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SUMMARY

Little is known about the internal circuitry of the pri-
mate lateral intraparietal area (LIP). During two ver-
sions of a delayed-saccade task, we found radically
different network dynamics beneath similar popula-
tion average firing patterns. When neurons are not
influenced by stimuli outside their receptive fields
(RFs), dynamics of the high-dimensional LIP network
during slowly varying activity lie predominantly in one
multi-neuronal dimension, as described previously.
However, when activity is suppressed by stimuli
outside the RF, slow LIP dynamics markedly deviate
from a single dimension. The conflicting results can
be reconciled if two LIP local networks, each under-
lying an RF location and dominated by a single multi-
neuronal activity pattern, are suppressively coupled
to each other. These results demonstrate the low
dimensionality of slow LIP local dynamics, and sug-
gest that LIP local networks encoding the attentional
and movement priority of competing visual locations
actively suppress one another.

INTRODUCTION

It has become increasingly appreciated that neural functions

need to be understood in terms of neuronal populations and

the dynamics of the circuits to which they belong (Miller and

Wilson, 2008; Shenoy et al., 2013). However, the field of systems

neuroscience in nonhuman primates has traditionally been domi-
nated by studies of the properties of single neurons. While

we have a wealth of knowledge of single-neuron behaviors in

many areas of the primate brain, this knowledge remains largely

phenomenological—we know what neurons do, but not how

they do it. Especially on the circuit level, the mechanisms and

connectivity underlying neuronal behaviors are often obscure.

Such is the case in the lateral intraparietal area (LIP), where a

large body of literature has revealed that the activity of single

neurons encodes visual attention and saccadic eye movements,

as well as decision making variables, abstract categories, and

other cognitive variables (Bisley and Goldberg, 2010; Freedman

and Assad, 2011; Gold and Shadlen, 2007; Kable and Glimcher,

2009). However, little is known about the circuitry inside or

outside the LIP network that produces such activity, and there-

fore the role of LIP in many of these functions is controversial.

A step in understanding this circuitry was taken by Ganguli

et al. (2008), who analyzed LIP network dynamics during two

different tasks: a delayed saccade task (Bisley and Goldberg,

2003, 2006) and a random-dot motion discrimination task (Roit-

man and Shadlen, 2002). They found that the dynamics of the

high-dimensional LIP network are dominated by one multi-

neuronal dimension on slow timescales, which could be ex-

plained by a simple circuit model. This one-dimensionality was

key to explaining an unexpected correspondence between LIP

single-neuron responses and the timing of attentional shifts

(examined in more detail below). More recently, Fitzgerald

et al. (2013) found further evidence for one-dimensional dy-

namics in three experiments in which LIP encoded learned asso-

ciations between visual stimuli.

Using a delayed-saccade task similar to the task of Bisley and

Goldberg (2003, 2006) (hereafter BG), Falkner, Krishna et al.,

2010 (hereafter FK) reported ‘‘surround suppression’’ in LIP

(see also Louie et al., 2011), i.e., stimuli outside the receptive field
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(RF) of a cell suppress the cell’s activity. In the FK study, the

population-averaged activity over time is very similar to that in

the BG study, as expected given the very similar tasks. However,

we find that the pattern of activity across neurons changes over

time in a very different way in the FK study. In particular, the

network dynamics in the FK dataset markedly deviate from the

one-dimensional dynamics observed in the BG dataset, calling

into question the validity of the one-dimensional LIP model of

Ganguli et al. We show that the two sets of conflicting results

can be reconciled and well characterized by a more general

low-dimensional model: each of two local LIP networks in isola-

tion has its own single dominant dimension, and suppressive

coupling between them gives rise to two dominant dimensions.

We further show that the FK data directly confirm the two-

dimensional dynamics predicted by the model. Our study thus

represents a step forward in discovering circuit mechanisms

and connectivity from single-neuron recordings, and in under-

standing mechanisms behind LIP functions.

RESULTS

One-Dimensional Dynamics in LIP
We begin by describing the first of the two conflicting datasets

(Bisley and Goldberg, 2003), along with the one-dimensional

model (Ganguli et al., 2008) to which it gave rise.

The delayed-saccade task of BG is illustrated in Figure 1A (de-

tails in Supplemental Information [SI] section 1, available online).

During this task, LIP neurons exhibit a large transient visual

response to the onset of a saccade target or distractor in the

RF, and sustained delay period activity (delay activity) when a

saccade is planned to the RF (Figure 1C). When a distractor is

flashed away from the target location during the delay period,

attention is transiently attracted away from the target location

to the distractor location. At the same time, the average visual

response level of LIP neurons whose RFs contain the distractor

location (the distractor population) rises above the average delay

activity level of neurons whose RFs contain the target location

(the target population). As the visual activity of the distractor

population decays back to baseline, the locus of attention shifts

back to the target location. This shift in attention coincides with

the shift in the peak of LIP activity from the distractor population

to the target population: when the decaying visual activity of the

distractor population drops to a level statistically indistinguish-

able from the sustained delay activity of the target population

(the ‘‘crossing time’’—when the decaying red trace crosses the

blue trace in Figure 1C), neither the target nor the distractor loca-

tion has attentional advantage, whereas 100–250 ms before or

after this crossing time, the distractor or target location, respec-

tively, is the clear locus of attention.

Further analyses of these results (Bisley and Goldberg, 2006)

revealed that this correspondence between activity crossing

and attentional switching also held at the level of single LIP neu-

rons. The crossing time of a single neuron is defined as the time

at which the neuron’s decaying response to a distractor, on trials

in which a distractor is in its RF (distractor trials), crosses its own

level of delay activity on trials in which a target is in its RF (target

trials). These single-neuron crossing times are surprisingly

invariant across neurons and closely aligned with the monkey’s
222 Neuron 93, 221–234, January 4, 2017
attentional switching time, despite high variability across neu-

rons in their peak visual responses, time constants of visual

response decay, and delay period responses.

Ganguli et al. (2008) explained this observation with the pro-

posal that the dynamics of a local network (LN) of LIP neurons

are dominated on slow timescales by one multi-neuronal activity

pattern (i.e., a pattern, or vector, of relative firing rates across the

cells of the network). Throughout this paper, we use the term

‘‘local network’’ (or LN) to mean a network of LIP neurons that

share the same RF (explained more fully in the section ‘‘Simple

model of coupled local networks reconciles the results’’).

Ganguli et al. proposed that the recurrent connectivity of an

LN causes certain multi-neuronal activity patterns to persist

longer in the absence of input; given steady input, these slowly

decaying patterns also build up to be strongly amplified. If the

network has only a single pattern that decays slowly, we refer

to it as the network’s ‘‘slow mode,’’ where ‘‘mode’’ is a term

borrowed from physics that describes a characteristic pattern

of a system’s response. As the visual response to a distractor de-

cays, it becomes dominated by this slow mode after all other

patterns decay away. Because the slow mode is more strongly

amplified than other patterns, it also dominates steady-state

responses, such as delay activity and activity during the initial

fixation before target onset (fixation activity). Thus, after the

other patterns in the distractor response decay away, the

decaying distractor activity and the ongoing delay activity are

both dominated by the slow mode, meaning that the pattern of

distractor activity across neurons is very nearly a scaled-up

version of the delay activity pattern. Then as the distractor

activity decays further, it becomes very nearly identical to the

delay activity pattern, which happens at the crossing time.

Thus, each individual neuron has roughly the same activity in

its delay response as in its distractor response at the crossing

time, so that all neurons have about the same single-neuron

crossing time.

This one-dimensional model predicts that multi-neuronal ac-

tivity patterns that change on slow timescales are all highly

correlated with one another because all are dominated by the

same strongly amplified pattern. These include fixation and

delay activity patterns and, to a lesser extent, slowly decaying vi-

sual activity patterns and slowly increasing activity patterns dur-

ing decision-making tasks. On the other hand, during the initial

transient visual response, many other activity patterns are acti-

vated, so the transient visual activity pattern is not highly corre-

lated with the steady-state activity patterns. Ganguli et al. (2008)

confirmed these predictions using the following analysis, which

reveals network dynamics from the activity of a population of

singly recorded neurons. At any millisecond time point t, we

represent the trial-averaged activity of a population of N neurons

as an N-dimensional vector, r!ðtÞ, in an N-dimensional multi-

neuronal firing rate space; each of the N elements of r!ðtÞ is

the activity of one neuron at time t, averaged over trials. We

also compute the N-dimensional fixation activity vector, F
!
,

where each element is the activity of one neuron averaged

over the fixation period before target onset and over target

trials. Then, at each time point t over the course of the trial, a cor-

relation coefficient is computed between F
!

and r!ðtÞ. Figure 1E

shows that the correlation to fixation activity is indeed high for
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Figure 1. The Conflicting Population Dy-

namics Observed by Bisley and Goldberg

and Falkner, Krishna et al.

(A, C, and E) Bisley and Goldberg (BG).

(B, D, and F) Falkner, Krishna et al. (FK).

(A and B) Task schematics. While the monkey

fixates on a central spot, a target appears. The

monkey holds fixation until the disappearance of

the fixation spot, at which time it makes a saccade

to the location of the target (except on ‘‘no-go’’

trials in BG; see below). During the delay between

target onset and fixation spot disappearance, a

task-irrelevant distractor stimulus is flashed. We

call a given trial a target trial or distractor trial when

the target or distractor, respectively, is in the RF

(dashed circles) of the neuron being recorded. In

the BG task, the target and distractor are in

opposite visual quadrants and equidistant from

the fixation spot; in the FK task, either the target or

the distractor is in the RF, and the other stimulus is

at the location that elicits maximum surround

suppression for the recorded neuron. In the

BG task, between 200 and 1,200 ms after the

distractor disappears, a probe (a Landolt ring) is

flashed at either the target or the distractor loca-

tion, along with three complete rings elsewhere; a

left-facing or right-facing ring instructs themonkey

to proceed with the planned saccade (‘‘go’’ trial) or

cancel it and maintain fixation (‘‘no-go’’ trial),

respectively. In (C) and (E), we only include trials in

which the probe appeared at least 700 ms after

distractor onset. For task details, see SI section 1.

(C and D) Population average peristimulus time

histograms (PSTHs) in the BG (C; n = 41 cells) and

FK (D; n = 27) studies. Blue/red traces denote trials

in which the target/distractor appears in the RF of

the neuron being recorded; every neuron was re-

corded during both target and distractor trials and

contributes to both traces. The first and second

vertical dashed lines denote the onset of the target

and the distractor, respectively. Shading around

traces indicates SEM. PSTHs have been

smoothed by convolution with a Gaussian kernel

(s = 30 ms; firing rates and correlations appearing

to change before stimuli onset in C–F are artifacts

of this smoothing).

(E and F) Correlation analysis for the BG (E) and

FK (F) datasets. We define a trial-averaged pop-

ulation fixation activity vector F
!
, each element of which is the activity of one cell on target trials, averaged over trials and over the period from 220 to 50ms before

target onset (marked by blue bars in C–F). At each millisecond time point over the course of the target trial (blue traces) or distractor trial (red traces), the cor-

relation coefficient was computed between the trial-averaged population instantaneous activity vector at that point in time and F
!
. The BG correlation patterns

(E; presented in similar format in Ganguli et al., 2008) exhibit one-dimensional dynamics on slow timescales (high correlations during stable fixation activity and

delay activity), while the FK correlation patterns (F) markedly deviate from one dimension (on distractor trials, low correlations during stable activity, and transient

increase in correlation during distractor visual response). Vertical dashed lines are as in (C) and (D). Shading around traces indicates SE estimated from

1,000 bootstrap samples.

See Figure S1A for correlations between distractor trial fixation activity and instantaneous activity for the FK data, and Figures S2A–S2D for the FK data plotted

separately for different reward conditions.
delay activity or distractor activity after the transient visual

response decays away, indicating that fixation, delay, and

post-transient distractor activity patterns all lie roughly in

a single dimension, corresponding to the dominant activity

pattern. The drop in correlation coefficient during the visual

response indicates the transient deviation of activity from this

one dimension caused by the transient activation of other non-

dominant patterns.
SurroundSuppressionandViolationsofOne-Dimensional
Dynamics
We continue by describing the second of the two conflicting

datasets (Falkner, Krishna et al., 2010) and how it exhibits large

deviations on both fast and slow timescales from the predictions

of the one-dimensional model.

The task of FK (Figure 1B) is very similar to that of BG. For both

tasks, we analyze data in each trial during time windows ending
Neuron 93, 221–234, January 4, 2017 223



shortly after distractor onset (i.e., before the onset of the probe in

the BG task; see Figure 1A), up to which point the two tasks are

virtually identical aside from three differences. First, BG used a

flashed target while FK presented a target that stayed visible dur-

ing the delay. This does not result in qualitatively different delay

activity levels (compare delay activity between Figures 1C and

1D), consistent with LIP encoding the attentional and saccadic

priority of the target location regardless of the visibility of the

target. Second, BG randomly interleaved target trials and dis-

tractor trials, while FK presented target and distractor trials in

blocks. Thus, in the FK experiment, on almost every trial the

monkey had an expectation of where the target and distractor

would be. This is reflected in higher anticipatory firing on target

trials compared to distractor trials during the fixation period

before target onset. The third difference is likely to be the key dif-

ference that led to different neural responses observed during

the two tasks. In the BG task, the target and distractor are in

opposite visual quadrants and equidistant from the fixation

spot. In the FK task, in contrast, either the target or the distractor

is in the RF of the cell being recorded in a given session, and the

other stimulus is at the location eliciting maximum surround sup-

pression of the recorded neuron.With this placement of stimuli, a

saccade plan to the surround significantly suppressed the visual

response to the distractor, while distractor appearance in the

surround transiently and weakly, but significantly, suppressed

delay activity during saccade planning (Figure 1D; quantified in

Falkner, Krishna et al., 2010). Surround suppression was not

observed in the BG dataset (quantified in Bisley and Goldberg,

2006), in which the stimulus locations were not selected for

suppression. Other than the surround suppression of response

amplitudes, the FK dataset displays the same overall pattern of

fixation, visual, and delay activity as the BG dataset (compare

Figures 1C and 1D).

However, beneath this apparent similarity in population

average activity, the network dynamics are radically different;

moreover, the FK dynamics appear to clearly violate the predic-

tions of the one-dimensional model. Figure 1F shows the result

of the correlation analysis on the FK data. Most strikingly, on dis-

tractor trials (red trace), even though the appearance of the

target in the surround only minimally affects the mean firing

rate of the population, target appearance causes a large, sus-

tained drop in correlation, when the one-dimensional model

would predict an unchanging and high level of correlation, as

in Figure 1E. This indicates that the activity pattern of the pop-

ulation has changed dramatically while its mean firing rate has

remained about the same. Furthermore, the later appearance

of the distractor in the RF causes a large, transient rise in corre-

lation that subsequently returns to the steady low level present

before distractor onset, when the one-dimensional model would

predict the opposite change—a large and transient drop in cor-

relation upon distractor onset, as in Figure 1E. In target trials

(blue traces), the difference is more subtle, with target onset

evoking a small, sustained drop in correlation, similar to the sus-

tained drop in the BG case, but without the initially larger tran-

sient decrease.

Note that in the BG dataset, the two trial types are randomly

interleaved; thus, themonkey does not know the trial type during

the initial fixation, and fixation activities are the same in the two
224 Neuron 93, 221–234, January 4, 2017
trial types. In the FK dataset, however, fixation activities are

different on the two trial types due to the block design. We chose

to use the fixation activity on target trials as opposed to distrac-

tor trials to calculate correlations because it reveals salient pat-

terns in the network dynamics. Using distractor trial fixation ac-

tivity is another angle from which to examine the network

dynamics that give less informative results, i.e., correlations do

not rise and drop saliently over time (Figure S1A).

Thus, the results of BG and of FK seem incompatible. The

robust one-dimensional dynamics observed in the BG data

require that the local anatomical connectivity of LIP selectively

amplify only one multi-neuronal activity pattern. How can this

same anatomical connectivity realize dynamics that deviate so

far from the one activity pattern that it so strongly amplifies?

SimpleModel of Coupled Local NetworksReconciles the
Results
We found the answer in a simple model of the interactions be-

tween two coupled LIP LNs. This model replicates the FK find-

ings and yet reduces to the one-dimensional dynamics that char-

acterize the BG findings when the two LNs are not coupled.

Wemodel two LNs in LIP, each composed of excitatory (E) and

inhibitory (I) neurons that share an RF, with randomly distributed

neuronal time constants (Figures 2A and 2B; see SI section 2.2

for details of the model). Connections between the neurons are

sparse, and their strengths are randomly distributed. Within

each LN, excitatory connections are, on average, stronger than

inhibitory connections. This dominance of excitation is consis-

tent with evidence based on dendritic structure of increased

connectivity between excitatory cells in LIP compared to primary

sensory cortices (Elston and Rosa, 1997). Such connectivity

within an LN, when it’s not connected to another LN, amplifies

a single pattern, one of increased activity across most cells,

more strongly than all other patterns.

The LIP cortical surface contains rough topological maps of vi-

sual space (Blatt et al., 1990; Patel et al., 2010). Neurons sharing

an RF, which are more likely to be located close to each other on

the cortical surface, make up an LN in our model. We model the

connections of I cells to be restricted to the LN to which they

belong, for inhibitory interneurons generally only make short-

range projections, whereas E cells can potentially make long-

range projections to the other LN. Since no significant interaction

between RFs was observed in the BG dataset (quantified in Bis-

ley and Goldberg, 2006), we infer that for these RFs, the corre-

sponding LNs are not directly connected (Figure 2A). In contrast,

by maximizing surround suppression, FK selected for RFs that

did interact. Since the interaction observed was predominantly

suppressive, it’s likely that the excitatory connections from

each LN are stronger to the I cells than to the E cells of the other

LN. For simplicity, we model the across-network connections as

being from the E cells of each LN to the other LN’s I cells only,

with sparse and random connectivity (Figure 2B). Our results

do not change if we include weaker across-network E-to-E con-

nections (data not shown).

We use a standard linear firing rate model (SI section 2.2;

Dayan and Abbott, 2005) to simulate the trial-averaged activity

in the experiments. We do not explicitly simulate single trials,for

we have no knowledge of the single-trial population dynamics
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Figure 2. Model Reproduces the Response

and Network Dynamics of Bisley and Gold-

berg and Falkner, Krishna et al.

(A and B) Schematics of the model network con-

nectivity for the BG (A) and the FK (B) scenarios. In

both cases, we model two recurrently connected

local LIP networks (together referred to as a global

network) corresponding to two RF locations, with

each LN consisting of E and I cells. Connectivity

within each LN is such that each LN by itself am-

plifies a single multi-neuronal activity pattern

much more strongly than other patterns (see Re-

sults for details). The FK model network (B) differs

from the BG model network (A) in the addition of

coupling between the LNs that mediates in-

teractions between them.

(C and D) Model reproduces LIP activity observed

by BG (C; n = 41 cells; in all simulation results

except where noted, each neuron was ‘‘recorded’’

from a different simulated global network) and

FK (D; n = 27). Population average PSTHs with

same conventions as Figures 1C and 1D. PSTHs

have been smoothed by convolution with a

Gaussian kernel (s = 30 ms; firing rates and cor-

relations appearing to change before stimuli onset

in C–F are artifacts of this smoothing).

(E and F) Model reproduces LIP network dynamics

observed by BG (E) and FK (F). Correlation anal-

ysis with same conventions as Figures 1E and 1F.

See Figure S1B for correlations between dis-

tractor trial fixation activity and instantaneous

activity for the FK simulation, and Figures S2E–

S2H for separate simulations of the different

reward conditions of the FK experiment.
during the tasks. The experiments involve a variety of sensory,

motor, and cognitive processes that likely give rise to a variety

of external inputs to LIP during a trial, which we model as the

following four types. (1) Fixation input, which is spontaneous

firing from the external input sources when there is no stimulus

in or saccade plan to the RF, such as during the fixation period.

(2) Visual input, which is bottom-up input to an LN when a visual

stimulus is in the RF, which is strong upon stimulus onset and be-

comes weak as the stimulus is sustained. Visual input arrives

from areas that could include V2, V3, V3A, V4, middle temporal

area (MT), and inferotemporal cortex (Baizer et al., 1991; Blatt

et al., 1990; Lewis and Van Essen, 2000). (3) Delay input, which

is persistent top-down input to an LN when a saccade is being

planned to the RF, arriving from frontal areas such as the frontal

eye field (FEF) or dorsolateral prefrontal cortex (dlPFC; Blatt

et al., 1990; Stanton et al., 1995; in SI section 3, we discuss other

possible mechanisms underlying delay activity and their implica-

tions for our model). (4) Expectation input, which is top-down

input to one LN during the fixation period before target onset,

when the animal is in a block of trials during which the

target always appears in the RF of that LN (as in the blocked

experiment of FK). Expectation input likely also arrives from fron-

tal areas such as FEF or dlPFC (Coe et al., 2002; Roesch and
Olson, 2003). The total external input to the neurons at any

time is the sum of one or more of these four types of input. For

each of the four types of input, input to each cell is independently

drawn from a uniform distribution, with ranges of the distribu-

tions chosen to fit experimentally observed neural responses.

Thus, it is important that the inputs from different sources are un-

correlated. In addition, the external input contains weak, tempo-

rally correlated noise that is independent for different neurons,

simply to produce small firing rate fluctuations similar to those

seen in the experiments.

In the experiments, different neurons are recorded from

different LIP locations and have different RF positions. As in

Ganguli et al. (2008), we interpret this to mean that these neurons

are situated in different LNs, which share the same set of con-

nectivity, neuronal, and input statistics. To model this, we run

the simulation multiple times, each time with a different random

instantiation of network connectivity, neuronal time constants,

and input patterns, and ‘‘record’’ from a single randomly chosen

cell during each simulation. Each simulation includes target and

distractor trials for the recorded cell. Figures 2C and 2D show the

population peristimulus time histograms (PSTHs) from such sim-

ulations of the BG (Figure 2C) and FK (Figure 2D) experiments,

which reproduce the experimentally observed firing patterns,
Neuron 93, 221–234, January 4, 2017 225



including the observed absence or presence of surround interac-

tions. More significantly, our model reproduces the apparently

conflicting network dynamics of the two experiments, as re-

vealed from the correlation analysis: the BG model shows

one-dimensional dynamics on slow timescales (Figure 2E), and

the FK model shows the same higher-dimensional dynamics

as experimentally observed (Figure 2F).

If we compute correlations of instantaneous activity to distrac-

tor trial fixation activity, rather than to target trial fixation activity,

the model also qualitatively reproduces the experimental results

(Figure S1B). Furthermore, modeling higher reward levels as re-

sulting in higher levels of delay input (Leon and Shadlen, 1999;

Kennerley and Wallis, 2009), we reproduce the results found

when the data of FK, which consist of trials with large or small

reward, are analyzed separately by reward level (Figure S2).

Because the activity and correlation patterns are qualitatively

similar across reward levels in the data (Figures S2A–S2D), in

all other simulations we simply modeled the average reward

level.

In addition to the correlation analysis, another way to examine

network dynamics is to calculate, for each instantaneous activity

vector, the norms of its component parallel to F
!

and its compo-

nent orthogonal to F
!
. This reveals a similar picture for the

FK data to the correlation analysis, which our model reproduces

(Figure S3).

Conceptual Picture: Coupling of Local Slow Modes
Explains LIP Dynamics
We fully analyze the behaviors of the model in the next sections,

but first, in this section, we presage those results by presenting a

simplified conceptual understanding.

Each LN has its own single dominant activity pattern (its slow

mode), and therefore each on its own would follow one-dimen-

sional dynamics. The circuitry that creates surround suppression

causes these two patterns to suppress one another, and this

mutual suppression in turn qualitatively explains the FK correla-

tion patterns, as follows.

Suppose we are recording in one of the LNs, call it LN1, and let

the other LN be LN2. F
!
, the fixation activity of LN1 on target tri-

als, is dominated by LN1’s slow mode because it is driven by

both fixation input and expectation input. At any given time,

the correlation of LN1’s instantaneous activity with F
!

is high or

low according to whether or not that instantaneous activity is

dominated by the slow mode. Now consider LN1 on distractor

trials. During the initial fixation period, LN1 receives fixation

input, but not expectation input. Thus, its slow mode is activated

less than on target trials; in addition, its slowmode is suppressed

by the more activated slowmode of LN2, which is receiving both

fixation and expectation inputs. As a result, the relative contribu-

tion of activity patterns other than the slow mode to LN1’s activ-

ity is larger than on target trials, resulting in reduced correlation

between distractor trial fixation activity and F
!
. After the target

appears in LN2’s RF, LN1’s slow mode continues to be driven

only by fixation input; in addition, it is strongly suppressed by

the slow mode of LN2, which is strongly driven by both visual

stimulation and the subsequent top-down delay input. This

greatly reduces the correlation. Finally, when the distractor

appears, strong visual stimulation transiently drives up LN1’s
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slow mode as well as other patterns. In BG, this would lower

the correlation—LN1 was dominated by the slow mode before

distractor onset, and is now less so. In FK, LN1’s slow mode

was strongly suppressed before distractor onset, and is now

driven up to dominate LN1’s activity, resulting in the transient

rise in correlation.

The conceptual picture just given is simplified in that it de-

scribes each LN as having only one dimension of activity that

is strongly amplified. In reality, a second strongly amplified

dimension is created in each LN by the coupling between the

two LNs. When LN2 is the more strongly driven LN, it strongly

drives the I cells of LN1. In addition to suppressing LN1’s slow

mode, this amplifies a pattern of differential firing between the

E and I cells in LN1, making the slow mode an even less domi-

nant part of LN1’s activity. This will become clear with the

detailed analysis below.

Detailed Analysis: Two-Dimensional Dynamics Result
from the Coupling of Local Slow Modes
We now take a closer look at the mechanisms of the model. We

modeled the BG scenario with two unconnected LNs, each with

a slow mode. The model simply behaves like two copies of the

one-dimensional model of Ganguli et al., reproducing one-

dimensional dynamics and the absence of surround interaction.

The only difference in network architecture in our model of the

FK scenario is the presence of connections between the two

LNs. Thus, the dominant activity patterns of the two LNs influ-

ence each other and are no longer independent. To understand

the activity patterns of the global network consisting of the two

coupled LNs, we examine the global connectivity matrix, which

describes all connections, both within and between the LNs.

This connectivity between neurons determines how strongly

each neuron excites or inhibits other neurons. The connectivity

can equivalently be described as connections between sets of

activity patterns, determining how strongly activity in one pattern

excites or inhibits activity in itself and in other patterns. For a

network composed of separate excitatory and inhibitory neu-

rons, it is often informative to analyze its connectivity as the con-

nections between its Schur activity patterns (Murphy and Miller,

2009; Goldman, 2009; described in more detail in SI section 4).

These are an ordered set of orthogonal activity patterns whose

connections with each other are as simple as possible for a set

of orthogonal patterns: each Schur pattern has a self-connec-

tion, and in addition, there is a set of purely feedforward connec-

tions between the patterns. We choose to order the patterns by

their self-connection strength. Then, activity in pattern 1 (the

pattern with the strongest self-excitation) can only influence

itself by its self-connection; activity in pattern 2 can excite or

inhibit activity in pattern 1, in addition to influencing itself;

pattern 3 can excite or inhibit pattern 1, pattern 2, and itself,

etc. Thus, given similar external inputs to the patterns, the domi-

nance of any pattern in the network’s dynamics can be predicted

by the strengths of its self-connection and the feedforward con-

nections it receives. The activity of the network at any moment

can be uniquely decomposed as a weighted sum of all Schur

patterns. The dominant patterns will generally have weights

with the largest absolute values (the weights can be positive or

negative).
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Figure 3. Recurrent Connectivity Strongly Amplifies Two Activity

Patterns

(A) The eigenvalue spectrum of the connectivity matrix (matrix plotted in Fig-

ure S4D) for a model network composed of two interconnected LNs of 100

neurons each. Each eigenvalue is associatedwith a Schur vector, representing

a pattern of relative activation across neurons (see Results for details). The

more positive the real part of an eigenvalue, the more strongly the network

amplifies the corresponding Schur activity pattern. Two patterns (magenta and

green) are more strongly amplified than others and are plotted in (B).

(B) Relative activation across neurons in the dominant difference pattern

(differential activation of the two LNs; magenta) and the dominant sum pattern
A set of numbers called eigenvalues can be calculated from

the connectivity matrix; each eigenvalue is associated with a

Schur pattern, and the real part of the eigenvalue corresponds

to the strength of that pattern’s self-connection. Plotting the ei-

genvalues of the global connectivity matrix from one representa-

tive simulation, we see that two eigenvalues have real parts more

positive than the rest, indicating that there are two strongly self-

excitatory activity patterns (Figure 3A; SI section 5). Analysis of

the feedforward connections between patterns (SI section 4; Fig-

ure S4) shows that (1) these two patterns are nearly independent,

with only a very weak feedforward connection from one to the

other (Figure S4G); (2) these two patterns receive approximately

orthogonal sets of feedforward inputs from the less self-excit-

atory patterns (Figures S4B, S4C, and S4F); and (3) the less

self-excitatory patterns form much stronger feedforward con-

nections to the two strongly self-excitatory patterns than to

each other (Figure S4G). Thus, given similar external input to all

patterns, these two patterns will dominate the network’s activity.

To understand the structure of these two potentially dominant

activity patterns, in Figure 3B we plot the relative activation of

different neurons in these two Schur patterns. We have arbitrarily

chosen the overall sign of each pattern in Figure 3B such that

both have mostly positive elements in LN1, and we have arbi-

trarily set the amplitude (i.e., the vector norm) of each pattern

to 1. We note two key points about these two global patterns,

which together show that they represent the coupled activation

of the two local slow modes. (1) The two patterns represent

two different forms of coupled activation of the two LNs: one is

a ‘‘sum pattern,’’ representing roughly equal activation of the

two LNs; the other is a ‘‘difference pattern,’’ representing differ-

ential activation of the two LNs, i.e., this pattern increases the ac-

tivity of one LN and decreases the activity of the other. (2) The

portions of the sum and difference patterns within a given

LN are very similar to each other (e.g., in Figure 3B, compare

the two patterns restricted to neurons 1–100; for this compari-

son, the overall sign of activation within an LN is arbitrary; also

see Figure S5A), as well as to the slow mode of that LN if it

were not connected with the other LN (Figure S5A), which re-

flects the connectivity within that LN.

The sum and difference patterns, in addition to being strongly

amplified by recurrent connectivity, also typically receive stron-

ger external input than the other patterns. The intuition for this

is the following: The external input is non-negative, since we
(equal activation of the two LNs; green), or, equivalently, the two leading Schur

vectors of the connectivity matrix. The difference/sum pattern is driven by the

difference/sum of the mean inputs to the two LNs. Note the similarity of the

two patterns across cells of the same LN.

(C) The LN1 portion of the sum ðS1�!Þ and difference ðD1�!Þ patterns can

be represented as vectors in the two-dimensional space they define. We can

take the axes of the 2D space to be a1
�!

, a vector proportional to the average

of S1
�!

and D1
�!

, and d1
�!

, a vector proportional to their difference.

(D and E) When LN1 receives stronger (D)/weaker (E) mean external input than

LN2, S1
�!

is activated positively, and D1
�!

is activated positively (D)/negatively

(E). Thus, the a1
�!

components of S1
�!

and D1
�!

add (D)/cancel (E), while the

d1
�!

components of S1
�!

and D1
�!

cancel (D)/add (E). The actual activity vectors

(black) thus point in very different directions in (D) and (E).

See Figure S4 for analysis of the connectivity and the Schur patterns, and

Figure S5A for comparisons of the directions of dominant activity patterns.
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assume it’s carried by purely excitatory projection neurons.

The purely excitatory input to an LN most strongly activates

patterns that represent concerted activation of cells in the

LN, and the sum and difference patterns are the only such

patterns (Figure S6). We now present the math behind this

intuition.

For a given global network, consider the vector of external in-

puts I
!
, each of whose elements is the input to one neuron of the

network. Let’s decompose it as I
!

= I
!

mean + I
!

res, where the

LN1 elements of I
!

mean all equal the mean input to LN1, which

we call I1, and similarly the LN2 elements all equal themean input

to LN2, I2. I
!

res contains the residuals, which sum to zero over

each LN. Similarly, we can decompose a Schur pattern P
!

of

the given global network as P
!

= P
!

mean + P
!

res, where the ele-

ments of P
!

mean are P1 and P2, the LN means of P
!
. Given the or-

thonormality of the Schur patterns, the external input to P
!

is

I
!
,P
!
. Over each LN, the residuals sum to zero while the mean

vectors are constant, so the dot product of any residual vector

with any mean vector is 0. Thus, I
!
,P
!

= I
!

mean,P
!

mean +

I
!

res,P
!

res. The first term I
!

mean,P
!

mean = N(I1 P1+I2 P2), where

N is the number of neurons in an LN. The second term is a dot

product of random vectors drawn independently for each global

network and input pattern. By the central limit theorem, for large

N, I
!

res,P
!

res across different random instantiations of networks

and inputs approaches a Gaussian distribution with mean zero

and SD
ffiffiffiffi
N

p ffiffiffi
2

p
sIsP, where sI and sP are the SDs across the ele-

ments of I
!

res and P
!

res, respectively. Thus, the typical order of

magnitude of I
!

res,P
!

res in any given global network will beffiffiffiffi
N

p ffiffiffi
2

p
sIsP. To compare the magnitude of N(I1 P1+I2 P2) andffiffiffiffi

N
p ffiffiffi

2
p

sIsP, we note that N is much greater than
ffiffiffiffi
N

p
, and

I1 and I2 are larger than or comparable to sI (since external inputs

are positive). For the sum and difference patterns, the absolute

values of P1 and P2 are comparable to sP (Figure S6). Thus,

N(I1 P1+I2 P2) >>
ffiffiffiffi
N

p ffiffiffi
2

p
sIsP for these two patterns, so their in-

puts are approximately N(I1 P1+I2 P2). For the other patterns,

P1 and P2 are close to zero, much smaller than sP (specifically,

for our model with N = 100, P1, P2 < sP /
ffiffiffiffi
N

p
; Figure S6) and

much smaller than the LN means of the sum and difference pat-

terns (Figure S6). Thus, their mean-driven inputs are small, and

their input is dominated by the relatively small input from the re-

sidual terms—intuitively, they represent random activations of

cells and are weakly driven by the random fluctuations across

cells of inputs about their mean. In our model, the range of the

uniform distribution from which visual inputs for different cells

are drawn is larger than that for delay inputs, which is larger

than those for fixation and expectation inputs (SI section 2.2).

A larger input variance (i.e., sI) means larger random fluctua-

tions of inputs across cells; thus, patterns other than the sum

and difference patterns are activated more strongly by visual

and delay inputs than by fixation and expectation inputs. This

is consistent with the large variance of activity across cells during

visual and delay responses (Figures 1C and 1D), and the strong

activation of weak patterns by the visual input (Ganguli et al.,

2008).

When inputs are randomly redrawn for simulations of different

global networks, the means of the inputs will be consistent

across simulations. The large means of the sum and difference

patterns within each LN will also be consistent across simula-
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tions (Figure S6) because these are primarily determined by

the statistically consistent strength of the overall excess of exci-

tation in each LN’s connectivity. The means of the other patterns

will be consistently small (Figure S6) because they are deter-

mined by random factors in the connectivity. Thus, across

different global networks, the same analysis will apply and the

sum and difference patterns will consistently receive strong

input, while the other patterns will receive weaker inputs that

vary from simulation to simulation.

We note that for a small proportion of random instantiations

of connectivity matrices, a pair of complex patterns (which

are complex conjugates in the eigenvector basis) take the

place of the single real sum pattern described above. We

show in SI section 6 and Figure S5 that in these cases, the com-

plex pattern pair behaves effectively like the single real sum

pattern.

We can use our understanding of the two dominant global ac-

tivity patterns to understand the activity within a single LN, which

we take to be LN1. We will call the LN1 portions of the sum and

difference patterns S1
�!

and D1
�!

, respectively, and take them to

be normalized to unit vector length. Because these two patterns

are not exactly equal to one another, they define a two-dimen-

sional space of strongly amplified activity patterns in LN1. A

convenient orthogonal pair of vectors to serve as a basis for

this space is a vector a1
�!

proportional to the average of

S1
�!

and D1
�!

, and a vector d1
�!

proportional to their difference

(again, both normalized to unit vector length; Figure 3C). a1
�!

rep-

resents concerted firing of the cells in LN1, while d1
�!

represents

differential firing of the E and I cells in LN1. a1
�!

is almost precisely

the slow mode of LN1 if it were isolated, while d1
�!

is very nearly

orthogonal to that slow mode (Figure S5A). From the analysis

above, the activation of S1
�!

and D1
�!

is largely determined by

the mean inputs to the two LNs, as illustrated in Figures 3D

and 3E.

In Figure S7 and SI section 7, we show that because there

are two strongly amplified activity patterns, single neurons

in both the FK data and model no longer have a common

‘‘crossing time,’’ as observed in BG by Ganguli et al. (2008),

and we discuss possible consequences of this for attentional

switching.

Detailed Analysis: Two-Dimensional Dynamics Explain
Correlation Patterns
We are now in a position to understand the behavior of correla-

tions between fixation and instantaneous activities in the

FK model. Here we consider a population of neurons simulta-

neously recorded from a single LN, part of a single global

network (Figure 4). In SI section 8, we explain why the conclu-

sions we reach remain valid for a population in which each

neuron is recorded from a different global network (the case of

our main simulations in Figure 2 and likely of the experiments

in Figure 1).

First, we see in simulations of a single global network that,

indeed, the two dominant activity patterns, S1
�!

and D1
�!

, largely

explain the population-averaged activity of LN1 (Figures 4A

and 4E; the results and analysis are identical for LN2). Moreover,

we can see the contributions of S1
�!

and D1
�!

activity to the corre-

lation patterns by breaking up the correlations into two
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Figure 4. Two Multi-neuronal Activity Pat-

terns Explain LIP Dynamics

One global network composed of LNs 1 and 2 is

simulated, and the dynamics in LN1 on distractor

trials (A–D) and target trials (E–H) are analyzed.

(A and E) S1
�!

and D1
�!

patterns dominate activity.

Population average activity (red/blue), its compo-

nent in the space of S1
�!

and D1
�!

(orange/purple),

and its component in the space of all other pat-

terns (black) on distractor/target (A/E) trials

(n = 100 cells). In (A), the orange and black traces

add up to the red trace, and in (E), the purple and

black traces add up to the blue trace.

(B and F) Actual correlation (red/blue), Corrsum,diff

(orange/purple, the component of correlation due

to the S1
�!

and D1
�!

patterns alone), and Corrresidual
(black, the residual component) on distractor/

target (B/F) trials. In (B), the orange and black

traces add up to the red trace, and in (F), the purple

and black traces add up to the blue trace.

Corrsum,diffmirrors the salient ups and downs in the

actual correlation, while Corrresidual largely does

not change with time—thus, the changes in actual

correlation over a trial are largely due to the S1
�!

and

D1
�!

patterns. See Results for how the correlation

was broken down into two components. Note that

only the actual correlation, but not Corrsum,diff or

Corrresidual, is restricted to lie within �1 and 1.

(C) Top left inset: the two-dimensional space

spanned by the two 100-dimensional dominant

activity patterns of LN1, S1
�!

(dashed vector) and

D1
�!

(dotted vector), with a1
�!

and d1
�!

as axes.

(C andG) The evolution of S1
�!

(dashedvectors) and

D1
�!

(dotted vectors) activity during distractor

(C; orange vectors) and target (G; purple vectors)

trials, as a result of the evolving inputs illustrated in

(D) and (H). For each trial type, activities in the

S1
�!

and D1
�!

directions are each averaged over

each of four time periods (spanned by black bars in

A, B, E, and F), and are illustrated in their two-

dimensional space, with the angle between

S1
�!

and D1
�!

activities and their relative lengths

accurately rendered. In this 2D space, at a given

time, the activity pattern across the cells of LN1 is

the vector sumof S1
�!

and D1
�!

activities at that time.

Thus, F
!
, the vector of target trial fixation activities,

is the vector sum of the S1
�!

and D1
�!

vectors at time

(1) in (G). The angle between F
!

and the vector sum

of S1
�!

and D1
�!

activities at a given time period

generally determines the actual correlation at that

time: the larger the angle, the lower the correlation,

and vice versa (see Figure S8 for the precise relationship between the vectors and correlation). For example, the angle between the vector sum during the delay

on distractor trials (vector sum of the S1
�!

and D1
�!

activities at time (2) in C) and F
!

is large, so the correlation during that time period is low; the vector sum

following distractor onset on distractor trials (vector sum of S1
�!

and D1
�!

activity at time (3) in C) points in similar directions as F
!
, so the correlation during that time

period is high.

(D andH) The relative inputs to LNs 1 and 2 during the four time periods on distractor (D) and target (H) trials. Black andwhite bars denote themean input to LN1 (I1)

and mean input to LN2 (I2), respectively. As illustrated in Figures 3D and 3E, during each time period, the sum of (difference between) the black and white bars

largely determines themagnitude and direction of S1
�!ðD1�!Þ activity, which is plotted directly above the bars in (C) and (G) (see SI section 9 for explanations of why

the inputs here do not perfectly predict the activations in C and G).
components, the component due to activity in the S1
�!

and D1
�!

patterns alone and the residual component, as follows. At any

given time point, the correlation between instantaneous activity

and fixation activity is br, bF=ðjbr j �� bF �� Þ, where br and bF are the vec-

tors of mean-subtracted instantaneous activities andmean-sub-
tracted fixation activities, respectively (each element of br is the

instantaneous activity of one neuron minus the population

mean instantaneous activity, and similarly for bF ), and j,j denotes
vector norm. We break br into components br sum, brdiff , and brweak,

the mean-subtracted instantaneous activity in the S1
�!

pattern,
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the D1
�!

pattern, and all other patterns, respectively, and do like-

wise for bF :
br, bF

jbr j �� bF �� =
ðbr sum + brdiff + brweakÞ,

� bFsum + bFdiff + bFweak

�
jbr j �� bF ��

=
ðbr sum + brdiffÞ,

� bFsum + bFdiff

�
jbr j �� bF ��

+
ðbr sum + brdiffÞ, bFweak + brweak,

� bFsum + bFdiff

�
+ brweak, bFweak

jbr j �� bF ��
=Corrsum;diff +Corrresidual:

The two termsCorrsum,diff andCorrresidual that sum to the actual

correlation are plotted in Figures 4B and 4F—we see that S1
�!

and

D1
�!

activities largely explain the qualitative changes in correla-

tions over time.

Thus, the actual activity pattern across cells of the LN, r!, can

be approximated as the vector sum of S1
�!

and D1
�!

activities,

which determines the correlation patterns. Figures 4C, 4G, and

S8 illustrate S1
�!

and D1
�!

activities evolving over four time periods

during a trial, as well as how their dynamics explain the correla-

tion patterns. In SI section 10, we discuss why correlations at the

peaks of visual responses are higher in FK than in BG. In Figures

S9 and S10 and SI section 11, we show how themodel dynamics

change smoothly from the BG to the FK case for varying

strengths of surround suppression.

Now we turn to examine how the dynamics of S1
�!

and D1
�!

ac-

tivities are determined by their inputs.We have shown above that

the external input to the sum or difference pattern is approxi-

mately N(I1 P1+I2 P2). We note that the absolute values of

P1 and P2 for the sum and difference patterns are all about equal

(Figure 3B), which we can call m. That is, for the sum pattern,

P1 zP2 zm, while for the difference pattern, P1 zm and

P2 z�m. Thus, the inputs to the sum and difference patterns

are approximately Nm(I1+I2) and Nm(I1�I2), respectively. When

the network is in a steady state, these inputs are amplified by

the connectivity: S1
�!

and D1
�!

activations are approximately given

by 1=
ffiffiffi
2

p
Nm(I1+I2)/(1�lS) and 1=

ffiffiffi
2

p
Nm(I1�I2)/(1�lD) respec-

tively, where lS and lD are the eigenvalues of the sum and differ-

ence patterns, respectively (for this approximation, we ignore the

feedforward input from the other patterns, which is weak relative

to the mean-driven input; the 1=
ffiffiffi
2

p
factor arises because S1

�!
is

only the LN1 half of the sum pattern, and similarly for D1
�!

). As

N, m, lS, and lD are all fixed properties of the network, S1
�!

and

D1
�!

activities just depend on the dynamics of the mean inputs

I1 and I2, being simply proportional to I1+I2 and I1�I2, respectively

(Figures 4C, 4D, 4G, and 4H).

Direct Evidence for Two-Dimensional Dynamics in the
FK Dataset
Since we propose that the BG data are predominantly one-

dimensional and the FK data two-dimensional, we used principal

component analysis (PCA) to directly examine the dimensionality

of the two datasets. We focus on distractor trials because our

correlation analysis revealed that they show the most salient

dynamical differences between BG and FK. Furthermore, our
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model predicts that the activity on FK distractor trials has both

large a1
�!

and d1
�!

activations, and thus is likely to reveal two

dynamical dimensions, whereas the activity on FK target trials

is more strongly one-dimensional, dominated by the single

a1
�!

direction (Figures 4C and 4G). We excluded the transient vi-

sual responses to the distractor, as they involve activation of

weak patterns, and performed PCA on the remaining slowly

varying activity patterns of distractor trials. The results indeed

confirm the one-dimensionality of the BG data and two-dimen-

sionality of the FK data (Figures 5A and 5B).

Given the 2D space spanned by the top two principal compo-

nents (PCs) identified from the FK data, we ask further, do activ-

ity patterns in this dominant 2D space actually behave as our

model predicts? To answer this question, we first estimate the

activity directions in the data that correspond to those in our

model. We take the direction with the maximum mean firing

rate within the 2D space of the two PCs as the putative a1
�!

direc-

tion, since a1
�!

is a direction representing concerted firing of neu-

rons in an LN, and take the direction orthogonal to the putative

a1
�!

as the putative d1
�!

(Figure 5C). In Figures 5D–5G, we plot

the activities over time in the a1
�!

and d1
�!

directions in the data

and model (in SI section 12, we discuss differences between

data and model). The activities in the putative a1
�!

and d1
�!

direc-

tions in the data match those predicted by the model, providing

direct evidence that our proposed two-dimensional dynamics

underlie the FK data.

In SI section 13, we discuss the dynamics and dimensionality

of E and I subpopulations.

Two-Dimensional Dynamics Suggest a Recurrent Origin
for LIP Surround Suppression
Surround suppression is observed in multiple cortical areas (re-

viewed in Rubin et al., 2015) and has been extensively studied

as a model for understanding cortical computations and circuit

mechanisms (e.g., in V1; Ozeki et al., 2009; Rubin et al.,

2015; and see review by Nurminen and Angelucci, 2014). When

considering surround suppression in a given cortical area, a

key mechanistic question is the following: to what extent is it in-

herited from surround suppression in other areas, i.e., resulting

from a withdrawal of input from those areas, and to what extent

is it due to reciprocal, suppressive coupling within the given

area?

Of areas that directly or indirectly project to LIP (Blatt et al.,

1990; Clower et al., 2001), surround suppression has been

observed in MT (Hunter and Born, 2011; Tsui and Pack, 2011),

V4 (Desimone and Schein, 1987; Sundberg et al., 2009), superior

colliculus (Dorris et al., 2007), FEF (Schall and Hanes, 1993; Cav-

anaugh et al., 2012), anddlPFC (Suzuki andGottlieb, 2013). Thus,

it is possible that LIP surround suppression is inherited from one

or more of these areas. However, according to our model, the

observed pattern of correlation between fixation and instanta-

neous activity arises from the coupling of local LIP networks.

We argue that the experimentally observed correlation pattern

is a signature indicating that surround suppression of external

input alone cannot account for LIP surround suppression.

This can be demonstrated by simulating the scenario of the

null hypothesis—LIP surround suppression being inherited

from external inputs. In this version of the model, the two LNs
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Figure 5. Direct Evidence for Two-Dimen-

sional Dynamics in the Falkner, Krishna

et al. Data

(A and B) PCA, where the variables are neurons

and the observations are the instantaneous ac-

tivity vectors during distractor trials, for the BG (A)

and FK (B) datasets. Activity vectors during the

transient visual responses to the distractor (600–

1,100 ms after target onset for BG; 450–750 ms

after target onset for FK) were not included for this

analysis because they involve activation of weak

patterns. The majority of the variance is explained

by one PC in BG, while a comparable proportion is

explained by two PCs in FK, consistent with one-

dimensional dynamics in BG and two-dimensional

dynamics in FK.

(C) We hypothesize that the 2D space spanned by

the top two PCs (colored as in B) in the FK data is

the 2D space of S1
�!

and D1
�!

(Figures 3C, 4C, and

4G). We further hypothesize that the direction with

the maximummean firing rate within the 2D space

of the two PCs is the putative a1
�!

direction, since

a1
�!

represents concerted firing of neurons in an

LN. We can thus find the putative a1
�!

and d1
�!

of

the FK data by rotating the two PCs by an angle of

arctan[mean ðPC1��!Þ /mean ðPC2��!Þ], where mean(,)

denotes mean over the elements of a vector.

(D–G) The activation of a1
�!

(D and E) and d1
�!

(F and G) on FK distractor trials (D and F) and

target trials (E and G). In D and E, the data putative

a1
�!

was derived as in (C). To determine activation

in themodel, one cell was ‘‘recorded’’ from each of

multiple simulated global networks to form the

model population. To determine the model

a1
�!

, suppose the ith cell of the model population is

the jth cell from LN1 of the ith global network. Then

the ith element of the model a1
�!

is the jth element

of the actual a1
�!

of the ith global network. The

model putative a1
�!

was derived as in (C), but from

the model population. The d1
�!

directions are

determined similarly. Each set of activations (e.g.,

the four activation traces of data putative a1
�!

and

d1
�!

on target and distractor trials comprise a set) is

normalized by its peak a1
�!

activation on target

trials—thus, (D)–(G) share the same scale. Vertical

dashed lines denote the onsets of the target and

distractor.
are uncoupled. Whenever a stimulus appears or a saccade is

planned, the LN with the corresponding RF is activated by visual

or delay input; at the same time, the external input to the other

LN is reduced, modeling surround suppression inherent in one

or more input sources (see SI section 2.2 for model details). Fig-

ure 6A shows the population average PSTHs from a simulation of

the FK experiment using this model. On the surface, if we

examine only the firing rates, this model of surround suppression

reproduces the experimental data. However, if we examine the

underlying network dynamics using the correlation analysis (Fig-

ure 6B), we find that thismodel cannot reproduce the experimen-

tally observed correlation pattern. Specifically, the dynamics of

each LN here are dominated by its slow mode, as in BG (Figures

1E and 2E).

There are alternative mechanisms that conceivably could ac-

count for the FK correlations. We consider these in SI section
14 but conclude, for multiple reasons, that the most likely and

parsimonious interpretation is that surround suppression in

LIP arises primarily from direct suppressive coupling between

LIP LNs.

DISCUSSION

By demonstrating that recurrent interactions between LIP LNs

are likely to drive LIP surround suppression, our study suggests

the active involvement of LIP in attentional and saccadic selec-

tion. LIP is part of a fronto-parietal-collicular network that

mediates attentional guidance and eye movements, and the

attentional and saccadic priorities associated with different loca-

tions (a ‘‘priority map’’) are encoded in the activity of neurons in

this network with the corresponding RF locations (Bisley and

Goldberg, 2010). It has long been theorized that different
Neuron 93, 221–234, January 4, 2017 231
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Figure 6. Model of Inherited Surround

Suppression Cannot Reproduce Observed

Network Dynamics

The model: two LIP LNs are uncoupled; whenever

one LN receives visual or delay input, the external

input to the other LN is reduced.

(A) Population average PSTHs (n = 27 cells; same

conventions as Figure 1D) show that this model

reproduces activity observed by FK (Figure 1D)

during surround interactions.

(B) This model fails to reproduce network dy-

namics observed by FK (Figure 1F) during sur-

round interactions. Correlation analysis with same

conventions as Figure 1F.
locations on this priority map mutually suppress each other to

facilitate attentional and saccadic selection, to allow persistent

focus by resisting distraction, and to allow the planning and

execution of sequential saccades (Itti and Koch, 2001; Constan-

tinidis andWang, 2004; Xing and Andersen, 2000). However, the

neural substrates and mechanisms of these processes are not

clear. Our results suggest that LIP directly participates in these

processes and shapes the prioritymap, instead ofmerely reflect-

ing computations achieved in other areas.

Ganguli et al. (2008) showed that the slow dynamics of a local

LIP network (i.e., neurons sharing the same RF) are 1D, but we

can now see that this result is restricted to the case in which a

single LN is activated without activation of other LNs to which

it is coupled. Nonetheless, we can simply understand the more

complex, 2D slow dynamics we have found in the FK data as re-

sulting from coupling between networks that, in isolation, each

have 1D slow dynamics. This lays a basis for understanding

higher-dimensional local dynamics induced by interactions be-

tween larger numbers of simultaneously activated LNs. For

example, during visual search, it takes longer to find a target

when there are more distractors, and, correspondingly, LIP ac-

tivity is lower when there are more distractors (Balan et al.,

2008). This likely results from increased surround suppression

by larger numbers of activated LNs, which would yield correla-

tions corresponding to a higher-dimensional dominant activity

space (e.g., number of dimensions equal to the number of mutu-

ally interacting networks). Our study thus provides a basis for

analyzing activity dynamics when multiple stimuli evoke interac-

tion of multiple local LIP networks, as occurs in natural visual

environments.

Our results have implications for the mechanisms underlying

certain types of perceptual decisionmaking, where saccadic de-

cisions aremade based on noisy sensory evidence (Roitman and

Shadlen, 2002; Gold and Shadlen, 2007). This type of decision

making has been posited to involve two neuronal pools that inte-

grate opposing sensory evidence, each either accumulating ev-

idence independently and racing toward a decision (Mazurek

et al., 2003) or competing with the other by mutual inhibition

(Wong and Wang, 2006; Usher and McClelland, 2001). Recent

results show that these neuronal pools are not exclusively in

LIP (Katz et al., 2016), but if they are distributed across multiple

areas that include LIP, which of the two classes of models

applies to each instance of decision making would depend on

whether the two neuronal pools are recurrently coupled. When
232 Neuron 93, 221–234, January 4, 2017
they are not coupled (like the neuronal pools studied by BG),

the independent accumulator model would apply, and when

they are coupled, the mechanisms described here would

contribute to the competition that leads to decision making. In

the future, it would be interesting to study decision making sepa-

rately for cases in which the two alternative choices engage

LIP LNs that do or do not suppress one another (as BG and

FK have done in studying attentional switching), examine the

neural correlates on the population level, and compare them

with behavior.

The interactions between LNs we describe would cause prior-

ity assignments to be in part determined in relative terms, as has

been observed in certain forms of value-based decision making.

When different saccade targets are associated with different

magnitudes of reward or reward probabilities, some LIP neurons

encode the expected value of different saccades (Platt and

Glimcher, 1999; Dorris and Glimcher, 2004). Importantly, these

value representations in LIP are relative, such that the response

to one saccade target depends on its value relative to those of

other possible saccade targets; this relative value encoding is

well described by the phenomenological model of divisive

normalization (Louie et al., 2011; Carandini and Heeger, 2011).

Surround suppression, computed within LIP in ways similar to

those described here, provides a circuit mechanism for divisive

normalization of value representations (Louie et al., 2014; LoFaro

et al., 2014; Rubin et al., 2015).

Regardless of the cognitive context in which LIP function has

been investigated, research has often focused on single-neuron

activity or the average activity of LIP populations. Our work adds

to other recent work (e.g., see review by Cunningham and Yu,

2014) in suggesting that there is much information in the activity

patterns across neurons, which change as a function of external

stimuli and internal goals such as saccade plans. As we have

seen, even when the mean activity of a population changes

only subtly, the pattern of activity across neurons can change

drastically (e.g., when a target appears in the suppressive sur-

round of a local LIP population). Thus, beyond the information

carried by single neurons or their average activity, downstream

areas could potentially read out information from the activity

pattern across LIP neurons, although whether or how down-

stream areas do this remains to be examined. This is potentially

important in the natural context, where LIP LNs must interact to

process a multitude of changing visual stimuli and internal goals

to guide behavior.



EXPERIMENTAL PROCEDURES

A full description of modeling procedures is found in SI section 2.
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