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Abstract

Covert visual attention has been shown repeatedly to enhance performance on
tasks involving the features and spatial locations to which it is deployed. Many neu-
ral correlates of covert attention have been found, but given the complexity of the
visual system, connecting these neural effects to performance changes is challenging.
Here, we use a deep convolutional neural network as a large-scale model of the visual
system to test the effects of applying attention-like neural changes. Particularly, we
explore variants of the feature similarity gain model (FSGM) of attention—which re-
lates a cell’s tuning to its attentional modulation. We show that neural modulation
of the type and magnitude observed experimentally can lead to performance changes
of the type and magnitude observed experimentally. Furthermore, performance en-
hancements from attention occur for a diversity of tasks: high level object category
detection and classification, low level orientation detection, and cross-modal color clas-
sification of an attended orientation. Utilizing the full observability of the model we
also determine how activity should change to best enhance performance and how activ-
ity changes propagate through the network. Through this we find that, for attention
applied at certain layers, modulating activity according to tuning performs as well as
attentional modulations determined by backpropagation. At other layers, attention
applied according to tuning does not successfully propagate through the network, and
has a weaker impact on performance than attention determined by backpropagation.
This thus highlights a discrepancy between neural tuning and function.

1. Introduction

Covert visual attention, applied according to spatial location or visual features, has1

been shown repeatedly to enhance performance on challenging visual tasks [11]. To ex-2

plore the neural mechanisms behind this enhancement, neural responses to the same3

visual input are compared under different task conditions. Such experiments have4

identified numerous neural modulations associated with attention, including changes5

in firing rates, noise levels, and correlated activity [91, 15, 24, 57], however, the extent6

to which these changes are responsible for behavioral effects is debated. Therefore,7

theoretical work has been used to link sensory processing changes to performance8

changes. While offering helpful insights, much of this work is either based on small,9

hand-designed models [68, 79, 94, 12, 31, 100, 30] or lacks direct mechanistic inter-10

pretability [99, 9, 90]. Here, we utilize a large-scale model of the ventral visual stream11

to explore the extent to which neural changes like those observed in the biology can12
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lead to performance enhancements on realistic visual tasks. Specifically, we use a deep13

convolutional neural network trained to perform object classification to test variants14

of the feature similarity gain model of attention [92].15

Deep convolutional neural networks (CNNs) are popular tools in the machine learn-16

ing and computer vision communities for performing challenging visual tasks [75].17

Their architecture—comprised of layers of convolutions, nonlinearities, and response18

pooling—was designed to mimic the retinotopic and hierarchical nature of the mam-19

malian visual system [75]. Models of a similar form have been used in neuroscience to20

study the biological underpinnings of object recognition for decades [26, 76, 85]. Re-21

cently it has been shown that when these networks are trained to successfully perform22

object classification on real-world images, the intermediate representations learned are23

remarkably similar to those of the primate visual system [102, 39, 38]. Specifically,24

deep CNNs are state-of-the-art models for capturing the feedforward pass of the ven-25

tral visual stream [40, 36, 10]. Many different studies have now built on this fact to26

further compare the representations [93, 51, 44] and behavior [45, 27, 73, 77, 50] of27

CNNs to that of biological vision. A key finding has been the correspondence between28

different areas in the ventral stream and layers in the deep CNNs, with early convolu-29

tional layers able to capture the representation of V1 and deeper layers relating to V430

and IT [29, 23, 83]. Given that CNNs reach near-human performance on visual tasks31

and have architectural and representational similarities to the visual system, they are32

particularly well-positioned for exploring how neural correlates of attention can impact33

behavior.34

We focus here on attention’s ability to impact activity levels (rather than noise or35

correlations) as these findings are straightforward to implement in a CNN. Further-36

more, by measuring the effects of firing rate manipulations alone, we make clear what37

behavioral enhancements can plausibly be attributable to them.38

One popular framework to describe attention’s effects on firing rates is the feature39

similarity gain model (FSGM). This model, introduced by Treue & Martinez-Trujillo,40

claims that a neuron’s activity is multiplicatively scaled up (or down) according to41

how much it prefers (or doesn’t prefer) the properties of the attended stimulus [92,42

56]. Attention to a certain visual attribute, such as a specific orientation or color,43

is generally referred to as feature-based attention (FBA) and its effects are spatially44

global: that is, if a task performed at one location in the visual field activates attention45

to a particular feature, neurons that represent that feature across the visual field will46

be affected [104, 81]. Overall, this leads to a general shift in the representation of the47

neural population towards that of the attended stimulus [17, 35, 71]. Spatial attention48

implies that a particular portion of the visual field is being attended. According to the49

FSGM, spatial location is treated as an attribute like any other. Therefore, a neuron’s50

modulation due to attention can be predicted by how well its preferred features and51

spatial receptive field align with the features and location of the attended stimulus.52

The effects of combined feature and spatial attention have been found to be additive53

[33].54

While the FSGM does describe many findings, its components are not uncontrover-55

sial. For example, it is questioned whether attention impacts responses multiplicatively56

or additively [6, 3, 52, 60], and whether or not the activity of cells that do not prefer57

the attended stimulus is actually suppressed [7, 68]. Furthermore, only a handful of58

studies have looked directly at the relationship between attentional modulation and59

tuning [56, 80, 13, 97]. Another unsettled issue is where in the visual stream attention60
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effects can be seen. Many studies of attention focus on V4 and MT/MST [91], as61

these areas have reliable attentional effects. Some studies do find effects at earlier62

areas [66], though they tend to be weaker and occur later in the visual response [37].63

Therefore, a leading hypothesis is that attention signals, coming from prefrontal areas64

[65, 63, 4, 42], target later visual areas, and the feedback connections that those areas65

send to earlier ones causes the weaker effects seen there later [8, 52].66

In this study, we define the FSGM of attention mathematically and implement it67

in a deep CNN. By testing different variants of the model, applied at different layers68

in the network and for different tasks, we can determine the ability of these neural69

changes to change behavior. Given the complexity of these large nonlinear networks,70

the effects of something like FSGM are non-obvious. Because we have full access to all71

units in the model, we can see how neural changes at one area propagate through the72

network, causing changes at others. This provides a fuller picture of the relationship73

between neural and performance correlates of attention.74

2. Methods75

2.1. Network Model76

This work uses a deep convolutional neural network (CNN) as a model of the77

ventral visual stream. Convolutional neural networks are feedforward artificial neural78

networks that consistent of a few basic operations repeated in sequence, key among79

them being the convolution. The specific CNN architecture used in the study comes80

from [86] (VGG-16D) and is shown in Figure 1A. A previous variant of this work used81

a smaller network [48].82

Here, the activity values of the units in each convolutional layer are the result of83

applying a 2-D spatial convolution to the layer below, followed by positive rectification84

(rectified linear ’ReLu’ nonlinearity):85

xlkij = [(W lk ? X l−1)ij]+ (1)

where W lk is the kth convolutional filter at the lth layer. The application of each filter86

results in a 2-D feature map (the number of filters used varies across layers and is given87

in parenthesis in Figure 1A). xlkij is the activity of the unit at the i, jth spatial location88

in the kth feature map at the lth layer. X l−1 is thus the activity of all units at the89

layer below the lth layer. The input to the network is a 224 by 224 pixel RGB image,90

and thus the first convolution is applied to these pixel values. For the purposes of this91

study the convolutional layers are most relevant, and will be referred to according to92

their numbering in Figure 1A.93

Max pooling layers reduce the size of the feature maps by taking the maximum94

activity value of units in a given feature map in non-overlapping 2x2 windows.95

The final three layers of this network are each fully-connected to the layer below96

them, with the number of units per layer given in parenthesis in Figure 1A. Therefore,97

connections exist from all units from all feature maps in the last convolutional layer98

(layer 13) to all 4096 units of the next layer, and so on. This network was pre-trained99

[25] using backpropagation on the ImageNet classification task, which involves doing100

1000-way object categorization (for details see [86]). The final layer of the network101

thus contains 1000 units upon which a softmax classifier is used to output a ranked102

list of category labels for a given image. Looking at the top-5 error rate (wherein an103
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Figure 1: Network Architecture and Feature-Based Attention Task Setup. A.) The model used is
a pre-trained deep neural network (VGG-16) that contains 13 convolutional layers (labeled in gray,
number of feature maps given in parenthesis) and is pre-trained on the ImageNet dataset to do 1000-
way object classification. All convolutional filters are 3x3. B.) Modified architecture for feature-based
attention tasks. To perform our feature-based attention tasks, the final layer that was implementing
1000-way softmax classification is replaced by binary classifiers (logistic regression), one for each
category tested (2 shown here). These binary classifiers are trained on standard ImageNet images.
C.) Test images for feature-based attention tasks. Merged images (left) contain two transparently
overlaid ImageNet images of different categories. Array images (right) contain four ImageNet images
on a 2x2 grid. Both are 224 x 224 pixels. These images are fed into the network and the binary
classifiers are used to label the presence or absence of the given category. D.) Performance of binary
classifiers. Box plots describe values over 20 different object categories (median marked in red, box
indicates lower to upper quartile values and whiskers extend to full range with outliers marked as
dots). Standard images are regular ImageNet images not used in the binary classifier training set.
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image is correctly labeled if the true category appears in the top five categories given104

by the network), this network achieves 92.7% accuracy.105

2.2. Object Category Attention Tasks106

The tasks we use to probe the effects of feature-based attention in this network107

involve determining if a given object category is present in an image or not, similar to108

tasks used in [88, 72, 41]. To have the network perform this specific task, we replaced109

the final layer in the network with a series of binary classifiers, one for each category110

tested (Figure 1B). We tested a total of 20 categories: paintbrush, wall clock, seashore,111

paddlewheel, padlock, garden spider, long-horned beetle, cabbage butterfly, toaster,112

greenhouse, bakery, stone wall, artichoke, modem, football helmet, stage, mortar,113

consomme, dough, bathtub. Binary classifiers were trained using ImageNet images114

taken from the 2014 validation set (and were therefore not used in the training of115

the original model). A total of 35 unique true positive images were used for training116

for each category, and each training batch was balanced with 35 true negative images117

taken from the remaining 19 categories. The results shown here come from using118

logistic regression as the binary classifier, though trends in performance are similar if119

support vector machines are used. Experimental results suggest that classifiers trained120

on unattended and isolated object images are appropriate for reading out attended121

objects in cluttered images [105].122

Once these binary classifiers are trained, they are then used to classify more chal-123

lenging test images. These test images are composed of multiple individual images124

(drawn from the 20 categories) and are of two types: ”merged” and ”array”. Merged125

images are generated by transparently overlaying two images, each from a different126

category (specifically, pixel values from each are divided by two and then summed).127

Array images are composed of four separate images (all from different categories) that128

are scaled down to 112 by 112 pixels and placed on a two by two grid. The images that129

comprise these test images also come from the 2014 validation set, but are separate130

from those used to train the binary classifiers. See examples of each in Figure 1C. Test131

image sets are balanced (50% do contain the given category and 50% do not, 150 total132

test images per category). Both true positive and true negative rates are recorded and133

overall performance is the average of these rates.134

To test the effects of spatial attention, only the ”array” images are used. The task is135

to identify the category of the object at the attended location. Therefore, performance136

is measured using the original 1000-way classifier, with the category of the image in137

the attended quadrant as the true label (200 images were tested per quadrant).138

2.3. Object Category Gradient Calculations139

When neural networks are trained via backpropagation, gradients are calculated140

that indicate how a given weight in the network impacts the final classification. We141

use this same method to determine how a given unit’s activity impacts the final clas-142

sification. Specifically, we input a ”merged” image (wherein one of the images belongs143

to the category of interest) to the network. We then use gradient calculations to deter-144

mine the changes in activity that would move the 1000-way classifier toward classifying145

that image as belonging to the category of interest (i.e. rank that category highest).146

We average these activity changes over images and over all units in a feature map.147

This gives a single value per feature map:148
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glkc = − 1

Nc

Nc∑
n=1

1

HW

H,W∑
i=1,j=i

∂E(n)

∂xlkij (n)
(2)

where H and W are the spatial dimensions of layer l and Nc is the total number of149

images from the category (here NC = 35, and the merged images used were generated150

from the same images used to generate tuning curves, described below). E(n) is the151

error of the classifier in response to image n, which is defined as the difference between152

the activity vector of the final layer (after the soft-max operation) and a one-hot153

vector, wherein the correct label is the only non-zero entry. Because we are interested154

in activity changes that would decrease the error value, we negate this term. The155

gradient value we end up with thus indicates how the feature map’s activity would156

need to change to make the network more likely to classify an image as the desired157

category. Repeating this procedure for each category, we obtain a set of gradient158

values (one for each category, akin to a tuning curve), for each feature map: glk. Note159

that, as these values result from applying the chain rule through layers of the network,160

they can be very small, especially for the earliest layers. For this study, the sign and161

relative magnitudes are of more interest than the absolute values.162

2.4. Oriented Grating Attention Tasks163

In addition to attending to object categories, we also test attention on simpler164

stimuli. In the orientation detection task, the network detects the presence of a given165

orientation in an image. Again, the final layer of the network is replaced by a series166

of binary classifiers, one for each of 9 orientations (0, 20, 40, 60, 80, 100, 120, 140,167

and 160 degrees. Gratings had a frequency of .025 cycles/pixel). The training sets168

for each were balanced (50% had only the given orientation and 50% had one of 8169

other orientations) and composed of full field (224 by 224 pixel) oriented gratings of170

various colors (to increase the diversity of the training images, they were randomly171

degraded by setting blocks of pixels ranging uniformly from 0% to 70% of the image172

to 0 at random). Test images were each composed of two oriented gratings of different173

orientation and color (color options: red, blue, green, orange, purple). Each of these174

gratings were of size 112 by 112 pixels and placed randomly in a quadrant while the175

remaining two quadrants were black (Figure 6A). Again, the test sets were balanced176

and performance was measured as the average of the true positive and true negative177

rates (100 test images per orientation).178

These same test images were used for a cross-modal attention task wherein the179

network had to classify the color of the grating that had the attended orientation. For180

this, the final layer of the network was replaced with a 5-way softmax color classifier.181

This color classifier was trained using the same full field oriented gratings used to train182

the binary classifiers (therefore, the network saw each color at all orientation values).183

The test sets contained images that all had the attended orientation as one of the two184

gratings (125 images per orientation). Performance was measured as the percent of185

trials wherein the color classifier correctly ranked the color of the attended grating186

highest (top-1 error).187

Finally, for one analysis, a joint feature and spatial attention task was used. This188

task is almost identical to the setup of the orientation detection task, except that the189

searched-for orientation would only appear in one of the four quadrants. Therefore,190

performance could be measured when applying feature attention to the searched-for191

orientation, spatial attention to the quadrant in which it could appear, or both.192
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2.5. How Attention is Applied193

This study aims to test variations of the feature similarity gain model of attention,194

wherein neural activity is modulated by attention according to how much the neuron195

prefers the attended stimulus. To replicate this in our model, we therefore must first196

determine the extent to which units in the network prefer different stimuli (”tuning197

values”). When attention is applied to a given category, for example, units’ activities198

are modulated according to these values. We discuss below the options for how exactly199

to implement that modulation.200

2.5.1. Tuning Values201

To determine tuning to the 20 object categories used, we presented the network202

with images of each object category (the same images on which the binary classifiers203

were trained) and measured the relative activity levels.204

Specifically, for the kth feature map in the lth layer, we define rlk(n) as the activity in205

response to image n, averaged over all units in the feature map (i.e., over the spatial206

dimensions). Averaging these values over all images in the training sets (Nc = 35207

images per category, 20 categories. N=700) gives the mean activity of the feature map208

r̄lk:209

r̄lk =
1

N

N∑
n=1

rlk(n) (3)

Tuning values are defined for each object category, c as:210

f lk
c =

1
Nc

∑
n∈c r

lk(n)− r̄lk√
1
N

∑N
i=1(r

lk(n)− r̄lk)2
(4)

That is, a feature map’s tuning value for a given category is merely the average211

activity of that feature map in response to images of that category, with the mean212

activity under all image categories subtracted and standard deviation divided. These213

tuning values determine how the feature map is modulated when attention is applied214

to the category. Taking these values as a vector over all categories, flk, gives a tuning215

curve for the feature map. We define the overall tuning quality of a feature map as216

its maximum absolute tuning value: max(|flk|). To determine expected tuning quality217

by chance, we shuffled the responses to individual images across category and feature218

map at a given layer and calculated tuning quality for this shuffled data.219

We define the category with the highest tuning value as that feature map’s most220

preferred, and the category with the lowest (most negative) value as the least or anti-221

preferred.222

We apply the same procedure to generate tuning curves for orientation and for223

color by using the full field gratings used to train the orientation detection and color224

classification classifiers. The orientation tuning values were used when applying at-225

tention in these tasks. The color tuning curves were generated only to measure color226

tuning and its quality in the network.227

When measuring how correlated tuning values are with gradient values, shuffled228

comparisons are used. To do this shuffling, correlation coefficients are calculated from229

pairing each feature map’s tuning values with a random other feature map’s gradient230

values.231
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2.5.2. Gradient Values232

In addition to applying attention according to tuning, we also attempt to generate233

the ”best possible” attentional modulation by utilizing gradient values. These gradient234

values are calculated slightly differently from those described above (2.3), because they235

are meant to represent how feature map activity should change in order to increase236

overall task performance, rather than just increase the chance of classifying an image237

as a certain object or orientation.238

The error functions used to calculate gradient values for the category and orienta-239

tion detection tasks were for the binary classifiers associated with each object/orientation.240

A balanced set of test images was used. Therefore a feature map’s gradient value for241

a given object/orientation is the averaged activity change that would increase binary242

classification performance for that object/orientation. Note that on images that the243

network already classifies correctly, gradients are zero. Therefore, the gradient values244

are driven by the errors: false negatives (classifying an image as not containing the245

category when it does) and false positives (classifying an image as containing the cat-246

egory when it does not). In our detection tasks, the former error is more prevalent247

than the latter, and thus is the dominant impact on the gradient values.248

The same procedure was used to generate gradient values for the color classification249

task. Here, gradients were calculated using the 5-way color classifier: for a given250

orientation, the color of that orientation in the test image was used as the correct label,251

and gradients were calculated that would lead to the network correctly classifying the252

color. Averaging over many images of different colors gives one value per orientation253

that represents how a feature map’s activity should change in order to make the254

network better at classifying the color of that orientation.255

In both of the orientation tasks, the test images used for gradient calculations256

(50 images per orientation) differed from those used to assess performance. For the257

object detection task, images used for gradient calculations were merged images (45258

per category) drawn from the same pool as, but different from, those used to test259

detection performance.260

2.5.3. Spatial Attention261

In the feature similarity gain model of attention, attention is applied according262

to how much a cell prefers the attended feature, and location is considered a feature263

like any other. In CNNs, each feature map results from applying the same filter at264

different spatial locations. Therefore, the 2-D position of a unit in a feature map265

represents more or less the spatial location to which that unit responds. Via the max-266

pooling layers, the size of each feature map shrinks deeper in the network, and each267

unit responds to a larger area of image space, but the ”retinotopy” is still preserved.268

Thus, when we apply spatial attention to a given area of the image, we enhance the269

activity of units in that area of the feature maps (and, as we discuss below, possibly270

decrease the activity of units in other areas). In this study, spatial attention is tested271

using array images, and thus attention is applied to a given quadrant of the image.272

2.5.4. Implementation Options273

The values discussed above determine how strongly different feature maps or units274

should be modulated under different attentional conditions. We will now lay out the275

different implementation options for that modulation.276

First, the modulation can be multiplicative or additive. That is, when attending277

to category c, the slope of the rectified linear units can be multiplied by a weighted278
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function of the tuning value for category c:279

xlkij = (1 + βf lk
c )[(I ijlk)]+ (5)

with I ijlk representing input to the unit coming from layer l − 1. Alternatively, a280

weighted version of the tuning value can be added before the rectified linear unit:281

xlkij = [I lkij + µlβf
lk
c ]+ (6)

Strength of attention is varied via the weighting parameter, β. For the additive effect,282

manipulations are multiplied by µl, the average activity level across all units of layer283

l in response to all images (for each of the 13 layers respectively: 20, 100, 150, 150,284

240, 240, 150, 150, 80, 20, 20, 10, 1). When gradient values are used in place of tuning285

values, we normalize them by the maximum value at a layer, to be the same order of286

magnitude as the tuning values: gl/max(
∣∣gl
∣∣).287

Note that for feature-based attention all units in a feature map are modulated the288

same way, as feature attention has been found to be spatially global. In the case of289

spatial attention, object category tuning values are not used. Rather, the tuning value290

term is set to +1 if the i, j position of the unit is in the attended quadrant and to -1291

otherwise. For feature attention tasks, β ranged from 0 to a maximum of 11.85 (object292

attention) and 0 to 4.8 (orientation attention). For spatial attention tasks, it ranged293

from 0 to 2.294

Next, we chose whether attention only enhances units that prefer the attended295

feature/location, or also decreases activity of those that don’t prefer it. For the latter,296

the tuning values are used as-is. For the former, the tuning values are positively-297

rectified: [f lk]+.298

Combining these two factors, there are four implementation options: additive299

positive-only, multiplicative positive-only, additive bidirectional, and multiplicative300

bidirectional.301

The final option is the layer in the network at which attention is applied. We try302

attention at all convolutional layers individually and simultaneously (when applying303

simultaneously the strength range tested is a tenth of that when applying to a single304

layer).305

Note that when gradient values were used, only results from using multiplicative306

bidirectional effects are reported (when tested on object category detection, multi-307

plicative effects performed better than additive when using gradient values).308

2.6. Signal Detection Calculations309

For the joint spatial-feature attention task, we calculated criteria (c, ”threshold”)310

and sensitivity (d′) using true (TP) and false (FP) positive rates as follows [53] :311

c = −.5(Φ−1(TP ) + Φ−1(FP )) (7)

where Φ−1 is the inverse cumulative normal distribution function. c is a measure of312

the distance from a neutral threshold situated between the mean of the true negative313

and true positive distributions. Thus, a positive c indicates a stricter threshold (fewer314

inputs classified as positive) and a negative c indicates a more lenient threshold (more315
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inputs classified as positive).316

d′ = Φ−1(TP )− Φ−1(FP ) (8)

This measures the distance between the means of the distributions for true negative317

and two positives. Thus, a larger d′ indicates better sensitivity.318

When necessary, a correction was applied wherein false positive rates of 0 were set319

to .01 and true positive rates of 1 were set to .99.320

2.7. ”Recording” Procedures321

We examined the effects that applying attention at certain layers in the network322

(specifically 2, 6, 8, 10, and 12) has on activity of units at other layers. We do this for323

many different circumstances, using multiplicative bidirectional attention with β = .5324

unless otherwise stated.325

2.7.1. Unimodal Task Recording Setup326

This recording setup is designed to mimic the analysis of [56]. Here, the images327

presented to the network are full-field oriented gratings of all orientation-color combi-328

nations. Feature map activity is measured as the spatially averaged activity of all units329

in a feature map in response to an image. Activity in response to a given orientation330

is further averaged over all colors. Each feature map’s preferred (most positive tuning331

value) and anti-preferred (most negative tuning value) orientations are determined.332

Activity is recorded when attention is applied to the preferred or anti-preferred orien-333

tation and activity ratios are calculated. According to the FSGM, the ratio of activity334

when the preferred orientation is attended over when the anti-preferred is attended335

should be greater than one and the same regardless of whether the image is of the pre-336

ferred or anti-preferred orientation. According to the feature matching (FM) model,337

the ratio of the activity when attending the presented orientation over attending an338

absent orientation should be greater than one and similar regardless of whether the339

orientation is preferred or not. We measure all of these ratios, and the fraction of total340

feature maps which show FM behavior, when attention is applied according to tuning341

values or gradient values.342

As in [56], we also look at a measure of activity changes across all orientations.343

We calculate the ratio of activity when attention is applied to a given orientation344

(and the orientation is present in the image) over activity in response to the same345

image when no attention is applied. These ratios are then organized according to346

orientation preference: the most preferred is at location 0, then the average of next347

two most preferred at location 1, and so on with the average of the two least preferred348

orientations at location 4 (the reason for averaging of pairs is to match [56] as closely349

as possible). Fitting a line to these points gives a slope and intercept for each feature350

map. FSGM predicts a negative slope and an intercept greater than one.351

We also calculate the same activity ratios described above when the images pre-352

sented are standard (single image) ImageNet images from each of the 20 categories353

(activity is averaged over 5 images per category). Attention is applied according to354

object category tuning values or to gradient values for binary classification as described355

in 2.5.2.356
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2.7.2. Cross-modal Task Recording Setup357

Cross-modal tasks involve attending to one modality (here, space or orientation)358

and reading out another (category or color, respectively). Specifically, in the first task,359

activity is recorded when spatial attention is applied to a given quadrant. Here, the360

activity for each feature map is averaged only over units in the quadrant that matches361

the attended quadrant. The images used are array images with 6 examples of each362

object category in the attended quadrant (for a total of 120 images). Activity ratios are363

calculated as the activity when the recorded quadrant is attended over activity when364

no attention is applied. The average ratio for each category is organized according to365

category preference for each feature map and a line is fit to these points. The intercept366

(measured here as the true intercept minus one) and difference (slope multiplied by367

the number of categories minus one, 19) are calculated for each feature map. FSGM368

predicts a positive intercept and zero slope, because responses to all categories should369

be scaled equally by spatial attention.370

The second cross-modal task setup involves measuring color encoding in different371

attention conditions. Here, images similar to those used in the orientation detection372

and color classification tasks are used. Specifically, images are generated that have two373

oriented gratings in two of the four quadrants. One is oriented at 160 degrees and the374

other nearly orthogonal at 80. All pairs of colors are generated for the two gratings375

(thus the two gratings may have the same color, which is a difference from the stimuli376

used in the orientation tasks). Activity is organized according to the color of the 160377

degree grating (and averaged over the colors of the 80 degree grating), in order from378

most to least preferred color for each feature map. Lines were fit to these points in379

two cases: when attention was directed to 80 degrees and when it was directed to 160380

degrees. We then asked if attention to 160 degrees led to better encoding of the color of381

the 160 degree stimulus compared to attention to 80 degrees. We considered a feature382

map to have better color encoding of the 160 degree grating if its mean increased (a383

stronger overall signal, measured as the activity value at the middle of the line) and384

if its slope became more negative (stronger differentiation between colors). Results385

are similar if only the latter condition is used. We measure the encoding changes for386

two separate populations of feature maps: those that prefer 160 degrees and those387

that anti-prefer it (most negative tuning value). Stimuli at 160 degrees were chosen as388

the focus of this analysis because across all layers there are roughly equal numbers of389

feature maps that prefer and anti-prefer it. Percent of feature maps that have better390

encoding were measured when attention was applied according to orientation tuning391

values or color classification gradient values.392

In all cases, lines are fit using the least squares method, and any activity ratios393

with zero in the denominator were discarded.394

2.8. Experimental Data395

Model results were compared to previously published data coming from several396

studies. In [55], a category detection task was performed using stereogram stimuli397

(on object present trials, the object image was presented to one eye and a noise mask398

to another). The presentation of the visual stimuli was preceded by a verbal cue399

that indicated the object category that would later be queried (cued trials) or by400

meaningless noise (uncued trials). After visual stimulus presentation, subjects were401

asked if an object was present and, if so, if the object was from the cued category402

(categories were randomized for uncued trials). In Experiment 1, the object images403
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were line drawings (one per category) and the stimuli were presented for 1.5 sec. In404

Experiment 2, the object images were grayscale photographs (multiple per category)405

and presented for 6 sec. True positives were counted as trials wherein a given object406

category was present and the subject correctly indicated its presence when queried.407

False positives were trials wherein no category was present and subjects indicated that408

the queried category was present.409

In [54], a similar detection task is used. Here, subjects detect the presence of an410

uppercase letter that is (on target present trials) presented rapidly and followed by411

a mask. Prior to the visual stimulus, a visual or audio cue indicated a target letter.412

After the visual stimulus, the subjects were required to indicate whether any letter413

was present. True positives were trials in which a letter was present and the subject414

indicated it (only uncued trials or validly cued trials—where the cued letter was the415

letter shown—were considered here). False positives were trials where no letter was416

present and the subject indicated that one was.417

The task in [41] is also an object category detection task. Here, an array of several418

images was flashed on the screen with one image marked as the target. All images419

were color photographs of objects in natural scenes. In certain blocks, the subjects420

knew in advance which category they would later be queried about (cued trials). On421

other trials, the queried category was only revealed after the visual stimulus (uncued).422

True positives were trials in which the subject indicated the presence of the queried423

category when it did exist in the target image. False positives were trials in which424

the subject indicated the presence of the cued category when it was not in the target425

image. Data from trials using basic category levels with masks were used for this426

study.427

Finally, we include one study using macaques wherein both neural and performance428

changes were measured [58]. In this task, subjects had to report a change in orientation429

that could occur in one of two stimuli. On cued trials, the change occurred in the cued430

stimulus in 80% of trials and the uncued stimulus in 20% of trials. On neutrally-cued431

trials, subjects were not given prior information about where the change was likely432

to occur (50% at each stimulus). Therefore performance could be compared under433

conditions of low (uncued stimuli), medium (neutrally cued stimuli), and high (cued434

stimuli) attention strength. Correct detection of an orientation change in a given435

stimulus (indicated by a saccade) is considered a true positive and a saccade to the436

stimulus prior to any orientation change is considered a false positive. True negatives437

are defined as correct detection of a change in the uncued stimulus (as this means the438

subject correctly did not perceive a change in the stimulus under consideration) and439

false negatives correspond to a lack of response to an orientation change.440

In cases where the true and false positive rates were not published, they were441

obtained via personal communications with the authors.442

3. Results443

The ability to manipulate activities as well as measure performance on complicated444

visual tasks make CNNs a great testing ground for theories of attention. CNNs trained445

on visual object recognition learn representations that are similar to those of the446

ventral stream. The network used in this study was explored in [29], where it was447

shown that early convolutional layers of this CNN are best at predicting activity of448

voxels in V1, while late convolutional layers are best at predicting activity of voxels in449
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Figure 2: Relationship Between Feature Map Tuning and Gradients. A.) Example tuning values
(green, left axis) and gradient values (purple, right axis) of three different feature maps from three
different layers (identified in titles, layers as labeled in Fig 1A) over the 20 tested object categories.
Correlation coefficients between tuning curves and gradient values given in titles. B.) Histograms of
correlation coefficients across all feature maps at each layer (blue) along with shuffled comparisons
(orange). Final subplot shows average correlation coeffecients across layers (errorbars +/- S.E.M.).
C.) Distributions of gradient values when tuning is strong. In red, histogram of gradient values
associated with tuning values larger than one, across all feature maps in layer 12 (left) and 13 (right).
For comparison, histograms of gradient values associated with tuning values less than one are shown
in black (counts are separately normalized for visibility, as the population in black is much larger
than that in red).
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the object-selective lateral occipital area (LO). In addition, CNN architecture makes450

comparison to biological vision straightforward. For example, the application of a451

given convolutional filter results in a feature map, which is a 2-D grid of artificial452

neurons that represent how well the bottom-up input aligns with the filter at each453

location. Therefore a ”retinotopic” layout is built into the structure of the network,454

and the same visual features are represented across that retinotopy (akin to how cells455

that prefer different orientations exist at all locations across the V1 retinotopy). We456

utilize these properties to test variants of the feature similarity gain model (FSGM)457

on a diverse set of visual tasks that are challenging for the network. We also take458

advantage of the full observability of this network model to compare the FSGM to459

”optimal” attentional manipulation, as determined by backpropagation calculations.460

3.1. The Relationship between Tuning and Classification461

The feature similarity gain model of attention posits that neural activity is modu-462

lated by attention in proportion to how strongly a neuron prefers the attended features,463

as assessed by its tuning. However, the relationship between a neuron’s tuning and its464

ability to influence downstream readouts remains a difficult one to investigate biolog-465

ically. We use our hierarchical model to explore this question directly. We do so by466

calculating gradient values, which we compare to tuning curves (see Methods Sections467

2.3 and 2.5.1 for details). These gradient values indicate the way in which activity of a468

feature map should change in order to make the network more likely to classify an im-469

age as being of a certain object category. If there is a correspondence between tuning470

and classification, a feature map that prefers a given object category (that is, responds471

strongly to it compared to other categories) should also have a high positive gradient472

value for that category. In Figure 2A we show gradient values and tuning curves for473

three example feature maps. In Figure 2B, we show the distribution of correlation co-474

efficients between tuning values and gradient values for all feature maps at each of the475

13 convolutional layers. As can be seen in the final subplot, on average, tuning curves476

show higher than expected correlation with gradient values at all layers (compared to477

shuffled controls). Furthermore, this correlation increases with later layers. While the478

correlation between tuning and gradient values suggests that a feature map’s response479

is indicative of its functional role, the correspondence is not perfect. In Figure 2C,480

we show the gradient values of feature maps at layers 12 and 13, segregated according481

to tuning value. In red are gradient values that correspond to tuning values greater482

than one (for example, category 12 for the feature map in the middle pane of Figure483

2A). As these distributions show, strong tuning values can be associated with weak or484

even negative gradient values. Negative gradient values indicate that increasing the485

activity of that feature map makes the network less likely to categorize the image as486

the given category. Therefore, even feature maps that strongly prefer a category (and487

are only a few layers from the classifier) still may not be involved in its classification,488

or even be inversely related to it.489

3.2. Feature-based Attention Improves Performance on Challenging Object Classifica-490

tion Tasks491

To determine if manipulation according to tuning values can enhance performance,492

we created challenging visual images composed of multiple objects for the network to493

classify. These test images are of two types: merged (two object images transparently494

overlaid, such as in [84]) or array (four object images arranged on a grid) (see Figure495
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Figure 3: Effects of Applying Feature-Based Attention on Object Category Tasks. A.) Schematics of
how attention can modulate the activity function. Feature-based attention modulates feature maps
according to their tuning values but this modulation can scale the activity multiplicatively or addi-
tively, and can either only enhance feature maps that prefer the attended category (positive-only) or
also decrease the activity of feature maps that do not prefer it (bidirectional). B.) Considering the
combination of attention applied to a given category at a given layer as an instance (20 categories
* 14 layer options = 280 instances), histograms (left axis) show how often the given option is the
best performing, for merged (top) and array (bottom) images. Average increase in binary classifi-
cation performance for each option also shown (right axis, averaged across all instances, errorbars
+/- S.E.M.) C.)Comparison of performance effects of layer options. Considering each instance as
the combination of attention applied to a given category using a given implementation option (20
categories * 4 implementation options = 80 instances), histograms show how often applying attention
to the given layer is the best performing, for merged (top) and array (bottom) images. The final col-
umn corresponds to attention applied to all layers simultaneously with the same strength (strengths
tested are one-tenth of those when strength applied to individual layers). Average increase in binary
classification performance for each layer also shown in black (right axis, errorbars +/- S.E.M.). Aver-
age performance increase for MBD option only shown in blue. In all cases, best performing strength
from the range tested is used for each instance. D.) Tuning quality across layers. Tuning quality is
defined per feature map as the maximum absolute tuning value of that feature map. Box plots show
distribution across feature maps for each layer. Average tuning quality for shuffled data: .372± .097
(this value does not vary significantly across layers)
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1C for an example of each). The task for the network is to detect the presence or496

absence of a given object category in these images. It does so using a series of binary497

classifiers trained on standard images of these objects, which replace the last layer498

of the network (Figure 1B). The performance of these classifiers on the test images499

indicates that this is a challenging task for the network (Figure 1D), and thus a good500

opportunity to see the effects of attention. Without attention, the average performance501

of the binary classifiers across all categories is 64.4% on merged images and 55.6%502

on array (compared to a chance performance of 50%, as the test sets contained the503

attended category 50% of the time).504

We implement feature-based attention in this network by modulating the activity505

of feature maps according to how strongly they prefer the attended object category506

(see Methods 2.5.1). While tuning values determine the relative strength and direction507

of the modulation, there are still options regarding how to implement those changes.508

We test additive effects (wherein attention alters the activity of a feature map by509

the same amount regardless of its activity level) and multiplicative effects (attention510

changes the slope of the activity function). We also consider the situation where511

attention only increases the activity of feature maps that prefer the attended category512

(i.e., have a positive tuning value), or when attention also decreases the activity of513

feature maps that do not prefer the attended category. Taken together this leads514

to four implementation options: additive positive-only, multiplicative positive-only,515

additive bidirectional, and multiplicative bidirectional (see Figure 3A for depictions of516

each, and Methods 2.5.4 for details). A final option is the choice of convolutional layer517

at which these manipulations are applied.518

To determine which of these attention mechanisms is best, attention is applied519

to each object category and the performance of the binary classifier associated with520

that category is compared with and without the different activity manipulations. The521

results of this are shown in Figure 3B and C (the best performing strength, including522

0 if necessary, is assumed for each category. See Methods for details).523

As Figure 3B shows, multiplicative bi-directional effects are best able to enhance524

performance, measured in terms of the number of times that the multiplicative bidirec-525

tional option beats out the other three options when compared for the same category526

and layer (blue histogram). The second best option is multiplicative positive-only,527

then additive bidirectional, and additive positive-only. This ordering is the same when528

looking at the average increase in performance (black line), however, the differences529

between multiplicative bi-directional and multiplicative positive-only performance are530

not significant. Furthermore, these trends are identical regardless of whether tested531

on merged (top) or array (bottom) images, though the differences are starker for array532

images.533

Figure 3C shows a similar analysis but across layers at which attention is applied.534

Again, the trends are the same for merged and array images and show a clear increase535

in performance as attention is applied at later layers in the network (numbering is as536

in 1A). Across all implementation options, attention at layer 12 best increases average537

performance (black lines). However this is driven by the additive implementations.538

We show the average performance increase with layer for multiplicative bi-directional539

effects alone (blue dotted line). For this the final layer is best, leading to an 18.8%540

percentage point increase in binary classification on the merged image task and 22.8%541

increase on the array task.542

The trends in performance track trends in tuning quality shown in 3D. That is,543
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layers with better object category tuning lead to better performance when attention is544

applied at them. They also track the correlation between tuning values and gradient545

values, as that correlation increases with later layers.546

Overall, the best performing options for implementing attention—multiplicative547

bidirectional effects applied at later layers—are in line with what has been observed548

biologically and described by the feature similarity gain model [92, 57].549

3.3. Strength of Attention Influences True and False Positive Tradeoff550

As mentioned above, strength is a relevant variable when implementing attention.551

Specifically, the strength parameter, which we call β, scales the tuning values to deter-552

mine how strongly attention modulates activities (in the case of additive effects, this553

value is further multiplied by the average activity level of the layer before being added554

to the response). We tested a range of β values and the analysis in Figure 3 assumes555

the best-performing β for each combination of category, layer, and implementation556

option. Here, we look at how performance changes as the strength varies.557

Figure 4A (top) plots the increase in binary classification performance (averaged558

across all categories) as a function of strength for the four different implementation559

options, when attention is applied at layer 12 for merged images (results similar for560

array images). From this we can see that not only is the multiplicative bidirectional561

manipulation the best performing, it also reaches its peak at a lower strength than the562

other options.563

On the bottom of Figure 4A, we show the best performing strength (calculated564

for each category individually and averaged) across layers, and when applied to all565

layers simultaneously. It is clear from this analysis that multiplicative bidirectional566

effects consistently require lower strength to reach maximum performance than other567

options. Furthermore, the fact that the best performing strengths occur below the568

peak strength tested (β = 11.85 for individual layers and β = 1.19 for all layers569

simultaneously) indicates that any performance limitations are not due to a lack of570

strength. The best performing strength for additive attention at layer 13 is surprisingly571

high. To understand why this may be, it is important to remember that, when using572

additive attention, the attention value added to each unit’s response is the product573

of the relevant tuning value, β, and the average activity level of the layer. This is574

necessary because average activity levels vary by 2 orders of magnitude across layers.575

The variability of activity across feature maps, however, is much higher at layer 13576

compared to layers 1 through 12. This makes the mean activity level used to calculate577

attention effects less reliable, which may contribute to why higher β values are needed.578

Performance can change in different ways with attention. In Figure 4B we break the579

binary classification performance down into true and false positive rates. Here, each580

colored line indicates a different category and increasing dot size indicates increasing581

strength of attention (multiplicative bidirectional effects used). True and false positive582

rates in the absence of attention have been subtracted such that all categories start583

at (0,0). Ideally, true positives would increase without an equivalent increase (and584

possibly with a decrease) in false positive rates. If they increase in tandem (i.e.,585

follow the black dotted lines) then attention would not have a net beneficial effect on586

performance.587

Looking at the effects of applying attention at different layers (layer labeled in588

gray), we can see that attention at lower layers is less effective at moving the per-589

formance in this space, and that movement is in somewhat random directions. As590
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Figure 4: Effects of Varying Attention Strength in Feature-Based Attention Tasks. A.) Effect of
strength on different implementation options. On the top, performance averaged over categories (er-
rorbars +/- S.E.M.) shown as a function of the strength parameter, β, for each implementation option.
Attention is applied to layer 12 and on merged images. The location of the peak for each category
individually is the best performing strength for that category. On the bottom, the best performing
strength averaged across categories (errorbars +/- S.E.M.) at each layer for each implementation
option. When applied at all layers simultaneously, the range of attention strength tested was smaller.
Color scheme as in Figure 1A. B.) and C.) multiplicative bidirectional attention is used, on merged
images. B.) Effect of strength increase in true- and false-positive rate space for each of four layers
(layer indicated in bottom right of each panel). Each line represents performance changes that arise
from applying attention to a different category (only 10 categories shown for visibility), with each
increase in dot size representing a .15 increase in strength. Baseline (no attention) values are sub-
tracted for each category such that all start at (0,0) and the layer attention is applied to is indicated
in gray. The black dotted line represents equal changes in true and false positive rates. C.) Effect of
strength increase in true- and false-positive rate space when tuning values are negated. Same as B,
but with sign of attention effects switched (only attention at layer 7 and 13 shown). D.) Comparisons
from experimental data. The true and false positive rates from four previously published studies are
shown for conditions of increasing attentional strength (solid lines). True and false positive rates
are shown for merged and array images (dotted lines, averaged over categories) when attention is
applied with increasing strengths (starting at 0, each increasing dot size equals .15 increase in β) at
layer 13 (multiplicative bidirectional effects). Receiver operator curve for merged images shown in
gray. Cat-Drawings=[55], Exp. 1; Cat-Images=[55],Exp. 2; Objects=[41], Letter-Aud.=[54], Exp. 1;
Letter-Vis.=[54], Exp. 2. Ori-Change=[58]. See Methods for details of experiments.
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attention is applied at later layers, true positive rates are more likely to increase and591

the increase in false positive rates is delayed. Thus, when attention is applied with592

modest strength at layer 13, most categories see a substantial increase in true posi-593

tives with only modest increases in false positives. As strength continues to increase594

however, false positives increase substantially and eventually lead to a net decrease in595

overall classifier performance (i.e., cross the black dotted line). Without attention the596

false negative rate is 69.7±21.8% and decreases to 19.9±10% using the best perform-597

ing strength for each category. Without attention the false positive rate is 1.4± 3.1%598

and increases to 13.7± 7.7% using the best performing strength for each category.599

To confirm that these behavioral enhancements result from the targeted effects of600

attention, rather than a non-specific effect of activity manipulation, we apply multi-601

plicative bi-directional attention using negated tuning values. Because tuning values602

sum to zero over all feature maps and categories, using negated tuning values doesn’t603

change the overall level of positive and negative modulation applied to the network.604

Applying attention this way, however, leads to unambiguously different results. Figure605

4C shows these results, plotted in the same format as Figure 4B, for attention at layers606

7 and 13. Using negated tuning values leads to a decrease in true and false positive607

values with increasing attention strength. Thus, attention appears to function as a608

knob that can turn true and false positives up or down in an intuitive way.609

It would be useful to know how the magnitude of neural activity changes in our610

model compare to those used by the brain. Experimentally, the strength of attention611

can be manipulated by controlling the presence and/or validity of cues [58], switching612

attention from the non-preferred to preferred stimulus can have large effects on firing613

rate (111% increase in MT [46]). Before the presentation of a target array, cells in614

IT showed a 40% increase in firing when the to-be-detected object was preferred615

versus non-preferred [13]. Of most direct relevance to this study, however, is the616

modulation strength when switching from no or neutral attention to specific feature-617

based attention, rather than switching attention from a non-preferred to a preferred618

stimulus. In [56], neurons in MT showed an average increase in activity of 7% when619

attending their preferred motion direction (and similar decrease when attending the620

non-preferred) versus a neutral attention condition.621

In our model, when β = .75 (roughly the value at which performance with multi-622

plicative bidirectional effects peaks at later layers), given the magnitude of the tuning623

values (average magnitude: .38), attention scales activity by an average of 28.5%. This624

value refers to how much activity is modulated in comparison to a the β = 0 condi-625

tion. This β = 0 condition is probably more comparable to passive or anesthetized626

viewing, as task engagement has been shown to scale neural responses generally [70].627

This complicates the relationship between modulation strength in our model and the628

values reported in the data.629

To allow for a more direct comparison, in Figure 4D, we have collected the true630

and false positive rates obtained experimentally during different object detection tasks631

(explained in detail in Methods), and plotted them in comparison to the model results.632

The first five studies plotted in Figure 4D come from human studies. In all of these633

studies, uncued trials are those in which no information about the upcoming visual634

stimulus is given, and therefore attention strength is assumed to be low. In cued635

trials, the to-be-detected category is cued before the presentation of a challenging636

visual stimulus, allowing attention to be applied to that object or category. The637

tasks range from detecting simple, stereotyped stimuli (e.g. letters) to highly-varied638
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photographic instances of a given category. Not all changes in performance were639

statistically significant, but we plot them here to show general trends.640

The majority of these experiments show a concurrent increase in both true and false641

positive rates as attention strength is increased. The rates in the uncued conditions642

(smaller dots) are generally higher than the rates produced by the β = 0 condition643

in our model, which suggests that neutrally cued conditions do indeed correspond to644

a value of β > 0. We can determine the average β value for the neutral and cued645

conditions by projecting the data values onto the nearest point on the model line646

(each dot on the model line corresponds to an increase in β of .15). Specifically, we647

project the values from the four datasets whose experiments are most similar to our648

merged image task (Cat-Drawings, Cat-Images, Letter-Aud, and Letter-Vis) onto the649

model line generated from using the merged images. Through this, we find that the650

average β value for the neutral conditions is .39 and for the attended conditions .53.651

Because attention scales activity by 1 + βf lk
c (where f lk

c is the tuning value and the652

average tuning value magnitude is .38), these changes correspond to a ≈5% change653

in activity. Thus, the size of observed performance changes is broadly consistent with654

the size of observed neural changes.655

Among the experiments used, the one labeled ”Cat-Images” is an outlier, as it has656

much higher true positive and lower true negative rates than the model can achieve657

simultaneously. This experimental setup is the one most similar to the merged im-658

ages used in the model (subjects are cued to attend a given category and grayscale659

category images are presented with a concurrent noise mask), however, the images660

were presented for 6 seconds. This presumably allows for several rounds of feedback661

processing, which our purely feedforward model cannot capture. Notably though, true662

and false positive rate still increase with attention in this ask.663

Another exception is the experiment labeled as ”Cat-Circ”, which has a larger664

overall false positive rate and shows a decrease in false positives with stronger attention.665

In this study, a single target image is presented in a circular array of distractor images,666

and the subject may be cued ahead of time as to which object category will need to667

be detected in that target image. The higher false positive rates in this experiment668

may be attributable to the fact that the distractors were numerous and were pixelated669

versions of real images. Attention’s ability to decrease false positives, however, suggests670

a different mechanism than the one modeled here. The reason for this difference is not671

clear. However, in this experiment, the cued trials were presented in blocks wherein672

the same category was to be detected in each trial, whereas for the uncued trials, the673

to-be-detected category changed trialwise. The block structure for the attended trials674

may have allowed for a beneficial downstream adaptation to the effects of attention,675

which reined in the false positive rate.676

The last dataset included in the plot (Ori-Change) differs from the others in sev-677

eral ways. First, it comes from a macaque study that also measured neural activity678

changes, which allows for a direct exploration of the relationship between neural and679

performance effects. The task structure is different as well: subjects had to detect an680

orientation change in one of two stimuli. For cued trials, the change occurs at the cued681

stimulus on 80% of trials. Attention strength could thus be low (for the uncued stimuli682

on cued trials), medium (for both stimuli on neutrally-cued trials), or high (for the683

cued stimuli on cued trials). While this task includes a spatial attention component,684

it is still useful as a test of feature-based attention effects. Previous work has demon-685

strated that, during a change detection task, feature-based attention is deployed to the686
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pre-change features of a stimulus [16, 59]. Therefore, because the pre-change stimuli687

are of differing orientations, the cueing paradigm used here controls the strength of688

attention to orientation as well. So, while this task differs somewhat from the one689

performed by the model, it can still offer broad insight into how the magnitude of690

neural changes relates to the magnitude of performance changes.691

We plot the true positive (correct change detection) and false positive (premature692

response) rates as a function of strength as the yellow line in 4D. Like the other693

studies, this study shows a concurrent increase in both true and false positive rates694

with increasing attention strength. According to recordings from V4 taken during695

this task, average firing rates increase by 3.6% between low and medium levels of696

attention. To achieve the performance change observed between these two levels the697

model requires a roughly 12% activity change. This gap may indicate the role of698

other biologically observed effects of attention (e.g., on Fano Factor and correlations)699

in performance enhancement, or the smaller effect in the data may be due to the700

averaging of both positive and negative changes (because the stimuli were optimized701

for a subset of the recorded neurons, positive changes would be expected on average).702

Firing rates increased by 4.1% between medium and high attention strength conditions.703

For the model to achieve the observed changes in true positive rates alone between704

these levels requires a roughly 6% activity change. However, the data shows a very705

large increase in false positives between these two attention strengths, which would706

require a roughly 20% activity change in the model. This high rate of false positives707

points to a possible effect of attention downstream of sensory processing.708

Finally, we show in this plot the change in true and false positive rates when the709

threshold of the final layer binary classifier is varied (a receiver operating characteristic710

analysis. No attention was applied during this analysis). The gray line in Figure711

4D shows this analysis for merged images. Comparing this to the effect of varying712

attention strength (pink line), it is clear that varying the strength of attention applied713

at the final convolutional layer has more favorable performance effects than altering714

the classifier threshold. This points to the role of attentional modulation in sensory715

areas, rather than targeting only downstream ”readout” areas.716

Overall, the findings from these studies suggest that much of the change in true717

and false positive rates observed experimentally could be attributed to moderately-718

sized changes in neural activity in sensory processing areas. However, it is clear that719

the details of the experimental setup are relevant, both for the absolute performance720

metrics and how they change with attention [68].721

An analysis of performance changes in the context of signal detection theory (sen-722

sitivity and criteria) will come later.723

3.4. Spatial Attention Increases Object Categorization Performance724

In addition to feature-based attention, we also test the effects of spatial attention725

in this network. For this, we use our array images, and the task of the network726

is to correctly classify the object category in the attended quadrant of the image.727

Therefore, the original final layer of the network which performs 1000-way object728

categorization is used (Figure 5A). The same implementation and layer options were729

tested and compared to 1000-way classification performance without attention (see730

Methods 2.5.4). However, tuning values were not used; rather, because the spatial731

layout of activity is largely conserved in CNNs, an artificial neuron was assumed to732

”prefer” a given quadrant of the image if that unit was in the corresponding quadrant733
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of the feature map.734

In Figure 5B, the performance (classification was considered correct if the true735

category label appeared in the top five categories outputted by the network, but trends736

are the same for top-1 error) is shown as a function of attention strength for each of737

the four options. The layer at which attention is applied is indicated by the line color.738

Because tuning values are not used for the application of spatial attention, the β value739

can be interpreted directly as the amount of activity modulation due to attention740

(recall that for multiplicative effects rates are multiplied by 1 + β).741

Using experimentally-observed performance changes to relate our model to data742

(as we did in Figure 4D) is more challenging for the spatial attention case because the743

specific tasks used are more varied. Using the performance on trials with a neutral744

spatial cue as a baseline, we report the impact of spatial attention as the factor by745

which performance increases on trials with valid spatial cues. Experimentally, spatial746

attention scales performance by ≈19% on a color recognition task [28], ≈16% on an747

orientation categorization task [20], ≈10% on an orientation classification task [78] and748

a gap detection task [64], and ≈3.3% on a red line detection task [89]. Spatial attention749

effects range in magnitude but have been shown to increase neural activity by ≈20% in750

several studies [61, 18] when calculated for attend-in versus attend-out conditions. If751

we assume that attend-in and attend-out conditions scale activity in opposite directions752

(bi-directional effects) but with equal magnitude from a baseline [58], then spatially753

cued trials should have a roughly 10% change in activity compared to neutral trials.754

As mentioned above, the β = 0 condition in our model is not necessarily comparable755

to a neutrally-cued condition experimentally, so it is unclear what performance level in756

our model should be used as a baseline. However, going from β = 0 to β = .1 enhances757

performance from 14% correct to an average (across attention at each layer) of 17.4%758

correct. This is a 24.2% increase in accuracy stemming from a 22% change in activity759

on attend-in versus attend-out conditions. Again, these simple calculations suggest760

that the experimentally-observed magnitude of neural modulations could indeed lead761

to the observed magnitude of behavioral changes.762

It is also of note that performance in the case of multiplicative bidirectional effects763

plateaus around β = 1, yet for multiplicative positive-only effects it continues to climb.764

This suggests that the suppressing of the three non-attended quadrants is a strong765

driver of the performance changes when using multiplicative bidirectional effects, as766

this suppression is complete at β = 1 (i.e., activity is 100% silenced at that value).767

While it is not believed that spatial attention leads to complete silencing of cells768

representing unattended locations, these results highlight the potential importance of769

scaling such activity downward.770

Figure 5C and D summarize the performance enhancements that result from differ-771

ent options (assuming the best performing strengths, as in Figure 3B and C). Unlike772

feature-based attention, spatial attention is relatively insensitive to the layer at which773

it is applied, but is strongly enhanced by using multiplicative bidirectional effects com-774

pared to others. This discrepancy makes sense when we consider that spatial attention775

tasks are cross-modal—that is, they involve attending to one dimension (space) and776

reading out another (object category)—whereas the object detection tasks used above777

are unimodal—the same dimension (object category) is attended to and read out. In778

a cross-modal task it is not valuable just to amplify the attended attribute, but rather779

to amplify the information carried by the attended attribute. Assuming the absolute780

difference in rates across cells is relevant for encoding object identity, multiplicative781
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Figure 5: Spatial Attention Task and Results. A.) Array images were used to test spatial attention.
Performance was measured as the ability of the original 1000-way classifier to identify the category
in the attended quadrant (measured as top-5 error). Attention was applied according to the spatial
layout of the feature maps (for example, when attending to the upper left quadrant of the image,
units in the upper left quadrant of the feature maps are enhanced). B.) 1000-way classification
performance as a function of attention strength, when applied at different layers (indicated by line
darkness) and for each of the four attention options. C.) Comparison of performance effects of
attention options (using best performing strength). Histograms (left axis) show how often the given
option is the best performing (over 4 quadrants * 14 layer options = 56 instances). Average increase
in 1000-way classification performance for each option also shown (right axis, errorbars +/- S.E.M.).
D.) Histograms (over 4 quadrants * 4 implementation options = 16 instances) show how often the
applying attention to the given layer is the best performing. The final column corresponds to attention
applied to all layers simultaneously (strength at one-tenth that of strength applied to individual
layers). Average increase in 1000-way classification performance for each layer also shown (right axis,
errorbars +/- S.E.M.).
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effects amplify these informative differences and can thus aid in object classification782

in the attended quadrant. In a system with noise, attention’s benefits would depend783

on the extent to which it simultaneously enhanced the non-informative noise. Exper-784

imentally, attention leads to a decrease in mean-normalized variance in firing across785

trials [15].786

Another difference between feature-based and spatial attention is the effect of ap-787

plying attention at all layers simultaneously. When applying attention at all layers,788

the β values tested are one-tenth that of when attention is applied at individual lay-789

ers. Despite this weakened strength, applying attention at all layers leads to better790

performance in the spatial attention task than applying it to any layer individually.791

In the feature-based attention task, this is not the case (Figure 3C). This difference is792

explored more directly later.793

3.5. Feature-based Attention Enhances Performance on Orientation Detection and794

Color Classification Tasks795

Some of the results presented above, particularly those related to the layer at796

which attention is applied, may be influenced by the fact that we are using an object797

categorization task. To see if results are comparable using simpler stimuli, we created798

an orientation detection task (Figure 6A), wherein binary classifiers trained on full799

field oriented gratings are tested using images that contain two gratings of different800

orientation and color. The performance of these binary classifiers without attention801

is above chance (distribution across orientations shown in inset of Figure 6A). The802

performance of the binary classifier associated with vertical orientation (0 degrees) was803

abnormally high (92% correct without attention, other orientations average 60.25%)804

and this orientation was excluded from further analysis for the detection task.805

Attention is applied according to orientation tuning values of the feature maps806

(tuning quality by layer is shown in Figure 6C) and tested across layers (using multi-807

plicative bidirectional effects). We find that the trend in this task is similar to that of808

the object task: applying attention at later layers leads to larger performance increases809

(14.4% percentage point increase at layer 10). This is despite the fact that orientation810

tuning quality peaks in the middle layers.811

We also explore a cross-modal attention task that is in line with the style of cer-812

tain attention experiments in neuroscience and psychology [80, 67, 98]. Specifically,813

the task for the network is to readout the color of the stimulus in the image with814

the attended orientation (Figure 6B, mean 5-way classification performance without815

attention: 42.89%). Thus, attention is applied according to orientation tuning values,816

but the final layer of the network is a 5-way color classifier. This is akin to studies817

where the task of the subject is, for example, to report a speed change in random dots818

that are moving in the attended direction. Interestingly, in this case attention applied819

at earlier layers (specifically layers 2-6, best performance increase is 7.8 percentage820

points at layer 2) performs best. Color tuning quality is stronger at earlier layers as821

well (layers 1-3 particularly).822

The β values that lead to peak performance in the detection task at later layers823

ranges from .5 to 1. Given that β scales the tuning values and the average tuning824

value magnitude at later layers is .32, the average modulation strength (compared825

to the β = 0 condition) is 16%-32%. For the color classification task the successful826

modulation at earlier layers ranges from 13-28%. Therefore the two different tasks827

require similar modulations.828
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Figure 6: Attention Tasks and Results Using Oriented Gratings. A.) Orientation detection task.
Like with the object category detection tasks, separate binary classifiers trained to detect each of 8
different orientations replaced the final layer of the network. Test images included 2 oriented gratings
of different color and orientation located at two of 4 quadrants. Insets show performance over 9 orien-
tations without attention B.) Color classification task. The final layer of the network is replaced by a
single 5-way color classifier. The same test images are used as in the detection task and performance is
measured as the ability of the classifier to identify the color of the attended orientation. Inset shows
performance over 9 orientations without attention (chance is 25%) C.) Orientation tuning quality
(top) and color tuning quality (bottom) as a function of layer. D.) Comparison of performance on
detection task when attention (determined by orientation tuning values) is applied at different layers.
Histogram of best performing layers in blue, average increase in binary classification performance in
black. E.) Comparison of performance on color classification task when attention (determined by
orientation tuning values) is applied at different layers. Histogram of best performing layers in blue,
average increase in 5-way classification performance in black. Errorbars are +/- S.E.M.
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3.6. Gradient Values Offer Performance Comparison829

Previously, we used gradient values to determine if object category tuning values830

were related to classification behavior. Here, we use a similar procedure to obtain831

gradient values that tell us how feature map activity should change in order to make832

the network better at the tasks of orientation detection and color classification (see833

Methods 2.5.2). We then use these values in place of the orientation tuning values834

when applying attention, and compare the performances.835

In Figure 7A, we first show the extent to which these gradient values correlate with836

the tuning values. On the left, an example feature map’s tuning curve (green) along837

with curves generated from gradient values for the orientation detection task (solid838

purple) and color classification task (dashed purple). The middle and right panels839

show the average correlation coefficients between tuning curves and the respective840

gradient values across layers. Correlation with orientation detection gradients peaks841

at later layers, while correlation with color classification gradients peaks at early layers.842

In Figure 7B, the solid lines and histograms document the performance using gradient843

values. For comparison, the dashed lines give the performance improvement from844

using the tuning values. In the orientation detection task, gradient values perform845

better than tuning values at earlier layers, but the performance difference vanishes846

at later layers (where the tuning values and gradient values are most correlated).847

Thus, tuning values can actually reach the same performance level as the gradient848

values suggesting that, while they are not identical to the values determined by the849

gradient calculations, they are still well-suited for increasing detection performance.850

The performance for color classification using gradient values has the reverse pattern.851

It is most similar to the performance using tuning values at earlier layers (where the852

two are more correlated), and the performance gap is larger at middle layers. At all853

layers, the mean performance using gradient values is larger than that using tuning854

values.855

The results of applying this procedure to the object category detection task are856

discussed later (Figure 8E).857

3.7. Feature-based Attention Primarily Influences Criteria and Spatial Attention Pri-858

marily Influences Sensitivity859

Signal detection theory is frequently used to characterize the effects of attention860

on performance [96]. Here, we use a joint feature-spatial attention task to explore861

effects of attention in the model. The task uses the same 2-grating stimuli described862

above. The same binary orientation classifiers are used and the task of the model is to863

determine if a given orientation is in a given quadrant. Performance is then measured864

when attention is applied according to orientation, space, or both (effects are combined865

additively), and two key signal detection measurements are computed. Criteria is a866

measure of how lenient is the threshold that’s used to mark an input as a positive.867

Sensitivity is a measure of how separate the two populations of positive and negatives868

are.869

Figure 7C shows how these values, along with the overall binary classification870

performance, vary with the strength and type of attention applied at two example871

layers. Performance is best when both spatial and feature-based attention are applied872

simultaneously. The ways in which these two types of attention affect performance can873

be teased apart by looking at their effects when applied separately. Criteria decreases874

more when feature-based attention is applied alone than when spatial is. Sensitivity875
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Figure 7: Comparison of Orientation Task Gradient Values to Tuning Values. A.) Correlation of
gradient values with tuning values for the detection and color classification tasks. On the left, an
example feature maps orientation tuning curve (green) and curves generated from detection gradient
values (solid purple) and color classification gradient values (dashed purple). Correlation coefficients
with tuning curve are -.196 and -.613, respectively. Average correlation coefficient values between
tuning curves and detection gradient curves (middle) and color classification gradient curves (right)
across layers (blue). Shuffled correlation values in orange. Errorbars are +/- S.E.M. B.) Comparison of
performance on detection task when attention is determined by detection gradient values and applied
at different layers (top). Comparison of performance on color classification task when attention is by
determined by color classification gradient values and applied at different layers (bottom). Histograms
of best performing layers in blue, average increase in binary or 5-way classification performance in
black. Errorbars are +/- S.E.M. In both, performance increase when attention is determined by
tuning values is shown for comparison (dashed lines). Only multiplicative bidirectional effects are
used. C.) Change in signal detection values when attention is applied in different ways (spatial, feature
according to tuning, both spatial and feature according to tuning, and feature according to gradient
values) for the task of detecting a given orientation at a given quadrant. Top row is when attention
is applied at layer 13 and bottom when applied at layer 4 (multiplicative bidirectional effects).
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increases more for spatial attention alone than feature-based attention alone. These876

general trends hold regardless of the layer at which attention is applied, though when877

applied at layer 4, feature-based attention alone actually decreases sensitivity.878

Applying feature-based attention according to orientation detection gradient values879

has a very similar effect on criteria as applying it with tuning values. The effect880

on sensitivity however, is slightly different, as the gradient values are better able to881

increase sensitivity. Therefore, attending to feature using gradient values leads to882

slightly better overall performance than when using tuning values in this example.883

Various impacts of attention on sensitivity and criteria have been found experi-884

mentally. Task difficulty (an assumed proxy for attentional strength) was shown to885

increase both sensitivity and criteria [87]. In line with our results, spatial attention has886

been found to increase sensitivity and (less reliably) decrease criteria [32, 21], and fea-887

ture attention is known to decrease criteria, with minimal effects on sensitivity [74, 2].888

A study that looked explicitly at the different effects of spatial and category-based at-889

tention [88] found that, in line with our results, spatial attention increases sensitivity890

more than category-based attention (most visible in their Experiment 3c, which uses891

natural images) and that the effects of the two are additive.892

The diversity of results in the literature (including discrepancies with our model)893

may be attributed to different task types and to the fact that attention is known894

to impact neural activity in various ways beyond pure sensory areas [43]. This idea895

is borne out by a study that aimed to isolate the neural changes associated with896

sensitivity and criteria changes [53]. In this study, the authors designed behavioral897

tasks that encouraged changes in sensitivity or criteria exclusively: high sensitivity was898

encouraged by associating a given stimulus location with higher overall reward, while899

high criteria was encouraged by rewarding correct rejects more than hits (and vice versa900

for low sensitivity/criteria). Differences in V4 neural activity were observed between901

trials using high versus low sensitivity stimuli. No differences were observed between902

trials using high versus low criteria stimuli. This indicates that areas outside of the903

ventral stream (or at least outside V4) are capable of impacting criteria. Importantly,904

it does not mean that changes in V4 don’t impact criteria, but merely that those905

changes can be countered by downstream processes. Indeed, to create sessions wherein906

sensitivity was varied without any change in criteria, the authors had to increase the907

relative correct reject reward (i.e., increase the criteria) at locations of high absolute908

reward, presumably to counter the decrease in criteria that appeared naturally as a909

result of attention-induced neural changes in V4 (similarly, they had to decrease the910

correct reject reward at low reward locations). Our model demonstrates clearly how911

such effects from sensory areas alone can impact detection performance, which, in turn912

highlights the role downstream areas play in determining the final behavioral outcome.913

914

3.8. Recordings Show How Feature Similarity Gain Effects Propagate915

To explore how attention applied at one location in the network impacts activity916

later on, we apply attention at various layers and ”record” activity at others (Figure917

8A). In particular, we record activity of feature maps at all layers while applying mul-918

tiplicative bidirectional attention at layers 2, 6, 8, 10, and 12 individually. The results919

of these recordings show both which features of the activity changes are correlated920

with performance enhancements as well as how FSGM effects at one area can lead to921

very different effects at another.922
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Figure 8: How Activity Changes from Attention Propagate for Unimodal Tasks. A.) Recording setup.
The spatially averaged activity of feature maps at each layer was recorded (left) while attention was
applied at layers 2, 6, 8, 10, and 12 individually. Activity was in response to a full field orientated
grating for (B), (C), and (D) or full field standard ImageNet images for (E). Attention was always
multiplicative and bidirectional. B.) Activity ratios for different attention conditions as a function
of recorded layer when attention is applied at different layers (given by color as in (A)). Line style
indicates whether the stimulus presented is preferred (solid line) or anti-preferred (dashed and dotted
lines), and whether the ratio is calculated as activity when the preferred is attended divided by when
the anti-preferred is attended (solid and dashed) or the reverse (dotted). Values are medians over all
feature maps. Orientation tuning values (left) or orientation detection gradient values (right) are used
for applying attention. C.) The fraction of feature maps that display feature matching (FM) behavior,
defined as activity ratios greater than one for Pref:AttnP/AttnAP and AntiPref:AttnAP/AttnP) when
attention is applied according to orientation tuning curve values (solid) or detection gradient values
(dashed). D.) Dividing activity when a given orientation is present and attended by activity when no
attention is applied gives a set of activity ratios. Ordering these ratios from most to least preferred
orientation and fitting a line to them gives the slope and intercept values plotted here (intercept
values are plotted in terms of how they differ from 1, so positive values are an intercept greater than
1). Values are medians across all feature maps at each layer with attention applied at layers indicated
in (A). E.) Same as in (B) but using object category images, tuning values, and detection gradient
values. The inset on the right shows mean performance detection over all 20 categories when attention
is applied at diffferent layers using category detection gradient values (solid line, performance using
tuning values shown as dotted line for comparison. Errorbars S.E.M.)
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Activity was recorded in response to multiple different stimuli and attentional923

conditions. In Figure 8B we explore whether applying feature attention according to924

the FSGM at one layer continues to have FSGM-like effects at later layers. To do this925

we use an analysis taken from [56]. Specifically, full field oriented gratings were shown926

to the network that were either of the preferred (most positive tuning value) or anti-927

preferred (most negative tuning value) orientation for a given feature map. Attention928

was also applied either to the preferred or anti-preferred orientation. According to929

the FSGM, the ratio of activity when the preferred orientation is attended divided930

by activity when the anti-preferred orientation is attended should be larger than one931

regardless of whether the orientation of the stimulus is preferred or not (indeed, the932

ratio should be constant for any stimulus). An alternative model, the feature matching933

(FM) model, suggests that the effect of attention is to amplify the activity of a neuron934

whenever the stimulus in its receptive field matches the attended stimulus. In this935

case, the ratio of activity when the preferred stimulus is attended over when the anti-936

preferred is attended would only be greater than one when the stimulus is the preferred937

orientation. If the stimulus is the anti-preferred orientation, the inverse of the that938

ratio would be greater than one.939

In Figure 8B, we plot the median value of these ratios across all feature maps at a940

layer when attention is applied at different layers, indicated by color. When attention941

is applied directly at a layer according to its tuning values (left), FSGM effects are942

seen by default. As these activity changes propagate through the network, however,943

the FSGM effects wear off. Thus, when attention is applied at an early layer, it does944

not create strong changes in the final convolutional layer and thus cannot strongly945

impact the classifier. This explains the finding (Figure 6D) that attention works best946

for the detection task when applied at later layers, as the only way for strong FSGM947

effects to exist at the final layers is to apply attention near the final layers.948

The notion that strong FSGM-like effects at the final layer are desirable for in-949

creasing classification performance is further supported by findings using the gradient950

values. In Figure 8B(right), we show the same analysis, but while applying atten-951

tion according to orientation detection gradient values rather than tuning values. The952

effects at the layer at which attention is applied do not look strongly like FSGM, how-953

ever FSGM properties evolve as the activity changes propagate through the network,954

leading to clear FSGM-like effects at the final layer.955

These results are recapitulated in Figure 8D using a broader analysis also from956

[56]. Here, the activity of a feature map is calculated when attention is applied to957

the orientation in the stimulus and divided by the activity in response to the same958

orientation when no attention is applied. These ratios are organized according to959

orientation preference (most to least) and a line is fit to them. According to the FSGM960

of attention, this ratio should be greater than one for more preferred orientations and961

less than one for less preferred, creating a line with an intercept greater than one962

and negative slope. As expected, applying attention according to tuning values causes963

similar changes at the layer at which it is applied in this model (intercept values are964

plotted in terms of how they differ from one. Comparable average values from [56] are965

intercept: .06 and slope: 0.0166). Again, these effects wear off as the activity changes966

propagate through the network. Also gradient values ultimately lead to this kind of967

change at the final layer (right panel).968

While Figure 8B and D show FSGM-like effects according to median values across969

all feature maps, some individual feature maps may show different behavior. In Fig-970
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ure 8C, we calculate the fraction of feature maps at a given layer that show feature971

matching behavior (defined as having activity ratios greater than one when the stimu-972

lus orientation matches the attended orientation for both preferred and anti-preferred973

orientations). As early as one layer post-attention feature maps start showing feature974

matching behavior, and the fraction grows as activity changes propagate. Interest-975

ingly, applying attention according to gradient values also causes an increase in the976

fraction of feature maps with FM behavior, even as the median values become more977

FSGM-like. The attention literature contains conflicting findings regarding the fea-978

ture similarity gain model versus the feature matching model [67, 80]. This may result979

from the fact that FSGM effects can turn into FM effects as they propagate through980

the network. In particular, this mechanism can explain the observations that feature981

matching behavior is observed more in FEF than V4 [106] and that match information982

is more easily readout from perirhinal cortex than IT [69].983

We explore the propagation of these effects for category-based attention as well. In984

Figure 8E, we perform the same analysis as 8B, but with attention applied according985

to object category tuning values and stimuli that are full-field standard ImageNet986

images. We also calculate gradient values that would increase performance on category987

detection tasks (the same procedure used to calculate orientation detection gradients).988

The binary classification performance increase that results from applying attention989

according to these values is shown in Figure 8E(right, inset, solid line) in comparison990

to that when applying according to tuning values (dashed line). Like with orientation991

detection gradient values, applying attention according to these values propagates992

through the network to result in FSGM-like effects at the final layer. Also as with the993

orientation findings, the size of the FSGM effects that reach the final layer track with994

how well applying attention increases performance; for example, applying attention at995

layer 2 (red lines) does not lead to strong FSGM effects at the final layer and does not996

strongly increase performance.997

3.9. Attention Alters Encoding Properties in Cross-Modal Tasks998

The above recordings looked at how encoding of the attended dimension changed999

with attention. In cross-modal tasks, such as the spatial attention task and color1000

classification task, the encoding that is relevant for performance is the that of the1001

read-out dimension. We therefore measured how that encoding changes with attention1002

at different layers as well.1003

For the spatial attention task, we measured category encoding by fitting a line to a1004

set of activity ratios (see Figure 9A, left). Those activity ratios represent the activity1005

of a quadrant when a given object category was in it and the quadrant was attended1006

divided by activity when the same category was in the quadrant and no attention was1007

applied. Arranging these from most to least preferred category for each feature map1008

and fitting a line to them gives two values per feature map: the intercept (the ratio1009

for the most preferred category, measured in terms of its difference from one) and the1010

difference (the ratio for the most preferred minus the ratio for the least preferred, akin1011

to the slope). A purely multiplicative effect leads to a positive intercept value and zero1012

difference. This effect is clearly observed at the layers at which attention is applied in1013

Figure 9A(right). It also continues with only a small amount of decay as the activity1014

changes propagate through the network. By the final layer, the median intercept is still1015

positive. The median difference becomes negative, indicating that preferred categories1016

are enhanced more than non-preferred. The values at the final layer are fairly similar1017
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regardless of the layer at which attention was applied. This is in line with the fact1018

that performance with multiplicative spatial attention is only moderately affected by1019

the layer at which is attention is applied (Figure 5B).1020

We also looked at how color encoding changes when attention is applied to orien-1021

tation. Here, we use 2-grating stimuli like those in Figure 6B to ask if encoding of1022

the color of the grating with a given orientation increases when attention is applied1023

to that orientation versus when it is applied to the orientation of the other grating1024

(160 and 80 degree gratings were used). Arranging activity levels from most to least1025

preferred color, we consider the encoding better if both the overall activity level is1026

higher and the slope is more negative (see Figure 9B, left). We then measure the1027

percent of feature maps that have better encoding of 160 degrees when attending 1601028

degrees versus attending 80 degrees. Looking at those feature maps that most prefer1029

160 degrees (sold lines, Figure 9B, right), nearly all feature maps enhance their color1030

encoding at the layer at which attention was applied. However this percent decreases1031

as the activity changes propagate through the network. On the other hand, for feature1032

maps that anti-(or least) prefer 160 degrees, none have better encoding at the layer at1033

which attention was applied, but the percent increases as activity changes propagate1034

through the layers. Essentially, the burden of better encoding becomes evenly spread1035

across feature maps regardless of preferred orientation.1036

This helps understand why, when applying attention according to tuning values,1037

color classification performance is high at early layers, falls off at mid layers, and1038

then recovers at final layers (Figure 6E, bottom). This is due to the different effects1039

attention at these layers have on the final layer. When attention is applied at early1040

layers, fewer final layer feature maps that prefer the attended orientation have better1041

encoding, but many that don’t prefer it do. When applied at late layers, a high percent1042

of final layer feature maps that prefer the attended orientation have better encoding,1043

even if those that don’t prefer it do not. When attention is applied at middle layers,1044

the effect on final layer feature maps that prefer the orientation has decayed, but the1045

effect on those that don’t prefer it hasn’t increased much yet. Therefore performance1046

is worse.1047

The idea that both feature maps that prefer and anti-prefer the attended orienta-1048

tion should enhance their color encoding is borne out by the gradient results. When1049

attention is applied according to gradient values (Figure 9B, bottom), the percent of1050

feature maps with better encoding is roughly equal for both those that prefer and1051

anti-prefer the attended orientation. Experimentally, MT neurons have been found to1052

better encode the direction of motion of a stimulus of the attended color as compared1053

to a simultaneously presented stimulus of a different color [98]. Importantly, this effect1054

of attention was not stronger when the preferred color was attended (indeed, there was1055

a slight negative correlation between color preference and attention effect strength).1056

This is not predicted by the FSGM directly, but as our model indicates, could result1057

from FSGM-like effects at earlier areas, such as V1.1058

3.10. Applying Feature-based Attention at Multiple Layers Counteracts Effects1059

It is conceivable that feature-based attention applied at a lower layer could be as (or1060

more) effective in modulating the activity of feature maps at a later layer as applying1061

attention at that layer directly. In particular, for a given filter at layer l that prefers1062

the attended category, bidirectional attention applied at layer l− 1 could decrease the1063

activity of units that have negative weights to the filter and increase the activity of1064
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Figure 9: How Activity Changes from Attention Propagate for Cross-modal Tasks. A.) For each
feature map, activity averaged over the attended quadrant when attention is applied to it is divided
by activity when attention is not applied. Arranging these activity ratios from when the most to
least preferred category is present in the quadrant and fitting a line to them results in the intercept
and difference values as diagrammed on the left. Specifically, the intercept is the ratio for the most
preferred category minus 1 and the difference is the ratio for the most preferred category minus the
ratio for the least preferred. On the right, the median fit values across all feature maps are shown
for each layer when attention is applied at layers indicated in 8A. B.) Orientated grating stimuli
like those in 6B were designed with one grating at 140 degrees and the other at 60. Encoding of
the color of the 140 degree grating is measured by fitting a line to the activity (spatially averaged
over entire feature map) evoked by when each color is presented in the 140 degree grating (averaged
over all colors presented in the 60 degree grating), ordered from most to least preferred. If the
intercept (at the middle of this line) and difference increase when attention is applied to 140 degrees
compared to attention at 60 degrees, the feature map has better encoding. On the right, the percent
of feature maps with better encoding, segregated according to those that prefer 140 degrees (solid
line) and those that anti-prefer (least prefer) 140 degrees (dashed lines, presented on a mirrored y-axis
for visibility). Attention applied according to orientation tuning values (top) or color classification
gradients (bottom).
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units that have positive weights to the filter (note that in a more biologically-realistic1065

model, the negatively weighted components would come indirectly from di-synaptic1066

feedforward inhibition or surround interactions, as feedforward connections are largely1067

excitatory). For example, if for a given unit in response to a given image the sum1068

of its positively-weighted inputs is a, and the sum of its negatively-weighted inputs1069

is b, without any attention, net input is a − b. If attention at l − 1 scales positively-1070

weighted inputs up by 20% and negatively-weighted inputs down by 20%, the total1071

input is now 1.2a− .8b. These would lead to a greater net activity level than attention1072

at l itself, which would just scale the net input by 1.2: 1.2(a − b). Therefore, given1073

the same strength, applying attention at layer l − 1 could be a more effective way to1074

modulate activity than applying it at layer l directly. However this assumes a very1075

close alignment between the preferences of the feature maps at l−1 and the weighting1076

of the inputs into l.1077

We investigate this alignment by applying attention to object categories at various1078

layers and recording at others (stimuli are standard ImageNet images of the attended1079

category). The ratio of activity when attention is applied at a lower layer is divided1080

by that when no attention is applied. Feature maps are then divided according to1081

whether they prefer the attended category (have a tuning value greater than zero) or1082

don’t prefer it (tuning value less than zero). The strength value used is β = .5, therefore1083

if attention at lower layers is more effective, we should see activity ratios greater than1084

1.5 for feature maps that prefer the attended category. The histograms in Figure 10A1085

(left) show that the majority of feature maps that prefer the attended category (red)1086

have ratios less than 1.5, regardless of the layer of attention or recording. In many1087

cases, these feature maps even have ratios less than one, indicating that attention at1088

a lower layer decreases the activity of feature maps that prefer the attended category.1089

The misalignment between lower and later layers is starker the larger the distance1090

between the attended and recorded layers. For example, when looking at layer 12,1091

attention applied at layer 2 appears to increase and decrease feature map activity1092

equally, without respect to category preference.1093

This helps to understand why feature-based attention applied at multiple layers1094

simultaneously is not particularly effective at enhancing detection performance (Figure1095

3C). Specifically, if attention at a lower layer decreases the activity of feature maps that1096

prefer the attended category at a later layer, it is actively counteracting the effects1097

of attention applied at that layer. In Figure 10A, the effects of applying attention1098

simultaneously at all layers is shown in black (using the same analysis of Figure 8B. The1099

results from that figure are also replicated in paler colors for comparison). Attention1100

is applied at each layer at one-tenth the strength (β = .05) as when it is applied to1101

an individual layer. It is clear these effects are not accumulating effectively, as the1102

activity ratios at the final layer (after passing through 13 layers of β = .05) are weaker1103

than effects applied at layer 12 with β = .5.1104

Spatial attention, on the other hand, does lead to an effective accumulation of1105

effects when applied at multiple layers. Figure 10B(left) uses the same analysis as1106

Figure 9A, and shows the effect of applying spatial attention at all layers (with β =1107

.025) in black. The effect on the intercept at the tenth layer is equal whether applying1108

attention at all layers or only at layer 10 with β = .25. The difference parameter,1109

however, is more negative when attention is applied at all layers than when attention1110

is applied at layer 10. This demonstrates something that spatial attention can achieve1111

at a given layer only when it is applied at a lower one: amplify preferred categories1112
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more than non-preferred. When all activity for all images is scaled multiplicatively1113

at l − 1, some feature maps at layer l may see only a small increase when the image1114

is of their non-preferred categories, due to the scaling up of their negatively-weighted1115

inputs. In the cases where this effect is so strong that attention causes a decrease1116

in activity in response to non-preferred category images (i.e., activity ratio less than1117

one) while still causing an increase for preferred, attention would have the effect of1118

sharpening the tuning curve. Tuning curve sharpening as a result of spatial attention1119

is generally not found experimentally [60, 92].1120

Activity ratios plotted in Figure 10B(right) are calculated as the activity recorded1121

from a given quadrant when attention was applied to that quadrant over when no1122

attention was applied. They are organized according to whether the feature map1123

prefers or does not prefer the category present in the quadrant. By looking at different1124

attended and recorded layers, we can see that spatial attention at lower layers can1125

indeed lead to a higher scaling of feature maps that prefer the presented category, and1126

that feature maps that do not prefer the presented category can have their activity1127

decreased due to attention (especially when the gap between attended and recorded1128

layers is larger).1129

4. Discussion1130

In this work, we utilized a deep convolutional neural network (CNN) as a model of1131

the visual system to probe the relationship between neural activity and performance.1132

Specifically, we provide a formal mathematical definition of the feature similarity gain1133

model (FSGM) of attention, the basic tenets of which have been described in several1134

experimental studies. This formalization allows us to investigate the FSGM’s abil-1135

ity to enhance a CNN’s performance on challenging visual tasks. Through this, we1136

show that neural activity changes matching the type and magnitude of those observed1137

experimentally can indeed lead to performance changes of the kind and magnitude1138

observed experimentally. Furthermore, these results hold for a variety of tasks, from1139

high level category detection to spatial tasks to color classification. The benefit of1140

these particular activity changes for performance can be analyzed more formally in1141

a signal detection or Bayesian framework [96, 22, 5, 68, 14], however such analysis is1142

outside the scope of this work.1143

A finding from our model is that the layer at which attention is applied can have1144

a large impact on performance. For detection tasks in particular, attention at early1145

layers does little to enhance performance while attention at later layers such as 9-1146

13 is most effective. According to [29], these layers correspond most to areas V41147

and LO. Such areas are known and studied for reliably showing attentional effects,1148

whereas earlier areas such as V1 are generally not [52]. In a study involving detection1149

of objects in natural scenes, the strength of category-specific preparatory activity in1150

object selective cortex was correlated with performance, whereas such preparatory1151

activity in V1 was anti-correlated with performance [71]. This is in line with our1152

finding that feature-based attention effects at earlier areas can counter the beneficial1153

effects of that attention at later areas.1154

While CNNs have representations that are similar to the ventral stream, they lack1155

many biological details including recurrent connections, dynamics, cell types, and noisy1156

responses. Preliminary work has shown that these elements can be incorporated into1157

a CNN structure, and attention can enhance performance in this more biologically-1158

realistic architecture [49]. Furthermore, while the current work does not include neural1159
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Figure 10: Differences When Applying Attention at All Layers for Feature and Spatial Attention.
A.) Feature attention is not enhanced by being applied at multiple layers simultaneously. On the
left, activity ratios as described in 8E are reproduced in lighter colors. Black lines show ratios when
attention is applied at all layers (β = .05). On the right activity ratios are shown for when attention
is applied at various layers individually and activity is recorded from later layers. In all cases, the
category attended was the same as the one present in the input image. Histograms are of ratios of
feature map activity when attention is applied to the category divided by activity when no attention
is applied, dividing according to whether the feature map prefers (red) or does not prefer (black) the
attended category. B.) Attention at multiple layers aides spatial attention. On the left, fit values
for lines as described in 9A are shown in paler colors. Black lines are when attention is applied at
all layers simultaneously (β = .025). On the right, histograms of activity ratios are given. Here the
activity ratio is activity when attention is applied to the recorded quadrant over when no attention
is applied. Feature maps are divided are according whether they prefer (red) or do not prefer (black)
the category present in the quadrant.
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noise independent of the stimulus, the images used do introduce variable responses.1160

Take for example, the merged images, wherein a given image from one category is1161

overlaid with an image from another. This can be thought of as highly structured1162

noise added to the first image (rather than, for example, pixel-wise Gaussian noise).1163

Such noise in the signal direction is known to be particularly challenging to overcome1164

[1].1165

Another biological detail that this model lacks is ”skip connections,” when one1166

layer feeds into both the layer directly above and layers above that. This is seen1167

frequently in the brain, for example, in connections from V2 to V4 or V4 to parietal1168

areas [95]. Our results show that the effects on attention at the final convolutional1169

layer are important for performance changes, suggesting that synaptic distance from1170

the classifier is a relevant feature—one that is less straight forward to determine in1171

a network with skip connections. It may be the case though that thinking about1172

visual areas in terms of their synaptic distance from decision-making areas such as1173

prefrontal cortex [34] may be more useful for the study of attention than in terms1174

of their distance from the retina. Finally, a major challenge for understanding the1175

biological implementation of selective attention is determining how the attention signal1176

is carried by feedback connections. Feature-based attention in particular appears to1177

require targeted cell-by-cell modulation, which if implemented directly by top-down1178

inputs, would require an unrealistic amount of fine tuning. A mechanism wherein1179

feedback targeting is coarse, but the effects of it are refined by local processing is more1180

plausible. It may be useful to take inspiration from the machine learning literature on1181

attention and learning for hypotheses on how the brain does this [101, 47].1182

While they lack certain biological details, a benefit of using CNNs as a model is1183

the ability to backpropagate error signals and understand causal relationships. Here1184

we use this to calculate gradient values that estimate how attention should modulate1185

activity, and compare these to the tuning values that the FSGM uses. The fact that1186

these values are correlated and can lead to similar performance changes at task-specific1187

layers (including similar changes in true and false positive rates, not shown) raises a1188

question about the nature of biological attention: are neurons really targeted accord-1189

ing to their tuning, or does the brain use something like gradient values? In [13] the1190

correlation coefficient between an index of tuning and an index of attentional modula-1191

tion was .52 for a population of V4 neurons, suggesting factors other than selectivity1192

influence attention. Furthermore, many attention studies, including that one, use only1193

preferred and non-preferred stimuli and therefore don’t include a thorough investiga-1194

tion of the relationship between tuning and attentional modulation. [56] use multiple1195

stimuli to provide support for the FSGM, however the interpretation is limited by1196

the fact that they only report population averages. Furthermore, those population1197

averages are closer to the average values in our model when attention is applied ac-1198

cording to gradient values, rather than tuning values (Figure 8D). [80] investigated the1199

relationship between tuning strength and the strength of attentional modulation on a1200

cell-by-cell basis. While they did find a correlation (particularly for binocular disparity1201

tuning), it wasn’t very strong, which leaves room for the possibility that tuning is not1202

the primary factor that determines attentional modulation.1203

Another finding from comparing gradient values with tuning values (and doing1204

”recordings”) is that tuning does not always predict how effectively one unit in the1205

network will impact downstream units or the classifier. In particular, applying at-1206

tention according to gradient values leads to changes that are hard to interpret when1207
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looked at through the lens of tuning, especially at earlier layers (Figure 8). However1208

these changes eventually lead to large and impactful changes at later layers. Because1209

experimenters can easily control the image, defining a cell’s function in terms of how it1210

responds to stimuli makes practical sense. A recent study looking at the relationship1211

between tuning and choice probabilities suggests that tuning is not always an indica-1212

tion of a causal role in classification [103]. Studies that activate specific neurons in1213

one area and measure changes in another area or in behavioral output will likely be1214

of significant value for determining function. Thus far, coarse stimulation protocols1215

have found a relationship between the tuning of neural populations and their impact1216

on perception [62, 19, 82]. Ultimately though, targeted stimulation protocols and a1217

more fine-grained understanding of inter-area connections will be needed.1218

In this study, we used a diversity of attention tasks to see if the same mechanism1219

could enhance performance universally. While we do find support for the feature simi-1220

larity gain model’s broad applicability, it is likely the case that the effects of attention1221

in the brain are influenced substantially by the specifics of the task. Naturally, uni-1222

modal detection tasks have different challenges than cross-modal readout tasks (such1223

as detecting a motion change in dots of a certain color). Generally, studies probing1224

the neural mechanisms of attention care largely about the stimulus that is being at-1225

tended, and less so about the information the animal needs from that stimulus to do1226

the task. The task, then, is merely a way to get the subject to attend. However, as we1227

see in our results, the best attention strategy is dependent on the task. Performance1228

on our category detection task is only somewhat influenced by the choice of activity1229

modulation (additive vs. multiplicative, etc), however, performance on the category1230

classification task depends strongly on the use of multiplicative spatial attention. This1231

task-dependency is even more stark in the orientation tasks, where the pattern of1232

performance for attention at different layers is different for the detection and color1233

classification tasks, even though the attention applied is identical. The effects of at-1234

tention on firing rates, noise, and correlations may be more similar across studies if1235

more similar tasks were used.1236
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