
Inferring single-trial neural population dynamics using sequential auto-encoders

Chethan Pandarinath *,1-4, Daniel J. O’Shea 5, Jasmine Collins7, Rafal Jozefowicz7^ , Sergey D.

Stavisky2-5, Jonathan C. Kao 3,8, Eric M. Trautmann 5, Matthew T. Kaufman 5^,9, Stephen I. Ryu 3,10,

Leigh R. Hochberg 11,12,13, Jaimie M. Henderson 2,4, Krishna V. Shenoy3,4,6, L. F. Abbott14, and

David Sussillo *,3,4,7

Neuroscience is experiencing a data revolution in which simultaneous recording of many
hundreds or thousands of neurons is revealing structure in population activity that is not
apparent from single-neuron responses. This structure is typically extracted from
trial-averaged data. Single-trial analyses are challenging due to incomplete sampling of
the neural population, trial-to-trial variability, and fluctuations in action potential timing.
Here we introduce Latent Factor Analysis via Dynamical Systems (LFADS), a deep
learning method to infer latent dynamics from single-trial neural spiking data. LFADS
uses a nonlinear dynamical system (a recurrent neural network) to infer the dynamics
underlying observed population activity and to extract ‘de-noised’ single-trial firing rates
from neural spiking data. We apply LFADS to a variety of monkey and human motor
cortical datasets, demonstrating its ability to predict observed behavioral variables with
unprecedented accuracy, extract precise estimates of neural dynamics on single trials,
infer perturbations to those dynamics that correlate with behavioral choices, and
combine data from non-overlapping recording sessions (spanning months) to improve
inference of underlying dynamics. In summary, LFADS leverages all observations of a
neural population’s activity to accurately model its dynamics on single trials, opening the
door to a detailed understanding of the role of dynamics in performing computation and
ultimately driving behavior.

Increasing evidence suggests that in many brain areas, such as the motor and prefrontal
cortices, the activity of large populations of neurons, termed the neural population state, is often
well-described by low-dimensional dynamics [e.g. (Afshar et al. 2011; Harvey, Coen, and Tank
2012; Churchland et al. 2012; Mante et al. 2013; Kaufman et al. 2014; Sadtler et al. 2014;
Pandarinath et al. 2015; Carnevale et al. 2015; Kobak et al. 2016a)]. Recovering these
dynamics on single trials is essential for illuminating the relationship between neural population
activity and behavior, and for advancing therapeutic neurotechnologies such as closed-loop
deep brain stimulation and brain-machine interfaces. However, recovering population dynamics

1
Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Department

of Neurosurgery, Emory University, Atlanta, GA, USA. 2Department of Neurosurgery, 3Department of Electrical Engineering,
4
Stanford Neurosciences Institute, 5Neurosciences Graduate Program, 6Department of Neurobiology, Department of

Bioengineering, Bio-X Program, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. 7Google Brain,

Google Inc. Mountain View, CA, USA. 8Department of Electrical Engineering, University of California, Los Angeles, CA, USA.
9
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. 10

Department of Neurosurgery, Palo Alto Medical Foundation,

Palo Alto, CA, USA. 11
Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA

Medical Center, Providence, RI, USA. 12
Center for Neurotechnology and Neurorecovery, Department of Neurology,

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 13
School of Engineering, Brown Institute for Brain

Science, Brown University, Providence, RI, USA. 14
Zuckerman Mind Brain Behavior Institute, Department of Neuroscience,

Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. *correspondence should be

addressed to, ^
work done while at.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/nCai+hnKW+oSbF+1mHb+M58S+cltn+ju5l+O5Ad+tcCH
https://paperpile.com/c/7jlgEg/nCai+hnKW+oSbF+1mHb+M58S+cltn+ju5l+O5Ad+tcCH
https://paperpile.com/c/7jlgEg/nCai+hnKW+oSbF+1mHb+M58S+cltn+ju5l+O5Ad+tcCH
http://dx.doi.org/10.1101/152884

on single trials is difficult due to trial-to-trial variability (e.g. in behavior or arousal) and
fluctuations in the spiking of individual neurons. Even with dramatic increases in the numbers of
neurons that can be simultaneously recorded using multichannel electrode arrays or optical
imaging, accurately recovering population dynamics from single trials remains a significant
challenge for data-analysis methods.

Standard analyses sacrifice single-trial information for the sake of better estimates of
trial-averaged neural states (Ahrens et al. 2012; Churchland et al. 2012; Mante et al. 2013;
Kobak et al. 2016b). Techniques for extracting neural population states from single trials exist
and are in use, but they typically make simplifying assumptions by modeling the underlying
population dynamics as having independent underlying factors (Yu et al. 2009), as being linear
(Macke et al. 2011; Kao et al. 2015; Aghagolzadeh and Truccolo 2014; Zhao and Park 2017; Y.
Gao et al. 2016) or as being switched linear (Petreska et al. 2011; Linderman et al. 2017). Here
we introduce a novel machine learning method based on nonlinear artificial recurrent neural
networks (RNNs), termed Latent Factor Analysis via Dynamical Systems (LFADS, “ell-fads”).
LFADS is fully nonlinear, provides estimates of inputs from areas not being recorded, and can
be applied to extract shared structure from data collected from different populations across
multiple recording sessions.

LFADS is based on the assumption that spiking activity on a single trial of a task depends on: 1)
underlying dynamics characteristic of the brain area(s) being recorded; 2) trial-specific initial
conditions for those dynamics that reflect both external and internal states of the subject; 3)
effects of unmeasured inputs from other brain areas, including those arising from unexpected
changes in task structure or internal state during a trial, and 4) Poisson spiking variability. In
LFADS (Fig. 1a), the underlying dynamics (assumption 1) are generated by an RNN (the
"generator" network). Dynamic "factors" are extracted from this RNN and are used to generate
(and thereby infer) firing rates of the recorded neurons. The inferred firing rates generate action
potentials through a Poisson process (assumption 4). Initial conditions and input for the
generator network (assumptions 2 and 3) are extracted from spiking data for each trial by
additional RNNs (the "encoder" and "controller" networks). Yet, beyond binned spike
sequences, no other trial-specific information is supplied to the model.

The strength of this approach lies in exploiting the capacity of nonlinear RNNs to reproduce
complex temporal patterns of activity that underlie the neural data. LFADS combines information
obtained from all the recorded neurons on all trials, as well as single-trial spiking data, to
produce de-noised firing rates for each neuron on each trial. This contrasts with conventional
binning or filtering of spike trains, which computes rates solely from the activity on the single trial
being analyzed. LFADS is forced to find low-dimensional dynamics that explain the recorded
data because the number of dynamic factors in the model is constrained. This is consistent with
repeated empirical observations that the dimensionality of neural population activity in areas like
motor and prefrontal cortices is, in several cases, much lower than the number of recorded
neurons [(Churchland et al. 2012; Mante et al. 2013; Kato et al. 2015; Kaufman et al. 2016); see
(P. Gao and Ganguli 2015) for a full discussion].

Here we apply LFADS to a variety of datasets from rhesus macaque motor and pre-motor
cortices using both chronic electrode arrays and acute linear array recordings as well as human

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/UFsUc+eRjFs+sL6gD+tqHj1
https://paperpile.com/c/7jlgEg/q9uaH
https://paperpile.com/c/7jlgEg/d4rjj+dhEdY+A3BkZ+kE4Ao+5p8dj
https://paperpile.com/c/7jlgEg/UFsUc+eRjFs+sL6gD+tqHj1
https://paperpile.com/c/7jlgEg/MyPD0+I7RhG
https://paperpile.com/c/7jlgEg/O9hg+jKuJ+FnDM+vdZ6
https://paperpile.com/c/7jlgEg/d4rjj+dhEdY+A3BkZ+kE4Ao+5p8dj
https://paperpile.com/c/7jlgEg/90c0C
http://dx.doi.org/10.1101/152884

motor cortex using chronic electrode arrays (datasets and recording methodologies are outlined
in Online Methods Table 2 ; macaque data were previously recorded at Stanford University).
We show that firing rates extracted by LFADS can be used to estimate behavioral variables
(e.g. reaching kinematics) significantly more accurately than other techniques, both standard
and state-of-the-art. We also show that the dynamics inferred by LFADS capture features of the
data on multiple timescales, including those related to behavior and faster timescales
associated with local field potential oscillations. Further, we demonstrate that LFADS can
combine data from non-overlapping recording sessions, sampling from separate neural
populations, to improve its performance on each session. Finally, we demonstrate the ability of
LFADS to infer inputs to a neural circuit by analyzing data from an arm-reaching task involving a
mid-trial perturbation.

Results

Overview of LFADS
LFADS is a sequential adaptation of a variational auto-encoder (Kingma and Welling 2013)
constructed by maximizing a lower bound on the the likelihood of the observed spiking activity
being produced by the generator network, across all trials except those held out for
cross-validation purposes. Penalties are imposed on the complexity of the initial conditions and
inferred inputs to ensure that the generator model explains as much of that data as possible
[see e.g. (Gregor et al. 2015)]. Parameters are learned using standard deep learning
methodologies, namely stochastic gradient descent and backpropagation (full details of the
model and training procedure are given in Online Methods, and associated source code is
available).

Working from output (right) to input (left) in (Fig. 1a), LFADS models a vector of single-trial
spiking observations as stochastic (Poisson) spike counts generated from a vector of underlying
firing rates r t, at time t. For neuron i , the LFADS-inferred firing rate r

t,i provides a de-noised rate
for its observed spiking activity on a trial-by-trial basis. The firing rates are obtained by
multiplying a vector of dynamic factors ft by a readout matrix Wrate and then computing an
exponential function of the resulting quantity. The vector of dynamic factors is determined by
multiplying the vector of activities gt of the generator RNN by a matrix Wfac. The activities of the
units of the generator RNN depend on three elements: a trial-specific initial state vector g0 (one
for each trial), a trial-specific vector of time-varying inputs ut, and the parameters defining the
connections of the network (which are fixed across trials after training). The inferred initial state
g0 and inputs ut are provided by linear readouts of the activities of additional RNNs, the encoder
and controller. To compute these for a given trial, the encoder and controller RNNs receive input
consisting of the vector of recorded spike counts within specified bins on that trial. To better
model the trials, the LFADS encoders run through the trial both backwards and forwards to
determine the values of g0 and the inputs, meaning that when generating the trial at any time t,
LFADS has access to data before and after t. As a consequence, the latent variables inferred
by LFADS are more accurate, but this also means that the inputs inferred by LFADS are
acausal with respect to the timing of external events.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/VErwh
https://paperpile.com/c/7jlgEg/BIpxX
http://dx.doi.org/10.1101/152884

Figure 1. LFADS is a generative model that assumes that observed single-trial spiking activity is
generated by an underlying dynamical system. (a) LFADS takes a given recording (far left), reduces is to
a latent code consisting of an inferred initial condition and inputs (middle), and then attempts to estimate
firing rates that are consistent with the observed data (right) from that latent code. I.e. LFADS
auto-encodes the trial via a sequential auto-encoder. Working from right to left in the panel, for the i th
neuron, LFADS estimates firing rates at time t, r

t,i , for each of 192 channels, and the observed spike
counts are assumed to be Poisson distributed count observations of these underlying firing rates. The
firing rates are linear readouts from a set of low-dimensional factors ft (50) via a readout matrix Wrate . The
factors are defined as linear readouts from a dynamical generator (an RNN), via a readout matrix Wfac .
Activity of the generator is determined by its per-trial components consisting of an initial state (g0) and 4
time-varying inferred inputs (ut), and its recurrent connectivity, which is fixed for all trials. Both g0 and ut
are determined from a single-trial recording via a set of encoder and controller RNNs. (b) Example spiking
activity recorded from M1 and PMd (red dashed line separates M1 above from PMd below) as a monkey
performed a reaching task, as well as the corresponding firing rates r t, factors ft , and inferred inputs ut , all
inferred by LFADS (3 example trials are shown). Squares denote time of target onset, and circles denote
time of movement onset.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

In summary, once the model has been trained, recorded binned spike counts from a specific
trial are fed into the LFADS encoder, which infers initial conditions and inputs for that trial (Fig.
1a). The LFADS encoder effectively compresses the information contained in the spiking data
for each trial into a "latent code", the values of the initial conditions and inputs to the generator.
From this compressed code, the generator RNN infers the dynamic factors and firing rates of all
the recorded neurons across time for the encoded trial (in Supp. Fig. 1 we apply LFADS to a
1-D pendulum to show, for a simple dynamical system, how LFADS operates). Thus, LFADS
turns time series of single-trial recorded spike counts into inferred inputs, low-dimensional
dynamic factors and the underlying firing rates which generated the observed spikes (see
Online Methods for further details).

To illustrate the operation of LFADS, we begin by training LFADS models on array data
(single-trial spiking activity) from macaque primary motor (M1) and premotor (PMd) cortices,
recorded while a monkey made reaching movements in a target acquisition task (for details on
training LFADS models, see Online methods, and Online Methods Table 1 , for all model
hyperparameters). The data sequences analyzed were 800 ms long and aligned to target onset
at the start of each trial (i.e., the time when the target for the upcoming reach was presented).
Inferred firing rates, dynamic factors, and inputs, for three example trials reveal several
interesting features (Fig. 1b). The firing rates exhibit the expected relationship to the spiking
activity (upper two panels in Fig. 1b), and they also display quite prominent oscillations that are
most apparent in the rates (but not in the spikes) near the beginning of each trial (detailed in
Fig. 4). In addition to this fast-timescale structure, further analysis in the next section reveals a
second set of oscillations at a slower, behavioral timescale (detailed in Fig. 3). Thus, LFADS
uncovered temporal dynamics on multiple timescales. Further, LFADS inferred separate firing
rate dynamics for PMd and for M1 activity without being provided with information on the identity
of any of the recorded channels (upper two panels in Fig. 1b, M1 above red dashed line, PMd
below). The dynamic factors (third panel) compress the dynamics down to 50 dimensions. The
4-dimensional inferred inputs (bottom traces in Fig. 1b) affect the generator RNN, and also
show variation on multiple timescales. In these examples the inferred input is being used to
explain LFP oscillations (detailed in Fig. 4).

We have assessed the validity and accuracy of firing rates, dynamic factors and inputs, inferred
by LFADS from simulated data for which the ground-truth is known, Supp. Figs 2, 3, 6-8 and
Supp. Table 1 . These studies show e xtensive comparisons of LFADS to a number of
state-of-the-art machine-learning based techniques [GPFA (Yu et al. 2009); PfLDS (Y. Gao et
al. 2016); and vLGP (Zhao and Park 2017)]. However, assessing the quality and validity of
results on real data, like those shown in Fig. 1b, is difficult because the ground truth is either
unknown (in the case of inferred inputs) or non-existent (because single-trial "instantaneous"
firing rates are abstractions). As a first pass at addressing the validity of LFADS on real data,
we can ask whether LFADS dynamic factors are predictive of held out data. Because the
dynamic factors extracted by LFADS reflect the full neural population dynamics, they should be
predictive for neurons that were not used to train the model (i.e., held-out neurons). Indeed, the
low-dimensional representation produced by LFADS dynamic factors provides substantially
improved single-trial likelihood of held-out neurons’ spikes over alternate techniques (Supp. Fig.
4). We exploit this feature when we “stitch” together data from different sessions (Fig. 5).

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/q9uaH
https://paperpile.com/c/7jlgEg/5p8dj
https://paperpile.com/c/7jlgEg/5p8dj
https://paperpile.com/c/7jlgEg/kE4Ao
http://dx.doi.org/10.1101/152884

In the following sections, we test the validity of LFADS-inferred firing rates in a number of ways:
we verify that they exhibit features seen in trial-averaged analysis (Fig. 3); predict details of
behavior (Figs. 2 & 5); and correlate with local field potentials (LFPs), another population
activity measure (Fig. 4). To establish the validity of inferred inputs, we show that they are
informative about task perturbations and about the behavioral response they evoke (Fig. 6).

Movement decoding and motor cortex dynamics
We applied LFADS to a population of 202 neurons (single units) simultaneously recorded from
M1/PMd during a “Maze” task (see Online Methods) in which monkeys made a variety of
straight and curved reaches through different arrangements of virtual barriers (Fig. 2a ; dataset
contained ~2300 individual reach trials). As in all of the examples we show, LFADS received no
information about task instructions (the barrier patterns) or behavioral parameters. Estimates of
hand velocities were computed from firing rates inferred by LFADS using cross-validated
optimal linear estimation [OLE; (Salinas and Abbott 1994)]. We compared the accuracy of
these velocities with results obtained by applying OLE to single-trial firing rates or
low-dimensional state estimates inferred by other widely used and high-performing techniques.
Using the full population of 202 neurons, decoding using LFADS estimated rates dramatically
outperformed results obtained by binning or filtering spike trains, or by using Gaussian Process
Factor Analysis [GPFA; (Yu et al. 2009)] (Fig. 2a,b; average R2 of 0.91 across the dataset, vs.
0.66, 0.61, and 0.34 for smoothing, GPFA, and binning, respectively. Note that, for these offline
analyses, the smoothing approach encompasses state-of-the-art brain-machine interface
decoders such as the Kalman Filter, as detailed in (Willett et al. 2017) and Online Methods).
We also determined performance as a function of population size by drawing random
sub-samples from the neural population (Fig. 2b). LFADS using 25 (X velocity) or 50 (Y velocity)
neurons outperformed the other techniques applied to the full population of 202 neurons.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/q9uaH
https://paperpile.com/c/7jlgEg/Mk3g
https://paperpile.com/c/7jlgEg/gBk9P
http://dx.doi.org/10.1101/152884

Figure 2. Application of LFADS to decoding reaching kinematics in a “Maze” reaching task. (a) A monkey
was trained to perform arm reaching movements to guide a cursor in a 2-D plane from a starting location
(center of the workspace) to peripheral targets. Virtual barriers in the workspace facilitated instruction of
curved (or straight) reaches on a per-condition basis. Each row shows an example condition (3 shown, of
108 total). First column: true reach trajectories (black traces, 15 example trials per condition). Columns
2-4: examples of cross-validated reconstruction of these trajectories using Optimal Linear Estimation
applied to the neural data, which was first de-noised either via LFADS, by smoothing with a Gaussian
filter (40 ms s.d.), or using GPFA to reduce its dimensionality. (b) Decoding accuracy was quantified by
measuring variance explained (R 2) between the true and decoded velocities for individual trials across the
entire dataset (2296 trials), for all three techniques and additionally for simple binning of the neural data.
Accuracy was also measured for random sub-samples from the full neural population of 202 neurons (12
draws were tested for 25 neuron populations, and 4 draws each for the 50, 100, and 150 neuron
populations). Dotted lines connect the median R 2 values for each population size.

We next tested whether the population dynamics inferred by LFADS on single trials exhibited
dynamic features of motor cortical activity that have been identified previously by analyzing
trial-averaged data. One such feature is the slow oscillations (~1-2.5 Hz) in motor cortical
neural firing rates that accompany the transition from pre- to peri-movement activity in monkeys
(Churchland et al. 2012) and humans (Pandarinath et al. 2015) that are consistent across the
full range of movements being performed (Fig. 3a , monkey J showing consistent dynamics
across 108 reach conditions of the “maze” dataset, and Fig. 3c , participant T5 showing

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/DGGl3
https://paperpile.com/c/7jlgEg/eRjFs
http://dx.doi.org/10.1101/152884

consistent dynamics across 8 attempted movement conditions in a “center-out” task). These
results were obtained by averaging the firing rate of each neuron across all the trials
corresponding to a particular reach condition (condition averaging), and then applying a form of
dimensionality reduction (jPCA). Although condition-averaging reveals the basic oscillatory
dynamics, jPCA performed on single trials provides noisy and unstructured views of the neural
trajectories (Figs. 3b & 3d). LFADS not only reproduces the previously-extracted oscillatory
dynamics on a condition-averaged basis (Figs. 3e & 3g), it also clearly demonstrates, for the
first time, the presence and consistency of oscillatory dynamics on single trials (Fig. 3f, monkey
J, 2296 maze reaching trials, and Fig. 3h, participant T5, 114 trials of center-out movement
attempts). The consistency of these trajectories at the single trial level is also clearly
demonstrated in movies of the neural population state space trajectories over time (Supp.
Video 1).

Figure 3. LFADS uncovers known slow dynamics in monkey and human motor cortical activity on a
single-trial basis. (a, c) Slow oscillations of the neural population state accompany the transition between
pre- and peri-movement activity, and have been previously described for monkey (Churchland et al.,
2012) and human (Pandarinath et al., 2015) motor cortical activity. Each trace shows the neural
population state trajectories for a single task condition (monkey: 108 reaching conditions; human: 8
intended movement directions). These dynamics were previously uncovered by averaging each neuron’s
response across all trials of a given condition, and then projecting this condition-averaged activity into a

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

low-dimensional plane using the jPCA technique. (b, d) When the same low-dimensional projection is
applied to the single-trial data, dynamics are less clear due to the inherent noise of single-trial neural
population activity. (e, g) De-noising the data via LFADS reveals the underlying dynamic structure at the
condition average level for monkey and human. (f, h) Additionally, the same dynamic structure is now
clearly present on individual trials (monkey: 2296 trials; human: 114 trials).

LFADS rate oscillations and the local field potential
The previous analysis demonstrated that LFADS is capable of uncovering known slow
oscillations in motor cortical firing rates on a single-trial basis. We also tested whether LFADS is
capable of extracting dynamic features at faster timescales. A second known dynamic feature of
motor cortical activity is the rhythmic spiking activity that often occurs during the pre-movement
period in reaching tasks, typically phase-locked to accompanying oscillations in recorded LFPs
[15-40 Hz; e.g., (Murthy and Fetz 1996; Donoghue et al. 1998)]. Detecting these dynamics on
single trials requires capturing temporal structure in firing rates with sampling at the 7.5-20 ms
timescale, a challenging problem given relatively infrequent spiking and trial-to-trial variability in
motor behavior. We asked whether the oscillations evident in the inferred firing rates of Fig. 1b
(seen in more detail in Fig. 4a), which were extracted without reference to LFPs, reflect this
phenomenon. Indeed, fast oscillations in the inferred single-trial firing rates aligned well with
LFPs and with structure apparent on single trials in unsorted, multi-unit spiking activity (i.e.,
threshold crossings; Fig. 4a).

Phase locking between spiking activity and LFPs in both monkey and human data is revealed
by a cross-correlation analysis (Fig. 4b, black traces). Cross-correlations were first computed
on a single-trial basis, using data from the first 250 ms (monkey) or first 300 ms (human) of each
trial, and then averaged over trials. Averaging cannot be done before the cross-correlation is
computed because this is a single-trial phenomenon; high-frequency oscillations in the
cross-correlograms disappear when they are computed after shuffling trial identity (Fig. 4b, blue
traces). As a result, correlations between condition-averaged firing rates and LFPs are almost
certain to be averaged away.

The correlation between the firing rate oscillations revealed by LFADS on single trials and
recorded LFPs is strikingly similar to the phase locking of the spiking activity with the LFP (Fig.
4b, red traces). This agreement is notable because no LFP data were used when training the
LFADS model, and it provides further indication that the oscillations extracted by LFADS on
single trials are a valid feature of the data.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/j3jvl+t9Lda
http://dx.doi.org/10.1101/152884

Figure 4. LFADS uncovers fast oscillatory structure in neural firing patterns. Previous work has
demonstrated that spiking activity is often phase-locked to high-frequency oscillations in local field
potentials (LFPs) prior to movement initiation (Murthy & Fetz, 1996; Donoghue et al., 1998). (a) Example
single-trial neural activity recorded from human M1 and monkey M1/PMd. 400 ms of data are shown,
beginning at the time of target presentation during an 8-target center-out-and-back movement paradigm.
For T7, analyses were restricted to channels that showed significant modulation during movement
attempts (78/192 channels). Dashed red lines overlaid on monkey data segregate the M1 array (upper
halves) and PMd array (lower halves). Fast oscillations are evident in the spike rasters, the
LFADS-inferred firing rates, and the recorded LFPs (LFPs were not used to train the LFADS models).

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Squares denote time of target onset. For Monkey J, where movement was measurable, circle denotes
time of movement onset. (b) Cross-correlations between the observed spiking activity and the local field
potentials recorded on the same electrode (black traces; mean ± s.e.m.) for several example channels
that showed clear spike-LFP phase locking. Cross-correlations were computed for each channel on a
single trial basis, and the resulting correlograms were averaged over all trials (participant T7: 142 trials;
monkey J: 373 trials). LFP were first low-pass filtered (75 Hz cutoff frequency). Oscillations in these
cross-correlations are indicative of consistent phase-locking between spikes and LFP. As expected,
randomly shuffling the trial identity (i.e., correlating spikes from one trial with LFP from another) largely
removed the fast, oscillatory components in the cross-correlograms (blue traces), demonstrating that the
phase-locking is a single-trial phenomenon. Correlating the LFADS-inferred firing rates with recorded LFP
(red traces) reveals that the inferred oscillatory structure in the neural firing rates corresponds with the
recorded LFP in a similar fashion, despite LFADS having no access to the LFP signal.

Stitching together data from multiple sessions
Thus far, we have demonstrated the application of LFADS to data recorded from a single neural
population, but experiments are often performed across multiple sessions, with different
populations of neurons recorded on each session, whether due to positional drift of a chronic
array, or use of acute probes (e.g., v-probes) that are placed independently each session.
Here, we ask if we can improve performance by using LFADS to stitch together data across
multiple sessions, even when different sets of neurons are being recorded. LFADS provides a
new ability to "stitch" such data together into a single dynamical systems model that can be
used to analyze neural datasets collected over multiple days.

In an experimental setup where a subject is engaged in the same behavior across recording
sessions and the same brain region is being recorded, it is reasonable that population samples
composed of different neurons should participate in the same underlying dynamics, even if they
are recorded at different times. LFADS is well suited to take advantage of this because of its
two-step process of rate inference. LFADS can use the same generator network and dynamic
factor readout matrices Wfac across sessions, but employ different matrices Wrate to infer firing
rates for the different sets of neurons recorded during different sessions (Fig. 5a). Specifically,
in this approach, the matrix Wfac that computes the dynamic factors from the generator RNN is
"learned" using data from all the sessions and, once learned, is held constant across all
sessions. In contrast, separate Wrate matrices, mapping from factors to firing rates, are learned
from and applied to each session exclusively (see Online Methods for full details).

We tested this approach using neural activity from monkey M1 and PMd during a center-out
instructed-delay reaching task, recorded using linear multi-electrode arrays (monkey P; 24
channel V-probes, Plexon Inc.). We trained one stitched multi-session LFADS model on a
combined dataset consisting of 44 recording sessions, which included 38 separate electrode
penetration sites and spanned 162 days (Fig. 5b shows locations of the individual penetration
sites in the precentral gyrus, and Fig. 5c shows sample recordings from 6 sessions). We then
examined the condition-averaged factor trajectories traversed by the model for each recording
session, for each reach direction. These trajectories are highly similar for a given reach
direction, regardless of the recording session (Fig. 5d), a key indication that LFADS found a

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

dynamical generator capable of producing a consistent set of factors. The consistency of the
trajectories at the single trial level across the recording sessions is demonstrated in movies of
the neural population state space trajectories over time (Supp. Video 2).

Figure 5. Using “dynamic neural stitching”, LFADS combines data from separately collected,
non-overlapping recordings of the neural population by learning one consistent dynamical model. (a) The
LFADS architecture was adapted to learn separate readouts from the dynamical generator for each
v-probe recording session. I.e. a separate mapping from factors to firing rates W

s
rate was learned for each

session, while a single factor representation was used across sessions (i.e., only one readout matrix Wfac
is learned. 44 individual recording sessions were used. (b) Locations of linear electrode array
penetrations in the precentral gyrus from which each dataset was collected. Dashed lines indicate
approximate locations of nearby sulcal features based on stereotaxic locations. Arc. Sp.: arcuate spur,
PCd: precentral dimple, CS: central sulcus. (c) Example single-trial rasters for nearly identical upwards
reaches performed on a subset of 6 of the 44 recording sessions. Each raster has 24 rows corresponding
to the 24 channels of the linear array, but the neurons recorded on each session are entirely distinct from

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

each other. (d) After training, the multi-session stitched LFADS model produced consistent factor
trajectories across recording sessions. Traces are factor trajectories for the multi-session stitched LFADS
model projected into the top 3 principal component space. Each trajectory represents the single-trial
factors time-series projected into the PCA subspace, while the color of the trajectory represents the reach
direction. The spatial proximity of the reach trajectories for a given direction across the sessions (44
trajectories of each color) illustrates the consistency of the representation across sessions. (e) Using
kinematic decoding (OLE), we observe that the factors of the multi-session stitched model are more
informative about behavioral parameters (arm reaching kinematics) than the factors of LFADS models fit
to each session individually. This is shown as a comparison of R 2 values between arm kinematics and
either smoothing neural data, GPFA, single-session or multi-session LFADS decodes. (f) Actual recorded
hand position traces for center out reaching task, alongside kinematic decodes for a representative single
session (32), for smoothed neural data, GPFA, single-session LFADS, and multi-session LFADS. Colors
indicate reach direction.

We then compared the multi-session LFADS model to 44 “single-session” models, each
individually trained using data from a single session, using the same hyperparameter settings.
We assessed the quality of the LFADS models by asking how informative the dynamic factors
were in predicting behavioral observations, including reach kinematics and reaction time. In this
case we decode from the dynamic factors because we are testing whether the representation
across recording sessions is improved by LFADS, whereas inferred rates in both multi-session
and single session models tend to be similar since, in a given session, LFADS almost always
fits the observed population well. As expected from the previous analyses, the single-session
LFADS models produced representations that were substantially more predictive of kinematics
than Gaussian-smoothed neural data (mean improvement of 0.31 in R2; p < 10 -6, Wilcoxon
signed-rank test) or GPFA- smoothed neural data (mean improvement of 0.29 in R2, p < 10 -6,
Wilcoxon signed-rank test; Fig. 5e), indicating that LFADS identified useful dynamic
representations even when operating on the limited observations from individual experimental
sessions. Further, the multi-session LFADS model produced representations that were
considerably better than even the single-session LFADS models, enabling kinematic predictions
that greatly outperformed the single-session LFADS models (mean increase of 0.18 in R2, p <
10 -6, Wilcoxon signed-rank test; Fig. 5e, f). We also predicted reaction time from LFADS factors
using an unsupervised method [thresholding a condition-independent signal, see (Kaufman et
al. 2016) and Online Methods]; again the stitched model significantly outperformed the
single-day models (mean improvement in correlation coefficient between predicted and
measured reaction times: 0.17; p < 10 -6, Wilcoxon signed-rank test; Supp. Fig. 5).

Inferring inputs to a neural circuit
Unmeasured input from unrecorded brain areas is a major source of ambiguity in studies of
neural activity. Such inputs play an obviously important role if something unexpected occurs
during a trial. The ability of LFADS to infer inputs ut (see Online Methods eqn. 15 for precise
definition of ut and its role in the LFADS architecture) relies on the assumption that, if a powerful
nonlinear dynamical system cannot generate a particular data set autonomously, it is likely that
an external perturbation to the system occurred. Within the LFADS architecture, we extract this
perturbation and identify it as an inferred input. Inferred inputs can be viewed as estimates of

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/vdZ6
https://paperpile.com/c/7jlgEg/vdZ6
http://dx.doi.org/10.1101/152884

the inputs to the neural circuit being recorded (we outline caveats in the Discussion). At a
minimum, inferred inputs are informative of the presence, type and timing of the unexpected
perturbations during a trial (see Supp. Figs. 6-8 for examples of inferring inputs to synthetic
dynamical systems where the ground truth is known, e.g. the ‘integration to bound’ model in
Supp. Fig. 8).

To test this approach, we analyzed data from a “Cursor Jump” task in which a monkey guided a
cursor, controlled by the monkey's hand position, to reach towards upward or downward targets
(monkey J; see Online Methods). The target position (upward or downward) was shown to the
monkey starting at the beginning of the trial (target onset). In “unperturbed” trials (75%), the
cursor consistently tracked the position of the monkey’s hand, and the monkey made straight
upward or downward reaching movements to acquire targets. On 25% of the trials ("perturbed"
trials), unpredictable shifts of 6 cm to the left or right between cursor and hand position forced
the monkey to make corrective movements to acquire the target (Fig. 6a). We applied LFADS
to spiking activity from multi-electrode arrays implanted in M1 and PMd (Fig. 6b), allowing four
inferred inputs. We analyzed the first 800 ms of each trial (beginning at target onset; most jumps
occurred 350-550 ms after target onset).

LFADS inferred inputs to model information flow into the generator with timing that was
consistent with the trial structure. Prior to the trial, the monkey had no information about the
target position, which was cued at the beginning of the trial (target onset). Around this time, the
inferred inputs are distinct with respect to target position (Fig. 6c , e.g. Input dim 1, comparing
inputs inferred for Upward trials vs. Downward trials), but are not distinct with respect to
perturbation type (i.e., red, blue, and grey traces are overlapping), as the perturbation was not
presented to the monkey until later in the trial. In contrast, around the time of perturbation,
LFADS inferred input patterns that were different for right- and left-shift perturbed trials and for
unperturbed trials (Fig. 6c , red, blue, and grey traces, e.g. Input dim 2). Furthermore, the timing
of these inputs is well aligned to the time of the perturbations (which were variable), and the
perturbation direction specificity of these inputs were similar across downward and upward
reaches (Fig. 6c , top and bottom panels). The described trend in the inferred inputs were also
visible at the single trial level (Supp. Fig. 9). We note that the exact shape of the inferred inputs
may not resemble physiological signals. In addition, the timing of the inputs is not required to be
causal relative to the timing of the perturbations (see Discussion). Nevertheless, this example
demonstrates the ability of LFADS to predict, on average, the presence, identity and timing of
inputs to motor cortex related to task perturbations.

Finally, to test whether these inputs contained information about the identity of the perturbation
on single trials, we applied a widely used nonlinear dimensionality reduction technique,
t-distributed stochastic neighborhood embedding (t-SNE), to the inferred single-trial inputs
around the time of the perturbation (Fig. 6d). t-SNE revealed that the inferred inputs cluster
according to the identity of the perturbation on a single-trial basis.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Figure 6. LFADS uncovers the presence, identity and timing of unexpected perturbations in the “Cursor
Jump” task. (a) The position of a monkey’s hand was linked to the position of an on-screen cursor, and
the monkey made reaching movements to steer the cursor toward upward or downward targets. In
unperturbed trials (grey traces), the monkey made straight reaches to the target. In perturbed trials
(orange traces), the cursor’s position was offset to the left or right during the course of the reaching
movement, and the monkey made corrective movements to acquire the target. (b) Spiking activity from
M1/PMd arrays during three example reach trials towards downward targets for the unperturbed (top),
perturb right (middle), and perturb left (bottom) conditions. Squares denote time of target onset, and
triangles denote the time of an unexpected perturbation. (c) LFADS was allowed 4 inferred inputs to
model the neural activity. For presentation, two trial alignments were used prior to averaging: the initial
portion of the trials was aligned to the time of target onset, while the latter portion of the trials was aligned
by perturbation time (or, for unperturbed trials, the time at which a perturbation would have occurred
based on the cursor’s trajectory). The gap in the traces denotes the break in alignment. Inferred input
values were averaged across trials for upward (top) and downward (bottom) trials (mean ± s.e.m. is
shown, grey: unperturbed trials, blue: perturb left trials, red: perturb right trials). Around the time of target
onset, the identity of the target (up vs. down) is modeled by the inputs (e.g., dimension 1). Around the
time of the perturbation, LFADS used specific inferred input patterns to model each perturbation type
(e.g., dimensions 1 & 2). Input traces were smoothed with a causal Gaussian filter (20 ms s.d.). (d) The
single-trial input patterns around the time of perturbation (all downward trials) were projected into a

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

low-dimensional space using t-SNE. The clustering of the three perturbation types (unperturbed, left
perturbation, or right perturbation) is highly distinguishable, implying the single-trial inferred inputs are
separable based on perturbation type. Black boxes denote locations in t-SNE space for the example trials
shown in panel b.

Discussion

The ability to record from large ensembles of neurons has inspired a shift from emphasizing the
properties of individual neurons and their responses to exploring the dynamics of large neural
populations [see e.g. (Yuste 2015)]. LFADS aids in this process by inferring the underlying
dynamics and states of a neural population on single trials. In particular, LFADS constructs a
de-noised time-dependent firing rate for each neuron on each trial. To obtain a reduced
description of the data, there is no need to pass these firing rates through an additional
dimensionality reduction step because the dynamic factors generated by LFADS are a reduced
description. Furthermore, there is no need to construct a network model that can account for
these rates because this is provided by the generator RNN.

The population state inferred by LFADS is likely to be considerably more informative about an
animal’s behavior than raw single-trial observations, even when a large population of neurons is
observed (Fig. 2). This is because the population state inferred by LFADS is informed by its
model of the system’s underlying dynamics, which leverages all the observed data. Further,
LFADS attempts to infer inputs to a brain region, and can also stitch together datasets from
different recording sessions. We believe the interaction of these capabilities will provide a
significant step forward in understanding the role of dynamics in driving computations in many
behavioral paradigms and brain areas. For example, modeling complex dynamics and inputs to
a brain area could be a powerful tool for understanding integration of evidence in complex
decision-making tasks, for understanding how motor areas set up dynamic trajectories and
integrate feedback/perturbations to guide corrective movements, or for understanding flexible,
context-dependent communication between different brain areas.

There are a number of differences between LFADS and other neural population analysis
techniques (Yu et al. 2009; Petreska et al. 2011; Macke et al. 2011; Kao et al. 2015;
Aghagolzadeh and Truccolo 2014; Zhao and Park 2017; Y. Gao et al. 2016; Linderman et al.
2017), but its primary innovations are the use of nonlinear RNNs for the dynamics generator,
the ability to infer inputs describing features of the data that cannot be fit by the dynamics
model, and the ability to stitch together different datasets. As demonstrated using synthetic
data, where ground truth dynamics are known (Supp. Materials), LFADS significantly
outperforms other methods (see Online Methods for a more in-depth discussion of related work
in the broader machine learning context).

A vexing challenge in neuroscience is distinguishing the role of dynamics internal to a neural
circuit from the effects of unmeasured time-varying input from other brain regions. In the
LFADS approach, inputs are inferred to account for features of the data that the learned

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/q9uaH+MyPD0+d4rjj+dhEdY+A3BkZ+kE4Ao+5p8dj+I7RhG
https://paperpile.com/c/7jlgEg/q9uaH+MyPD0+d4rjj+dhEdY+A3BkZ+kE4Ao+5p8dj+I7RhG
https://paperpile.com/c/7jlgEg/q9uaH+MyPD0+d4rjj+dhEdY+A3BkZ+kE4Ao+5p8dj+I7RhG
https://paperpile.com/c/7jlgEg/k529K
http://dx.doi.org/10.1101/152884

autonomous RNN dynamics cannot, by themselves, explain. In this sense, inputs inferred by
LFADS are similar to innovations in Kalman filtering. Our results on the Cursor Jump task (Fig.
6) show that LFADS can infer input fluctuations that coincide in time with experimentally induced
perturbations, and also that the inferred inputs on a given trial are informative about the
existence and direction of the perturbation on that trial.

Although the nature of the inputs inferred by LFADS is informative about the presence and
identity of perturbations, caution should be used when interpreting the precise shape and timing
of these inputs. In addition to reflecting actual inputs that a neural circuit receives,
LFADS-inferred inputs may reflect model mismatch (e.g. a biological spiking neural network vs.
an artificial RNN) and measurement noise. Furthermore, there is no constraint requiring the
shape of the inferred input to conform to physiological processes, and the transformation from
the inferred input to the predicted neural activity is nonlinear and likely to be complex. Also, the
timing of the inferred inputs may be shifted relative to the timing of the perturbations they
describe. Finally, due to the bidirectional encoders used by LFADS, the generator has access to
the entire data sequence being modeled, and there is no constraint forcing the inputs to be
causal with respect to the task perturbation. Caveats aside, both the presence, timing, and
qualitative shape of the inferred input in the Cursor Jump task (as well as in two synthetic
examples) are reasonable, providing evidence that LFADS inferred inputs are likely to be useful
for thinking about neural computations, e.g. by allowing computational models to disambiguate
between internal dynamics from input driven dynamics.

LFADS provides a new ability to combine data from separate recording sessions involving
different recorded neurons into a single dynamical systems model. The models LFADS
constructs from such stitched data are likely to be more accurate than models extracted from
any single session alone (Fig. 5). This argues that consistent dynamics can describe the
activity of large functionally connected groups of neurons, even in recordings that span many
different electrode penetrations from separate sessions across several months. In this study we
used the stitching approach in a case where a relatively small number of neurons was
simultaneously recorded in each session. However, if the identity of individual neurons changes
or is difficult to track across sessions, stitching may prove useful even in cases where a large
number of neurons is simultaneously recorded in each session, by providing a natural method to
relate their activity across sessions. It is also possible that the stitching approach could be
applied to utilize data across many subjects to further improve data-driven modeling of neural
circuits. For example, under the assumption that motor cortical dynamics are similar across
subjects, the same generator could be trained using many subjects’ data, while the differences
in subjects’ data could be modeled using individualized output matrices or feedforward neural
networks.

The single-trial neural population state inferred by LFADS facilitates more accurate decoding of
external variables such as kinematic intention and reaction time. This holds potential for
improving the performance of therapeutic neurotechnologies such as brain-machine interfaces
(BMIs). Additionally, the ability of stitching to infer neural population state estimates that are
invariant to the particular population being recorded may further improve BMI stability. To
leverage these innovations for BMI applications, two changes would be required: first, a
real-time implementation of LFADS would have to be developed. This is feasible because, while

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

training the LFADS model parameters is a computationally demanding task, running the LFADS
model involves a series of linear transformations and static nonlinearities, which are on the
same order of computational complexity as existing BMI implementations that run in real-time
(Sussillo et al. 2012; Gilja et al. 2015; Sussillo et al. 2016; Pandarinath et al. 2017). Second, the
LFADS architecture must be modified to be causal, i.e., the current neural state estimate must
depend only on previously observed data. Beyond these two requirements, BMIs may be
additionally enhanced via neural stitching, which could be harnessed for real-time applications
by training most of the LFADS model parameters based on historical data, and simply updating
the weights of the input and output adaptor matrices for the currently observed neural data.
Alternatively, it may be possible to replace the these adaptor matrices with nonlinear
architectures that adapt to the currently-observed data, as in (Sussillo et al. 2016).

There are multiple extensions and future directions to explore. First, an output model relevant
to calcium imaging (replacing the Poisson spiking model) would allow the approach to be
extended to calcium imaging data. Second, the LFADS generator could be strengthened by
stacking recurrent layers or using a deep feedforward network architecture. Another extension
would be to optimize the number of inferred inputs and dynamics factors along with the other
model parameters, instead of fixing them to a specific value. Finally, to model areas which are
considered to be more input-driven (e.g., early visual processing), an LFADS-like model that
relies more on feedforward computation but still has recurrence may facilitate more accurate
modeling of phenomena such as short-term adaptation.

Finally, by testing whether recordings from two data sets can be fit by the same generator RNN
and factor-extraction matrices but different rate-extraction matrices, LFADS could be used to
check whether the dynamics in two brain regions (or in two subjects) are consistent. For
example, LFADS could be used to determine whether two brain regions are fulfilling similar or
different functions, depending on whether stitching the two data sets provides a good or a bad
fit, respectively. Given that the expansion from single-neuron to multi-neuron recording is now
being followed by a shift from single- to multi-regional studies, LFADS may find widespread use.

Acknowledgments

We would like to thank John P. Cunningham, Laurent Dinh, and Jascha Sohl-Dickstein for
extensive conversation. We also thank Christine Blabe and Paul Nuyujukian for assistance with
research sessions with participant T5, Emad Eskandar for array implantation with participant T7,
and Brittany Sorice and Anish Sarma for assistance with research sessions with participant T7.
R.J. participated in this work while at Google, Inc. L.F.A.’s research was supported by US
National Institutes of Health grant MH093338, the Gatsby Charitable Foundation through the
Gatsby Initiative in Brain Circuitry at Columbia University, the Simons Foundation, the Swartz
Foundation, the Harold and Leila Y. Mathers Foundation, and the Kavli Institute for Brain
Science at Columbia University. C.P. was supported by a postdoctoral fellowship from the Craig
H. Neilsen Foundation for spinal cord injury research and the Stanford Dean’s Fellowship.
S.D.S. was supported by the ALS Association’s Milton Safenowitz Postdoctoral Fellowship.
K.V.S.’s research was supported by an NIH Director’s Pioneer Award, an NIH-NINDS T-RO1,

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

https://paperpile.com/c/7jlgEg/uFlV
https://paperpile.com/c/7jlgEg/Jy4O+tONd+uFlV+KiBG
http://dx.doi.org/10.1101/152884

NIH-NINDS R01NS066311 , DARPA REPAIR, and the Simons Foundation. J.M.H.’s research
was supported by NIH-NIDCD R01DC014034. K.V.S. and J.M.H.’s research was supported by
Stanford BioX-NeuroVentures, Stanford Institute for Neuro-Innovation and Translational
Neuroscience, Garlick Foundation and Reeve Foundation. L.R.H’s research was supported by
NIH-NIDCD R01DC009899, Rehabilitation Research and Development Service, Department of
Veterans Affairs (B6453R), MGH-Deane Institute for Integrated Research on Atrial Fibrillation
and Stroke; Executive Committee on Research, Massachusetts General Hospital.

The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health, the Department of Veterans Affairs, or the
United States Government. BrainGate CAUTION: Investigational Device. Limited by Federal
Law to Investigational Use.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

References

Afshar, Afsheen, Gopal Santhanam, Byron M. Yu, Stephen I. Ryu, Maneesh Sahani, and
Krishna V. Shenoy. 2011. “Single-Trial Neural Correlates of Arm Movement Preparation.”
Neuron 71 (3): 555–64.

Aghagolzadeh, Mehdi, and Wilson Truccolo. 2014. “Latent State-Space Models for Neural
Decoding.” Conference Proceedings: ... Annual International Conference of the IEEE

Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology

Society. Conference 2014: 3033–36.
Ahrens, Misha B., Jennifer M. Li, Michael B. Orger, Drew N. Robson, Alexander F. Schier,

Florian Engert, and Ruben Portugues. 2012. “Brain-Wide Neuronal Dynamics during Motor
Adaptation in Zebrafish.” Nature 485 (7399): 471–77.

Carnevale, Federico, Victor de Lafuente, Ranulfo Romo, Omri Barak, and Néstor Parga. 2015.
“Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection
under Temporal Uncertainty.” Neuron 86 (4): 1067–77.

Churchland, Mark M., John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul
Nuyujukian, Stephen I. Ryu, and Krishna V. Shenoy. 2012. “Neural Population Dynamics
during Reaching.” Nature 487 (7405): 51–56.

Donoghue, J. P., J. N. Sanes, N. G. Hatsopoulos, and G. Gaál. 1998. “Neural Discharge and
Local Field Potential Oscillations in Primate Motor Cortex during Voluntary Movements.”
Journal of Neurophysiology 79 (1): 159–73.

Gao, Peiran, and Surya Ganguli. 2015. “On Simplicity and Complexity in the Brave New World
of Large-Scale Neuroscience.” Current Opinion in Neurobiology 32 (June). Elsevier:
148–55.

Gao, Yuanjun, Evan W. Archer, Liam Paninski, and John P. Cunningham. 2016. “Linear
Dynamical Neural Population Models through Nonlinear Embeddings.” In Advances in

Neural Information Processing Systems 29 , edited by D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, 163–71. Curran Associates, Inc.

Gilja, Vikash, Chethan Pandarinath, Christine H. Blabe, Paul Nuyujukian, John D. Simeral,
Anish A. Sarma, Brittany L. Sorice, et al. 2015. “Clinical Translation of a High-Performance
Neural Prosthesis.” Nature Medicine 21 (10): 1142–45.

Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. 2015.
“DRAW: A Recurrent Neural Network For Image Generation.” arXiv [cs.CV]. arXiv.
http://arxiv.org/abs/1502.04623 .

Harvey, Christopher D., Philip Coen, and David W. Tank. 2012. “Choice-Specific Sequences in
Parietal Cortex during a Virtual-Navigation Decision Task.” Nature 484 (7392): 62–68.

Kao, Jonathan C., Paul Nuyujukian, Stephen I. Ryu, Mark M. Churchland, John P. Cunningham,
and Krishna V. Shenoy. 2015. “Single-Trial Dynamics of Motor Cortex and Their
Applications to Brain-Machine Interfaces.” Nature Communications 6 (July): 7759.

Kato, Saul, Harris S. Kaplan, Tina Schrödel, Susanne Skora, Theodore H. Lindsay, Eviatar
Yemini, Shawn Lockery, and Manuel Zimmer. 2015. “Global Brain Dynamics Embed the
Motor Command Sequence of Caenorhabditis Elegans.” Cell 163 (3). Elsevier: 656–69.

Kaufman, Matthew T., Mark M. Churchland, Stephen I. Ryu, and Krishna V. Shenoy. 2014.
“Cortical Activity in the Null Space: Permitting Preparation without Movement.” Nature

Neuroscience 17 (3): 440–48.
Kaufman, Matthew T., Jeffrey S. Seely, David Sussillo, Stephen I. Ryu, Krishna V. Shenoy, and

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://paperpile.com/b/7jlgEg/tONd
http://paperpile.com/b/7jlgEg/tONd
http://paperpile.com/b/7jlgEg/t9Lda
http://paperpile.com/b/7jlgEg/M58S
http://paperpile.com/b/7jlgEg/oSbF
http://paperpile.com/b/7jlgEg/90c0C
http://paperpile.com/b/7jlgEg/O5Ad
http://paperpile.com/b/7jlgEg/VErwh
http://paperpile.com/b/7jlgEg/M58S
http://paperpile.com/b/7jlgEg/FnDM
http://paperpile.com/b/7jlgEg/M58S
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/FnDM
http://paperpile.com/b/7jlgEg/O5Ad
http://paperpile.com/b/7jlgEg/oSbF
http://paperpile.com/b/7jlgEg/t9Lda
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/nCai
http://paperpile.com/b/7jlgEg/dhEdY
http://paperpile.com/b/7jlgEg/90c0C
http://paperpile.com/b/7jlgEg/FnDM
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/tONd
http://paperpile.com/b/7jlgEg/VErwh
http://paperpile.com/b/7jlgEg/hnKW
http://paperpile.com/b/7jlgEg/VErwh
http://paperpile.com/b/7jlgEg/UFsUc
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/M58S
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/dhEdY
http://paperpile.com/b/7jlgEg/hnKW
http://arxiv.org/abs/1502.04623
http://paperpile.com/b/7jlgEg/90c0C
http://paperpile.com/b/7jlgEg/hnKW
http://paperpile.com/b/7jlgEg/UFsUc
http://paperpile.com/b/7jlgEg/nCai
http://paperpile.com/b/7jlgEg/t9Lda
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/O5Ad
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/tONd
http://paperpile.com/b/7jlgEg/VErwh
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/FnDM
http://paperpile.com/b/7jlgEg/dhEdY
http://paperpile.com/b/7jlgEg/oSbF
http://paperpile.com/b/7jlgEg/VErwh
http://paperpile.com/b/7jlgEg/dhEdY
http://paperpile.com/b/7jlgEg/oSbF
http://paperpile.com/b/7jlgEg/tONd
http://paperpile.com/b/7jlgEg/nCai
http://paperpile.com/b/7jlgEg/nCai
http://paperpile.com/b/7jlgEg/UFsUc
http://paperpile.com/b/7jlgEg/90c0C
http://paperpile.com/b/7jlgEg/90c0C
http://paperpile.com/b/7jlgEg/5p8dj
http://paperpile.com/b/7jlgEg/t9Lda
http://paperpile.com/b/7jlgEg/UFsUc
http://paperpile.com/b/7jlgEg/dhEdY
http://paperpile.com/b/7jlgEg/O5Ad
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/M58S
http://paperpile.com/b/7jlgEg/O5Ad
http://paperpile.com/b/7jlgEg/A3BkZ
http://paperpile.com/b/7jlgEg/FnDM
http://paperpile.com/b/7jlgEg/hnKW
http://paperpile.com/b/7jlgEg/oSbF
http://paperpile.com/b/7jlgEg/UFsUc
http://dx.doi.org/10.1101/152884

Mark M. Churchland. 2016. “The Largest Response Component in the Motor Cortex
Reflects Movement Timing but Not Movement Type.” eNeuro 3 (4). eneuro.org.
doi:10.1523/ENEURO.0085-16.2016 .

Kingma, Diederik P., and Max Welling. 2013. “Auto-Encoding Variational Bayes.” arXiv

[stat.ML]. arXiv. http://arxiv.org/abs/1312.6114v10 .
Kobak, Dmitry, Wieland Brendel, Christos Constantinidis, Claudia E. Feierstein, Adam Kepecs,

Zachary F. Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K.
Machens. 2016a. “Demixed Principal Component Analysis of Neural Population Data.” eLife
5 (April). doi:10.7554/eLife.10989 .

Linderman, Scott, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. 2017. “Bayesian Learning and Inference in Recurrent Switching Linear Dynamical
Systems.” In Artificial Intelligence and Statistics, 914–22. proceedings.mlr.press.

Macke, Jakob H., Lars Buesing, John P. Cunningham, Byron M. Yu, Krishna V. Shenoy, and
Maneesh Sahani. 2011. “Empirical Models of Spiking in Neural Populations.” In Advances

in Neural Information Processing Systems, 1350–58.
Mante, Valerio, David Sussillo, Krishna V. Shenoy, and William T. Newsome. 2013.

“Context-Dependent Computation by Recurrent Dynamics in Prefrontal Cortex.” Nature 503
(7474): 78–84.

Murthy, V. N., and E. E. Fetz. 1996. “Synchronization of Neurons during Local Field Potential
Oscillations in Sensorimotor Cortex of Awake Monkeys.” Journal of Neurophysiology 76 (6):
3968–82.

Pandarinath, Chethan, Vikash Gilja, Christine H. Blabe, Paul Nuyujukian, Anish A. Sarma,
Brittany L. Sorice, Emad N. Eskandar, Leigh R. Hochberg, Jaimie M. Henderson, and
Krishna V. Shenoy. 2015. “Neural Population Dynamics in Human Motor Cortex during
Movements in People with ALS.” eLife 4 (June): e07436.

Pandarinath, Chethan, Paul Nuyujukian, Christine H. Blabe, Brittany L. Sorice, Jad Saab,
Francis R. Willett, Leigh R. Hochberg, Krishna V. Shenoy, and Jaimie M. Henderson. 2017.
“High Performance Communication by People with Paralysis Using an Intracortical
Brain-Computer Interface.” eLife 6 (February). doi:10.7554/eLife.18554 .

Petreska, Biljana, Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu,
Krishna V. Shenoy, and Maneesh Sahani. 2011. “Dynamical Segmentation of Single Trials
from Population Neural Data.” In Advances in Neural Information Processing Systems 24 ,
edited by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger,
756–64. Curran Associates, Inc.

Sadtler, Patrick T., Kristin M. Quick, Matthew D. Golub, Steven M. Chase, Stephen I. Ryu,
Elizabeth C. Tyler-Kabara, Byron M. Yu, and Aaron P. Batista. 2014. “Neural Constraints on
Learning.” Nature 512 (7515): 423–26.

Salinas, E., and L. F. Abbott. 1994. “Vector Reconstruction from Firing Rates.” Journal of

Computational Neuroscience 1 (1-2): 89–107.
Sussillo, David, Paul Nuyujukian, Joline M. Fan, Jonathan C. Kao, Sergey D. Stavisky, Stephen

Ryu, and Krishna Shenoy. 2012. “A Recurrent Neural Network for Closed-Loop Intracortical
Brain-Machine Interface Decoders.” Journal of Neural Engineering 9 (2): 026027.

Sussillo, David, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, and Krishna V. Shenoy.
2016. “Making Brain–machine Interfaces Robust to Future Neural Variability.” Nature

Communications 7: 13749.
Willett, Francis R., Chethan Pandarinath, Beata Jarosiewicz, Brian A. Murphy, William D.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/gBk9P
http://paperpile.com/b/7jlgEg/uFlV
http://paperpile.com/b/7jlgEg/Jy4O
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/j3jvl
http://dx.doi.org/10.7554/eLife.18554
http://paperpile.com/b/7jlgEg/cltn
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/I7RhG
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/I7RhG
http://paperpile.com/b/7jlgEg/I7RhG
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/j3jvl
http://paperpile.com/b/7jlgEg/BIpxX
http://paperpile.com/b/7jlgEg/ju5l
http://paperpile.com/b/7jlgEg/d4rjj
http://paperpile.com/b/7jlgEg/cltn
http://paperpile.com/b/7jlgEg/Jy4O
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/uFlV
http://paperpile.com/b/7jlgEg/ju5l
http://paperpile.com/b/7jlgEg/ju5l
http://paperpile.com/b/7jlgEg/BIpxX
http://paperpile.com/b/7jlgEg/j3jvl
http://paperpile.com/b/7jlgEg/BIpxX
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/cltn
http://arxiv.org/abs/1312.6114v10
http://paperpile.com/b/7jlgEg/Jy4O
http://paperpile.com/b/7jlgEg/1mHb
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/cltn
http://paperpile.com/b/7jlgEg/d4rjj
http://paperpile.com/b/7jlgEg/1mHb
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/d4rjj
http://dx.doi.org/10.1523/ENEURO.0085-16.2016
http://paperpile.com/b/7jlgEg/ju5l
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/d4rjj
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/uFlV
http://paperpile.com/b/7jlgEg/Jy4O
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/ju5l
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/1mHb
http://paperpile.com/b/7jlgEg/BIpxX
http://paperpile.com/b/7jlgEg/MyPD0
http://paperpile.com/b/7jlgEg/tcCH
http://paperpile.com/b/7jlgEg/d4rjj
http://paperpile.com/b/7jlgEg/gBk9P
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/uFlV
http://paperpile.com/b/7jlgEg/uFlV
http://paperpile.com/b/7jlgEg/vdZ6
http://paperpile.com/b/7jlgEg/j3jvl
http://paperpile.com/b/7jlgEg/Jy4O
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/cltn
http://paperpile.com/b/7jlgEg/gBk9P
http://paperpile.com/b/7jlgEg/KiBG
http://paperpile.com/b/7jlgEg/j3jvl
http://paperpile.com/b/7jlgEg/I7RhG
http://paperpile.com/b/7jlgEg/1mHb
http://dx.doi.org/10.7554/eLife.10989
http://paperpile.com/b/7jlgEg/gBk9P
http://paperpile.com/b/7jlgEg/1mHb
http://paperpile.com/b/7jlgEg/BIpxX
http://paperpile.com/b/7jlgEg/I7RhG
http://paperpile.com/b/7jlgEg/ju5l
http://dx.doi.org/10.1101/152884

Memberg, Christine H. Blabe, Jad Saab, et al. 2017. “Feedback Control Policies Employed
by People Using Intracortical Brain-Computer Interfaces.” Journal of Neural Engineering 14
(1): 016001.

Yu, Byron M., John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, and
Maneesh Sahani. 2009. “Gaussian-Process Factor Analysis for Low-Dimensional
Single-Trial Analysis of Neural Population Activity.” Journal of Neurophysiology 102 (1):
614–35.

Yuste, Rafael. 2015. “From the Neuron Doctrine to Neural Networks.” Nature Reviews.

Neuroscience 16 (8): 487–97.
Zhao, Yuan, and Il Memming Park. 2017. “Variational Latent Gaussian Process for Recovering

Single-Trial Dynamics from Population Spike Trains.” Neural Computation 29 (5):
1293–1316.

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://paperpile.com/b/7jlgEg/q9uaH
http://paperpile.com/b/7jlgEg/k529K
http://paperpile.com/b/7jlgEg/kE4Ao
http://paperpile.com/b/7jlgEg/q9uaH
http://paperpile.com/b/7jlgEg/k529K
http://paperpile.com/b/7jlgEg/k529K
http://paperpile.com/b/7jlgEg/q9uaH
http://paperpile.com/b/7jlgEg/k529K
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/kE4Ao
http://paperpile.com/b/7jlgEg/kE4Ao
http://paperpile.com/b/7jlgEg/Mk3g
http://paperpile.com/b/7jlgEg/q9uaH
http://paperpile.com/b/7jlgEg/kE4Ao
http://paperpile.com/b/7jlgEg/q9uaH
http://paperpile.com/b/7jlgEg/kE4Ao
http://paperpile.com/b/7jlgEg/q9uaH
http://dx.doi.org/10.1101/152884

Inferring single-trial neural population dynamics using
sequential auto-encoders

Online Methods

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins,
Rafal Jozefowicz, Sergey Stavisky, Jonathan C. Kao,

Eric M. Trautmann, Matthew T. Kaufman,
Steven I. Ryu, Leigh R. Hochberg,

Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott,
and David Sussillo

June 20, 2017

1 The LFADS Model

A TensorFlow reference implementation of the LFADS model will soon be made available.

1.1 The variational auto-encoder

The LFADS model is an instantiation of a variational auto-encoder (VAE) [19, 29] extended
to sequences, as in [13] or [21]. The VAE consists of two components, a decoder (also
called a generator) and an encoder. The generator assumes that data, denoted by x, arise
from a random process that depends on a vector of stochastic latent variables z, samples of
which are drawn from a prior distribution P (z). Simulated data points are then drawn from
a conditional probability distribution, P (x|z) (we have suppressed notation reflecting the
dependence on parameters of this and the other distributions we discuss).

The VAE encoder transforms actual data vectors, x, into a conditional distribution over z,
Q(z|x). Q(z|x) is a trainable approximation of the posterior distribution of the generator,
Q(z|x) ⇡ P (z|x) = P (x|z)P (z)/P (x). Q(z|x) can also be thought of as an encoder from the
data to a data-specific latent code z, which can be decoded using the generator (decoder).
Hence the auto-encoder; the encoder Q maps the actual data to a latent stochastic “code",

1

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

and the decoder P maps the latent code back to an approximation of the data. Specifically,
when the two parts of the VAE are combined, a particular data point is selected and an
associated latent code, ẑ (we use ẑ to denote a sample of the stochastic variable z) is drawn
from Q(z|x). A data sample is then drawn from P (x|ẑ), on the basis of the sampled latent
variable. If the VAE has been constructed properly, x̂ should resemble the original data point
x.

The loss function that is minimized to construct the VAE involves minimizing the Kullback-
Leibler divergence between the encoding distribution Q(z|x) and the prior distribution of
the generator, P (z), over all data points. In the VAE framework P (z) is typically defined
as a Gaussian prior whose parameters are independent of the data, and that is also the
case here. The rationale is that the even a simple distribution, such as a Gaussian, can be
transformed into a complex distribution by passing samples of the Gaussian distribution
through a powerful nonlinear function. If training is successful, Q(z|x) and P (z) should
converge and, in the end, statistically accurate generative samples of the data can be created
by running the generator model seeded with samples from P (z), i.e. accurate samples of the
data can be generated from white noise.

We now translate this general description of the VAE into the specific LFADS implementation
aimed at high-dimensional, simultaneously recorded neural spike trains. Borrowing some
notation from [13], we denote an affine transformation (v = Wu+ b) from a vector-valued
variable u to a vector-valued variable v as v = W(u), we use [·, ·] to represent vector
concatenation, and we denote a temporal update of a recurrent neural network receiving
an input as state

t

= RNNa(state
t�1, input

t

), for an RNN named ’a’. It is understood that if
there are two networks modules, such as RNNs, with different names, e.g. RNNa(., .) and
RNNb(., .), these network modules do not share parameters.

1.2 LFADS Generator

The neural data we consider, x1:T , consists of spike trains from D recorded neurons. Our
reference implementation of LFADS also supports continuous Gaussian distributed data, but
as this is not central to the main application, we focus exclusively on spike trains in what
follows. Each instance of a vector x1:T is referred to as a trial, and trials may be grouped
by experimental conditions, such as stimulus or response types. The data may also include
an additional set of observed variables, a1:T , that may refer to stimuli being presented or
other experimental features of relevance, such as kinematics. Unlike x1:T , the data described
by a1:T is not itself being modeled, but it may provide important conditioning information
relevant to the modeling of x1:T . This introduces a slight complication: we must distinguish
between the complete data set, {x1:T , a1:T} and the part of the data set being modeled, x1:T .
The conditional distribution of the generator, P (x|z), is only over x, whereas the approximate
posterior distribution, Q(z|x, a), depends on both types of data.

LFADS assumes that the observed spikes described by x1:T are samples from a Poisson
process with underlying rates r1:T . Based on the dynamical systems hypothesis outlined

2

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

in the introduction of the main text, the goal of LFADS is to infer a reduced set of latent
dynamic variables, f1:T , of dimension F , from which the firing rates can be constructed. The
rates are determined from the factors by an affine transformation followed by an exponential
nonlinearity, r1:T = exp(Wrate(f1:T)). Note that exp(·) is the inverse canonical link function
for the Poisson distribution, making it a natural choice to keep the Poisson rate variable
positive. The choice of a low-d representation for the factors is based on the observation that
the intrinsic dimensionality of neural recordings tends to be far lower than the number of
neurons recorded, e.g. [6, 16, 24], and see [8] for a more complete discussion.

The factors are generated by a recurrent nonlinear neural network and are characterized by an
affine transformation of its state vector, f1:T = W

fac(g1:T), with g

t

of dimension N . Running
the network requires an initial condition g0, which is drawn from a prior distribution P g0(g0).
Thus, g0 is an element of the set of the stochastic latent variables z discussed above.

There are different options for sources of time-dependent input to the recurrent generator
network. First, as in some of the examples to follow, the network may receive no input at all.
Second, it may receive the information contained in the non-modeled part of the data, a1:T ,
in the form of a network input. Instead, as a third option, we introduce an inferred input
u1:T . When an inferred input is included, the set of stochastic latent variables is expanded to
include it, z = {g0,u1:T}. At each time step, u

t

is drawn from a prior distribution P u(u
t

|u
t�1)

that is auto-regressive, with P u1(u1) defining the distribution over u1. (see section 1.7).

The LFADS generator with inferred input is thus described by the following procedure and
equations. First an initial condition for the generator is sampled from the prior on g0

ĝ0 ⇠ P g0(g0) = N (0,I), (1)

with a hyperparameter. At each time step t = 1, . . . , T , an inferred input, û
t

, is sampled
from its prior and fed into the network, and the network is evolved forward in time,

û

t

⇠
(
P u1 (u1) , if t = 1

P u (u
t

|u
t�1) , otherwise

(2)

g

t

= RNNgen (g
t�1, ût

) (3)
f

t

= W

fac(g
t

) (4)
r

t

= exp
�
W

rate (f
t

)
�

(5)
x̂

t

⇠ Poisson(x
t

|r
t

). (6)

Here “Poisson" indicates that each component of the spike vector x

t

is generated by an
independent Poisson process at a rate given by the corresponding component of the rate
vector r

t

. The prior for both g0 and u1 are diagonal Gaussian distributions. The prior
for u

t

with t > 1 is an auto-regressive Gaussian prior, with a learnable autocorrelation
time and process variance (see section 1.7 for more details). We chose the Gated Recurrent
Unit (GRU) [4] as our recurrent function for all the networks we use (see section 1.6 for
equations), including RNNgen. We have not included the observed data a in the generator
model defined above, but this can be done simply by including a

t

as an additional input to

3

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

generator g1 generator g2 generator gT
...

factors f1 factors f2
factors fT

rates r1 rates r2 rates rT

Pu1(u1)

Pg0(g0)

Pu(u2 | u1) Pu(uT | uT-1)

P(x2 | g0, u1,u2)P(x1 | g0, u1) P(xT | g0, u1:T)

sample

sa
mple

sample sample

Figure 1: The LFADS generator. The generative LFADS model is a recurrent network with a feed-
forward readout. The generator takes a sampled initial condition, ĝ0 and a sampled inferred input, ût, at each
time step, and iterates forward. At each time step the temporal factors, ft, and the rates, rt are generated
in a feed-forward manner from gt. Spikes are generated from a Poisson process, x̂t ⇠ Poisson(xt|rt). The
initial condition and input at time step 1 are sampled from diagonal Gaussian distributions with zero mean
and fixed chosen variance. Otherwise, the inputs are sampled from a Gaussian auto-regressive prior.

the recurrent network in equation 3. Note that doing so will make the generation process
necessarily dependent on including an observed input. The generator model is illustrated
in Methods Fig. 1. This diagram and the above equations implement the conditional
distribution P (x|z) = P (x|{g0,u1:T}) of the VAE decoder framework.

1.3 LFADS Encoder

The approximate posterior distribution for LFADS is the product of two conditional distri-
butions, one for g0 and one for u

t

. Both of these distributions are Gaussian with means
and diagonal covariance matrices determined by the outputs of the encoder or controller
RNNs (see Methods Fig. 2 and below). We begin by describing the network that defines
Qg0(g0|x, a). Its mean and variance are given in terms of a vector Egen by

µg0 = W

µ

g0 (Egen) (7)

�g0 = exp

✓
1

2
W

�

g0 (Egen)

◆
. (8)

E

gen is obtained by running two recurrent networks over the data, bidirectionally. One RNN
runs forward (from t = 1 to t = T) in time and the other RNN runs backwards (from t = T
to t = 1),

e

gen,b

t

= RNNgen,b

⇣
e

gen,b

t+1 , [x
t

, a
t

]
⌘

(9)

e

gen,f

t

= RNNgen,f

⇣
e

gen,f

t�1 , [x
t

, a
t

]
⌘

(10)

4

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

generator g1 generator g2 generator gT...

factors f1factors f0 factors f2
factors fT

...controller c1 controller c2
controller cT

rates r1 rates r2 rates rT

Qu(u1|g0,x,a)

Qg0(g0|x,a)

Qu(u2 | u1,g0,x,a) Qu(uT | u1:T-1,g0,x,a)

P(x2 | g0, u1,u2)P(x1 | g0, u1) P(xT | g0, u1:T)

sample

sample

sample sample

...

...
encoder ec

f,1 encoder ec
f,2

encoder ec
f,T

encoder ec
b,1 encoder ec

b,2
encoder ec

b,T

x1 a1 x2 a2 xT aT

...

...
encoder eg

f,1 encoder eg
f,2

encoder eg
f,T

encoder eg
b,1 encoder eg

b,2
encoder eg

b,T

x1 a1 x2 a2 xT aT

Figure 2: The full LFADS model for inference. The generator / decoder portion highlighted with a
gray background and is colored red, the encoder portion is colored blue and the controller, purple. To infer
the latent dynamics from the recorded neural spike trains x1:T and conditioning data a1:T , initial conditions
for the controller and generator networks are encoded from inputs. In the case of the generator, the initial
condition ĝ0 is drawn from an approximate posterior Qg0(g0|x1:T ,a1:T) that receives an encoding of the
input, Egen (in this figure, for compactness, we use x and a to denote x1:T and a1:T). The low-dimensional
factors at t = 0, f0, are computed from ĝ0. The controller then propagates one step forward in time, receiving
the sample factors f0 as well as bidirectionally encoded inputs Econ

1 computed from x1:T ,a1:T . The controller
produces, through an approximate posterior Qu(u1|g0,x1:T ,a1:T), a sampled inferred input û1 that is fed
into the generator network. The generator network then produces {g1, f1, r1}, with f1 the factors, and r1 the
Poisson rates at t = 1. The process continues iteratively so, at time step t, the generator network receives gt�1

and ût sampled from Qu(ut|u1:t�1,g0,x1:T ,a1:T). The job of the controller is to produce a nonzero inferred
input only when the generator network is incapable of accounting for the data autonomously. Although the
controller is technically part of the encoder, it is run in a forward manner along with the decoder.

with e

gen,b

T+1 and e

gen,f

0 learnable biases. Once this is done, Egen is the concatenation

E

gen =
h
e

gen,b

1 , egen,f

T

i
. (11)

Running the encoding network both forward and backward in time allows E

gen to reflect
the entire time history of the data x1:T and a1:T . Finally, we sample initial conditions ĝ0

according to the following distribution

ĝ0 ⇠ Qg0 (g0|x, a) = N (g0 | µg0 ,�g0) (12)

for a normal distribution with mean µg0
i

and standard deviation �g0
i

for the ith element of g0.

The approximate posterior distribution for u
t

is defined in a more complex way that involves
both a second set of forward-backward encoder RNNs and another RNN called the controller.
The forward and backward encoder RNNs provide the input to the controller RNN, and
are defined at time t with state variables e

con,b

t

and e

con,f

t

that are defined by equations

5

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

identical to 9 and 10 (although with different trainable network parameters). Finally, the
time-dependent input to the controller RNN is defined as

E

con

t

=
h
e

con,b

t

, econ,f

t

i
. (13)

Rather than feeding directly into a Gaussian distribution, this variable is passed through the
controller RNN, which runs forward in time with the generator RNN and also receives the
latent dynamic factor, f

t�1 as input,

c

t

= RNNcon (c
t�1, [E

con

t

, f
t�1]) . (14)

Thus, the controller is privy to the information about x1:T and a1:T encoded in the variable
E

con

t

, and it receives information about what the generator network is producing through the
latent dynamic factor f

t�1. It is necessary for the controller to receive the factors so that it
can correctly decide when to intervene in the generation process. Because f

t�1 depends on
both g0 and u1:t�1, these stochastic variables are included in the conditional dependence of
the approximate posterior distribution Qu(u

t

|u1:t�1,g0,x1:T , a1:T). The initial state of the
controller network, c0, is defined as a trainable bias initialized to the 0 vector.

Finally, the inferred input, u
t

, at each time, is a stochastic variable drawn from a diagonal
Gaussian distribution with mean and log-variance given by an affine transformation of the
controller network state, c

t

,

û

t

⇠ Qu (u
t

|x, a) = N (u
t

|µu

t

,�u

t

) (15)

with

µu

t

= W

µ

u

(c
t

) (16)

�u

t

= exp

✓
1

2
W

�

u

(c
t

)

◆
. (17)

We control the information flow out of the controller and into the generator by applying a reg-
ularizer on u

t

(a KL divergence term, described in Sections 1.5 and 1.9), and also by explicitly
limiting the dimensionality of u

t

, the latter of which is controlled by a hyperparameter.

1.4 The full LFADS inference model

The full LFADS model (Methods Fig. 2) is run in the following way. First, a data trial is
chosen, the initial condition and inferred input encoders are run, and an initial condition is
sampled from the approximate posterior, ĝ0 ⇠ N (g0 | µg0 ,�g0). Then, for each time step

6

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

from 1 to T , the generator is updated, as well as the factors and rates, according to

c

t

= RNNcon (c
t�1, [E

con

t

, f
t�1]) (18)

µu

t

= W

µ

u

(c
t

) (19)

�u

t

= exp

✓
1

2
W

�

u

(c
t

)

◆
(20)

û

t

⇠ N (u
t

| µu

t

,�u

t

) (21)
g

t

= RNNgen (g
t�1, ût

) (22)
f

t

= W

fac(g
t

) (23)
r

t

= exp
�
W

rate (f
t

)
�

(24)
x̂

t

⇠ Poisson(x
t

|r
t

). (25)

After training, the full model can be run, starting with any single trial or a set of trials
corresponding to a particular experimental condition to determine the associated dynamic
factors, firing rates and inferred inputs for that trial or condition. This is done by averaging
over several runs to marginalize over the stochastic variables g0 and u1:T . Typically, equation
25 is not executed, unless one explicitly desires to generate spikes.

1.5 The loss function

To optimize our model, we would like to maximize the log likelihood of the data,
P

x

logP (x1:T),
marginalizing over all latent variables. For reasons of intractability, the VAE framework is
based on maximizing a variational lower bound, L, on the marginal data log-likelihood,

logP (x1:T) � L = Lx � LKL. (26)

Lx is the log-likelihood of the reconstruction of the data, given the inferred firing rates, and
LKL is a non-negative penalty that restricts the approximate posterior distributions from
deviating too far from the (uninformative) prior distribution. Lx and LKL are then defined as

Lx =

*
TX

t=1

log
⇣
Poisson(x

t

|r
t

)
⌘+

g0,u1:T

(27)

LKL =
D
D

KL

⇣
N (g0 | µg0 ,�g0) k P g0 (g0)

⌘E

g0

+
D
D

KL

⇣
N (u1 | µu

1,�
u

1) k P u1 (u1)
⌘E

g0,u1

+
*

TX

t=2

D
KL

⇣
N (u

t

| µu

t

,�u

t

) k P u (u
t

|u
t�1)

⌘+

g0,u1:T

, (28)

where the brackets denote marginalizations over the sub-scripted variables. Evaluating
the T +1 KL terms can be done analytically for the Gaussian distributions we use; the

7

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

formulae are found in Appendix B of [19]. We minimize the negative bound, �L, using the
reparameterization trick for Gaussian distributions to back-propagate low-variance, unbiased
gradient estimates [19]. These gradients are used to train the system in an end-to-end fashion,
as is typically done in deterministic settings.

1.6 GRU equations

For clarity, we use the common variable symbols associated with the GRU, with the under-
standing that the variables represented here by these symbols are not the same variables as
those in the general LFADS model description. For x

t

the input and h

t

the hidden state at
time t, the GRU update equation, h

t

= GRU(x
t

,h
t�1), is defined as

r

t

= � (Wr([x
t

,h
t�1])) (29)

u

t

= � (Wu([x
t

,h
t�1])) (30)

c

t

= tanh (Wc([x
t

, r
t

� h

t�1])) (31)
h

t

= u

t

� h

t�1 + (1� u

t

)� c

t

, (32)

with � denoting element-wise multiplication and � denoting the logistic function.

1.7 Autogressive prior for inferred input

A zero-mean auto-regressive process with one time lag (AR(1)) is defined by

s(t) = ↵s(t� 1) + ✏
s

(t), (33)

with 0 ↵ < 1 and noise variable ✏
s

(t) drawn from N (0, �2
✏

). An equivalent formulation for
AR(1) process is to define ↵ and �2

✏

in terms of a process autocorrelation, ⌧ , and process
variance, �2

p

, as ↵ = exp(�1/⌧) and �2
✏

= �2
p

(1 � ↵2). To make the process distribution
stationary the correct distribution for s(0) is N (0, �2

p

). Applying this to LFADS, the prior
for u

t

with t > 1 is an independent AR(1) process in each dimension, such that for the ith

element of u
t

an autocorrelation ⌧
i

and process variance �2
p,i

are initialized to used-defined
initial values.

1.8 Modifications to the LFADS algorithm for stitching together
data from multiple recording sessions

To accommodate multiple recordings sessions, as in Fig. 5 of the main text, we made minor
modifications to the LFADS architecture. In particular, we allowed each separate recording
session to have unique input and output "adaptor" matrices. The reasons are both practical
and conceptual. Practically, a different number of units are recorded in each recording session,

8

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

thus the number of inputs and outputs to the LFADS algorithm needs to change accordingly.
Conceptually, the hypothesis of most investigators when recording in the same area across
multiple sessions is that they are recording different measurements of the same underlying
(dynamical) system. Therefore, LFADS allows a different input and output transformation
for each recording session to handle the different measurements, but otherwise LFADS models
all the data with the same generative model, with shared parameters across all recording
sessions, to allow different sessions’ measurements to improve the underlying model.

Beginning with the simpler case of the output matrices, we modified equation 5, replacing
it with equation 34 to change as a function of recording session, thus introducing a session
index, s, into the notation

r

s,t

= exp
�
W

rate

s

(f
s,t

)
�
, (34)

where the dimensions of Wrate

s

are now the number of units in the session, D
s

, by the number
of factors in the LFADS model, F , which is independent of the session.

We now address the input adaptor matrices. Without multiple recording sessions, we simply
fed the recorded spikes, x

t

into the encoders (equations 9 and 10), single trial by single trial.
To handle multiple sessions’ data, we modified this practice by introducing a per-session
input adaptor matrix, Wspike

s

. Then, for the bidirectional encoding RNN for g0 we modified
equations 9 and 10, by inputting the linearly transformed spikes, yielding

e

gen,b

s,t

= RNNgen,b

⇣
e

gen,b

s,t+1,
⇥
W

spike

s

(x
s,t

), a
t

⇤⌘
(35)

e

gen,f

s,t

= RNNgen,f

⇣
e

gen,f

s,t�1,
⇥
W

spike

s

(x
s,t

), a
t

⇤⌘
, (36)

where the dimensions of the matrix is W

spike

s

(.) are F ⇥D
s

. We modified the bidirectional
RNN encoder for input to the RNN controller in the same way. Otherwise the LFADS
architecture was identical to the standard use case, with the rest of the parameters of the
LFADS architecture shared across all recording sessions.

We computed appropriate initial parameter settings for both the input adaptor and output
matrices using a principal components regression technique. Briefly, we assembled a matrix of
within-condition averaged firing rates for each unit across all sessions, with dimension equal
to the total number of units x number of time points,

P
s

D
s

⇥ T . We performed principal
components analysis on this matrix to reduce it to 16 principal components, equivalent to the
number of factors in the model, yielding a 16 x T matrix of principal component (PC) scores.
For each session, we regressed the matrix of PC scores against the condition-averaged firing
rates recorded in that session. The resulting matrix of regression coefficients, which maps
firing rates to PC scores, was used as the initial input adaptor matrix for that session, Wspike

s

.
The output matrix W

rate

s

for the session was initialized to the pseudoinverse of Wspike

s

. These
initial adaptor and output matrices can be thought of as seeding the multi-session LFADS
model with a trial-averaged correspondence across recording sessions. Note, however, that all
of the output matrices and input adaptor matrices for each session were fit as parameters
during training, as normal.

9

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

During training one dataset is selected at random by the algorithm (e.g. the first session),
and the correct input and output adaptor matrices are then used (the matrices associated
with the first session). To generate a mini-batch of gradients, the algorithm then selects
a random mini-batch of data from that session and propagates it forward to evaluate the
loss. The relevant gradients of the loss are then back-propagated. As a result, all shared
parameters (e.g. the generator RNN parameters) are modified with every mini-batch of data
regardless of dataset, while the input and output adaptor matrices are modified only when
data from that session is used for training.

1.9 Hyper-parameters and further details of LFADS implementa-
tion.

A table of the major hyper-parameters for each model is listed in Methods Table 1. There
were a number of additional minor details that aided in the optimization and generalization
of the LFADS model applied to the datasets in our study.

• To help avoid over-fitting, we added a dropout layer [14] to the inputs and to a few
feed-forward (input) connections [36] in the LFADS model. Specifically, we used dropout
“layers” around equation 11, around the input in equation 18, and around equation 22.

• We added an L2 penalty to recurrent portions of the generator (equations 29-32) and
controller networks to encourage simple dynamics. Specifically, we regularized any
matrix parameter by which h

t�1 was multiplied, but not those that multiplied x

t

.

• As defined in eqn. 28, there is an information limiting regularizer placed on u

t

by virtue
of minimizing the KL divergence between the approximate posterior over u

t

and the
uninformative Gaussian prior.

• Following the authors in [2], we added a linearly increasing schedule on the KL divergence
penalty so that the optimization does not quickly (and pathologically) set the KL
divergence to 0. By 2000 steps, the schedule reached the maximum value of the KL
penalty. An identical schedule was used for linearly increasing the L2 regularizer on
the network parameters.

• We experimented with the variance of the prior distribution for the initial condition
distribution and settled on a value of = 0.1, chosen to avoid saturating network
nonlinearities.

• The auto-regressive prior parameters were optimized to reduce the KL divergence
between inferred inputs from the approximated posterior distributions and those of
the prior. In practice, nearly all AR(1) processes optimized to the uncorrelated, white
noise case (⌧

i

⇡ 0 and �2
p,i

⇡ �2
✏,i

⇡ 0.1). We initialized them with ⌧
i

= 10 time steps
and �2

✏,i

= 0.1.

10

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

• Unless otherwise specified, all matrices were randomly initialized with a normal distri-
bution with mean equal to 0, and variance equal to 1/K, where K is input dimension
of the matrix. All biases were initialized to 0.

• We used the ADAM optimizer, with initial learning rate of 0.01, and �1 = 0.9, �2 = 0.999,
✏ = 0.1. During training, the learning rate was decreased whenever the training error
for the current epoch of data was greater than the last 6 training error values. In this
case, the learning rate was decayed by multiplying the rate by 0.95, and 6 training
epochs were required before the learning rate could be decayed again. The optimization
continued until the learning rate was less than or equal to 1⇥ 10�5 . We routinely
saved checkpoints of the model and therefore were able to capture the model with the
lowest validation error.

• We clipped our hidden state h

t

when any of its values went above a set threshold. This
threshold was rarely hit, but was useful to avoid occasional pathological conditions.

• We used gradient clipping with a value of 200 to avoid occasional pathological gradients.

• The matrix in the W

fac(·) affine transformation was row-normalized to keep the factors
relatively evenly scaled with respect to each other.

Model Figure N F |ut| g0 E dim ut E dim C dim G L2 C L2 KP BS

Monkey J Maze Main 2, 3 64 20 2 64 64 128 10 10 0.98 5

Participant T5 Centerout Main 3 100 20 3 100 100 100 250 250 0.98 5

Monkey J Centerout Main 1, 4 128 50 4 150 100 128 25 25 0.98 2

Participant T7 Centerout Main 4 64 20 3 64 64 128 250 250 0.95 5

Monkey P Multi-session Main 5 100 16 0 100 - - 500 - 0.98 10

Monkey P Single-session Main 5 100 16 0 100 - - 500 - 0.98 10

Monkey J CursorJump Main 6 128 50 4 150 100 128 25 25 0.98 10

Lorenz attractor Supp. 2 64 3 0 64 - - 250 - 0.95 a.u.

Chaotic RNN Supp. 3 200 20 0 200 - - 2000 - 0.95 a.u.

Input pulses Supp. 6, 7 200 20 1 200 128 128 2000 0 0.95 a.u.

RNN Integrator Supp. 8 200 20 1 128 128 128 2000 0 0.95 a.u.

Table 1: Important hyper-parameters of LFADS models. Listed here are the most important LFADS
parameters, relating primarily to model capacity.
’N’ - number of units in the generator, ’F’ - number of factors, |ut| - number of inferred inputs, ’E’ - encoder,
’C’ - controller, ’G’ - generator, ’KP’ - keep probability in dropout layers, ’BS’ - bin size (ms).

1.10 Computing posterior averages of model variables.

As the LFADS model is inherently stochastic, one needs to average in order to get good
estimates of meaningful quantities within the network (e.g. the rates, r

t

). For example, in
de-noising a single trial of spike trains, we run the full LFADS model - both encoder and
decoder on the single trial. For that single trial, we sample the stochastic variables, (eqns. 12
and 15) some number of times (e.g. 512) and then evaluate the generative portion of the
model with these sampled variables. Finally, we obtain the mean of the quantity, in this

11

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

case, the posterior average, computed by averaging the quantity of interest over the random
samples of the stochastic variables, e.g. r

t

⌘ hr
t

i
g0,u1:T . It is posterior averages such as r

t

that are shown in the majority of figures.

1.11 LFADS related work in machine learning literature

Recurrent neural networks have been used extensively to model neuroscientific data (e.g. [31]
[24], [3], [32], [28]), but the networks in these studies were all trained in a deterministic setting.
An important recent development in deep learning has been the advent of the variational
auto-encoder [19] [29], which combines a probabilistic framework with the power and ease of
optimization of deep learning methods. VAEs have since been generalized to the recurrent
setting, for example with variational recurrent networks [5], deep Kalman filters [21], and the
RNN DRAW network [13].

There is also a line of research applying probabilistic sequential graphical models to neural
data. Recent examples include PLDS [23], switching LDS [27], GCLDS [10], and PfLDS [9].
These models employ a linear Gaussian dynamical system state model with a generalized
linear model (GLM) for the emissions distribution, typically using a Poisson process. In the
case of the switching LDS, the generator includes a discrete variable that allows the model
to switch between linear dynamics. GCLDS employs a generalized count distribution for
the emissions distribution. Finally, in the case of PfLDS, a nonlinear feed-forward function
(neural network) is inserted between the LDS and the GLM.

Gaussian process models have also been explored. GPFA [35] uses Gaussian processes (GPs)
to infer a time constant with which to smooth neural data and has seen widespread use in
experimental laboratories. More recently, the authors of [37] have used a variational approach
(vLGP) to learn a GP that then passes through a nonlinear feed-forward function to extract
the single-trial dynamics underlying neural spiking data.

Additional work applying variational auto-encoding ideas to recurrent networks can be found
in [1]. The authors of [21] have defined a very general nonlinear variational sequential
model, which they call the Deep Kalman Filter (DKF). The authors of [33] applied recurrent
variational architectures to problems of control from raw images. Finally, [15] applied
dynamical variational ideas to sequences of images. Due to the generality of the equations in
many of these references, LFADS is likely one of many possible instantiations of a variational
recurrent network applied to neural data (in the same sense that a convolutional network
architecture applied to images is also a feed-forward network, for example).

The LFADS model decomposes the latent code into an initial condition and a set of innovation-
like inferred inputs that are then combined via an RNN to generate dynamics that explain the
observed data. Recasting our work in the language of Kalman filters, our nonlinear generator
is analogous to the linear state estimator in a Kalman filter, and we can loosely think of the
inferred inputs in LFADS as innovations in the Kalman filter language. However, an “LFADS
innovation” is not strictly defined as an error between the measurement and the readout of

12

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

the state estimate. Rather, the LFADS innovation may depend on the observed data and the
generation process in extremely complex ways.

2 Synthetic datasets

2.1 Lorenz system

The Lorenz system is a set of nonlinear equations for three dynamic variables. Its limited
dimensionality allows its entire state space to be visualized. The evolution of the system’s
state is governed as follows

ẏ1 = � (y2 � y1) (37)
ẏ2 = y1(⇢� y3)� y2 (38)
ẏ3 = y1y2 � �y3. (39)

We used the standard parameter values known for inducing chaos, � = 10, ⇢ = 28, and
� = 8/3, and used Euler integration with �t = 0.006. As in [37], we simulated a population
of neurons with firing rates given by linear readouts of the Lorenz variables using random
weights, followed by an exponential nonlinearity. Spikes from these firing rates were then
generated by a Poisson process.

Our synthetic dataset consisted of 65 conditions, with 20 trials per condition. Each condition
was obtained by starting the Lorenz system with a random initial state vector and running
it for 1s. Twenty different spike trains were then generated from the firing rates for each
condition. Models were trained using 80% of the data (16 trials/condition) and evaluated
using 20% of the data (4 trials/condition). While this simulation is structurally quite similar
to the Lorenz system used in [37], we purposefully chose parameters that made the dataset
more challenging. Specifically, relative to [37], we limited the number of observations to 30
simulated neurons instead of 50, decreased the baseline firing rate from 15 spikes/sec to 5
spikes/sec, and sped up the dynamics by a factor of 4.

2.2 Chaotic RNNs as data generators

We tested the performance of each method at inferring the dynamics of a more complex
nonlinear dynamical system, a fully recurrent nonlinear neural network with strong coupling
between the units. We generated a synthetic dataset from an N -dimensional continuous time
nonlinear, so-called, “vanilla" RNN,

⌧ ẏ(t) = �y(t) + �Wy tanh(y(t)) +Bq(t). (40)

This makes a compelling synthetic case study for our method because many recent studies of
neuroscientific data have used vanilla RNNs as their modeling tool (e.g. [31] [24], [3], [32],

13

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

[28]). It should be stressed that the vanilla RNN used as the data RNN here does not have
the same functional form as the network generator used in the LFADS framework, which
is a GRU (see section 1.6). For experiments in Supp. Fig. 3, we set B = q = 0, but we
included an input for experiments in Supp. Fig. 6.

The elements of the matrix W

y were drawn independently from a normal distribution with
zero mean and variance 1/N . We set � to either 1.5 or 2.5, both of which produce chaotic
dynamics at a relatively slow timescale compared to ⌧ (see [31] for more details). The
smaller � value produces “gentler" chaotic activity in the data RNN than the larger value.
Specifically, we set N = 50, ⌧ = 0.025 s and used Euler integration with �t = 0.01 s. Spikes
were generated by a Poisson process with firing rates obtained by scaling each element of
tanh(y(t)) to take values in [0, 1], and then used as the rate in a Poisson process to give rates
lying between 0 and 30 spikes/s.

Our dataset consisted of 400 conditions obtained by starting the data RNN at different initial
states with elements drawn from a normal distribution with zero mean and unit variance.
Firing rates were then generated by running the data RNN for 1 s, and 10 spiking trials were
produced for each condition, yielding a total of 4,000 spiking trials. Models were trained using
80% of the data (8 trials/condition) and evaluated using 20% of the data (2 trials/condition).

2.3 Inferring pulse inputs to a chaotic RNN

We tested the ability of LFADS to infer the input to a chaotic RNN (Supp. Figs. 6,7). In
general, the problem of disambiguating dynamics from inputs is ill-posed, so we encouraged
the dynamics to be as simple as possible by including an L2 regularizer in the LFADS
network generator (see Methods Table 1). We note that weight regularization is a standard
technique that is nearly universally applied to neural network architectures.

Focusing on Supp. Fig 6, we studied the synthetic example of inferring the timing of a
delta pulse input to a randomly initialized RNN. To introduce an input into the data RNN,
the elements of B were drawn independently from a normal distribution with zero mean and
unit variance. During each trial, we perturbed the network by delivering a delta pulse of
magnitude 50, q(t) = 50�(t � t

pulse

), at a random time t
pulse

between 0.25s and 0.75s (the
full trial length was 1s). This pulse affects the underlying rates produced by the data RNN,
which modulates the spike generation process. To test the ability of the LFADS model to
infer the timing of these input pulses, we included in the LFADS model an inferred input
with dimensionality of 1. We explored the same two values of � as in the synthetic example
to model chaotic RNN dynamics, 1.5 and 2.5. Other than adding the input pulses, the data
for input-pulse perturbations were generated as in the first data RNN example described
above.

After training, which successfully inferred the firing rates, we extracted inferred inputs from
the LFADS model (eqn. 15) by running the system 512 times for each trial, and averaging,
defining u

t

= hu
t

i
g0,u1:T . To see how the timing of the inferred input was related to the

14

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

timing of the actual input pulse, we determined the time at which u

t

reached its maximum
value.

2.4 Inferring white noise input in an RNN trained to integrate to
bound

We tested the ability of LFADS to infer the input to a vanilla RNN trained to integrate a
noisy signal to a +1 or �1 bound. The signal was drawn from a Gaussian distribution with
zero mean and variance 0.0625. Weight matrices for the data RNN were drawn independently
from a Gaussian distribution with zero mean and variance 0.64/N , and L2 regularization was
used during training. 800 conditions were generated with white noise inputs, and 5 spiking
trials were generated per condition. This resulted in 4,000 1s spiking trials. 3,200 trials were
used for training and 800 trials were used for validation.

After training LFADS on the integrate to bound data, inferred inputs (u
t

) were extracted
by averaging over 1024 runs of each trial. These inferred inputs were then compared (using
R2) with the real inputs to the integrate to bound model, which were saved down previously
during training.

3 Neural datasets - Research participants with paralysis

Permission for these studies was granted by the US Food and Drug Administration (Investiga-
tional Device Exemption) and Institutional Review Boards of Stanford University (protocol
20804), Partners Healthcare/Massachusetts General Hospital (2011P001036), Providence
VA Medical Center (2011–009), and Brown University (0809992560). The participants in
this study were enrolled in a pilot clinical trial of the BrainGate Neural Interface System
(http://www.clinicaltrials.gov/ct2/show/NCT00912041). Informed consent, including consent
to publish, was obtained from the participants prior to their enrollment in the study.

Participant T7 was a right-handed man, 54 years old at the time of the research sessions
reported here, who was diagnosed with ALS and had resultant motor impairment (ALSFRS-R
of 17). In July 2013, participant T7 had two 96-channel intracortical silicon micro-electrode
arrays (1.5 mm electrode length, Blackrock Microsystems, Salt Lake City, UT) implanted in
the hand area of dominant motor cortex. T7 retained very limited and inconsistent finger
movements. Data reported are from T7’s post-implant day 231.

A second study participant, T5, is a right-handed man, 63 years old at the time of the research
sessions reported here, with a C4 ASIA C spinal cord injury that occurred approximately 9
years prior to study enrollment. He retains the ability to weakly flex his left (non-dominant)
elbow and fingers; these are his only reproducible movements of his extremities. He also
retains some slight residual movement which is inconsistently present in both the upper and

15

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

lower extremities, mainly seen at ankle dorsiflexion and plantarflexion, wrist, fingers and
elbow, more consistently present on the left than on the right. Occasionally, the initial slight
voluntary movement triggers involuntary spastic flexion of the limb. In Aug. 2016, participant
T5 had two 96-channel intracortical silicon micro-electrode arrays (1.5 mm electrode length,
Blackrock Microsystems, Salt Lake City, UT) implanted in the upper extremity area of
dominant motor cortex. Data reported are from T5’s post-implant day 51.

3.1 Task design and data analysis

Neural data were recorded during "Center-out-and-back" target acquisition tasks. The data
were originally collected for neural prosthetic decoder calibration, as part of research testing
algorithms for closed-loop neural cursor control ([12], [25], [26]). In the Center-out-and-back
task, data were collected either in motor-based control (with T7, who retained limited residual
movements), or an attempted movement paradigm (with T5, who did not retain sufficient
movement to reliably measure or physically control a cursor). In motor-based control, T7
controlled the position of a cursor on a computer screen by making physical movements with
his fingers on a wireless touch-pad (Magic Trackpad; Apple, Cupertino, CA). The cursor
began in the center of the screen, and targets would appear in one of 8 locations on the
periphery. The participant then acquired the targets by moving the cursor over the target
and holding it over the target for 500 ms. Participant T7’s limited movements spanned a
small region on the touch-pad, approximately 1/8”–1/4” wide. In the attempted movement
paradigm, the cursor was automatically moved directly toward the target by the computer,
and T5 was asked to attempt movements of his whole arm that followed the movements of
the cursor.

Voltage signals from each of the electrodes were band-pass filtered from 250 to 7500 Hz and
then processed to obtain multi-unit ‘threshold crossings,’ i.e., discrete events that occurred
whenever the voltage crossed below a threshold (choice of threshold was dependent on the
array- T7 lateral array: -80 µV; T7 medial array: -95 µV; T5, both arrays: -3.5 times the
r.m.s. voltage on each channel.). For the present analyses, we did not "spike sort" and
instead grouped together threshold crossings on a given electrode. These spikes therefore can
include both single- and multi-unit activity. For both participants, analysis was restricted to
channels known to show significant modulation during movement attempts (T7: 78 channels;
T5: 187 channels).

Neural control and task cueing were controlled by custom software run on the Simulink/xPC
real-time platform (The Mathworks, Natick, MA), enabling millisecond-timing precision for all
computations. Neural data collected by the NeuroPort System (Blackrock Microsystems, Salt
Lake City) were available to the real-time system with 5-ms latency. Visual presentation was
provided by a computer via a custom low-latency network software interface to Psychophysics
Toolbox for MatLab and an LCD monitor with a refresh rate of 120 Hz. Frame updates from
the real-time system occurred on screen with a latency of approximately 7 ± 5 ms.

16

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

4 Neural datasets - Nonhuman primates

All procedures and experiments were approved by the Stanford University Institutional
Animal Care and Use Committee.

4.1 Maze task

An adult male macaque monkey (monkey J) was trained to sit head-fixed in a primate chair
and perform 2D target acquisition tasks in a fronto-parallel plane by controlling an on-screen
cursor with his hand movements. Monkey J was implanted with two 96-electrode arrays (1
mm electrodes spaced 400 µm apart, Blackrock Microsystems) using standard neurosurgical
techniques. The arrays were implanted into M1 and dorsal premotor cortex (PMd) of the
hemisphere contralateral to his reaching arm.

The Maze task is a variant of a center-out delayed reach task, whose details have previously
been described [17]. Briefly, monkey J made arm movements in a 2-dimensional workspace
while the position of the right index and middle fingertips was tracked optically. This tracked
position controlled the movements of a virtual cursor, and the cursor’s position floated 2.5 cm
above the hand. To initiate a trial, the monkey fixated on a fixation spot for >400 ms, after
which a target appeared. After a delay period (varying from 0 - 900 ms), a go cue instructed
the monkey to begin his movement. A set of virtual barriers in the workspace facilitated the
instruction of curved or straight reach trajectories. Contact with a barrier resulted in an
unrewarded trial. A trial was counted as a success, and reward delivered, if the monkey held
the cursor on the target for 450 ms.

Several de-noising methods were applied to the Maze dataset. For all methods, individual
trials were aligned to movement onset (the point at which movement is first detectable), and
data consisted of 450 ms preceding and following movement onset (for a total of 900 ms per
trial). The dataset consisted of 2296 trials across 108 different reach conditions (target and
barrier locations), and 202 single units were isolated from the recorded activity.

4.2 Center-out and Cursor Jump tasks

These experiments were also performed with Monkey J. Experiments were controlled using
custom MatLab and Simulink Realtime software (Mathworks, USA). Arm reaches were made
with the display blocking the monkey’s view of his hand. The task was displayed in virtual
reality using a Wheatstone stereograph with a latency of 7 ± 4 ms as described in ([11]).
The virtual computer cursor followed the velocity of a reflective bead taped to the monkey’s
hand, which was tracked via an infrared system at 60 Hz (Polaris, Northern Digital, Canada).
The non-reaching arm was gently restrained. To successfully acquire a target, the monkey
had to hold the cursor within a 4 x 4 cm target acquisition area for a continuous 500 ms. A

17

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

target color change cued that the cursor was within the acquisition area. If the cursor left
the target area during this hold period, the 500 ms timer reset. The monkey had to acquire
the target within a time limit of 2 seconds to receive a liquid reward and success tone.

Voltage signals from each of the electrodes were band-pass filtered from 250 to 7500 Hz and
then processed to obtain multi-unit ‘threshold crossings’, i.e. discrete events that occurred
whenever the voltage crossed below a threshold (set at the beginning of each day to be -4.5
times r.m.s. voltage). For the "Center-out-and-back" and "Cursor Jump" tasks, we did not
spike sort the data and instead grouped together threshold crossings on a given electrode.
These threshold crossing events therefore can include both single- and multi-unit activity.

For the LFP (Fig. 4 of main text) and Cursor Jump analyses (Fig. 6 of main text), data
analyzed were from dataset 2015-04-15, which occurred 69 months after the implantation of
recording arrays. A single LFADS model was fit to data from two types of reaching tasks - a
standard "Center-out-and-back" task and a Cursor Jump task.

In the Center-out-and-back task, targets alternated between being located at the workspace
center or at a randomly chosen target out of 8 possible target locations, all 12 cm away from
the workspace center and evenly spaced around a circle. In the Cursor Jump task, targets
were located either at the workspace center or one of two radial target locations located 12
cm away from the workspace center, in opposite directions. The three possible targets lay
along the vertical monitor axis.

The ’cursor jump’ manipulation at the heart of the Cursor Jump Task was applied on a
random 25% of trials towards radial targets. On these randomly selected perturbation
trials, the cursor position was offset by 6 cm perpendicular to the vertical axis. The jump
happened after the cursor traveled 6 cm towards the target along the vertical axis. Only
one perturbation occurred per trial. The time when the cursor jump command was sent
to the display computer was recorded with 1 ms resolution, after which it appeared at the
next 120 Hz monitor update. The delivery of cursor jump position offsets required us to
counteract this offset at the end of each perturbed outward trial so as to not carry a (possibly
accumulating) hand-to-cursor offset over multiple trials. Thus, we applied a second, opposite
cursor jump as soon as the center target re-appeared, resulting in a consistent hand-to-cursor
position relationship at the start of each outward trial.

To train the LFADS model, spike trains were binned at 10 ms resolution. A single LFADS
model was fit to a combined dataset containing center-out-and-back trials (8 targets), outward
trials without perturbations (2 targets), outward trials with perturbations (2 targets, 2
perturbation directions), and return-to-center trials from the perturbed/unperturbed outward
trials, for a total of 5140 trials. 800 ms of data were taken for each trial, with data aligned to
the start of the trial (target onset). In cases of perturbations, most jumps happened between
400-550 ms post-target onset. The model was allowed to infer 4 inputs to the generator in
order to fit the data.

18

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

4.3 Multi-session V-probe recordings

One adult male macaque monkey (P) was trained in a behavioral task as described below.
After initial training, we performed a sterile surgery during which the macaque was implanted
with a head restraint and a recording cylinder (NAN Instruments), which was located over
left, caudal, dorsal premotor cortex (PMd). The cylinder was placed surface normal to the
skull and secured with methyl methacrylate. A thin layer of methyl was also deposited atop
the intact, exposed skull within the chamber. Before recording sessions began, a miniature
craniotomy (3 mm diameter) was made under ketamine/xylazine anesthesia, targeting an
area in PMd which responded during movements and palpation of the upper arm (17 mm
anterior to interaural stereotaxic zero).

In the behavioral task, monkey P was trained to use his right hand to grasp and translate a
custom 3D printed handle (Shapeways, Inc.) attached to a haptic feedback device (Delta.3,
Force Dimension, Inc.). The other arm was comfortably restrained at the monkey’s side. The
haptic device was controlled via a 4 kHz poll position, update force feedback loop implemented
in custom software written in C++ atop Chai3D (http://chai3d.org). The weight of the
device was compensated by upward force precisely applied by the device’s motors, such that
the motion of the device felt nearly effortless because the device’s mechanical components
were lightweight and had low inertia. The device endpoint with the attached monkey handle
was constrained via software control to translate freely in the fronto-parallel plane. The
handle was custom 3D printed and contained a beam break detector which indicated whether
the monkey was gripping the handle. The task was controlled using custom code running on
a dedicated Simulink Real Time operating system. Hand position was recorded at 1 kHz,
and the 2D position of the device was used to update the position of a white circular cursor
at the refresh rate of 144 Hz with a latency of 4-12 ms (verified via photodiode) displayed
on an LCD screen located in front of the monkey and above the haptic device, in the same
fronto-parallel plane as the device itself. The display was driven by custom software driven
by Psychophysics Toolbox. A plastic visor was used to mask the monkey’s visual field such
that he could see the screen but not his hand or the haptic device handle.

The monkey was trained to perform a delayed center-out reaching task by moving the haptic
device cursor towards visual targets displayed on the screen. Monkeys initiated the task by
holding onto the device handle, which was detected by a beam break photodiode built into
the handle. At the start of each trial, the device gently returned the hand to the center
position and supported the weight of the arm from below in that position (by rendering a
narrow virtual shelf just below the haptic cursor). At target onset, one or more reach targets
appeared as hollow circles at one of 8 radial locations located 10 cm from the position. After
a variable delay period (50-800 ms), the go cue was indicated visually by the target outline
filling in with color. A trial was successful if the monkey remained still during the delay
period, initiated the reach within 600 ms after the go cue, and held in the reach target for 50
ms. In some sessions, the monkey performed additional trial conditions with different target
locations or forces applied to the haptic device. These trials were excluded from analysis;
only successful center-out reaches were included. Hand velocities were computed by applying
a smoothing, differentiating filter (Savitzy-Golay, 2nd-order, 3 ms smoothing widow) to the

19

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Model Figure Electrode type Signal post-processing

Monkey J Maze Main 2, 3 Utah array threshold crossing, spike sorted

Participant T5 Centerout Main 3 Utah array threshold crossing

Monkey J Centerout Main 1, 4 Utah array threshold crossing

Participant T7 Centerout Main 4 Utah array threshold crossing

Monkey P Multi-session Main 5 v-probe threshold crossing

Monkey P Single-session Main 5 v-probe threshold crossing

Monkey J CursorJump Main 6 Utah array threshold crossing

Table 2: Signal collection technology and spike detection method.

raw position time series. Reaction time was measured from the visual display of the go cue
detected at the photodiode until the hand speed in the fronto-parallel plane reached 5% of
the peak speed on each trial.

Electrophysiological recordings were performed by slowly lowering a linear multielectrode
array with 24 recording channels (Plexon V-probe or U-probe) to a position where the
channels likely spanned the layers of the cortex based on properties of the neural signals.
We allowed 45-90 minutes to allow the probe to settle before beginning experiments. All 24
channels were amplified and sampled at 30 kHz (Blackrock Microsystems), high-pass filtered
(fourth-order Butterworth filter, 250 Hz corner frequency), and thresholded at -3.5x RMS
voltage on each channel. Threshold crossings on adjacent channels that occurred within
0.5 ms of each other were removed from one of the channels to avoid duplicate detection of
spiking along the array. Threshold crossing rates were then binned at 10 ms on each channel.

Experimental sessions were screened on the basis of minimum trial count (200 trials); one
dataset was manually excluded on the basis of an abrupt discontinuity in the recorded firing
rates over the session. Following this screening, a total of 44 consecutive experimental sessions
were included, comprising recording locations in the upper arm representation of primary
motor cortex and dorsal premotor cortex. A 1200 ms time window beginning 500 ms before
the go cue to 700 ms afterwards was chosen from each successful trial and used to train the
LFADS model.

5 Analysis Methods by Figure

We used a number of analysis methods on either smoothed neural data, or the output of
LFADS, typically the rates, factors or inferred inputs. All of these analyses methods are
standard, but we provide references and operating parameters here.

5.1 Fig. 2 - Kinematic predictions on the Maze dataset

We used Optimal Linear Estimation [30] to create decoders that mapped neural features
onto the measured x and y reaching velocities. The inputs to the decoder were the raw

20

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

or de-noised neural data from 250 ms prior to 450 ms post movement onset. De-noising
was achieved via one of three techniques: Gaussian smoothing, GPFA[35], or LFADS. For
Gaussian smoothing, the millisecond-binned spike trains were convolved with a Gaussian
function with standard deviation (s.d.) of 40 ms. For GPFA and LFADS, millisecond-binned
spike trains were re-binned at 5 ms resolution, and both techniques were allowed to fit 20 latent
dimensions (factors). The neural features from each technique were the Gaussian-smoothed
firing rates, factor estimates using GPFA, or de-noised firing rates using LFADS. In all cases,
to decode kinematics, the neural features were ’lagged’ by 90 ms to account for delays between
neural activity and measured kinematics, and the neural features were binned at 20 ms (the
parameters of Gaussian s.d., and lag were optimized using cross-validated decoding).

Kinematic predictions were generated using 5-fold cross-validation. The subsampling analyses
followed the above, with limited populations achieved via random subsampling (without
replacement) from the full population of 202 neurons. Decoding performance was quantified
using goodness of fit (R2) between the original and reconstructed velocities (validation
trials from the 5-fold cross-validated decoding) for the x and y dimensions. For the sample
reconstructed reach trajectories shown in Fig. 2a, trajectories were seeded with the true
initial position, and subsequent points in the trajectory were calculated by simply integrating
the decoded velocity at each timestep.

Note that for offline decoding analyses, the approach of smoothing neural data and then
linearly regressing against kinematics, outlined here, is a generalization of common brain-
machine interface (BMI) decoding approaches such as the Kalman Filter. This relationship is
outlined in [34]; briefly, the Kalman filter can be viewed as a two step process - first smoothing
the data, and subsequently performing a linear dimensionality reduction step that maps the
smoothed, high-dimensional neural data onto kinematics. In the Kalman Filter the amount
of smoothing is largely determined by the simple linear dynamical system (LDS) that models
state evolution (i.e., models changes in kinematics). This can be especially problematic in
datasets with highly varied kinematics, such as the complex "maze" reaching dataset, where
a simple LDS does not provide a good model of observed kinematics. Therefore, to avoid
having the degree of smoothing influenced by a poorly-fit kinematics model, we optimized
the smoothing parameter using cross-validated decoding as described above.

Further improvement can be achieved for online (closed-loop) BMI control using an additional
"intention estimation" step, and then regressing neural data against the inferred intention
rather than the measured kinematics. This "intention estimation" step has been shown to
improve closed-loop BMI control when intention is estimated from hand reaching data (e.g.
the FIT Kalman Filter, [7]) or estimated from closed-loop BMI control (e.g. the Re-FIT
Kalman Filter, [11, 12]). However, to date, these approaches having been applied to simple
datasets (point-to-point movements) in order to calibrate a BMI decoder, and make the
assumption that the subject’s intention was to move in a straight line toward the target. In
the complex "maze" dataset analyzed in Fig. 2, the monkey made curved reaches which
violate this assumption - therefore our decoding approach used regression against measured
kinematics rather than attempting to infer the subject’s intention.

21

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

5.2 Fig. 3 - Rotations in state space

Rotations in state space were found using the jPCA technique, whose mathematical details are
presented elsewhere [6]. We briefly summarize the overall approach here. jPCA was applied
in two ways: first to examine rotations in the condition-averaged responses, and subsequently
for the single trial responses. For condition-averaged responses, each neuron’s response was
first averaged across all trials of the identical condition to create a set of condition-averaged
firing rates. These firing rates were smoothed via convolution with a Gaussian kernel, with
the width of the kernel chosen to reduce the noise in the firing rates without smoothing away
the rotational content. Smoothed firing rates were then mean-centered across conditions
at every time point by subtracting the average across-condition response from the response
of each individual condition. The mean-centered rates were then "soft-normalized" [6] to
prevent individual neurons (e.g. high firing rate or potentially noisy neurons) from dominating
the results of the subsequent dimensionality-reduction step. These high-dimensional neural
firing rates were projected into a low-dimensional subspace using PCA. Within this subspace
(neural state space), we then used the jPCA technique to find planes that are best fit by a
linear dynamical system with purely rotatory dynamics.

For the subsequent single trial responses, the goal was to examine the same rotations in
state space that were found via condition averaging, but examine their consistency at the
level of single trials. Therefore, the single trial data was projected into jPCA planes via the
projections that were calculated in the condition averaged analysis.

For monkey J, all trials were aligned to movement onset. We used 250 ms for jPCA analysis,
with the time window starting 60 ms prior to movement onset. Observed neural firing rates
were smoothed with a 40 ms s.d. Gaussian kernel to reduce noise, and soft-normalized with a
value of 0.1. For the de-noised LFADS data, further smoothing and de-noising had little effect,
so the parameters used were a 25 ms s.d. Gaussian kernel with a negligible soft-normalization
value (5e-5). For the initial dimensionality-reduction step (PCA), 10 PCs were kept and used
for jPCA.

As with the monkeys, the rotations in state space for research participants with paralysis are
found by identifying the time period starting just before the rapid change in neural activity
that occurs with a movement attempt [25]. For participant T5, because no movement was
measurable, data were simply aligned to the start of the trial (i.e., the point at which targets
are displayed). The window taken for jPCA analysis was 400 ms of data beginning 240
ms after the start of the trial. As with the monkey data, larger parameters for smoothing
and greater soft-normalization were used to de-noise the observed neural responses, vs. the
LFADS de-noised neural responses. These were a Gaussian kernel s.d. and soft-normalization
parameter of 40 ms and 10 for the observed responses, and 25 ms and 5 for the LFADS
de-noised neural responses.

22

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

5.3 Fig. 4. - LFP analysis

For both human (participant T7) and monkey (J) data, recorded LFP was originally sampled
with high bandwidth (human: 30 kHz, monkey: 2kHz). Human data was digitally re-
referenced using common-average referencing to remove global noise artifacts. Human and
monkey data were low-pass filtered with a 75 Hz cutoff frequency using a 4th order Butterworth
filter to minimize the contribution of action potentials to the LFP signal. Both a forwards
and backwards pass of the filter (i.e., acausal filtering) were used in order to minimize group
delay. Data were then filtered again with an anti-aliasing filter (8th order Chebyshev Type
I lowpass filter with cutoff of 0.8 * sampling frequency / 2) and then resampled to 1 kHz
for all subsequent analyses. Data analyzed were from a center-out-and-back movement
paradigm. Participant T7 made movements of his index finger on a touchpad to control a
cursor’s on-screen movements. Monkey J made movements of his hand in free space to control
the movements of a cursor. Data analyzed were from the first 300 ms (participant T7) or
250 ms (monkey J) after target onset. For each recording channel on the electrode arrays,
cross-correlograms were computed between the measured spiking activity and the recorded
local field potentials on the same electrode, on a single trial basis. Cross-correlograms were
then averaged across all trials. For the shuffle analyses, spiking data from an individual
trial was cross-correlated with LFP data from a random trial, and these correlograms were
averaged across trials.

5.4 Fig. 5 - Kinematic predictions of LFADS multi-session and
single-session models

We used optimal linear estimation to create decoders to predict x and y reaching velocities.
For decoding from LFADS, we used the factors rather than the predicted firing rates, as the
neurons recorded on an individual session could unevenly represent the full set of reaching
directions well, even if the underlying factors from which the rates are extracted represent
all directions evenly. Aside from using factors rather than rates, the inputs to the decoder
were prepared and the performance evaluated as described in 5.1. For single-dataset LFADS
models, we fit individual decoders to map from each model’s factors to x and y velocities.
For the stitched multi-session LFADS model, a single decoder was fit and cross-validated on
all datasets simultaneously. We then computed the goodness of fit (R2) and averaged across
x and y velocities.

For reaction time prediction, we used a largely unsupervised method previously described in
[18]. Briefly, for each of the single-session models and the multi-session model, we performed
demixing principal components analysis [20] on the factor outputs. We then projected
the factors along the highest-variance, condition-independent mode, and normalized the
projection to a range of 0 to 1. We then took the time at which this projection crossed a
certain threshold on each trial to be the predicted reaction time, and computed the correlation
coefficient between predicted and actual reaction times. For each model, we then optimized
only the threshold to maximize the correlation coefficient between time of threshold crossing

23

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

and reaction time.

5.5 Fig 6 - tSNE visualization for CursorJump data

The pattern of inputs inferred by LFADS for individual trials were mapped into a 2-
dimensional space using t-Distributed Stochastic Neighborhood Embedding (t-SNE [22]).
Data were aligned to the time of perturbation for perturbed trials or the mean pertur-
bation time for the given target direction for unperturbed trials (407 ms for downward
targets, 487 ms for upward targets). t-SNE mapped using the t-SNE toolbox for MatLab
(https://lvdmaaten.github.io/tsne/). Inferred inputs were calculated via posterior averaging,
as described in section 1.10. LFADS inferred the input values at 10 ms resolution (i.e., the
resolution at which the neural data was binned before being passed into LFADS). These
values were then smoothed using a causal Gaussian filter with a 20 ms standard deviation.
Data fed into t-SNE consisted of the inferred input values from 40 ms to 240 ms after the time
at which the task perturbation occurred (or after the mean perturbation time for unperturbed
trials, as described above). t-SNE initially pre-processes data by reducing its dimensionality
via PCA, and the dimensionality of the pre-processed data was chosen to be 30 dimensions.
The t-SNE perplexity parameter was set to 30, and sweeping this parameter between 10 to
50 had little qualitative effect on the discernibility of the three data clusters.

References

[1] Bayer, J., and Osendorfer, C. Learning stochastic recurrent networks. arXiv preprint

arXiv:1411.7610 (2014).

[2] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S.
Generating sentences from a continuous space. Conference on Computational Natural Language

Learning (CoNLL) (2016).

[3] Carnevale, F., de Lafuente, V., Romo, R., Barak, O., and Parga, N. Dynamic
control of response criterion in premotor cortex during perceptual detection under temporal
uncertainty. Neuron 86, 4 (2015), 1067–1077.

[4] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

[5] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and Bengio, Y. A recurrent
latent variable model for sequential data. In Advances in Neural Information Processing Systems

(NIPS) (2015).

[6] Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian,
P., Ryu, S. I., and Shenoy, K. V. Neural population dynamics during reaching. Nature 487,
7405 (2012), 51–56.

24

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

[7] Fan, J. M., Nuyujukian, P., Kao, J. C., Chestek, C. A., Ryu, S. I., and Shenoy,
K. V. Intention estimation in brain–machine interfaces. Journal of neural engineering 11, 1
(2014), 016004.

[8] Gao, P., and Ganguli, S. On simplicity and complexity in the brave new world of large-scale
neuroscience. Current opinion in neurobiology 32 (2015), 148–155.

[9] Gao, Y., Archer, E., Paninski, L., and Cunningham, J. P. Linear dynamical neural
population models through nonlinear embeddings. arXiv preprint arXiv:1605.08454 (2016).

[10] Gao, Y., Busing, L., Shenoy, K. V., and Cunningham, J. P. High-dimensional neural
spike train analysis with generalized count linear dynamical systems. In Advances in Neural

Information Processing Systems (2015), pp. 2044–2052.

[11] Gilja, V., Nuyujukian, P., Chestek, C. A., Cunningham, J. P., Byron, M. Y.,
Fan, J. M., Churchland, M. M., Kaufman, M. T., Kao, J. C., Ryu, S. I., et al. A
high-performance neural prosthesis enabled by control algorithm design. Nature neuroscience

15, 12 (2012), 1752–1757.

[12] Gilja, V., Pandarinath, C., Blabe, C. H., Nuyujukian, P., Simeral, J. D., Sarma,
A. A., Sorice, B. L., Perge, J. A., Jarosiewicz, B., Hochberg, L. R., et al. Clinical
translation of a high-performance neural prosthesis. Nature medicine 21, 10 (2015), 1142–1145.

[13] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. Draw: A
recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015).

[14] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv

preprint arXiv:1207.0580 (2012).

[15] Karl, M., Soelch, M., Bayer, J., and van der Smagt, P. Deep variational bayes filters:
Unsupervised learning of state space models from raw data. arXiv preprint arXiv:1605.06432

(2016).

[16] Kato, S., Kaplan, H. S., Schrödel, T., Skora, S., Lindsay, T. H., Yemini, E.,
Lockery, S., and Zimmer, M. Global brain dynamics embed the motor command sequence
of caenorhabditis elegans. Cell 163, 3 (2015), 656–669.

[17] Kaufman, M. T., Seely, J. S., Sussillo, D., Ryu, S. I., Shenoy, K. V., and Church-
land, M. M. The largest response component in the motor cortex reflects movement timing
but not movement type. eneuro 3, 4 (2016), ENEURO–0085.

[18] Kaufman, M. T., Seely, J. S., Sussillo, D., Ryu, S. I., Shenoy, K. V., and Church-
land, M. M. The largest response component in the motor cortex reflects movement timing
but not movement type. eNeuro 3, 4 (July 2016).

[19] Kingma, D. P., and Welling, M. Auto-encoding variational bayes. In Proceedings of the

2nd International Conference on Learning Representations (ICLR) (2013), no. 2014.

[20] Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen,
Z. F., Qi, X.-L., Romo, R., Uchida, N., and Machens, C. K. Demixed principal component
analysis of neural population data. eLife 5 (12 Apr. 2016).

25

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

[21] Krishnan, R. G., Shalit, U., and Sontag, D. Deep kalman filters. arXiv preprint

arXiv:1511.05121 (2015).

[22] Maaten, L. v. d., and Hinton, G. Visualizing data using t-sne. Journal of Machine Learning

Research 9, Nov (2008), 2579–2605.

[23] Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani,
M. Empirical models of spiking in neural populations. In Advances in neural information

processing systems (2011), pp. 1350–1358.

[24] Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503, 7474 (2013), 78–84.

[25] Pandarinath, C., Gilja, V., Blabe, C. H., Nuyujukian, P., Sarma, A. A., Sorice,
B. L., Eskandar, E. N., Hochberg, L. R., Henderson, J. M., and Shenoy, K. V.
Neural population dynamics in human motor cortex during movements in people with als. Elife

4 (2015), e07436.

[26] Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett,
F. R., Hochberg, L. R., Shenoy, K. V., and Henderson, J. M. High performance
communication by people with paralysis using an intracortical brain-computer interface. eLife

6 (2017), e18554.

[27] Petreska, B., Byron, M. Y., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy,
K. V., and Sahani, M. Dynamical segmentation of single trials from population neural data.
In Advances in neural information processing systems (2011), pp. 756–764.

[28] Rajan, K., Harvey, C. D., and Tank, D. W. Recurrent network models of sequence
generation and memory. Neuron 90 (2016), 1–15.

[29] Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine

Learning, 2014 (2014).

[30] Salinas, E., and Abbott, L. Vector reconstruction from firing rates. Journal of computational

neuroscience 1, 1 (1994), 89–107.

[31] Sussillo, D., and Abbott, L. F. Generating coherent patterns of activity from chaotic
neural networks. Neuron 63, 4 (2009), 544–557.

[32] Sussillo, D., Churchland, M. M., Kaufman, M. T., and Shenoy, K. V. A neural network
that finds a naturalistic solution for the production of muscle activity. Nature neuroscience 18,
7 (2015), 1025–1033.

[33] Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural

Information Processing Systems (2015), pp. 2746–2754.

[34] Willett, F. R., Pandarinath, C., Jarosiewicz, B., Murphy, B. A., Memberg, W. D.,
Blabe, C. H., Saab, J., Walter, B. L., Sweet, J. A., Miller, J. P., et al. Feedback
control policies employed by people using intracortical brain–computer interfaces. Journal of

Neural Engineering 14, 1 (2016), 016001.

26

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

[35] Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani,
M. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. In Advances in neural information processing systems (2009), pp. 1881–1888.

[36] Zaremba, W., Sutskever, I., and Vinyals, O. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014).

[37] Zhao, Y., and Park, I. M. Variational latent gaussian process for recovering single-trial
dynamics from population spike trains. arXiv preprint arXiv:1604.03053 (2016).

27

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Inferring single-trial neural population dynamics using

sequential auto-encoders

Supplemental Figures

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins,
Rafal Jozefowicz, Sergey Stavisky, Jonathan C. Kao,

Eric M. Trautmann, Matthew T. Kaufman,
Steven I. Ryu, Leigh R. Hochberg,

Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott,
and David Sussillo

June 16, 2017

1

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

p1
p1

time

time

positiona b c state diagram

velocity
v1

position

ve
lo
ci
ty

p2

v2

p2
s =

p
v

�

ṡ = f(s)

time

time

positiond e f

g

state diagram

velocity

position

ve
lo
ci
ty

u
ṡ = f(s,u)

s =

p
v

�

time

timeGenerator
approximates

System state1

0

Input

Initial Condition

ṡ = f(s,u)
s(t)

v(t)

p(t)
s(0) =

p(0)
v(0)

�

u(t)

Figure 1: Conceptual dynamical system: 1-D pendulum. a A 1-dimensional pendulum released from
position p1 or p2 has different positions and velocities over time. b The state of the pendulum is captured by
a 2-D vector that specifies its position and velocity, shown here evolving as a function of time (blue and black
traces correspond to different initial conditions p1 and p2). c The evolution of the state follows dynamical
rules, i.e. the pendulum’s equations of motion. In this autonomous dynamical system, i.e. there are no
perturbations, knowing the pendulum’s initial state (filled circles) and dynamical rules that govern the state
evolution (gray vector field) gives full knowledge of the pendulum’s state as a function of time (black and blue
traces). d-f Perturbations to the pendulum, an example of input-driven dynamics. d The pendulum’s motion
might be perturbed by an external force, e.g. it is bumped rightward. e,f With a perturbation, the evolution
of the system’s state during the perturbation no longer follows its autonomous dynamical rules. This is shown
as dashed red lines in the position vs. time and velocity vs. time plots, as well as the state-space diagram. A
perturbation can be modeled by transforming the equations to allow an input term u(t) that models the
perturbation. g LFADS modeling of the perturbed pendulum. Traces of the pendulum motion are used to
train LFADS. During training LFADS’ generator learns to approximate the pendulum dynamics, ṡ = f(s,u),
using its own internal state and dynamics. LFADS learns a per-trial initial generator state g0, which allows it
to model trials that start with different initial pendulum states, s0. LFADS also learns a set of time-varying
inputs per-trial, which allows it to model perturbations to the pendulum system, u(t). These three pieces of
information are enough to reconstruct each trial.

2

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

x1

x2

x3

0.2 s

vLGP GPFA PfLDS LFADS

y1
y2

y3

y1

y2

y3

0.1 s 0.1 s

ne
ur

on
s

0.1 s

ne
ur

on
s

a

e f g h

b c d

Figure 2: LFADS applied to Lorenz attractor. We compared the performance of LFADS to three
existing methods that estimate latent state from neural data: Variational Latent Gaussian Process (vLGP[7]),
Gaussian Process Factor Analysis (GPFA[6]), and Poisson Feed-forward neural network Linear Dynamical
System (PfLDS[1]). To test LFADS and to compare its performance with other approaches, we generated
synthetic stochastic spike trains from deterministic nonlinear systems. The first is the standard Lorenz system
(see Online Methods for equations and details). a An example trial illustrating the evolution of the Lorenz
system in its 3-dimensional state space and b its dynamic variables as a function of time. c Firing rates for
the 30 simulated neurons are generated by a linear readout of the latent variables followed by an exponential
nonlinearity, with neurons sorted according to their weighting for the first Lorenz dimension. d Spike times
for the neurons are generated from the rates of the simulated neurons. e-h Sample performance for each
method applied to spike trains based on Lorenz attractor. Each panel shows actual (black) and inferred (red)
values of the three latent variables for a single example trial for the 4 methods: e vLGP, f GPFA, g PfLDS,
h LFADS. For LFADS, posterior means were averaged over 128 samples of g0 conditioned on the particular
input sequence.

3

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Dim vLGP GPFA PfLDS LFADS
y1 0.761 0.713 0.784 0.840
y2 0.688 0.725 0.732 0.921
y3 0.218 0.325 0.368 0.872

Table 1: Performance of various methods on Lorenz attractor. vLGP [7], GPFA [6], and PfLDS
[1]. LFADS recovers more variance of the latent Lorenz dynamics, as measured by R2 between the linearly
transformed output of each model, and the dynamics of the latent Lorenz dimensions. We quantify this using
R2, i.e., the fraction of the variance of the actual latent variables captured by the estimated latent values.
For each method, the inferred latents of the 30 simulated neurons were linearly transformed to the actual 3D
Lorenz latents to facilitate direct comparison. As shown, LFADS accurately recovered the latent dynamics
underlying the observed spike trains, consistently outperforming the three other methods.

4

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

0.1 s

N
eu

ro
ns

0.1 s

N
eu

ro
ns

Va
ria

nc
e

ex
pl

ai
ne

d

PCs included
25 50

0

0.5

1

LF
AD

S

GPFA

Indiv neuron R

2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
LF

AD
S

PfLDS

Indiv neuron R

2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

a

h ji

b c

d e f g

0.1 s

N
eu

ro
ns

GPFA vLGP PfLDS LFADS

LF
AD

S

vLGP

Indiv neuron R

2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 3: LFADS applied to autonomous chaotic data RNN. a-c We generated high-dimensional
chaotic dynamics from an RNN. a Firing rates generated on one example trial by the chaotic data RNN
(colors show rates fluctuating between -1 and 1). b The resulting spikes emitted from a Poisson process whose
underlying rates were the normalized continuous rates of the RNN. c We used principal components analysis
to assess the dimensionality of the data. As expected, the state of the data RNN had lower dimension than
its number of neurons, and 20 principal components were sufficient to capture > 95% of the variance of the
system. So we restricted the latent space to 20 dimensions for each of the models tested and, in the case of
LFADS, set the dimensionality of temporal factors to 20 as well (F = 20). d-g Sample performance for each
method on the RNN task. We tested the performance of the methods at extracting the underlying firing
rates from the spike trains of the RNN dataset. Shown are single trial examples for d GPFA, e vLGP, f

PfLDS, and g LFADS. As can be seen by eye, the LFADS results are closer to the actual underlying rates
than for the other models (black, firing rates of chaotic data RNN, red, inferred rates). h-j Summary R2

values between actual and inferred rates. Comparison using held-out data of the R2 values for h GPFA vs.
LFADS, i vLGP vs. LFADS, and j PfLDS vs. LFADS . In all comparisons, LFADS yields a better fit to the
data, for every single neuron.

5

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

20 Factors

(GPFA or LFADS)

Nonlinearity

(exp)

f(x)

time

Σ

Observed

spike counts

time

Estimated

firing rate

time

a

b

d

c

e

0 0.5 1 1.5 2

GPFA (LL per spike)

0

0.5

1

1.5

2

L
F

A
D

S
 (

L
L

 p
e

r
s
p

ik
e

)

100 neuron models

0 0.5 1 1.5 2
0

0.5

1

1.5

2

L
F

A
D

S
 (

L
L

 p
e

r
s
p

ik
e

)

25 neuron models

0 0.5 1 1.5 2

GPFA (LL per spike)

0

0.5

1

1.5

2
150 neuron models

0 0.5 1 1.5 2
0

0.5

1

1.5

2

50 neuron models

Figure 4: LFADS outperforms GPFA in predicting held-out neurons. When estimating latent
state from real neural data, it is difficult to compare the accuracy of the estimates produced by different
methods as the true neural latent state is unknown. However, if the latent state estimates produced by a
technique are informative, then they may accurately describe held-out neural data, i.e., neurons that were
simultaneously recorded but not used to train the methods. We compared the accuracy of LFADS against
GPFA in predicting held-out neurons in the Maze dataset (Figs. 2, main text). As shown in Fig. 2, we
sub-sampled neurons from the complete neural population (202 neurons total), and used the sub-sampled
populations to estimate latent dynamics (e.g. 25, 50, 100, or 150 neurons to fit either LFADS or GPFA
latent models). a We used a standard Generalized Linear Model (GLM) framework [4] to map the latent
state estimates produced by LFADS or GPFA onto the binned spike counts (20 ms bins) for the remaining
held-out neurons, e.g., for a model trained with 25 neurons, there are 177=202-25 held out neurons. b-e We
then measured the improvement produced by the LFADS latent estimates over GPFA (evaluated using log
likelihood per spike, LLPS [5]). For a given held-out neuron, we predicted the neuron’s firing rate based on
the GLM fit, for all trials that were held out from the GLM fit. We then evaluated the LLPS of the observed
spike trains given the predicted firing rates. We did this for held out neuron populations of b 25, c 50, d 100,
or e 150 neurons. For almost all held-out neurons, LFADS-inferred latent state estimates were much more
predictive about the spike counts of the held-out neurons than estimates produced by GPFA.

6

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Time from Go Cue (ms)

CI
S

(a
.u

.)

Example Dataset CIS

-400 -200 0 200 400 600

200

250

300

350

400

450

RT
 (m

s)

a

Single session r

M
ul

ti-
se

ss
io

n
r

RT Predictions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b

Figure 5: Dynamically stitched multi-session LFADS model outperforms single-session models

in predicting reaction times. As defined in [2], the condition-independent signal (CIS) is a high variance
component of motor cortical population activity obtained via demixing principal components analysis (DPCA
[3]). The authors of [2] also demonstrated that threshold crossing time of the CIS on single trials is an
effective predictor of reach reaction time (RT). Here we identify the CIS as a linear projection of LFADS
factor trajectories. We apply DPCA to the factor outputs of each single-session and the multi-session LFADS
models to identify the largest condition-independent component, and then threshold the CIS to predict RT
on single trials. (a) Plot of condition-independent signals (CIS) for an example dataset. Each trace represents
the CIS timecourse on a single trial, and is colored by that trial’s actual RT. (b) Plot of correlations between
CIS-predicted RT and actual RT for multi-session LFADS vs. single-session LFADS models. Each point
represents an individual recording session. A single CIS projection was computed for the multi-session model
and applied for all sessions, whereas individual CIS projections were obtained for each single-session model.

7

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

0.1 s

N
eu

ro
n

R
at

es
In

pu
t

0.1 s

N
eu

ro
n

Sp
ik

es
In

pu
t

In
pu

t

0.1 s

In
fe

rre
d

R
at

es

a b c

d e f

0.1 s

N
eu

ro
n

R
at

es
In

pu
t

0.1 s

N
eu

ro
n

Sp
ik

es
In

pu
t

In
pu

t

0.1 s

In
fe

rre
d

R
at

es
Figure 6: Inferring inputs from a chaotic data RNN with delta pulse inputs. We tested the ability
of LFADS to infer the input to a dynamical system, specifically chaotic data RNNs, as used in the previous
figure. During each trial, we perturbed the network by delivering a delta pulse at a random time tpulse
between 0.25s and 0.75s. The full trial length was 1s. This pulse affected the underlying rates produced by
the data RNN, which subsequently affected the generated spike trains that were used as input to LFADS. To
test the ability of the LFADS model to infer the timing of these input pulses, we included in the LFADS
model an inferred input with dimensionality of 1. We explored two levels of dynamical complexity in the
data RNNs (see Online Methods), defined by two values, 1.5 and 2.5, of a hyper-parameter to the data RNN,
�. a-c � = 1.5. This value of � value produces “gentler" chaotic activity in the data RNN than the higher
value. a Example trial illustrating results from the � = 1.5 chaotic data RNN with an external input (shown
in black at the top of each column). Firing rates for the 50 simulated neurons. b Poisson-generated spike
times for the simulated neurons. c Example trial showing (top) the actual (black) and inferred (cyan) input,
and (bottom) actual firing rates of a subset of neurons in black and the corresponding inferred firing rates in
red (bottom). d-f Same as a-c, but for � = 2.5, which produces significantly more chaotic dynamics than
� = 1.5. g For this more difficult case, LFADS inferred the correct input (blue arrow), but also used the
input to shape the dynamics at times there was no actual input (green arrow).

8

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

200 500 800
200

500

800

In
fe

rre
d

pu
ls

e
tim

e
(m

s)

Pulse time (ms)

g = 1.5

200 500 800
200

500

800

In
fe

rre
d

pu
ls

e
tim

e
(m

s)

Pulse time (ms)

g = 2.5

g = 1.5 g = 2.5

a b

c d

Figure 7: Summary of results of chaotic data RNNs receiving input pulses. We extracted averaged
inferred inputs, ut, from the LFADS model (see Online Methods). a,b To see how this was related to the
actual input pulse, we determined the time at which ut reached its maximum value. The time of the inferred
input (time of the maximum of ut; vertical axis) plotted against the actual time of the delta pulse (horizontal
axis) for all trials. a Results using � = 1.5, which induces chaotic dynamics. b and results using � = 2.5,
which induce strongly chaotic dynamics. These plots show that for the majority of trials, despite complex
internal dynamics, LFADS was able to infer the correct timing of a strong input. However, LFADS did a
better job of inferring the inputs in the case of simpler dynamics for two reasons. First, in the case of � = 2.5,
the complex dynamics reduces the effective magnitude of the perturbation caused by the input. Second,
LFADS used the inferred input more actively to account for the non-input-driven dynamics as well as the
input driven dynamics. We include this example of a highly chaotic data RNN to highlight the subtlety of
interpreting an inferred input. c-d One possibility in using LFADS with inferred inputs (i.e. dimensionality
of ut � 1) is that the data to be modeled is actually generated by an autonomous system, yet one, not
knowing this fact, allows for an inferred input in LFADS. To study this case we utilized the four chaotic data
RNNs described above, i.e. � = 1.5, and � = 2.5, with and without delta pulse inputs. We trained an LFADS
model for each of the four cases, with an inferred input of dimensionality 1, despite the fact that two of the
four data RNNs generated their data autonomously. After training we examined the strength of the average
inferred input, ut, for each LFADS model. Our definition of strength is root-mean-square of the inferred
input, averaged over an appropriate time window,

p
hu2

t it1:t2 . The results are show in panel c for the � = 1.5
networks and panel d for the � = 2.5 networks. The solid lines show the strength ut at each time point, for
the data RNN that received no delta pulses, averaged across all examples. The ’�’ and ’x’ show the strength
of ut for the data RNN that received delta pulses, averaged in a time window around t, and averaged over all
examples. Intuitively, a ’�’ is the strength of ut around a delta pulse at time t, and an ’x’ is the strength of
ut if there was no delta pulse around time t. Importantly, the strength of the inferred input when pulses
were not present in the data was similar to the magnitude of inferred input when pulses were present in the
data but not in the specific window. Further, when inputs were present in the data and within the specific
window, the magnitude of the inferred input was higher on average than cases without inputs.

9

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

time
time

-1

+1

Network Output

Bounded Integrator

a

b

e

c d

time time time

0.1 0.2

R2

0.3 0.4 0.5 0.6 0.7

Figure 8: Inferring input from an integrate-to-bound data RNN. LFADS is able to model simulated
neurons integrating a noisy input, and infer the noise signal itself. a Overview of the integration to bound
task. On each trial, the data RNN receives noise drawn from a Gaussian distribution with mean 0, variance
0.0625. We trained an RNN to integrate this stochastic, 1-dimensional input to either a high (+1) or low
(�1) bound. After the data RNN learned the task, we generated spiking data from 50 neurons using similar
methodology as Supp. Fig. 3 and fit an LFADS model to this data. b-d We fit an LFADS model to the
data using 3200 1-second training examples, and evaluated its performance on 800 held-out trials. LFADS
was able to accurately infer the ground truth firing rates (LFADS in red, ground truth in black). LFADS also
inferred the associated white-noise input to the data RNN (LFADS cyan, ground truth in black, posterior
means averaged over 1024 samples). These panels show the trials with the worst, median, and best measured
R2 values between true and inferred inputs. b Trial with worst R2 = 0.11, c median R2 = 0.38, d and the
best R2 = 0.64. e Histogram showing distribution of R2 values between true and inferred inputs for the 800
held-out trials.

10

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

dim 2 dim 3 dim 4

-0.2

0.2

In
pu

t (
a.

u.
)

Input dim 1

-0.2

0.2
In

pu
t (

a.
u.

)

200 ms

Figure 9: Inferred inputs from individual trials in the CursorJump task. This figure parallels Fig.

6c from the main text, with inferred inputs plotted for individual trials. To increase visibility, only 10 trials
for each condition (reach direction and perturbation type) are shown. Individual traces were smoothed with
an acausal Gaussian filter (60 ms s.d.). Despite the high variance across individual trials, several of the trends
in the inferred inputs described in Fig 6 in the main text are visible at the single trial level. The inputs show
information about the target of the upcoming reach on a single trial level, though individual traces are noisy.
Specifically, for example, at the time of target onset (squares), the inferred input dimension 1 diverges for
up vs. down reaches, but not for different perturbation types (as the information about perturbation type
is not yet known at that phase of the task). Further, the inputs show information about the perturbation
timing and identity on a single trial level, though again, individual traces are noisy. Specifically, around the
time of the perturbation (arrow), the traces diverge for left-perturbed vs. right-perturbed vs. unperturbed
trials (e.g., seen in dimension 2). Though these individual traces are noisy, Fig. 6d in the main text shows
that these inputs can largely be separated on a single trial basis using a nonlinear dimensionality reduction
algorithm, t-SNE.

11

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

Video 1: LFADS reveals consistent rotational dynamics on individual trials. Video contains two
sequential movies showing the trajectories in neural population state space during individual reach trials
for Monkey J (Fig 3 in the main text). The first movie illustrates the single-trial trajectories uncovered by
smoothing the data with a Gaussian kernel. The second movie illustrates single-trial trajectories uncovered
by LFADS. 2296 trials are shown, representing 108 conditions of the "maze" dataset.

Video 2: Mult-session LFADS finds consistent representations for individual trials across ses-

sions. Video contains four sequential movies showing the trajectories in neural population state space during
individual reach trials for Monkey P (Fig 5 in the main text). The first movie illustrates the single-trial
trajectories for a single session uncovered by smoothing the data and using the principal components regression
technique across all sessions (Online Methods). Each individual trial is aligned to the time that movement
was detected (movement onset), and the movie covers the timeframe from 350 ms before to 225 ms after
movement onset. Colors represent 7 reach directions. The second movie illustrates single-trial trajectories
for all trials over 42 / 44 sessions (2 were omitted for ease of presentation). Each panel denotes a different
recording session. The third movie illustrates single-trial trajectories uncovered by multi-session LFADS for
the first session, and the fourth movie illustrates single-trial trajectorues for 42 sessions. Multi-session movies
include approximately 14,500 trials, 38 separate electrode penetration sites and spanned 162 days from the
first to the last session.

References

[1] Gao, Y., Archer, E., Paninski, L., and Cunningham, J. P. Linear dynamical neural
population models through nonlinear embeddings. arXiv preprint arXiv:1605.08454 (2016).

[2] Kaufman, M. T., Seely, J. S., Sussillo, D., Ryu, S. I., Shenoy, K. V., and Churchland,

M. M. The largest response component in the motor cortex reflects movement timing but not
movement type. eneuro 3, 4 (2016), ENEURO–0085.

[3] Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen,

Z. F., Qi, X.-L., Romo, R., Uchida, N., and Machens, C. K. Demixed principal component
analysis of neural population data. eLife 5 (2016), e10989.

[4] Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models.
Network: Computation in Neural Systems 15, 4 (2004), 243–262.

[5] Williamson, R. S., Sahani, M., and Pillow, J. W. The equivalence of information-theoretic
and likelihood-based methods for neural dimensionality reduction. PLoS Comput Biol 11, 4
(2015), e1004141.

[6] Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani,

M. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. In Advances in neural information processing systems (2009), pp. 1881–1888.

[7] Zhao, Y., and Park, I. M. Variational latent gaussian process for recovering single-trial
dynamics from population spike trains. arXiv preprint arXiv:1604.03053 (2016).

12

All rights reserved. No reuse allowed without permission.
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/152884doi: bioRxiv preprint first posted online Jun. 20, 2017;

http://dx.doi.org/10.1101/152884

