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SUMMARY

Activity in striatal direct- and indirect-pathway spiny
projection neurons (SPNs) is critical for proper move-
ment. However, little is known about the spatiotem-
poral organization of this activity. We investigated
the spatiotemporal organization of SPN ensemble
activity in mice during self-paced, natural move-
ments using microendoscopic imaging. Activity in
both pathways showed predominantly local but
also some long-range correlations. Using a novel
approach to cluster and quantify behaviors based
on continuous accelerometer and video data, we
found that SPN ensembles active during specific ac-
tions were spatially closer and more correlated over-
all. Furthermore, similarity between different actions
corresponded to the similarity between SPN
ensemble patterns, irrespective of movement speed.
Consistently, the accuracy of decoding behavior
from SPN ensemble patterns was directly related to
the dissimilarity between behavioral clusters. These
results identify a predominantly local, but not
spatially compact, organization of direct- and indi-
rect-pathway SPN activity that maps action space
independently of movement speed.

INTRODUCTION

The initiation and execution of self-paced, natural behaviors de-

pends on intact circuits of the basal ganglia. The striatum, the

main input nucleus of the basal ganglia, forms two largely sepa-

rate projection pathways that are positioned to differentially

control downstream basal ganglia and thalamocortical areas

(Alexander and Crutcher, 1990; Gerfen et al., 1990). About half

of the striatal spiny projection neurons (SPNs) directly target

basal ganglia output structures, whereas the other half indirectly

influences basal ganglia output via the external segment of the

globus pallidus and subthalamic nucleus (Parent et al., 1984).
Neuron 95, 1171–1180, Au
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Although activation of direct- and indirect-pathway SPNs can

facilitate and suppress movements, respectively (Durieux et al.,

2012; Kravitz et al., 2010), recent studies demonstrated that

both pathways are co-active during movement (Barbera et al.,

2016; Cui et al., 2013; Isomura et al., 2013; Tecuapetla et al.,

2014), suggesting that concerted activity in both SPN pathways

is required for proper action performance (Tecuapetla et al.,

2014, 2016). Thus, not only the rate of SPN activity, but also

the precise functional organization of SPN ensembles, may be

important for motor control (Klaus and Plenz, 2016). Here, we

studied the spatiotemporal organization of direct- and indirect-

pathway SPNs during self-paced, natural behaviors using one-

photon microendoscopy in freely moving mice. We recorded

intracellular calcium transients in populations of up to 350 direct-

or indirect-pathway SPNs selectively expressing the genetically

encoded calcium indicator GCaMP6f (Chen et al., 2013; Resen-

dez and Stuber, 2015). Calcium dynamics were recorded

simultaneously with motor behavior using video and body accel-

eration (BA) and were analyzed using two independent methods

to remove background fluctuations from somatic SPN signals.

The average population activity of both direct- and indirect-

pathway SPNs increased during movement, and positively

correlated with total body movement during self-paced, natural

behaviors in line with previous observations during learned

actions (Cui et al., 2013; Isomura et al., 2013). Further analysis

of spatial correlations between background-corrected, somatic

SPN signals as a function of inter-neuronal distance revealed

networks with predominantly local but also some long-range

correlations in both pathways. That is, in contrast to a recent

report (Barbera et al., 2016), SPNs did not form spatially

compact clusters but instead covered spatially overlapping

areas within the imaging field of view.

In order to investigate if activity in SPN ensembles encodes

mainly the vigor or speed of movements, or can encode specific

behaviors (Barbera et al., 2016; Dudman and Krakauer, 2016),

we clustered the behavior data using a novel approach that

allowed the quantification of behavioral similarity based on video

and acceleration measurements. SPNs that were active during

particular behaviors showed increased overall cross-correla-

tions (CCs) between them, and showed an increased likelihood

of being nearby. Importantly, the similarity between different
gust 30, 2017 ª 2017 The Authors. Published by Elsevier Inc. 1171
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Figure 1. Direct and Indirect-Pathway SPNs

Show Increased Activity during Self-Paced

Movements

(A) Example of a single open field session with

mouse position (top panel) and corresponding

body acceleration (BA; bottom panel), video pixel

change (Dpixel), and speed (Dxy).

(B) Reconstructed GRIN lens position for all D1

(n = 5), D2 (n = 3), and A2a mice (n = 2).

(C) Activity image (maximum deviation from

average fluorescence; STAR Methods) for a

10 min recording (scale bar, 100 mm). Inset:

average neuron shape for a single recording

(n = 186 neurons normalized to unity peak ampli-

tude; scale bar, 20 mm).

(D) Top:detailed viewsofactivity images (maximum

deviation from average image) for 10 s long seg-

ments in a D1mouse, showing diverse activation of

SPN ensembles. Bottom: DF/F traces for a subset

of 15 neurons extracted with LBC for the same

animal. The gray shaded areas correspond to the

time periods in the top activity images. The top five

traces are color-coded and correspond to the

neurons marked by arrowheads in the top panels.

(E) Top: example of manually selected ROIs (white

circles) in the activity image (maximum deviation

from average image) and automatically deter-

mined background regions (black circles; STAR

Methods). Bottom: spatial footprints obtained with

CNMF-E within the same field of view. White

crosses mark the center of each detected neuron.

Red crosses mark neurons not detected with the

manual ROI selection used for LBC (the position of

these neurons is replicated in the top panel for

comparison). Shown is the maximum projection

over the spatial footprints. Scale bar, 30 mm.

(F) Example of simultaneously recorded average

DF/F in 98 neurons (top, LBC) and BA (bottom

trace) in a D1-Cre mouse.

(G) Average DF/F is correlated with BA in direct-

and indirect-pathway SPNs (D1, n = 5 mice; D2/

A2a, n = 5 mice; paired t test for comparison to

time-shifted control, **p < 0.01, ***p < 0.001). Bars

represent mean ± SEM.

See also Figure S1 and Movie S1.
behaviors corresponded to the similarity between SPN

ensemble patterns, independent of the speed of themovements.

Accordingly, using a binary classifier, we found that the accuracy

of decoding behavior from SPN ensemble activity patterns was

directly related to the dissimilarity between behavioral clusters.

These results identify a locally biased spatiotemporal organiza-

tion of striatal activity that represents the action space, indepen-

dently of movement speed, with similar actions being encoded

by similar striatal ensemble activity. This organization might sup-

port further aspects of striatal function during learning and skilled

motor control.

RESULTS

Striatal Direct- and Indirect-Pathway SPNs Are
Co-active during Self-Paced Movements
To study neuronal activities in identified striatal populations

of SPNs, we used microendoscopic one-photon calcium imag-
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ing of GCaMP6f (AAV5-Flex) selectively expressed in direct-

pathway SPNs (D1-Cre, FK150) or indirect-pathway SPNs

(D2-Cre, ER43; A2a-Cre, KG139) in mice during self-paced,

natural movements in an open field arena (Figure 1A, top).

Neuronal activity was monitored through a gradient index

(GRIN) lens chronically implanted into the dorsolateral striatum

(Figures 1B, 1C, and S1A) from up to 350 SPNs with single-

cell resolution (Figures 1C–1E). Calcium dynamics were re-

corded simultaneously with motor behavior using video and a

head-mounted three-axis accelerometer (Figure 1A, bottom).

Total BA correlated with video pixel change (Dpixel, Spearman

correlation r = 0.57 ± 0.03, n = 10 mice, p < 0.001) and the

movement speed in the open field (Dxy, r = 0.49 ± 0.03, n =

10 mice, p < 0.01).

Intracellular calcium transients of single neurons were esti-

mated from changes in GCaMP6f fluorescence (Chen et al.,

2013; Grienberger and Konnerth, 2012). Because one-photon

imaging suffers from stronger background signals compared to



two-photon imaging due to increased out-of-focus contamina-

tion (Zhou et al., 2017), we used two independent methods to

correct raw, somatic fluorescence. First, manually selected so-

matic regions of interest (ROIs, 35–263 neurons/session, me-

dian = 120 neurons/session) were automatically adjusted using

local background and baseline correction (LBC; STAR Methods)

(Klaus and Plenz, 2016) and relative changes in fluorescence,

DF/F, were extracted (Figure 1D, bottom; Figure 1E, top). To bet-

ter account for background signals directly superimposed onto

the neuron’s soma fluorescence and for overlapping neuronal

sources (Figure 1E), we applied constrained non-negative matrix

factorization for endoscopic data (CNMF-E) (Pnevmatikakis

et al., 2016; Zhou et al., 2017) to the same dataset (Figure 1E,

bottom; Figure S1C; Movie S1). CNMF-E, which models the

spatial and temporal background statistics superimposed on

the neuronal signals, showed a slightly superior performance

for the estimation of calcium transients from simulated ground

truth data (Figure S1C).

The average rate of intracellular calcium transients was similar

in direct- and indirect-pathway SPNs (D1, 0.13 ± 0.02 s�1, n = 5

mice; D2/A2a, 0.17 ± 0.02 s�1, n = 5 mice; two-sample t test,

t(8) = �1.38, p = 0.21; threshold crossings of the time derivative

of DF/F > 3 SDs of baseline; STARMethods). The average ampli-

tude of the corresponding DF/F transients was also similar in

direct- and indirect-pathway SPNs (D1, 9.4% ± 0.52%, n = 5

mice; D2, 10.1% ± 1.13%, n = 5 mice; two-sample t test,

t(8) = �0.53, p = 0.61; LBC). Average intracellular calcium tran-

sients increased during movement initiation (Figure S1D), and

positively correlated with self-paced movements in the open

field for both direct- and indirect-pathway SPNs (Figures 1F and

1G), in line with previous reports on SPN activity during learned

actions (Cui et al., 2013; Isomura et al., 2013) and during head

movements (Tecuapetla et al., 2014). In summary, intracellular

calcium transients in SPNs can be extracted reliably with single-

cell resolution from endoscopic data, and show co-activation of

direct- and indirect-pathwaySPNs during self-pacedmovements

(Barbera et al., 2016; Cui et al., 2013; Tecuapetla et al., 2014).

Locally Biased, but Not Spatially Compact,
Spatiotemporal Patterns of Activity in Direct- and
Indirect-Pathway SPNs
To study the precise spatiotemporal organization of SPN

ensemble activity underlying the observed transient increases

in average DF/F (Figure 1F), we measured CCs between SPNs

at the temporal resolution of the calcium imaging (Figure 2A;

bin duration, 100–143 ms; Figure S2A). SPNs in direct- and indi-

rect-pathway populations showed low average correlations

(D1, 0.08 ± 0.02, n = 5 mice; D2/A2a, 0.07 ± 0.01, n = 5 mice;

comparison D1 versus D2/A2a, two-sample t test, t(8) = 0.31,

p = 0.77; continuous DF/F time series) that were significantly

larger than zero (one-tailed t test; D1, t(4) = 2.87, p = 0.023;

D2/A2a, t(4) = 5.26, p = 0.003; corrected for chance-level corre-

lations by inter-event interval shuffling of events in the DF/F time

derivative; STAR Methods). Despite this low average CC, SPN

activity showed, on average, increased CCs for nearby neurons

(Figure 2B, D1 example). This monotonic decrease in CC with

increasing neuron distance was found when using continuous

DF/F (Figure 2C, top) or time series including only significant
DF/F peak events (STAR Methods), which remove the influence

of baseline fluctuations and the GCaMP6f decay on the CCmea-

sure (Figure 2C, bottom). As expected, spatially shuffled control

data resulted in a flat CC-distance relationship (Figure 2C, black

lines). In addition, a significant decrease in CC for increasing

distances was still observed when restricting the analysis to

the 20% largest events and when only neurons with a distance

larger than three times the average neuron diameter were consid-

ered, thus further reducing potential crosstalk between nearby

neurons (Figure S2B). In contrast to the background-corrected

somatic fluorescence intensities, raw somatic fluorescence inten-

sities were highly correlated and showed little decrease within

a 100 mm radius (Figure S2C). In line with the findings from

the LBC method, intracellular calcium transients extracted with

CNMF-E showed a monotonic decrease in CC with increasing

neuronal distance, and CC values approached shuffled data at a

distance of �80–100 mm (Figure 2D). To further investigate that

spatially localizedCCscanbeextracted fromendoscopicdataus-

ing appropriate background corrections, we tested the LBC and

CNMF-Emethods using simulated ground truth data (Figure S1C)

with locally clustered or non-clustered activities. Indeed, the

spatial profile of CCs could be recovered for both conditions (Fig-

ures S2D and S2E). Despite the local organization in activity in the

direct and indirect pathwayduring self-pacedmovements, nearby

SPNs inbothpathwaysshowedawidedistributionofCCs (Figures

2E and 2F). Furthermore, even SPNs far from each other can

exhibit relatively high CCs (Figures 2B, S2F, and S2G).

The above data suggest an organization of SPN activities that

is characterized by a local bias in correlated activities but seems

to be at odds with a spatially compact organization as recently

described by Barbera et al. (2016), who reported spatially

compact and non-overlapping clusters of SPNs during self-

paced movements. We applied the same clustering algorithm

to our data and obtained locally biased but spatially extended,

i.e., not spatially compact, clusters of SPNs (Figure S2H) in line

with the finding from Figure 2. We found that such spatially

compact clusters were observed in the raw signals without back-

ground correction (Figures S2H–S2J), which would be expected

because background contains low spatial frequencies and dom-

inates signals in endoscopic one-photon imaging data (Zhou

et al., 2017). Furthermore, we found that the background signals

alone, i.e., the signals that were removed with CNMF-E, orga-

nized in spatially compact clusters (Figures S2H and S2J), similar

to the ones reported by Barbera et al. (2016). This analysis dem-

onstrates that adequate background and baseline corrections

are required to separate somatic from background signals (for

further discussion, see STAR Methods).

Taken together, the above results suggest that during self-

paced movements, direct- and indirect-pathway SPNs form

functional groups with predominantly local but also some long-

range correlations.

SPN Ensembles Active during Particular Actions Are
More Correlated and Spatially Closer
We next investigated the spatial organization of SPN activity in

more detail with respect to different behaviors. To this end, we

analyzed behaviors using continuous video and acceleration

measurements based on the following features: (1) total BA,
Neuron 95, 1171–1180, August 30, 2017 1173



Figure 2. Local Spatiotemporal Correlations in Functional Networks of Direct- and Indirect-Pathway SPNs

(A) Left: example network of 91 direct-pathway SPNs showing the spatial distribution of ROIs. Right:DF/F traces for four neurons showing diverse activity even for

nearby neurons (traces were calculated using LBC).

(B) Left: two-dimensional view showing the relative position of neuronal pairs and corresponding CCs between DF/F traces for a single session in a D1 mouse.

Each dot corresponds to one neuronal pair: the coordinates represent the relative position of one neuron to another neuron in the center of the coordinate system,

and the color represents the CC between the neurons. Pairs were plotted in order of increasing CC. Right: CCs plotted as a function of inter-neuronal distance for

the same session (red, individual pairs; black, average). For better visualization, the distance axis was logarithmically scaled.

(C) Top: average CCs between continuous DF/F for all D1 (n = 5 mice) and D2/A2a-Cre (n = 5 mice) mice obtained using LBC. Bottom: same as above for CCs

between DF/F peak events. Data represent mean ± SEM.

(D) Same as (C) for activity traces, C, obtained with CNMF-E. Data represent mean ± SEM.

(E) Probability density functions (PDFs) of CC for different ranges of neuronal distance. Data represent mean ± SEM.

(F) Same as (E) for traces extracted with CNMF-E. Data represent mean ± SEM.

See also Figure S2.
which captures periods of movement versus rest; (2) gravita-

tional acceleration along the anterio-posterior axis (GAAP),

which captures changes in posture, e.g., during rearing; and

(3) video rotation angle (4) to measure changes in body and

head orientation (Figure 3A). The BA, GAAP, and 4 time series

were binned (300 ms) and discretized to obtain a low-dimen-

sional histogram representation of each behavioral time bin

(STAR Methods). These ‘‘behavioral’’ histograms were then
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used to quantify the similarity between all behavioral time

bins (Figures S3A and S3B). This approach allowed us to

cluster the entire range of behaviors observed during a single

recording session (Figures 3A–3C) rather than focusing on a

pre-defined set of behaviors. In the following, we used a similar-

ity measure based on the so-called earth mover’s (EM) distance

(Rubner et al., 2000), which compares discretized histograms

of the above features and takes into account the smoothness



Figure 3. Action-Related SPNs Are Locally

Biased and More Correlated Overall

(A) Behavioral clustering using BA, GAAP, and

body/head rotation 4. Top: BA, GAAP, and 4 time

series. Bottom: corresponding behavioral clusters

obtained by affinity propagation on similarity of

discretized time series (STAR Methods).

(B) Left: behavior similarity between segments

belonging to different (‘‘between’’) versus the

same (‘‘within’’) cluster for a single D1 and D2

session, respectively. Smaller values indicate less

similarity. Zero indicates equality (i.e., highest

similarity). Bars denote mean ± SD. Right panels:

ROC analysis demonstrating high accuracy (ACC)

of determining whether two behavior segments

belong to different behavioral clusters (‘‘true pos-

itive’’) using a single threshold. ‘‘False positive’’

denotes the fraction of behavior segments from

the same cluster classified as belonging to

different clusters. Shown is the average for all mice

(D1, n = 5; D2/A2a, n = 5).

(C) Two-dimensional projection of all behavioral

feature vectors during a single recording session

(STARMethods). Each dot represents a behavioral

segment of 300 ms duration. Color code repre-

sents cluster identity obtained by affinity propa-

gation. A subset of clusters was labeled according

to the dominant feature (‘‘left turn,’’ ‘‘right turn,’’

‘‘rear,’’ etc.).

(D) Top: aligned video segments (300 ms after

segment start) for a subset of behavioral clusters

within a single session (same as C). All occurrences

were merged into a single movie (number of occur-

rences: ‘‘Left turn,’’ 45; ‘‘Right turn,’’ 46; ‘‘Forward,’’

243; ‘‘Rear,’’ 95; ‘‘Rest,’’ 21), and pixel intensities

were logarithmically scaled for better visualization.

Colors match the color code in (C). The red dot in-

dicates the center ofmass of themouse at behavior

onset. Bottom: neuronal maps showing, for each

behavioral cluster, the relative changes in activity

compared to each neuron’s mean activity and the

neuron positions in the field of view. Note that SPNs

were recorded in the left striatum.Scalebar, 100mm.

(E) Average percentage of action-related neurons

participating in 1, 2, 3, 4, or 5 and more behavioral

clusters (D1, n = 5; D2/A2a, n = 5 mice). Bars

represent mean ± SEM.

(F) Average CC between action-related SPNs is

significantly higher than average CC between

remaining SPNs (paired t test, **p < 0.01,

***p < 0.001). Bars represent mean ± SEM.

(G) PDF of inter-neuronal distances for action-

related and other SPNs (paired t test, *p < 0.05,

**p < 0.01). Data represent mean ± SEM.

See also Figure S3 and Movie S2.
of the animal’s movements (STAR Methods). Thus, EM similar-

ity is zero for identical behavioral histograms and more nega-

tive for more dissimilar behavioral histograms. For example,

a ‘‘left turn’’ or ‘‘right turn’’ versus ‘‘straight’’ is assigned a higher

similarity in behavioral (i.e., action) space compared to ‘‘left turn’’

versus ‘‘right turn.’’ Behavioral clusters were obtained by affinity

propagation (Frey and Dueck, 2007) on the EM similarity of the

behavioral histograms (Figure S3A, 300 ms; STAR Methods)

and showed low between-cluster and high within-cluster simi-
larity (Figures 3B and S3D), suggesting specificity of our behav-

ioral clustering approach. Although someclusters obtained using

the above features are difficult to fully describe in terms of words

and two-dimensional video, other clusters corresponded to

knownbehaviors like ‘‘left’’ or ‘‘right’’ turn, ‘‘forward’’ locomotion,

‘‘rearing,’’ or ‘‘rest’’ (Figures 3C and 3D, top; Movie S2).

We found that different behavioral clusters were accompanied

by distinct changes in SPN activity (Figures 3D, S3G, S4A, and

S4B). To test whether the changes in activity during specific
Neuron 95, 1171–1180, August 30, 2017 1175



behavioral clusters reflected the spatiotemporal organization

identified in Figure 2, we determined action-related SPNs for

each behavioral cluster that showed significant increases in ac-

tivity (>3 SDs from average activity; STAR Methods). We found

that SPN activity at the single-neuron level was rather action spe-

cific (Figure 3E; for neurons with significant decrease in activity,

see Figure S3H). Although action-related SPNs are, by our defi-

nition, co-active during specific behavioral clusters, they do not

need to be co-active at fine timescales and hence could show

low zero-lag CCs (behavioral segments can last multiple sec-

onds; Figure S4C; though see also Brody, 1999 for further dis-

cussion of this issue) and low common activity across different

behavioral clusters. We therefore calculated, as done in Figure 2,

the CC for the entire imaging session and found that SPNs of

both pathways that were active during a specific behavior

showed significantly increased CCs compared to neurons that

did not show action-specific activity (Figures 3F and S3H). In

addition, SPNs that were active during particular behaviors

formed ensembles with a local bias yet a notable number of

distant SPN pairs (Figure 3G; neurons that decreased firing

rate did not show a significant local bias; see Figure S3H), which

contrasts with the idea of spatially compact and non-overlapping

functional clusters. This result suggests that the locally biased

organization of SPN correlations identified at the general popu-

lation level (Figure 2) has functional significance in terms of ac-

tion-related activity.

Direct- and Indirect-Pathway SPN Ensembles Map
Action Space
We showed above at the single-neuron level that action-related

SPNs in the two pathways show high action specificity, are more

correlated overall, and exhibit a local bias. While our definition of

‘‘action related’’ is based on a threshold for each neuron, SPNs

were differently modulated during different behaviors. We there-

fore tested at the neuronal ensemble level if different behaviors

would be encoded by distinct, non-overlapping SPN groups,

or rather if behavior would be mapped more continuously in

SPN activity space. To investigate this, we quantified the similar-

ity between SPN ensemble patterns (i.e., ‘‘neuronal similarity’’)

for different behavioral clusters as the cross-validated (Walther

et al., 2016) Euclidean similarity and compared it to the similarity

between behavioral clusters (i.e., ‘‘behavioral similarity’’). Fig-

ure 4A shows the pairwise similarity matrices for all behavioral

clusters and the corresponding SPN ensemble patterns for a

single D1 session (left and right panels, respectively). In both

direct- and indirect-pathway SPNs, we found a strong positive

correlation between behavioral and neuronal similarity (Fig-

ure 4B, gray). Importantly, the correlation between behavioral

similarity and neuronal similarity persisted when only clusters

with relatively rapid movements were analyzed (Figures 4B,

4C, and 4E, red), andwas abolishedwhen neurons were spatially

shuffled for each behavioral segment (Figures 4C and 4E, blue;

see Figure S4D for the summary, including both move and rest

behavioral clusters). The correlation between behavioral and

neuronal similarity was significantly different from zero on a sin-

gle-session level for the majority of recordings for the original,

but not spatially shuffled, data (Figures 4C and 4E, bottom).

Furthermore, when analyzing the correlation between speed
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similarity (BA similarity) and neuronal similarity during the behav-

ioral clusters, the correlations were small and largely non-signif-

icant (Figures 4D, 4F, and S4D), further suggesting that speed

alone did not account for the observed relationship between

behavioral and neuronal similarity. We additionally confirmed

that the positive correlation between behavioral and neuronal

similarity remained for more general movement features using

the cumulative body/head rotation angle and median-filtered,

raw acceleration time series (Figure S4E). These results identify

a particular relationship between the SPN ensemble activity

and behaviors that extends beyond changes in average SPN ac-

tivity andmovement speed (Figures 1F and 1G). It argues against

the encoding of different actions by compact, non-overlapping

SPN ensembles, and suggests a more continuous representa-

tion, in which the degree of overlap in neuronal ensemble repre-

sentation reflects the similarity/dissimilarity between behaviors.

To test whether differences in the SPN ensemble activity were

predictive of the difference in behavior, we trained a support vec-

tor machine (SVM) for binary classification. Instead of using the

time-averaged SPN ensemble activity during each behavioral

cluster, which smooths out the variability of SPN firing at shorter

timescales, we performed the behavior decoding at the time-

scale of individual behavioral segments (Figure S4C). That is,

for each pair of behavioral clusters, the SVM uses a subset of

the data to find a linear separation that best distinguishes the

SPN ensemble patterns between the two behaviors. The SVM

can then be used to decode the behavior from the remaining

data and to evaluate the decoding accuracy (for details, see

STAR Methods). We found that decoding accuracy was very

high for very different behaviors, and decreased for similar be-

haviors (Figure 5A; see also Figure S4B), confirming that the dif-

ference between SPN ensemble activity corresponds to the

dissimilarity between behaviors. To control for possible con-

founds of average changes in SPN activity, we performed spatial

shuffling, which preserved the differences in average SPN activ-

ity between behavioral clusters. The negative correlation be-

tween behavioral similarity and decoding accuracy observed in

the original data was not seen in spatially shuffled data (Figures

5B and 5C), indicating that, indeed, different SPN ensembles un-

derlie the encoding of different behaviors.

Taken together, these results suggest a particular organization

of striatal activity that covers the action spacewith spatially over-

lapping SPN ensembles, and where similar behaviors are en-

coded by closer population representations and more dissimilar

behaviors by more distant representations.

DISCUSSION

In the current study, we measured the spatiotemporal neuronal

dynamics of the two major striatal projection pathways in the

dorsal striatum during self-paced, natural movements. Our re-

sults demonstrate a locally biased, but not spatially compact,

organization of SPN activity, in which action-specific SPNs are

more correlated and spatially closer to each other. Importantly,

we found that different actions are not encoded by discrete,

non-overlapping SPN ensembles, but are represented continu-

ously in the neural activity space by overlapping SPN ensembles,

with more similar actions being encoded by closer ensemble



Figure 4. Similarity in SPN Ensemble Activity Correlates with Similarity in Behaviors

(A) Left: matrix of the pairwise EM similarity between behavioral clusters i and j based on BA, GAAP, and body/head rotation 4 for a single recording session

(D1, n = 14 behavioral clusters). Right: corresponding neuronal similarity calculated as the cross-validated Euclidean similarity between the normalized SPN

ensemble patterns (continuous DF/F, LBC) during the behavioral clusters from the left panel. Note that smaller values indicate less similarity.

(B) Relationship between behavioral similarity and neuronal (i.e., SPN ensemble pattern) similarity and corresponding Spearman correlation coefficients, r, for a

single session (left, D1; right, D2) for all behavioral clusters (moving and resting, gray) and behavioral clusters during movement (red).

(C) Average correlation between behavioral similarity and neuronal similarity during movement (top; D1, n = 5 mice; D2/A2a, n = 5 mice) and fraction of significant

(p < 0.05) versus nonsignificant (pR 0.05) correlation coefficients (bottom; D1, 21 sessions; D2/A2a, 22 sessions) for original (red) and spatially shuffled control (blue)

data. Neuronal activity was extracted using LBC. Paired t test for comparison to spatially shuffled control data (**p < 0.01, ***p < 0.001). Bars represent mean ± SEM.

(D) Same as (C) for the average correlation between BA similarity and neuronal similarity. Bars represent mean ± SEM.

(E and F) Same as (C) and (D), respectively, for neuronal activity extracted with CNMF-E (D1, n = 5 mice, 20 sessions; D2/A2a, n = 5 mice, 22 sessions). Bars

represent mean ± SEM.

See also Figure S4.
representations and more dissimilar actions by more distant

representations.

Microendoscopic in vivo imaging can record SPNs with high

density at single-cell resolution and allowed us to quantify the

spatiotemporal organization of SPN ensembles in the two path-

ways. Although we confirmed that SPNs exhibit low average

CCs (Bakhurin et al., 2016; Klaus and Plenz, 2016), the recording

of neurons at all spatial distances including distances below

50 mm revealed increased correlations within a radius of up to

80–100 mm in both direct- and indirect-pathway SPNs (Bakhurin
et al., 2016; Barbera et al., 2016). This locally biased organization

was reflected in the activity of action-related SPNs, suggesting

functional significance. Quantifying the microstructure in the

spatiotemporal organization of SPN activity therefore reveals

new principles in addition to average measures of network syn-

chrony, which could potentially be interesting for the study of

pathological conditions.

The functional SPN networks we identified in our study also

showed some long-range spatial correlations and thus differed

from an organization with purely compact SPN clusters as
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Figure 5. Behavior Decoding Based on SPN Ensemble Activity

(A) Relationship between behavioral similarity and decoding performance of a

support vector machine (SVM) for binary classification. The decoding perfor-

mance was measured as the percentage of correct classifications and was

corrected for differences in the sample size between behavioral clusters (STAR

Methods). Shown are clusters during movement in a single session for each

pathway (D1 and D2) with the corresponding r. The dashed lines indicate

chance level.

(B) Average correlation between behavioral similarity and percentage correct

during movement (top; D1, n = 5 mice; D2/A2a, n = 5 mice) and fraction of

significant (p < 0.05) versus nonsignificant (p R 0.05) correlation coefficients

(bottom; D1, 21 sessions; D2/A2a, 22 sessions) for original (red) and spatially

shuffled control (blue) data. Neuronal activity was extracted using LBC. Paired

t test for comparison to spatially shuffled control data (**p < 0.01, ***p < 0.001).

Bars represent mean ± SEM.

(C) Same as (B) for neuronal activity extracted with CNMF-E (D1, n = 5 mice,

20 sessions; D2/A2a, n = 5 mice, 22 sessions). Bars represent mean ± SEM.
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recently described in a study by Barbera et al. (2016). The differ-

ence between the results in the current study and Barbera et al.

(2016) could stem from the different approaches in correcting the

intracellular calcium measurements. The calculation of CCs in

our study was based on measurements of intracellular calcium

activity in populations of hundreds of SPNs obtained with one-

photon microendoscopic imaging. Such data inherently suffer

from strong background signals and contamination caused by

neuronal overlap (Pnevmatikakis et al., 2016; Zhou et al.,

2017), which require adequate correction methods. Multiple

lines of evidence suggest that the local correlations we observed

accurately reflect SPN firing and are not simply a result of back-

ground signals, neuronal overlap, or optical aberrations. First,

spatially local CCs between SPNs were found with two indepen-

dent methods verified using simulated ground truth data. Sec-

ond, strong CCs were found throughout the imaging field of

view. Third, not all nearby SPNs showed strong CCs. And fourth,

a decrease in CC with increasing SPN distance was also found

when only the largest calcium transients at distances larger

than three times the average neuron diameter were analyzed,

further reducing potential crosstalk between signals from neigh-

boring SPNs. In addition, a decrease of average CCs with

increasing neuronal distance was recently described in resting

activity using extracellular recordings (Bakhurin et al., 2016).

Different possible mechanisms could lead to the increased CC

between nearby neurons. Converging cortical inputs (Alexander

andDeLong, 1985; Brown, 1992; Hintiryan et al., 2016; Hunnicutt

et al., 2016) provide an anatomical substrate to modulate local

striatal domains. However, the actual moment-to-moment acti-

vation that SPNs receive will also depend on the spatiotemporal

dynamics of the corticostriatal input. Independent experimental

evidence suggests that cortical neurons exhibit a local CC profile

similar to the one observed in our study (Bellay et al., 2015; Pre-

vedel et al., 2016; Rosenbaum et al., 2017; but see Sakata and

Harris, 2009 for differences between cortical layers obtained

with high temporal resolution extracellular recordings). Addition-

ally, the local organization of striatal activity might be shaped by

intrastriatal inhibition (Carrillo-Reid et al., 2008; Tepper et al.,

2004), including lateral inhibition between SPNs (Czubayko and

Plenz, 2002; Klaus and Plenz, 2016; Planert et al., 2010) with

overlapping dendritic and axonal fields extending radially be-

tween 150 and 400 mm and more (Kawaguchi et al., 1990).

An important aspect of our study was the clustering of natural

behaviors (Berman et al., 2014; Wiltschko et al., 2015) based on

video data and BA measurements and the quantification of sim-

ilarity between behavioral clusters. We found that SPNs related

to specific actions showed an increased likelihood of being

closer together and were more correlated in general, indicating

that the overall organization of striatal activity is related to its rep-

resentation of action space. In particular, the quantification of

similarity allowed us to demonstrate a mapping between SPN

ensemble activity and self-paced, natural actions in the two

pathways, in which more similar SPN ensemble patterns were

associated with more similar behaviors. While this seems intui-

tive, it is not possible to know a priori the mapping between

neuronal activity space and action space. SPNs could be

organized in discrete, non-overlapping clusters (Barbera et al.,

2016) that would correspond to different actions. Instead, we



found that SPNs are organized in overlapping ensembles that

represent the action space, and the amount of overlap in the

neuronal activity space is progressively less for more dissimilar

behaviors. Consequently, behaviors could be discriminated

from SPN ensemble activity with increasing accuracy propor-

tionally to the degree of dissimilarity. Importantly, this relation-

ship reflected the activation of specific SPN ensembles and

not simply changes in average activity, and was independent

of movement speed (Jin et al., 2014). Thus, our findings

extend beyond the existing view of striatal function in regulat-

ing movement speed (Dudman and Krakauer, 2016) and

suggest a representation of action space in the activity of SPN

ensembles.

The observation that action similarity is encoded in the similar-

ity between SPN ensemble activities might have important impli-

cations for reinforcement learning. At early stages of learning, it

can be difficult to repeat the exact same action that previously

led to a positive outcome. We hypothesize that being able to

repeat similar actions would facilitate learning and could be sup-

ported by the retrieval of similar SPN ensemble states and avoid-

ing the retrieval of very different ensembles, thus circumventing

the need for the consistent retrieval of a very specific SPN

ensemble early in learning.

Some basal ganglia models propose a pro- versus antikinetic

(i.e., ‘‘go’’ versus ‘‘no-go’’) function for direct- and indirect-path-

ways SPNs, respectively (Durieux et al., 2012; Kravitz et al.,

2010; but see Yttri and Dudman, 2016), whereas other models

suggest that both pathways contribute in concert to generate

movements (Cui et al., 2013; Tecuapetla et al., 2016). Here, we

found that both direct- and indirect-pathway SPNs show a

very similar organization that encodes action space. This finding

suggests that indirect-pathway SPNs do not represent a general

‘‘no-go’’ signal (Durieux et al., 2012; Kravitz et al., 2010; Yttri and

Dudman, 2016), or an ‘‘inhibit all competing movements’’ signal

(because the activity patterns are as action specific as those of

the direct pathway), but instead proposes a more specific rela-

tionship between the activity of indirect-pathway SPNs and spe-

cific behaviors. The idea that indirect-pathway SPNs inhibit

unwantedmovements should perhaps be revisited in the context

of action selection, in which the selection of a particular move-

ment requires both the facilitation and the inhibition of specific

movement features (for example, flexor/extensor muscle pairs).

This finding also constrains the possibilities of how independent

the activity in the two SPN pathways can be. That is, the coordi-

nation of direct- and indirect-pathway SPN activities is not only

present at the average activity level but should also be reflected

in the precise spatiotemporal activity patterns in the two path-

ways. Simultaneous measurement of direct- and indirect-

pathway SPNs and a more detailed knowledge of effects on

downstream nuclei will be required to further the understanding

of striatal function. In summary, our results identify a predomi-

nantly local organization in striatal ensemble activity that en-

codes action space beyond movement speed.
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Rabbit anti-GFP Alexa Fluor-488 conjugate Molecular Probes Cat#A-21311; RRID: AB_221477

Bacterial and Virus Strains

AAV5.CAG.Flex.GCaMP6f.WPRE.SV40 University of Pennsylvania Vector Core Cat#AV-5-PV2816

Experimental Models: Organisms/Strains

Mouse: D1-Cre: Tg(Drd1a-cre)FK150Gsat/Mmucd MMRRC RRID: MMRRC_029178-UCD

Mouse: D2-Cre: Tg(Drd2-cre)ER43Gsat/Mmucd MMRRC RRID: MMRRC_017268-UCD

Mouse: A2a-Cre: B6.FVB(Cg)-Tg(Adora2a-cre)

KG139Gsat/Mmucd

MMRRC RRID: MMRRC_036158-UCD

Software and Algorithms

CNMF-E This paper; Pnevmatikakis et al., 2016;

Zhou et al., 2017; Friedrich et al., 2017

N/A

LBC This paper; Klaus and Plenz, 2016 N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents may be directed to and will be fulfilled by the Lead Contact, Rui Costa

(rc3031@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were reviewed and performed in accordance with the Champalimaud Center for the Unknown Ethics commit-

tee guidelines and approved by the Portuguese Veterinary General Board (Direcção Geral de Veterinária, Ref. No. 0421/000/000/

2014). Experimental mice were 3 to 5 month-old BAC transgenic males individually housed on a 12 hr light/dark cycle with ad libitum

access to food and water. Transgenic mice expressed Cre recombinase under the control of the dopamine D1 receptor (D1-Cre,

Tg(Drd1a-cre)FK150Gsat/Mmucd; MMRRC #029178-UCD) for targeting of direct-pathway SPNs, or the dopamine D2 receptor

(D2-Cre, Tg(Drd2-cre)ER43Gsat/Mmucd; MMRRC #017268-UCD) or adenosine A2a receptor (A2a-Cre, B6.FVB(Cg)-Tg(Adora2a-

cre)KG139Gsat/Mmucd; MMRRC #036158-UCD) for targeting of indirect-pathway SPNs. All lines have been backcrossed onto

C57Bl6/J mice for at least 8 generations. Sample size is detailed in the Results or figure legends.

METHOD DETAILS

Virus injection and chronic lens implantation
Surgeries were performed under sterile conditions and isoflurane (1%–3%, plus oxygen at 1-1.5 l/min) anesthesia on a stereotactic

frame (David Kopf Instruments, Model 962LS). Throughout each surgery, mouse body temperature was maintained at 34�C using an

animal temperature controller (ATC1000, World Precision Instruments) and afterward, each mouse was allowed to recover from the

anesthesia in its homecage on a heating pad. Themouse headwas shaved, cleanedwith 70%alcohol and iodine, and a small incision

from anterior to posterior was made on the skin to allow for aligning the head and drilling the hole for the injection site. Each animal

was unilaterally injected with 300 nl of AAV5.CAG.Flex.GCaMP6f.WPRE.SV40 (University of Pennsylvania Vector Core) into the left

dorsal striatum (AP: 0.5 mm, ML: 2.3 mm, DV: �2.3 mm) using a Nanojet II Injector (Drummond Scientific, USA) at a rate of 4.6 nl per

pulse every 5 s. The injection pipette was left in place for 10min post-injection before it was removed. After the injection, the skull was

cleaned and the skin sealed with Vetbond tissue adhesive (3M, USA). Following the same surgical procedures, one week after viral

injection, a 1-mm-diameter gradient index (GRIN) lens (Inscopix) was implanted in the left mouse striatum directly above the injection

site after carefully aspirating �1.8-2 mm of the overlaying cortical tissue with a 30-gauge blunt needle. Care was taken to minimize

bleeding. Once in place, the lens was secured to the skull using a combination of black Ortho-Jet powder and liquid acrylic resin

(Lang Dental, USA) and covered with paper/tape to protect the lens surface. One week after the GRIN lens implantation, the
Neuron 95, 1171–1180.e1–e7, August 30, 2017 e1



microendoscope baseplate (Inscopix) was mounted onto the mouse head under visual guidance using the attached microscope to

determine the best field of view. The imaging field of view was inspected and allowed to clear for several days prior to imaging and

behavioral experiments. After completion of the behavioral experiments, mice were transcardially perfused with saline and 4% para-

formaldehyde in PBS. Brains were removed for histological analysis and coronal slices were sectioned at 50 mm (Leica vibratome

VT1000). Immunohistochemistry was performed for GCaMP-GFP expression by incubating the sections with a GFP antibody

(GFP Tag polyclonal antibody, Alexa Fluor 488 conjugate, Molecular Probes #A-21311) diluted at 1:1000 in 0.4% Triton-PBS over-

night at room temperature and counterstained with DAPI. Both placement of lens and spread of injection were confirmed using a

Zeiss Lumar widefield fluorescence microscope (Figures 1B and S1A).

Behavior
Mice were placed in an open field arena (39.5 3 39.5 3 17.5 cm, length 3 width 3 height) inside a sound-attenuating chamber and

imaged for 10-15 min every day for 5 days during the light cycle. Behavior was recorded using an overhead-mounted video camera

(Flea3, Point Grey Research) at 15-30 frames per second (fps) and a head-mounted 3-axis accelerometer sampled at 1 kHz with a

Cerebus acquisition system (BlackrockMicrosystems). One-photon imaging of intracellular calcium activity was acquired at 7-10 fps

using an nVistamicroendoscope [lens: 1mmdiameter,�4mm length, 0.5 numerical aperture, product number 1040; excitation: blue

light-emitting diode (LED); excitation filter: 475/10 nm, �0.24-0.6 mW/mm2; emission filter: 535/50 nm; Inscopix, Palo Alto, CA] and

acquisition system with 12-bit resolution. The accelerometer was secured to the side of the microendoscope on the opposite side to

the excitation LED. Mice were lightly anesthetized with isofluorane to facilitate mounting (and removal) of the microendoscope and

accelerometer. Mice were allowed to wake up fully at least 15 min prior to image acquisition. Resulting calcium movies and accel-

eration data were analyzed as described below. Time stamps from the video camera, microendoscope and accelerometer were syn-

chronized using the Cerebus recording system.

Calcium imaging analysis
All calciummovieswere initially preprocessed inMosaic (Inscopix) for spatial binning (43 4 pixels) andmotion correction (Figure S1B)

and subsequently analyzed using custom MATLAB scripts. One-photon imaging is known to contain significant background signals

arising from out-of-focal plane light and neuropil (Zhou et al., 2017) due to the fluorescence excitation of a relatively large three-

dimensional volume compared to, for example, two-photon imaging. Because out-of-focus background contains relatively low

spatial frequencies (Zhou et al., 2017), appropriate methods can be used to estimate background signals from the soma surrounding

and correct for it. Two independent methods were employed to correct somatic calcium transients: (1) local estimation of back-

ground and baseline for fluorescence correction (LBC; Klaus and Plenz, 2016), and (2) a constrained non-negative matrix factoriza-

tion for endoscopic data (CNMF-E; Pnevmatikakis et al., 2016; Zhou et al., 2017).

LBC

The LBCmethod was based on the manual selection of somatic regions of interest (ROIs) and an automatic estimation of local back-

ground and baseline signals for fluorescence correction. A circular ROI template with diameter of 14 mm based on the half-width of

the average soma shape (14.4 ± 1.0 mm, 1154 neurons from n = 10 recordings; example for single recording in Figure 1C, inset) was

used. ROIs were selected using so-called ‘activity’ images (Figure 1C), which were derived pixel-wise by calculating the maximum

deviation over time from the average (pixel-wise) fluorescence. To allow for the identification of neurons with very low baseline fluo-

rescence and low firing rate, ‘activity’ images were calculated for consecutive periods of 10-15 s (detailed example views shown in

Figure 1D, top) using the average fluorescence over the entire session. After manual selection of all neurons, individual background

regions were determined within a 2-diameter radius around each ROI. The background region was the region with lowest average

fluorescence in the ‘activity’ image with a linear penalty term for being too close to somatic ROIs. For each ROI, raw and background

fluorescence (Fraw and Fbg, respectively) were extracted by averaging pixel intensities within the corresponding ROIs for each frame.

To correct for out-of-focus background contamination, a fraction, r, of the background was subtracted from Fraw (Kerlin et al., 2010;

Pinto and Dan, 2015). Because blood vessels only have small contributions of neuropil signals they allow for an estimation of r, which

was defined as the ratio between fluorescence in a blood vessel versus the surrounding neuropil (i.e., background). We found no

difference for direct- and indirect-pathway SPN recordings (D1-Cre: 0.91 ± 0.011, D2/A2a-Cre: 0.91 ± 0.009, two-sample t test,

t(13) = 0.1, p = 0.92, 2-3 recordings per subject analyzed) and used r = 0.9 for all analyses if not stated otherwise. The relative change

in fluorescence was calculated as

DF=F =
F � F0

F0

;

where F denotes the background-corrected fluorescence, F = Fraw - r,Fbg, and F0 denotes the baseline of F fluorescence estimated

from a ± 15 s sliding window. Due to the sparse activity in SPNs, F0 was calculated from the baseline defined as the average of all

values below the 80th percentile in F. The decay dynamics of intracellular calcium transients was tdecay = 299 ± 30 ms in direct-

pathway SPNs and tdecay = 289 ± 20 ms in indirect-pathway SPNs in line with previous reports for GCaMP6f in pyramidal neurons

of the visual cortex (Chen et al., 2013). Importantly, relative increases of the intracellular, somatic calcium concentration as quantified

byDF/F have been shown tomonotonically report the number of action potentials (Chen et al., 2013; Cui et al., 2013; Klaus and Plenz,
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2016). Consequently, transient changes in DF/F are abolished when blocking active sodium currents using tetrodotoxin (Cui

et al., 2013).

For some analysis, where indicated, we used time series of DF/F peak events to exclude possible influences of baseline fluctua-

tions and the GCaMP6f decay dynamics. The values of the time series were set to the amplitudes of significant DF/F peaks at the

corresponding peak times and were equal to zero otherwise. A significant DF/F peak event was defined by the time point and

maximum value of DF/F during threshold crossings. The threshold was defined as mean plus three standard deviations (SDs) of

the DF/F distribution (obtained by fitting a Gaussian function with mean and SD to the distribution of DF/F values individually for

each neuron). Because successive (i.e., cumulative) increases in DF/F represent neuronal firing in successive bins, we also used,

where indicated, the thresholding of the time derivative of DF/F, that is, the (DF/F(t+1)-DF/F(t))/Dt time series, where t represents

the frame number (i.e., Dt = 1).

CNMF-E

Constrained non-negative matrix factorization is a recently proposed framework for simultaneously denoising, deconvolving and

demixing of calcium imaging data (Pnevmatikakis et al., 2016). This framework identifies the cell locations and handles spatial over-

laps between neurons. CNMF-E is one of its extensions specialized for processing microendoscopic data (Zhou et al., 2017). It can

reliably deal with the large fluctuating background from multiple sources in the data, allowing the accurate source extraction of

cellular signals. It includes four steps: (1) initialize spatial and temporal components of single neurons without the direct estimation

of the background; (2) estimate the background given the estimated neurons’ spatiotemporal activity; (3) update the spatial and tem-

poral components of all neurons while fixing the estimated background fluctuations; (4) iteratively repeat step 2 and 3. We briefly

describe the algorithm used in our work, and more details can be found in the preprint of the CNMF-E paper (Zhou et al., 2017).

In the initialization step, we first used a mean-subtracted two-dimensional Gaussian kernel to filter the raw video data. The param-

eters of this kernel are selected to resemble the distribution of soma diameters (mCNMF-E = 0, sCNMF-E = 6.9 mm,maximum soma diam-

eter dCNMF-E = 35 mm). Filtering the data with this kernel acts as a template matching to find all morphological shapes similar to a

soma. In the filtered data, the background is approximately removed because it is almost flat within the spatial range of the kernel,

and the kernel integrates to zero. In contrast, soma shapes are preserved and becomemore visible because theymatch the template

shape. As a result, we can accurately extract each neuron’s calcium activity from the fluorescence at its center pixels (so-called seed

pixels) in the filtered data. Furthermore, we developed a method to detect seed pixels by choosing pixels with high local correlations

and signal-to-noise ratio. Given a seed pixel, we initialize one neuron by estimating its temporal activity as the temporal trace of the

pixel in the filtered data. To get its spatial component, we crop a small square with the size of 2 times larger than a cell body centered

at the seed pixel from the raw data. Then we estimate the background fluctuation within the cropped area as the median in each

frame. For each pixel within the selected square, we assume its fluctuations are from two sources: one is the initialized neuron

and the other one is the background fluctuation. Since we have the temporal traces for all these two sources, we run linear regression

to get the weights for each component and the weights corresponding to the neural activity lead to our initialization of the spatial

footprints. Once we have both the spatial and temporal component of this neuron, we subtract its spatiotemporal activity from

the raw video data and repeat the same procedure to initialize another neuron until the specified number of neurons has been de-

tected or no more seed pixels can be found. This greedy initialization method is able to efficiently and accurately detect almost all

neurons. In the next step, we estimate the background activity for each pixel individually. For each pixel, we first choose its neighbors

with a distance larger than neuron size. Accordingly, these pixels do not share the same cellular activity but they share the same sour-

ces of the background. Then we use the projection of this pixel’s temporal trace on a linear span of its neighbors’ traces as the esti-

mated background fluctuations. Finally, we subtract this estimated background from the raw video data and update all neuronal

spatial and temporal components using alternating matrix factorization (Friedrich et al., 2017; Pnevmatikakis et al., 2016; Zhou

et al., 2017). The temporal deconvolution step for denoising was used for the update of the temporal activity. The final temporal,

neuronal components reported for CNMF-E were not denoised and are denoted with a capital letter C throughout the paper.

Time series of significant C peak events were calculated as described for DF/F (see LBC above).

Analysis of ground truth data
We investigated whether LBC and CNMF-E were able to recover the underlying CC-distance relationship in simulated ground truth

data (Figures S1C, S2D, and S2E). To simulate the strong background component in microendoscopic imaging data, we used the

sum of 10 time-varying background frames with individual temporal profiles and added neuronal signals plus random noise to this

image sequence. The following parameters were matched between simulated and experimental data: mean fluorescence intensity

and standard deviation, average neuron diameter, number of neurons per session, neuron locations, GCaMP6f decay time constant,

amplitudes of somatic fluorescence changes, and individual neuronal activity patterns obtained from the original calcium recordings

(events were detected by thresholding DF/F > 3 SD of baseline, see description of significant DF/F peak events above). To obtain a

flat CC-distance relationship, we randomized the neuron positions as described below in Calculation of spatially shuffled datasets.

The resulting calcium movies were analyzed with LBC and CNMF-E as described above. For the LBC method, we re-applied the

positions of the neuronal ROIs from the original dataset.
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Calculation of CC
For the calculation of the CC between two time series x and y, we used Pearson’s correlation coefficient:

CC=
E
�ðx � mxÞ

�
y � my

��
sxsy

;

where E[$] denotes the expected operator and m and s denote themean and standard deviation, respectively. Average CCs between

neuronal activities were reported as the average across neuronal pairs. For the calculation of CCs between ‘‘action-related’’/‘‘other’’

SPNs (Figure 3), see ‘‘Definition of action-related neurons’’ below.

To exclude possible influences of baseline fluctuations and the GCaMP6f decay dynamics on the CC measure, we calculated,

where indicated, CC on time series of significant peak events in DF/F (LBC) or C (CNMF-E), or their time derivatives. To determine

whether average CCs were significantly larger than zero, we corrected the CC by chance-level correlations. That is, CCs obtained

from significant events in the time derivative of DF/F were calculated and the CCs from temporally shuffled data preserving the

inter-event interval distributions for each neuron were subtracted. We furthermore verified that our CC measure was not affected

by the optical properties of the GRIN lens due to, for example, optical aberrations (Figure S2A).

For the quantification of the correlation between BA and neuronal activity in Figure 1G, DF/F was the average activity of all SPNs in

the recording session. Time-shifted controls were obtained by randomly shifting the BA time series between ± (20-30) s. CCs for time-

shifted traces were averaged over 1000 random instances per session.

Calculation of spatially shuffled datasets
Spatial shuffling of calcium activity was performed by randomizing the mapping between neuron position and activity. Specifically,

for each neuron, a random neuron from the same session was selected, and the 2-dimensional positions were swapped. This

approach preserved the distribution of pairwise distances between neurons as well as the precise temporal distribution of calcium

events. The latter aspect is particularly relevant for continuous time series of DF/F (LBC) and C (CNMF-E), which contain temporal

correlations due to the GCaMP6f decay dynamics that need to be preserved for the comparison to original data. We calculated

10 shuffled instances per session and used average values for further calculation. In addition, the spatial shuffling allowed us to study

the influence of specific SPN ensemble configurations for the behavior decoding (Figure 5) without changing the average SPN activity

during each behavior. Therefore, the magnitude reduction of the correlation between behavioral similarity and percentage of correct

classification (Figures 5B and 5C) can be attributed solely to the randomization of the spatial SPN ensemble pattern.

Comparison to Barbera et al. (2016)
To cluster the neuronal activity, we applied a meta-clustering approach to the neuronal data that was recently proposed by Barbera

et al. (2016).We used the same parameters as in their study. Specifically, we applied k-means clusteringwith k-means++ initialization

to DF/F time series from randomly selected 30 s windows. The number of clusters was set to
ffiffiffiffi
N

p
where N denotes the number of

neurons. The clustering was repeated 100 times per 30 s window using different k-means++ initializations. This procedure was

repeated for a total of 100 30 s windows resulting in an average overlap of�80% between windows. A N3 N co-occurrence matrix,

M, was built, which contained at position i,j the number of times neuron i and neuron jwere clustered together. Accordingly,Mi,j = 0 if

neurons i and j were never clustered together, andMi,j = 10,000 if neurons i and j were always clustered together. From the final co-

occurrence matrix, meta-clusters were obtained by applying a threshold, T, and determining the largest neuronal groups. Twas cho-

sen to maximize the ratio between number of meta-clusters and number of unclustered neurons. We performed this analysis on the

neuronal (i.e., soma) signals, the raw data, and the background signal obtained with CNMF-E. All signals were baseline-corrected as

described in LBC. For the calculation of average intra-cluster distance and CC, only clusters with at least 5 members were used.

As shown in Figures S2H–S2J, the above meta-clustering did result in spatially extended, non-compact neuronal clusters, which

was in contrast to the compact clusters reported by Barbera et al. (2016). Because we used GCaMP6 ‘fast’ in the current study, in

contrast to GCaMP6 ‘slow’ used in Barbera et al. (2016), we verified that the spatially extended, non-compact clusters in our data

were not a result of a difference in the GCaMP6 decay dynamics. To this end, we convolved continuous DF/F and DF/F peak time

series with an exponential kernel with different decay time constants (up to 2 s) and found spatially extended, non-compact clusters

irrespective of the chosen decay time constant (data not shown). This result suggests that the discrepancy between the current study

and Barbera et al. (2016) might be due to differences in the extraction of intracellular calcium time series from raw fluorescence data.

As described above, fluorescence signals obtained with one-photon calcium imaging require proper background subtraction to cor-

rect for strong out-of-focus contributions from neuropil and other sources (Zhou et al., 2017) and baseline subtraction to correct for

slow trends due to, for example, photobleaching. We note that the approach used by Barbera et al. to calculate relative fluorescence

changes, DF/F, differs in two details from LBC, which previously has been shown to reliably report intracellular action potential firing

(Klaus and Plenz, 2016). First, Barbera et al. perform baseline subtraction on soma and background fluorescence before back-

ground-correcting the somatic fluorescence. Second, they used the minimum value of the image stack for subtraction from the

raw fluorescence. This latter step, however, is not suited to remove slow trends in raw fluorescence time series and could potentially

affect CC measures.
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Measurement and quantification of behavior
Behavior was quantified on time series of acceleration and video rotation. In the main analysis (Figures 3, 4, and 5), we used: (i) total

body acceleration to distinguish movement versus rest (Figure 1A), (ii) gravitational acceleration along the rostro-caudal/anterior-

posterior (AP) axis to extract postural changes (Figure S3B), and (iii) rotational information extracted from the video to measure

head and whole-body orientation (Figures 3A–3D). Total body acceleration was defined as

BA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA2

AP +BA2
ML +BA2

DV

q
;

where BAAP/ML/DV denote the body acceleration in the anterio-posterior, mediolateral, and dorsoventral axis, respectively, with

respect to the animal’s head. The individual BA components were calculated by median-filtering the raw acceleration time series

and by subsequent high-pass (0.5 Hz) filtering with a fourth-order Butterworth filter. Gravitational acceleration, GA, was obtained

for each axis by median and subsequent low-pass filtering (0.5 Hz cutoff, fourth-order Butterworth filter). We used GAAP to quantify

postural changes (i.e., vertical head position) in the open field during resting, locomotion and rearing (regression on the GAAP and

vertical head-position time series: R2 = 0.72-0.76, p < 0.001 for n = 2 mice; Figure S3B). Head and body rotation angle of the animal

was extracted from video as relative (i.e., frame-to-frame) change in body/head axis orientation. We then converted the time series

into cumulative changes of head/body rotation (positive for left rotations, negative for right rotations) to remove small rotations and

noise by considering only rotations with at least ± 20�/s of cumulative change before any change in direction. The angle, 4, for each

rotation was then set to the maximum relative change between the beginning (±30-60�/s) and end (i.e., change in direction) of the

rotation. This step improved the detection of left and right turns using the clustering algorithm described below compared to cumu-

lative changes in head/body rotation. An example time series of 4 is shown in Figures 3A and S3A.

Time series of all features were binned into 300 ms long, non-overlapping segments (Wiltschko et al., 2015), which were used for

the following clustering analysis. For each 300-ms segment and per feature, values were discretized using one or two thresholds: For

BA, a single threshold was used to separate moving from resting. The threshold was the same for all subjects and was set to the

average value separating the bimodal distribution of BA (visualized in logarithmic scale; Figure S3A). For GAAP, 2 thresholds were

used based on Otsu’s method (Figure S3A). For 4, we used 2 thresholds (±45-90�/s) separating left and right turns from straight

and forward movements. The resulting histograms, that is, 3 per 300-ms segment, were individually normalized to obtain probability

distributions and then used to calculate pairwise similarities between segments (Figure S3A). For a 600 s long recording and 300 ms

long segments, this resulted in a 2000 3 2000 similarity matrix. Our measure of similarity, S, was based on the so-called ‘‘earth

mover’s’’ (EM) distance (Rubner et al., 2000):

S= � ðDEM=3Þ2;
where DEM is the sum of the normalized EM distances for the 3 features (BA, GAAP, and 4) as defined below. The normalizations

constrain the values of S to be within the range [-1,0], that is, �1 and 0 indicate the maximum dissimilarity and identity between

the two probability distributions, respectively. For each single feature, the normalized EM distance between probability distributions

p= ðp1;p2;.Þ and q= ðq1;q2;.Þ is calculated iteratively as follows:

d0 = 0
di + 1 = ðpi +diÞ � qi;

where i iterates over the number of bins of the probability distributions, that is, i = f1; 2g for BA, and i = f1;2;3g for GAAP and4. The EM

distance for a single feature is then defined as

EMD=
X
i

jdi j ;

and subsequently normalized by the number of bins minus 1. DEM is defined as the sum of the normalized EMDs.

The EM-similarity, S, has a unique advantage over other measures of similarity, such as the histogram intersection similarity (Zhang

and Lu, 2003), or similarity based on the cross-validated Euclidean distance (Walther et al., 2016). Similar to intersection and

Euclidean similarity, the EM-similarity S takes into account the pairwise differences between corresponding bins in the two distribu-

tions to be compared. The unique property of S is that it also considers the distance between the bins within the distribution. For

example, the probability density for the rotation 4 has three bins corresponding to ‘left’, ‘straight’, and ‘right’. While intersection

and Euclidean similarity attribute the same distance to ‘left’ versus ‘straight’ and ‘left’ versus ‘right’, the EM-similarity considers

the distance between ‘left’ versus ‘right’ to be bigger. This makes intuitively sense because movements are generally smooth,

that is, 4 will not jump from ‘left’ to ‘right’ but will be ‘straight’ in between. Despite this difference, the three similarity measures

(i.e., EM-similarity, intersection similarity, and cross-validated Euclidean similarity) were correlated and gave highly similar results.

The obtained similarity measures (Figure S3A) were clustered using affinity propagation (Frey andDueck, 2007) with the preference

parameter set to �0.5 (similar results were obtained over a wide range tested; the particular value was chosen to maximize the ac-

curacy of cluster separation, see Figure 3B, while maintaining a stable number of behavioral clusters). Using this method, we are able

to generate a continuous unbiased classification of behavioral states (Figures 3A–3D; Movie S2). Based on this clustering, we finally
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calculated a matrix of similarities, SBehavior
i;j =S (Figure 4A, left), using the average distribution over all 300-ms segments within behav-

ioral clusters i and j, respectively (i and j range from 1 to the number of behavioral clusters within the session).

The analysis in Figures 4C–4F and 5 was restricted to clusters with movement (‘‘move’’). To this end, we excluded clusters with

average BA less than 2 times the threshold used for behavioral clustering (see above). See Figures S4D and S4E for the summary

of move plus rest behavioral clusters.

Visualization of behavioral similarity in two dimensions
For the visualization of behavioral time bins in two dimensions (Figure 3C), we used the non-linear dimensionality reduction technique

t-SNE (van der Maaten and Hinton, 2008). We used the matrix of pairwise EM-distances (DEM, with 5% added, uniform noise) for all

behavioral histograms (i.e., 300ms time bins) as the input for the algorithm.We verified that the Euclidean distance in the two-dimen-

sional projection appropriately reflected the true EM-distance (Figure S3C).

Definition of action-related neurons
To determine the statistical significance of action-related increases in activity at the single-neuron level (Figures 3 and S3F–S3H), we

applied, for each neuron and behavioral cluster, a threshold to the average DF/F (LBC) or C (CNMF-E), and considered the neuron to

be significantly modulated if the average during the behavioral cluster crossed the 99th percentile of shuffled data (i.e., the ‘baseline’

average during the entire recording session). The shuffled data for a given behavioral cluster was obtained by randomizing the start

time stamp of each behavioral segment (i.e., preserving their durations) and calculating the average DF/F (LBC) and C (CNMF-E) dur-

ing these randomized segments. 10,000 shuffled instances were used to calculate the ‘baseline’ average and its 99th percentile. In

Figure 3, we restricted the analysis to neurons that showed significant positive modulations in activity (‘‘action-related’’). Figures S3G

and S3H shows quantification for SPNs with significant decrease.

The calculation of pairwise measures (i.e., CC and inter-neuron distance; Figures 3E–3G and S3H) for ‘‘action-related’’ and ‘‘other’’

neurons was done for each behavioral cluster and final values were averaged across behavioral clusters within the same recording

session. Thus, neurons considered ‘‘other’’ for one particular behavioral cluster, could be ‘‘action-related’’ for another behavioral

cluster. CCs were calculated using the entire time series (DF/F for LBC; C for CNMF-E).

We note that for the analysis at the SPN ensemble level (Figures 4 and 5), we included all neurons imaged during the recording

session.

Quantification of neuronal similarity
For each behavioral cluster, we extracted for all neurons, the time-averaged calcium activities, DF/F and C (for LBC and CNMF-E,

respectively) during the cluster. This resulted in an n-dimensional vector, x, for each behavioral cluster that represents the SPN

ensemble patterns during that behavior (n denotes the number of all recorded neurons during the imaging session). To quantify

the similarity between those SPN ensemble patterns (Figure 4), we used a similarity measure based on the cross-validated Euclidean

distance (Walther et al., 2016). To this end, we divided calcium activities into odd and even image frame numbers to obtain unbiased

estimates of the similarity between SPN ensemble patterns (Figure 4A, right):

SNeuronal
i;j = � ðxi � xjÞoddðxi � xjÞTeven;

where xi and xj denote the SPN ensemble vectors for behavioral clusters i and j, respectively (i and j range from 1 to the number of

behavioral clusters within the session). We note that dividing the dataset into first and second half for the above calculation of cross-

validated measures, or similarity based on crosscorrelation between the SPN ensemble vectors, gave similar results. Because

changes in the average SPN population activity (as evident in Figures 1F, 1G, and 3D) could contribute to the estimate of the

Euclidean similarity between SPN ensemble patterns, we normalized the ensemble vector x to have a Euclidean norm equal to

unity (Figure 4; similar results were obtained without normalization or normalization of the mean, i.e., average across SPNs equal

to one).

To quantify the relationship between behavioral and neuronal similarity (Figures 4B–4F), we used the Spearman correlation coef-

ficient r. r and corresponding p-values were calculated using MATLAB’s corr function. Behavioral clusters with less than 10 occur-

rences were excluded from the analysis. Furthermore, sessions with less than four data points for the calculation of rwere excluded

from the calculation of averages. To test the influence of movement versus resting on the relationship between behavioral and

neuronal similarity, we performed two control measures. First, the analysis was, in addition to all clusters (moving and resting, Fig-

ure 4B, gray), performed only on clusters with strongmovement (Figure 4B, red; Figures 4C–4F; seeMeasurement and quantification

of behavior for the definition of the threshold separating moving from resting). Second, behavioral similarity was, in addition to the

full features set (BA, GAAP, 4), performed only on the similarity in BA (i.e., the cross-validated difference in average BA during the

behavioral clusters) (Figures 4D and 4F), or movement speed (i.e., cross-validated difference in average video pixel change

during the behavioral clusters). For spatially shuffled control measures, the mapping between neuron position and neuronal activity

(DF/F for LBC; C for CNMF-E) was randomized for each session and each behavioral cluster (see Calculation of spatially shuffled

datasets).
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Decoding of behavior from SPN ensemble activities
For the decoding analysis of behaviors from SPN ensemble activities, we used a linear support vector machine (SVM) for binary clas-

sification. The aim of the decoding was to predict the behavioral cluster membership obtained with affinity propagation (see above)

based on the SPN ensemble activity at the timescale of the behavioral segments. Many behavioral segments were as short as 300ms

(the bin size for the behavioral clustering) but could range, in multiples of 300 ms, to many seconds (Figure S4C). For each behavioral

segment obtained with our behavioral clustering approach, we first determined the corresponding SPN calcium activities, and aver-

aged them during that segment. This resulted in n-dimensional vectors representing the SPN ensemble patterns, where n is equal to

the number of all recorded neurons during the imaging session. The vectors representing the SPN ensemble patterns and the infor-

mation about which behavioral cluster they belong to where then used to train and evaluate the SVM. Specifically, for each pair of

behavioral clusters, a random set of 60% of the data was used for training the SVM, while the remaining data was used for evaluating

the decoding accuracy quantified as the percentage of correct classifications (‘‘percentage correct’’; Figure 5). We averaged the

‘‘percentage correct’’ over 10 random training/evaluation datasets to obtain more reliable estimates. To account for sample number

differences between behavioral clusters i and j and a possible classification bias, the percentage correct was calculated as the

average between the percentage correct for behavioral cluster i and percentage correct for behavioral cluster j. The decoding anal-

ysis gave similar results for non-normalized and normalized SPN ensemble activity. Results in Figure 5 are shown for non-normalized

SPN ensemble activity. The spatial shuffling (see above) in Figure 5 was done for each behavioral segment, thus preserving the

average SPN activity within each behavioral cluster. This allowed attributing differences in the behavior decoding between original

and spatially shuffled data solely to the precise configuration of the original SPN ensemble patterns and not the average SPN activity.

For the quantification of the relationship between ‘‘behavioral similarity’’ and ‘‘percentage correct’’ in Figure 5, we used the

Spearman correlation coefficient r and followed the same approach as described in Quantification of neuronal similarity for Figure 4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mean ± standard error of the mean (SEM) was used to report statistics if not indicated otherwise. For all within-subject quantifica-

tions, we calculated the average across all 5 recording sessions. Statistical tests used and the sample size for each analysis is listed in

the Results or figure legends. Both parametric and non-parametric tests were used wherever appropriate and are detailed in the Re-

sults and Table S1. Hypothesis testing was done at a significance level of a = 0.05. No statistical methodswere used to pre-determine

sample size. Where required, datasets were tested for normality using the Lilliefors test. All analysis and statistical tests were per-

formed in MATLAB (MathWorks). Animals were excluded prior to the collection of experimental data based on imaging quality

due to movement artifact, a lack of cells, or a bad focal plane.
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