantic contexts are encoded 

in the distribution P(G). If we compute recall probabilities for various 

choices of the distribution P(G) and compare them with experimen-

tal values, the true structure of the semantic graph will emerge as the 

choice of P(G) that yields the best agreement with the data.

In this paper, I try out the simplest possible trial distribution P(G), 

which relies on no lexicographic knowledge and depends on a single 

parameter. This is done by assuming that all edges of the complete 

graph are kept or removed independently of each other, and each has a 

probability α of being removed. Otherwise said, the parameter α is the 

probability that any two nodes are not connected. 

If α = 0, the semantic graph is (with probability equal to 1) the 

complete graph; for arbitrary values of α the probability associated to a 

specific graph with n edges is found to be P (n) = (1− α)nα
N(N−1)

2
−n . 

Introducing Polysemy

Before computing measurable quantities—that is, recall probabilities, 

we must notice a second limitation to the model used in Romani et 

al. (2013). The “average attractor graph” considered therein represents 

every word in the vocabulary as a single node. Yet, fMRI measure-

ments have convincingly shown that the neural response to free-recall 

tests exhibits a strong statistical dependence on the semantic variability 

of words (Musz & Thompson-Schill, 2015).

In linguistics, the degree of dependence of a word’s meaning on 

context is called polysemy (Nerlich, Todd, Herman, & Clarke, 2003). Of 

course, since meaning is inevitably affected by context, no word is per-

fectly monosemic (i.e., having a single nuance of meaning); a word with 

comparatively little semantic variability is called oligosemic (Fernando, 

1996). To graft polysemy into the graph model, we must identify the 

nodes of the semantic graph with meanings (or semantic nuances) 

rather than with words, allowing each word to label multiple nodes. 

A word W will then have a degree of polysemy k(W), defined as the 

number of nodes corresponding to word W. In the simplest scenario, 

the degree of polysemy will have a constant value K, the same for all 

words (see Figure 2, Panel B). 

If the semantic graph is complete, each node will be linked to K − 1 

nodes corresponding to the same word, and to K nodes corresponding 

to every other word in the vocabulary. If the semantic graph is random 

and its probability distribution characterized by a disconnectedness 

parameter α, a node corresponding to any given word will be linked on 

average to (1 − α)K nodes corresponding to every other word, as well 

as (1 − α)×(K − 1) same-word nodes. 

Given that each word corresponds to multiple nodes, a question 

arises concerning the retrieval process. Will a word be recalled when 

the diffusive particle touches any of the nodes corresponding to it? Or 

will each memory be encoded in a given node?

The literature on context-retrieved theories strongly suggests that 

the latter option holds true. Indeed, it has been proven that memories 

are anchored to the contextual region where they have been created 

during the presentation of the list (Howard & Kahana, 2002). Hence, 

if a word has multiple meanings, its recall will require retrieving the 

specific meaning that was attributed to that word during presentation. 

In order to know which node corresponds to a given memory, we 

need to formalize the dynamics during presentation, which can be 

simply modeled as another diffusive process on the semantic graph. 

At every instant during the presentation stage, the diffusive particle lies 

on a definite node of the graph; once a word is presented, the particle 

diffuses until it recognizes that word—that is, until it stumbles on one 

of the nodes corresponding to it. 

This process has an interpretive function: The system interprets 

each word through the meaning of that word on which the diffusing 

particle stumbles first, and that particular node becomes the location 

of the memory corresponding to the word. 

Notice that, however, this recognition may never occur, as the graph 

has a finite probability of being composed of several noncommunicat-

ing subgraphs; if there is no path leading from the current position of 

the particle to any of the word’s nodes, the particle is allowed to jump 

on to a node randomly chosen amongst them.

This interpretive process takes place for each word in succession: 

once a word has been interpreted, the next word in the list is presented, 

and the diffusion goes on. Thus, memories are created.

Figure 2.

Panel A: diffusion through a noncomplete graph; some of 
the edges are missing—that is, some pairs of nodes are not 
directly connected, and the particle can only travel along 
the available edges. Panel B: diffusion on a noncomplete 
graph with the inclusion of polysemy; in this particular ex-
ample, each word has two semantic nuances, or meanings, 
represented by as many nodes. Nodes of the same color 
represent different meanings of the same word; edges 
(i.e., available connections between meanings) are again 
shown.

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(3) • 201-213204

The model includes, therefore, two diffusive trajectories—one ef-

fecting the interpretation of words and one effecting their retrieval (see 

Figure 3). These two trajectories are meant to model processes rooted 

in different cognitive abilities, so it would be more correct to speak 

of two different particles, one employed for interpretation and one for 

retrieval. 

In practice, we must only be cognizant that the two diffusive tra-

jectories may develop over different time scales. The model itself is of 

course too abstract to provide an independent estimate of the two time 

scales. 

Forward Asymmetry

Let us call any sequence of two consecutively recalled words transition. 

Obviously, neither the first word retrieved in the recall stage nor an in-

trusive word or a word recalled after an intrusion is retrieved as part of 

a transition. We will call the difference between the serial positions of 

two words in a given transition lag; for example, if the fifth word in the 

list is recalled right after the eighth, the corresponding lag is L = −3.

In addition, let us call p(L) the lag probability distribution—that is, 

the probability that an arbitrary transition will have a lag L. Forward 

asymmetry is the empirical fact that 
�

L>0

p(L) >
�

L<0

p(L)—that is, lags are 

more often positive than negative, meaning that forward transitions 

are preferred; as we will see, this fact is due almost entirely to the con-

tribution from contiguous transitions (L = ± 1).

To compute p(L), we proceed to simulate the diffusive-particle 

model. All simulations presented in this paper consist of the following 

steps:

1. A function N(κ) is defined, describing the number of words 

with polysemy κ in the vocabulary; hence, the vocabulary has size 
NV =

�

κ

N(κ)  and the graph contains NG =
�

κ

κN(κ)  nodes.

2. The semantic graph for a given subject is created by picking a ma-

trix NG × NG whose elements are 0 with probability α (corresponding 

to two unconnected nodes) and 1 with probability 1 − α corresponding 

to connected nodes).

3. A list of words to be recalled is generated by picking a random 

permutation of the vocabulary (i.e., a permutation of the first NV in-

tegers).

4. Submission/interpretation of words in the list is simulated as dif-

fusion through the semantic graph; whenever a node corresponding 

to the currently submitted word is met, a memory is recorded at that 

node, and the next word is presented.

5. The retrieval of memories is simulated as a second diffusion 

process starting from a random node; each memory met along the 

way is recorded as a new recall event, and the trajectory ends when it 

self-intersects.

6. Steps 3-5 are repeated a sufficient number of times to ensure the 

convergence of recall probabilities; this amounts to presenting multiple 

lists to a given subject. 

7. Steps 2-6 are repeated on a large number of subjects—that is, for 

many different semantic graphs. 

The dataset thus generated has the structure of realistic free-recall 

data; in particular, the number n(L) of recall events with lag L can be 

divided by the total number of transition events to yield an estimate of 

the lag probability p(L). 

The results in Panel A of Figure 4 refer to graphs with N(κ) = N 

δK,κ (a Kröneger delta)—that is, all N words have the same degree of 

polysemy K. Thus simplified, the theory depends on only three param-

eters: the vocabulary size N, the polysemy level K, and the semantic 

disconnectedness α. 

In the figure, the frequency of transitions has been plotted for vari-

ous choices of these three parameters. As we are not considering rep-

etitions, by construction, the curve vanishes at L = 0. The main features 

of the curve, as can be seen, are analogous for various combinations of 

Figure 3.

Diffusive-particle model of a free-recall experiment. Panel 
A: a semantic graph, shown with a specific choice of its 
edge structure among the many such structures over 
which final results must be averaged; meanings corre-
sponding to the same word are shown in the same color; 
the current position of the particle is indicated by a black 
dot. Panel B: presentation stage; each time a new word 
is presented, the particle keeps diffusing until it lands on 
any of the meanings described by that word; the resulting 
trajectory is shown as a sequence of arrows. Panel C: The 
nodes where meaning has been found during presenta-
tion have become transient memories (circled nodes); in 
the interval between presentation and memory test, the 
diffusive particle’s position is reset to a random point indi-
cated by the black dot. Panel D: During the memory test, 
a new diffusive process takes place, similar to the one de-
scribed in Romani et al. (2013). The diffusive particle has 
to locate the circled nodes for the corresponding words to 
be recalled.
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Word Length and Polysemy

In the previous section, we simulated the model under the assumption 

that all words have the same degree K of polysemy—that is, the same 

number of semantic nuances. This is not the case in real-life experi-

ments, and we may wonder how the recall probability of a word varies 

as a function of the word’s degree of polysemy.

Polysemy is unfortunately a somewhat elusive variable, subtle to 

measure (Nerlich et al., 2003). Consider for instance the two words lion 

and lioness (a classic example); does the meaning of lioness vary with 

context? Surely less than the meaning of lion, because, aside from finer 

distinctions, the word lion has at least two potential meanings (a male 

lion, or a lion of unspecified gender) while lioness has, by comparison, 

just one (a female lion). Nonetheless, a typical dictionary may only 

mention gender in connection with lioness and not provide distinct 

definitions for the two meanings of the word lion.

Linguists have been studying this type of problem in depth for 

decades (Greenberg, 1966; Pomorska & Rudy, 1987). One of their most 

useful conclusions is that the syllabic length of words may be employed 

as a reliable, and easily measurable, statistical indicator for oligosemy. 

Said otherwise, longer words have proven to be robustly less polysemic 

than shorter ones, and (as in Rensinghoff & Nemcová, 2010) a Waring 

distribution seems to fit this dependence best. For numerical details on 

the correlation, see the statistical studies in the literature, in particular 

Zipf (1949), Guiter (1974), Sambor (1984), and Rothe (1994).

Hereinafter, by word-length I will always mean the number of syl-

lables in a word. In the experiments of Lohnas et al. (2015), whose data 

I employed above, word lists were assembled from a pool consisting 

of 1,638 words with up to six syllables. However, only four 5-syllable 

words were present, and a single 6-syllable word (encyclopedia); hence, 

the statistics for these two lengths may not be representative.

An interesting feature that emerges from these data concerns the 

sequential peak of the lag probability distribution (the forward con-

tiguous transition frequency). Suppose that the distribution is com-

puted only over transitions to words of syllabic length M, so that it can 

be written as pM(L). It appears that the height of the sequential peak, 

parameter values. There are two maxima at L = ± 1, and the transition 

probability is a decreasing function of |L|, the absolute value of the lag.

Moreover, the curve is not symmetric around L = 0: The forward 

branch sums up to a larger cumulative, although it lies higher up only 

insofar as the peak at L = 1 is concerned. I will refer to this peak as 

the sequential peak, and to forward contiguous transitions as sequential 

transitions. The sequential peak is always considerably higher than the 

backward contiguous peak—a phenomenon widely documented in 

experiments (see Kahana, 2012).

To provide an example of how these features emerge in empirical 

results, Panel B of Figure 3 displays the curve of transition frequen-

cies for archival data from Penn Electrophysiology of Encoding and 

Retrieval Study (PEERS), a large study conducted at the University 

of Pennsylvania. The data are those described in Lohnas, Polyn, and 

Kahana (2015), summing up to a total of 7,360 free-recall trials on 92 

subjects, all performed with lists of 16 words. Participants consented 

according to the University of Pennsylvania’s institutional review 

board (IRB) protocol and were compensated for their participation. 

Intrusions have been discarded from these data, and no availability 

correction has been introduced; repetitions, which are comparatively 

rare, have been counted in under the lag L = 0. 

In the dataset corresponding to each subject, transition events with 

the same lag have been grouped, counted, and normalized by the total 

number of transition events to yield the subject’s curve of transition 

frequencies. The averages of these curves over all subjects and the SDs 

of the corresponding distributions are shown respectively as the solid 

curve and the error bars of Panel B of Figure 4.

The empirical curve thus obtained and the curves obtained from 

simulations are not identical. Nonetheless, the features we have outlined 

above are prominent in both. In particular, the difference between the 

backward and the forward branch of the curve is concentrated in both 

cases at contiguous transitions, and the maximum at L = 1 is always the 

global maximum of the distribution. This is a substantial feature non-

trivially displayed by the model, and the mechanism behind it should 

become clearer in the next two sections. 

Figure 4.

Panel A: results of simulations of the diffusive-particle model for three choices of the vocabulary size N and polysemy K (see 
legend) and for α =1–1/K. Lists presented to the model were permutations of the whole vocabulary. The y-axis shows transition 
frequencies, the x-axis - the serial-position lag normalized by the size of the lists. Panel B: transition frequency as a function of 
lag, as computed from Penn Electrophysiology of Encoding and Retrieval Study (PEERS) data.

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(3) • 201-213206

pM(+1), exhibits a nontrivial dependence on the length M of the word 

recalled—that is, the probability of sequential recall varies significantly 

over words of different lengths. 

To estimate the value of the probability pM(+1), we must extract the 

relative frequency of sequential transitions from the data. This may be 

done at least in two separate ways, through a word-by-word statistics 

or through a subject-by-subject statistics. The results from both ap-

proaches are shown in Figure 5.

Panel A of Figure 5 shows results obtained by regarding every tran-

sition (from one recall to the next) as an independent event. Let us 

call n(S, W, L) the number of observed transitions to word W with lag 

L in trials on subject S. The number of transitions in the dataset hav-

ing a given word W as their word of arrival isN(W ) =
�

S

�

L

n(S,W,L) . 

Amongst them, C(W ) =
�

S

n(S,W, 1)  are sequential—that is, have lag 

L = +1. The y-coordinate of each blue dot in Panel A of Figure 5 is 

the ratio R(W ) =
C(W )

N(W )
 computed for a particular word—that is, the 

frequency with which the word is recalled sequentially. 

The histogram of this quantity over all words with the same length 

has been plotted vertically for each number of syllables (black curves); 

red circles show the arithmetic means of these values over all words 

with M syllables: m1(M) =
1

|V (M)|

�

W∈V (M)

R(W ) , where V(M) is the set of all 

words with M syllables used in the database and |V(M)| their number. 

The widths of the histograms serve as error bars to these mean values. 

The trend of the resulting curve is decreasing. Extracting the corre-

lation coefficient yields r = −.12, with a negligible p value p < 10−5. This 

signifies that the longer a word, the smaller its chance of being recalled 

through a forward contiguous transition. 

While this is an intriguing result, it relies on the assumption that all 

transition events could be treated independently. On the other hand, 

transition events within the same trial are statistically correlated, and 

the same may be true for transition events within different trials per-

formed on the same subject. 

In Panel B of Figure 5, a different analysis is displayed. Instead of 

computing the recall statistics for each individual word, we character-

ize every transition event solely by the length of the word of arrival. 

Information on the particular word involved is ignored—that is, as-

sumed to be averaged out.

For each subject S, let N(S, M), be the number of transitions whose 

word-length of arrival is M (transitions to a word with M syllables); ex-

plicitly, we have N(S,M) =
�

L

�

W∈V (M)

n(S,W,L). Call C(S, M) the number of 

sequential transitions among them—that is, C(S,M) =
�

W∈V (M)

n(S,W, 1)  . 

The ratio R(S,M) =
C(S,M)

N(S,M)
 has been computed for each individual sub-

ject, and its values are shown as the y-coordinates of the blue points in 

Panel B of Figure 5. 

Again, histograms of these quantities are shown in black. The mean 

values m2(M) =
1

NS

�

S

R(S,M)  (where NS is the number of subjects) are 

shown as red circles; the widths of the histograms serve as error bars 

to the means. 

Notice that if the normalization factors depend-

ed solely on word length—that is, in the case where �

L

n(S,W,L) = n(M)  for all S and all W ∈ V (M), we would have 
m1(M) = m2(M) =

1

|V (M)|NS

�

W∈V (M)

�

S

n(S,W, 1)

n(M)
 for all M. This is the 

case, in particular, if the samples are identical over all subjects and over 

all words of the same length, which is of course not true in any real-

istic dataset. Nonetheless, the mean values we have obtained from the 

subject-by-subject statistics (see Figure 5, Panel B) appear to be fairly 

close to those obtained in the word-by-word statistics. 

Figure 5.

Panel A: probability that a word, if recalled, will be recalled sequentially, computed from Penn Electrophysiology of Encoding 
and Retrieval Study (PEERS) data by regarding all recall events as independent. Each blue dot corresponds to a different word; 
for example, the high-lying one-syllable outlier is the word belt. The black curves are histograms of these probabilities over all 
words of a given length, as indicated on the x-axis; the red circles indicate their means, and the widths of the histograms serve 
as error bars. Panel B: probability that an individual subject will recall a word of a given length sequentially, obtained from PEERS 
data by regarding all words of the same length as equivalent. Each blue dot corresponds to a different subject; points overlap-
ping at zero have been jittered for display; histograms over all words of the same length are shown as black curves, their means 
as red circles.
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needs to follow criteria modeled on the experimental free-recall para-

digm. In experiments, words are presented to subjects outside of any 

syntactic context, therefore, we must count together the definitions of 

a given word as any part of speech (e.g., both as a noun and as a verb). 

In PEERS experiments, words were shown visually, hence homographs 

with different pronunciations must be counted as one word. Moreover, 

because words were shown in upper-case, we must count homographs 

as one word also when they differ through capitalization (e.g., China 

and china). Finally, abbreviations and definitions corresponding to 

idiomatic usage have only been included if they were numbered sepa-

rately within the source dictionary.

In Panel A of Figure 6, the histogram of definition counts is shown 

for PEERS words of each given length. Since longer words are rarer in 

the PEERS word-pool, the size of the histogram bins has been adjusted 

to the varying size of the sample. Medians are shown as vertical red 

lines. It can be seen that the histogram of definitions moves toward 

fewer definitions as word-length increases. The correlation coefficient 

between word-length and the definition count is found to be r = −.43, 

with a p value p < 10−4. 

Panel B of Figure 6 shows a scatter plot of the sequential recall 

probability versus the definition count. Each blue dot corresponds to 

a different word, while the least-square line is shown in red. The cor-

relation coefficient is found to be r = .16 (p < 10−4), of the same order of 

magnitude as the correlation coefficient obtained for word lengths, and 

indeed larger in magnitude. 

This supports the notion that polysemy may be playing an impor-

tant role in the phenomenon we have singled out. As will be shown in 

the next section, the diffusive-particle model provides a particularly 

simple explanation for this possibility.

Moreover, we find once again that the mean probabilities for se-

quential transitions are monotonously decreasing as functions of word 

length. As for the correlation coefficient, it is also close to the value 

found above, r = −.11. The p value is higher, but still low enough to en-

able our correlation hypothesis (p = .01). All this provides substantial 

evidence that sequential transitions (with lag L = +1) are indeed more 

favored for shorter words. 

We should also report that no significant correlation between 

transition probabilities and word-length has been found for transitions 

with lags other than L = +1. For example, suppose that the foregoing 

analysis is repeated for backward contiguous transitions, and that the 

dependence of pM(−1) on the word-length M is estimated from the data 

in an identical way—that is, by simply replacing n(S, W, 1) with n(S, 

W, −1) in the formulas. A p value of the order of p ~ .2 is thus obtained 

both from the word-by-word and from the subject-by-subject statis-

tics—too high for any correlation to be considered relevant. We must 

conclude that the effect we are describing arises from mechanisms that 

concern exclusively sequential transitions. 

To ascertain whether the effect is related to length per se or to 

polysemy, an independent measure of a word’s polysemy would be 

helpful. As we argued above, measuring polysemy is an elusive task 

and counting the definitions of a word in a standard dictionary does 

not yield a measurement of its full semantic variability. Nonetheless, it 

can be interesting to compute correlations between a naïve definition 

count and the free-recall effect I have just reported. 

Figure 6 shows results from the analysis of items from the PEERS 

wordpool within an up-to-date dictionary of contemporary American 

English (Dictionary.com, 2017) in which the definitions correspond-

ing to each word are systematically numbered. The counting procedure 

Figure 6.

Panel A: histograms of the definition count in a contemporary dictionary (Dictionary.com, 2017) for words belonging to the 
Penn Electrophysiology of Encoding and Retrieval Study (PEERS) pool. Details of the counting procedure are provided in the 
main text. Each histogram refers to words containing the same number of syllables M; the size of the histogram bins has been 
adjusted to the varying size of each sample; medians are shown as vertical red lines. Panel B: scatter plot of the sequential recall 
probability in PEERS data versus the definition count. Each blue circle refers to a different word; the least-square line is shown in 
red; the correlation coefficient is r = .16 (p < 10−4 ).
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Interpretive Clustering

We must now consider the semantic graph in the case where the 

polysemy k(W) of word W varies over different words—that is, each 

word W has a different number k(W) of semantic nuances (which, as 

we have seen, will be more numerous if the word is shorter).

The quantity we need to calculate is the lag probability distribution 

pk(L)—that is, the conditional probability that a word with k semantic 

nuances, if recalled, will be recalled through a transition with lag L. 

If the effect we observed in the experimental data is indeed due to 

polysemy, we should expect the sequential transition probability pk(1) 

to be enhanced for more polysemic words. Moreover, because of the 

normalization constraint pk(1) +
�

L �=1

pk(L) = 1 , this entails that the 

probability pk(L) for any L ≠ 1 should be suppressed, on average, with 

more polysemic words.

Figure 7 shows the results of simulations on a semantic graph with 

disconnectedness parameter α = .9. The lists presented to the system 

were permutations of the whole vocabulary. The conditional probabil-

ity pW(L) that a word W, if recalled, will be recalled with a lag L, has 

been averaged over all words with the same degree of polysemy k(W) 

and the means are displayed as bar plots of different colors. 

Panels A, B, and C of Figure 7 refer to results for a vocabulary of 

2N words, of which N are monosemic (i.e., have one meaning) and the 

remaining N words are disemic (i.e., have two meanings). The values 

of N are respectively 2, 3, and 4, as shown over the plots, and all three 

yield qualitatively identical plots.

The most conspicuous feature of these plots is the sequential peak 

exhibited by the disemic word as opposed to the monosemic one. The 

sequential recall probability pk(L = 1) is a sharply increasing function 

of polysemy (hence, a decreasing function of word length, as we found 

in the data). Yet, the lag probability distribution for each word-type is 

normalized, so this gap should be made up for by nonsequential tran-

sitions. Indeed, we observe that nonsequential transitions are slightly 

more frequent for the monosemic words than for the disemic ones, the 

difference at L = 1 being redistributed over all nonsequential values of 

the lag. 

We may ask now whether the correlation between sequentiality 

and polysemy holds also for words with more than two meanings. 

Simulations show that this is the case: Panel D of Figure 7 displays re-

sults of simulations for a vocabulary of five words, one for each degree 

of polysemy between k = 1 and k = 5.

The overall picture that emerges is a straightforward extension of 

what has been found in the case of only two word-types: Again, the 

sequential probability pk(1) is a sharply increasing function of a word’s 

degree of polysemy k; again, all other values of pk(L) are faintly decreas-

ing functions of polysemy.

Figure 7.

Lag probability distribution p(L) from simulations where the lists presented for recall are permutations of the vocabulary. The se-
mantic graphs have disconnectedness α = .9. Different bar colors refer to different degrees of polysemy k, shown in the legends. 
Panels A, B, and C: results for a vocabulary of 2N words of which N are monosemic (i.e., have one meaning) and N are disemic 
(two meanings); the values of N are shown over the plots. Panel D: results for a five-word vocabulary in which each word has a 
different degree of polysemy (from k = 1 to k = 5).
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We conclude that the positive correlation between sequential recall 

and polysemy is a feature robustly displayed by this model. The more 

meanings a word has, the more easily it is recalled in the order in which 

it was presented. The remaining question is why this happens—that is, 

what is the ubiquitous mechanism at the root of this relationship. 

To answer this question, we recall that, by introducing a degree of 

disconnectedness in the semantic graph, we have endowed it with a 

nontrivial geometry, in which some meanings are closer to each other 

while others lie further apart. A possible way to measure the distance 

between any two nodes on a graph is, for instance, by the length of the 

shortest path connecting them or by the time it takes to diffuse from 

one to the other. 

It is in this spirit that one should regard Figure 8, where the dis-

tance between any two nodes represents the distance between them 

(i.e., length of the shortest path or time for first passage) within a wider 

semantic graph. Of the graph, only a few nodes are shown – those cor-

responding to three words (red, green, and blue). 

Green and blue are monosemic words; red is monosemic in the 

semantic graph of Panels A, B, and C of Figure 8, and polysemic in the 

semantic graph of Panels D, E, and F (having two meanings). The ar-

rays of colored squares over the drawings in Panels B and C and E and 

F represent lists of words presented to the system for a free-recall trial. 

In Panels B and C of Figure 8, since all words are monosemic, mem-

ories of each word can only be created at a fixed node, and a different 

order of presentation does not generate different memories. Hence, red 

has the same probability of being recalled after green or after blue. 

In Panels E and F of Figure 8, on the contrary, the memory created 

by presenting the word red tends to lie close to the memory created by 

the word that precedes it. This happens because red is polysemic, so 

the system can choose a meaning for it. If the graph is not too discon-

nected, the diffusive process that interprets words is continuous (jumps 

being rare), so a meaning close to the current position of the particle 

will be more likely to be hit first.

In Panel E of Figure 8, therefore, red is more likely to be recalled 

after blue than after green, while in Panel F, red is more likely to be 

recalled after green than after blue. In both cases, red is most likely to 

be recalled right after the word that precedes it in the list. Thus, the 

polysemy of red makes it more likely to be recalled sequentially.

We will refer to this phenomenon as interpretive clustering: Among 

the multiple meanings of an input, the cognitive system selects the one 

that fits best the content of the ongoing discourse. The more polysemic 

a word, the more numerous the meanings the system can choose from; 

hence, the more likely it is to find a meaning close by. This will logi-

cally translate, during the test stage, into an enhanced probability for 

sequential recall. 

Discussion: Chronological  
Storage

It is well-known in the literature (Farrell, 2012) that a word-list 

presented for a free-recall test is effectively divided by the memory-

storage process into sequential chunks, sections that tend to be recalled 

in sequential order. These chunks and their optimal length have been 

subjected to extensive studies (see, e.g., Cowan, 2001). 

Indeed, if the peak at p(L = +1) is large for a series of consecutive 

words, these are likely to be recalled in the order in which they were 

presented. With high probability, the peak will guide the recall process 

through a full sequential chunk, and the last word of the chunk will 

be the first after which the peak is suppressed; at that point, the recall 

process becomes more fully associative, that is, free association decides 

which chunk will be recalled next. 

The probability value p(+1) approaches unity only for rare subjects 

(Healey, Crutchley, & Kahana, 2014); the peak value is, on average, of 

the order of .3 (see Figure 4). Hence, even where information has been 

stored the most sequentially, the retrieval process has a finite probabil-

ity of occurring in nonchronological orders.

The sequential peak, nonetheless, is regularly the global maximum 

of the probability distribution p(L), and this fact makes it possible to 

retrieve the chronology of events with arbitrary accuracy, as one can 

easily argue in terms of diffusion. 

If the chronological ordering is the most probable, a diffusive proc-

ess has indeed a particularly simple way of singling it out with arbitrary 

accuracy; it is sufficient to re-explore the same contextual area a large 

number of times and to choose the ordering of memories that has been 

experienced most often during this re-exploration. The more strictly 

sequential the memory storage is (i.e., the larger the p[+1]), the less 

time it will take to perform the iterative sampling needed to establish a 

chronology with arbitrary accuracy.

It may then be conjectured that the value of p(1) is optimized to 

compromise between two conflicting goals: (a) to allow for a fast-

enough iterative sampling—as described—and (b) to keep the memo-

ries available nonetheless for use by free association.

Figure 8.

Nodes corresponding to three words (red, green, and blue) 
within a denser semantic graph; distances on the page are 
meant to represent roughly shortest-path distances within 
the graph. Green and blue are monosemic words; red is 
monosemic in the semantic graph of panels A, B, and C, pol-
ysemic in the semantic graph of panels D, E, and F, with two 
meanings. The arrays of colored squares over Panels B and 
C and E and F represent word-lists presented to the system. 
Dotted arrows depict diffusive motion through the seman-
tic graph during presentation.
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If the sequential peak is too low, the number of iterations needed 

to find the most probable ordering will become large, and the iterative 

sampling procedure slow; it may be impractical to devote more than a 

fraction of a second to ordering any sequence of past events.

If, on the contrary, the sequential peak is too high, associative 

retrieval of a given memory will be blocked, as follows from the nor-

malization of probabilities; if we can only arrive at a memory from its 

chronological precedent, it cannot be accessed other than chronologi-

cally. It is, consequently, not available for associative tasks and becomes 

useless for most cognitive purposes.

Thus, sequentiality and retrievability are in conflict and a trade-off 

between the two requirements may be necessary. A memory must stay 

available for associative reasoning, and yet its chronology needs to be 

trackable through iterative sampling. From these two constraints, the 

optimal value of the p(+1) may be determined. 

This optimization process can further depend on the particular 

memory involved. In other words, what has been referred to as chunk-

ing may be a process based partly on a distinction between memories 

that need chronological storage and memories that do not. 

The suggestion of this paper is that polysemy may be one of the 

criteria for this distinction. As long as words with adaptable meanings 

are being presented, the system may keep grafting them easily into 

the ongoing semantic chunk. But when a word with a highly specific 

meaning appears, there are few chances that the current discourse may 

accommodate it logically. Hence, a rift in the storage process may have 

to be introduced—and a new chunk will begin. 

This may be conceptually understood as implementing a principle 

of least effort (Zipf, 1949). Polysemy compels the receiver of any verbal 

input to choose one of many possible understandings, and that can 

only be done on the basis of the chronology of events. Chronology is, 

therefore, a functional part of polysemic communication. This is not 

the case where the words being used are oligosemic; memorizing a 

chronology is arguably much less useful when it does not play a role in 

determining the meaning of the events. 

Word-Length Effect

The empirical fact that lists of shorter words are easier to recall (word-

length effect) is one of the early findings in the history of free recall 

(Baddeley et al., 1975). Theories of this effect may be classified as being 

either item-based or list-based—that is, they impute the effect either to 

an individual property of words or to a global property of a list.

Recently, item-based theories have been cast doubt upon by novel 

experiments; in particular, it appears that in experiments with mixed 

lists (composed of words of various lengths), the shorter words are 

not always easier to recall (Hulme, Suprenant, Bireta, Stuart, & Neath, 

2004; Katkov, Romani, & Tsodyks, 2014; Xu & Li, 2009). This suggests 

that the word-length effect in pure lists may exist not because shorter 

words are more distinctive, but in spite of the fact that they are not, 

strongly pointing toward a list-based explanation for the effect. 

In list-based theories, however, the global property on which the 

effect is made to depend is most frequently the total duration of the list 

(Baddeley, 2007). But this explanation has been repeatedly called into 

question. Neath, Bireta and Suprenant (2003) have shown that with 

words having the same number of syllables but different pronunciation 

times, no unambiguous word-length effect arises. This suggests that 

the effect may depend on the number of syllables and not on the time 

it takes to pronounce them (Campoy, 2008). A review of the debate 

can be found in Jalbert, Neath, Bireta, and Surprenant (2011), where it 

is argued that “the word-length effect may be better explained by the 

differences in linguistic and lexical properties of short and long words 

rather than by length per se” (p. 338). 

Could this elusive linguistic property be just polysemy? This hy-

pothesis seems to not have been explored yet, and the diffusive-particle 

model may help to test it. To do so, I have simulated the model by 

presenting lists that contain words with a fixed degree of a polysemy, 

while keeping the semantic-graph structure unchanged. The results are 

shown in Figure 9. 

 For all choice of the graph-structure parameters, the relationship 

between recall probability and the degree of polysemy of the word list 

is monotonously increasing. The more polysemic the words in the list, 

the easier each will be to recall. Rephrased in terms of word-length, 

this is nothing but the word-length effect, as exhibited by the diffusive-

particle model.

The reason for the word-length effect, within this model, is indeed 

a global or list-based mechanism: the fact that lists of shorter words, 

being more polysemic, produce a higher degree of interpretive cluster-

ing. 

When a word has a higher degree of polysemy, it takes a smaller 

distance to reach one of its meanings from anywhere within the se-

mantic graph. In other words, a diffusive particle will need to move less 

Figure 9.

Mean recall probability in the diffusive-particle model. The 
semantic graph employed for the simulations contains a 
vocabulary of 10 words, two for each degree of polysemy 
between k = 1 and k = 5, while the edges are distributed 
with a disconnectedness α = .7. The word-length effect was 
checked by simulating presentation of a large number of 
pure lists–that is, lists consisting entirely of words with the 
same degree of polysemy k. The recall probability was aver-
aged over all trials with the same value of k and the results 
plotted as a function of k. The three curves refer to lists of 
three different sizes, shown in the legend.
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far if it has to interpret shorter words. For shorter words, therefore, the 

semantic region within which memories are formed will be narrower 

and a smaller region will have to be explored during retrieval; thus, 

recall will be facilitated.

This is shown in Figure 10, where, again, distances on the page are 

meant to represent shortest-path distances in a denser semantic graph 

of which only a few nodes are shown. The nodes being shown refer to 

both some highly polysemic words (in shades of blue) and some highly 

oligosemic ones (in shades of red). 

Panel A of Figure 10 shows the diffusive trajectory of the particle 

during the presentation of a list of polysemic words; Panel B - during 

the presentation of a list of oligosemic words. In the latter case, the 

desired meanings are less readily available, so longer distances have to 

be travelled and the memories will afterwards have to be sought over a 

larger area of the graph. 

This is evidently not just an item-based effect. A comparatively long 

word, by causing a longer shift in the presentation trajectory, distances 

all the memories that will be created afterwards from the ones created 

before. Moving from memory to memory during the retrieval stage 

becomes, in principle, harder over the full scale of the list size. 

Other Free-Recall Effects

While we have shown that the model accounts satisfactorily for several 

free-recall effects, these are but a fraction of the wealth of phenomena 

studied over the last decades in the free-recall literature. Let us mention 

briefly some of them:

1. Power-Law scaling: This was demonstrated to emerge from a 

limiting case of the present model (for α = 0) in Romani et al. (2013). 

By continuity, the effect is also bound to emerge for sufficiently small 

values of α. The exponent found for α = 0 (γ[0] = ½) is somewhat larger 

than the experimentally measured value (Murray et al., 1976; Standing, 

1973). The exponent for finite α can differ, of course, from the value 

computed in Romani et al. (2013) and will deserve further study.

2. Recency effect: If the interval between presentation and memory 

test is short enough, the initial position of the test-stage diffusion will 

be correlated to the point of arrival of the presentation-stage diffusion. 

Instead of choosing the initial position of retrieval at random (as done 

above), it may be realistic to choose it in the neighborhood of the last 

memory. As a corollary, the last memory will be more likely to be found 

first, and if the diffusive trajectory during presentation has been suffi-

ciently continuous (jumps being rare), the last few words of the list are 

bound to be equally favored at the early stages of the recall process.

3. Lag-recency effects: The continuity of the diffusion process entails 

that the positive and negative branches of the lag probability curve P(L) 

will be, on average, decreasing functions of |L|, just as in the empirical 

data. This would hold true, in principle, even for the case of infinite 

lists. The simple type of semantic graph ensemble we have considered 

yields only a qualitative agreement with the empirical curve (see Figure 

4). In future work on the model, the observed form of the curve can 

serve as a key point of comparison for optimizing the semantic-graph 

distribution P(G) over the data. 

Conclusions

A diffusive approach to the modeling of free recall has been developed, 

in which the presentation of words and their recall are modeled as tra-

jectories of a particle diffusing over a semantic graph (a graph whose 

edges are random and whose nodes represent meanings of potentially 

polysemic words). 

The model has predicted correctly some well-known features of 

free recall (forward asymmetry, semantic clustering, the word-length 

effect) and has been argued to be a suitable model for others (power-

law scaling, recency, and lag-recency effects). A novel prediction has 

also been obtained: Shorter words, being more polysemic, are char-

acterized by a stronger sequentiality—that is, they are more likely to 

be recalled through forward contiguity—a prediction confirmed by a 

fresh analysis of archival data. 

The mechanism behind the latter phenomenon (interpretive clus-

tering) is the same that lies at heart of the word-length effect as pre-

dicted by this theory. The conversion of words into meaning involves 

interpretation, and our freedom of interpretation (which is larger for 

the more polysemic words) has the effect of turning temporal contigu-

ity into semantic contiguity. Since we memorize each word through a 

meaning largely determined by its context, mixed temporal-semantic 

correlations are created amongst memories. 

Future work on the theory may evolve in three directions: (a) 

comparing results from this model to additional features of available 

databases or to features well-documented in the literature (primacy, 

Figure 10.

Role of interpretive clustering in the word-length effect. Dis-
tances on the page are meant to represent roughly shortest-
path distances within a denser semantic graph of which 
only a few nodes are shown. These nodes refer to three 
highly polysemic words (shown in shades of blue) and three 
highly oligosemic ones (in shades of red). Dotted arrows de-
pict diffusive motion through the semantic graph. Panel A 
depicts the diffusive trajectory during the presentation of a 
list of polysemic words; Panel B—during the presentation of 
a list of oligosemic words, to the same system. In both pan-
els, the list being presented is displayed over the drawing as 
a sequence of colored squares. In the oligosemic case, lon-
ger distances have to be travelled; therefore memories are 
distributed over a wider region (dashed ellipses), impairing 
recall.
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intrusions, inter-response times, recall initiation probabilities), (b) 

trying out more realistic forms for the distribution P(G) of the proba-

bilistic graph through which the particle moves and optimizing this 

distribution over the data, which may help in interpreting free-recall 

data as measurements of semantic connections within specific groups 

of words, and (c) studying the possible connections between the diffu-

sive-particle model and more widely tested retrieved-context models, 

in order to ascertain to what extent they differ and in what respects 

they may correspond.

There are also several experiments that may help test the predic-

tions made so far. In particular, it may be useful to perform ad hoc 

experiments with select pools of words for which the measurement of 

polysemy is not overly tricky. This could be done by using two pools, 

one composed of decidedly oligosemic words (such as Parthenon) and 

one of extremely polysemic words (such as set). 

Experiments on such mixed lists would serve as a strict test of what 

we have claimed to be a polysemy effect in the sequential recall prob-

abilities. Another task would be to test whether the word-length effect 

survives when each list harbors multiple word-lengths but is assembled 

entirely out of a single pool—either the highly polysemic or the highly 

oligosemic one. If recall probabilities would not depend on which pool 

has been used, that would disprove the explanation provided above, 

ruling out the role of interpretive clustering in the word-length effect.

Finally, the degree of importance of interpretive clustering may be 

quantified through experiments based on pseudowords. The meanings 

that a pseudoword evokes can affect its association value, playing a 

potentially important role in the recall process (Glaze, 1928); yet, the 

recall of pseudowords may be expected to be more phonetical than the 

recall of real words. If so, effects due to interpretive clustering will be 

reduced. Comparing data from experiments with words and from ex-

periments with pseudowords may help ascertain how much semantics 

really matter in the emergence of the effects we have discussed.
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