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ABSTRACT 1 

Different coding strategies are used to represent odor information at various stages of the 2 

mammalian olfactory system. A temporal latency code represents odor identity in olfactory bulb 3 

(OB), but this temporal information is discarded in piriform cortex (PCx) where odor identity is 4 

instead encoded through ensemble membership. We developed a spiking PCx network model to 5 

understand how this transformation is implemented. In the model, the impact of OB inputs 6 

activated earliest after inhalation is amplified within PCx by diffuse recurrent collateral 7 

excitation, which then recruits strong, sustained feedback inhibition that suppresses the impact of 8 

later-responding glomeruli. We model increasing odor concentrations by decreasing glomerulus 9 

onset latencies while preserving their activation sequences. This produces a multiplexed cortical 10 

odor code in which activated ensembles are robust to concentration changes while concentration 11 

information is encoded through population synchrony. Our model demonstrates how PCx 12 

circuitry can implement multiplexed ensemble-identity/temporal-concentration odor coding.  13 



 2 

INTRODUCTION 14 

Although spike timing information is often used to encode features of a stimulus (Panzeri et al. 15 

2001, Thorpe et al. 2001, Gollisch and Meister 2008, Zohar et al. 2011, Gutig et al. 2013, Zohar 16 

and Shamir 2016), it is not clear how this information is decoded by downstream areas (Buzsaki 17 

2010, Panzeri et al. 2014, Zohar and Shamir 2016). In olfaction, a latency code is thought to be 18 

used in olfactory bulb (OB) to represent odor identity (Bathellier et al. 2008, Cury and Uchida 19 

2010, Shusterman et al. 2011, Gschwend et al. 2012). This information is transformed into a 20 

spatially distributed ensemble in primary olfactory (piriform) cortex (PCx) (Uchida et al. 2014). 21 

PCx is a three-layered cortex with well characterized circuitry (Bekkers and Suzuki 2013), 22 

providing an advantageous system to mechanistically dissect this transformation. Here, we 23 

develop a spiking network bulb-cortex model to examine how temporally structured odor 24 

information in OB is transformed in PCx. 25 

 26 

In mammals, odor perception begins when inhaled volatile molecules bind to odorant receptors 27 

on olfactory sensory neurons (OSNs) in the nasal epithelium. Each OSN expresses just one of 28 

~1000 different odorant receptor genes (Buck and Axel 1991). Odorant receptors are broadly 29 

tuned so that OSN firing rates reflect their receptor’s affinity for a given odorant and the odorant 30 

concentration (Malnic et al. 1999, Jiang et al. 2015). All OSNs expressing a given receptor 31 

converge on a unique pair of OB glomeruli (Mombaerts et al. 1996), where they make excitatory 32 

synaptic connections onto dendrites of mitral/tufted cells (MTCs), the sole output neurons of the 33 

OB. Because each MTC only receives excitatory input from one glomerulus, each MTC 34 

essentially encodes the activation of a single class of odorant receptor. MTCs exhibit 35 

subthreshold, respiration-coupled membrane potential oscillations (Cang and Isaacson 2003, 36 
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Margrie and Schaefer 2003) that may help transform rate-coded OSN input into a temporal 37 

latency code in the OB (Hopfield 1995, Schaefer et al. 2006, Schaefer and Margrie 2012). 38 

Individual MTC responses exhibit odor-specific latencies that tile the ~300-500 ms respiration 39 

(sniff) cycle (Bathellier et al. 2008, Cury and Uchida 2010, Shusterman et al. 2011, Gschwend et 40 

al. 2012), and decoding analyses indicate that spike time information is required to accurately 41 

represent odor identity in the OB (Cury and Uchida 2010, Junek et al. 2010). Thus, the OB uses a 42 

temporal code to represent odor identity. Olfactory information is conveyed to PCx via MTC 43 

projections that are diffuse and overlapping (Ghosh et al. 2011, Miyamichi et al. 2011, Sosulski 44 

et al. 2011), ensuring that individual PCx principal neurons receive inputs from different 45 

combinations of co-activated glomeruli (Franks and Isaacson 2006, Suzuki and Bekkers 2006, 46 

Apicella et al. 2010, Davison and Ehlers 2011). Consequently, odors activate distinct ensembles 47 

of neurons distributed across PCx (Illig and Haberly 2003, Rennaker et al. 2007, Stettler and 48 

Axel 2009, Roland et al. 2017). Recent studies indicate that odor identity in PCx is encoded 49 

simply by the specific ensembles of cells activated during the sniff, with no additional 50 

information provided by spike timing (Miura et al. 2012, Bolding and Franks 2017).  Thus, a 51 

temporal odor code in OB is transformed into an ensemble code in PCx.  However, these 52 

ensembles are sensitive to the sequence in which glomeruli are activated (Haddad et al. 2013), 53 

indicating that PCx could parse temporally-structured OB input. Whether, or how they do so is 54 

not known.   55 

 56 

Although MTCs respond throughout the respiration cycle, PCx recordings in awake animals 57 

indicate that most odor-activated cells respond transiently, shortly after inhalation (Miura et al. 58 

2012, Bolding and Franks 2017). Taken together, these data suggest that cortical odor responses 59 
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are preferentially defined by the earliest-active glomeruli and that glomeruli activated later in the 60 

sniff are relatively ineffective at driving responses. To examine this directly, we obtained 61 

simultaneous recordings of odor-evoked spiking in populations of presumed MTCs and PCx 62 

principal cells in awake, head-fixed mice (Figure 1). Consistent with previous studies, a given 63 

odor activated a large subset of MTCs, with individual cells responding with onset latencies 64 

distributed across the respiration cycle (Figure 1C). By contrast, activity was much sparser in 65 

PCx, with most responsive cells spiking within 50 ms of inhalation (Figure 1D). At the 66 

population level, odors evoked a sustained increase in MTC spiking throughout the sniff (Figure 67 

1E), while spiking activity in PCx peaks briefly after inhalation followed by a period of 68 

sustained suppression (Figure 1F).  Together with the data discussed above, these results 69 

indicate that a spatio-temporal code for odor identity in OB is transformed into an ensemble code 70 

in PCx in which the cortical ensemble is largely defined by the earliest-active OB inputs and 71 

information conveyed by later-responding OB inputs is discounted. 72 

 73 

How is this transformation implemented? Because total OB output is sustained and can even 74 

grow over time, suppression of later responses must originate from inhibition within PCx itself. 75 

Multiple circuit motifs within PCx are poised to dramatically reshape odor representations. First, 76 

MTCs make excitatory connections onto layer 1 inhibitory interneurons that provide feedforward 77 

inhibition (FFI) to pyramidal cells (Luna and Schoppa 2008, Stokes and Isaacson 2010, Suzuki 78 

and Bekkers 2012). Pyramidal cells also form a widespread recurrent collateral excitatory plexus 79 

that, in turn, recruits strong feedback inhibition (FBI) from a distinct class of layer 2/3 80 

interneurons (Stokes and Isaacson 2010, Franks et al. 2011, Suzuki and Bekkers 2012, Large et 81 

al. 2016), and this intracortical recurrent circuitry is thought to contribute substantially to odor-82 
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evoked cortical responses (Davison and Ehlers 2011, Poo and Isaacson 2011, Haddad et al. 83 

2013).  The specific roles that each of these circuit elements play in shaping cortical odor 84 

ensembles is not known 85 

RESULTS 86 

To understand how OB input is integrated and transformed in PCx, we simulated patterns of 87 

odor-evoked MTC activity over a single respiration cycle and used this as input to a PCx 88 

network consisting of leaky integrate-and-fire neurons. We first describe the implementation of 89 

the full model and demonstrate that it grossly recapitulates experimental findings. We then 90 

examine the specific roles that different circuit components play in generating these responses by 91 

exploring how the model behaviors change as the model parameters are varied. We find that PCx 92 

odor responses are largely defined by the earliest-active OB inputs, that the impact of these 93 

inputs is amplified by recurrent excitation, while the impact of OB inputs that respond later is 94 

suppressed by feedback inhibition. We further find that this configuration supports odor 95 

recognition across odorant concentrations, while preserving a representation of odor 96 

concentration in the synchrony of the population response.  97 

Odors activate distinct ensembles of piriform neurons 98 

We simulated OB and PCx spiking activity over the course of a single respiration cycle 99 

consisting of a 100 ms exhalation followed by a 200 ms inhalation. Our model OB consisted of 100 

900 glomeruli that are each innervated by a unique family of 25 mitral cells. Odor identities are 101 

defined by sets of glomerular onset latencies because different odors activate specific subsets of 102 

glomeruli with odor-specific latencies after the onset of inhalation (Figure 2A). Once activated, 103 

the firing rates of all model mitral cells associated with that glomerulus step from baseline (1-2 104 

Hz, Kollo et al. 2014) to 100 Hz and then decay with a time constant of 50 ms (Figure 2B). The 105 
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spiking of each MTC is governed by a Poisson process (Figure 2C). At our reference odor 106 

concentration, 10% of the glomeruli are typically activated during the 200 ms sniff.  107 

 108 

We modeled a patch of PCx, with connection probabilities and topographies that approximate 109 

those characterized in the rodent (Bekkers and Suzuki 2013). The PCx model contains 10,000 110 

excitatory pyramidal cells, each of which receives 50 excitatory inputs from a random subset of 111 

the mitral cells and 1,000 recurrent excitatory inputs from a random subset of other pyramidal 112 

cells (Figure 3A). Our model also includes 1,225 feedforward inhibitory neurons (FFINs) that 113 

receive input from mitral cells and provide synaptic inhibition onto the pyramidal cells and other 114 

feedforward interneurons, and a separate population of 1,225 feedback inhibitory neurons 115 

(FBINs) that each receive inputs from a random subset of pyramidal cells and provide inhibitory 116 

input locally onto pyramidal cells and other feedback interneurons. We model all three classes of 117 

PCx neurons as leaky integrate-and-fire neurons with current-based synaptic inputs. Model 118 

parameter values were constrained wherever possible by the literature and are described in detail 119 

in the Methods. Most of our analyses focus on pyramidal cell activity because these cells receive 120 

bulb input and provide cortical output and thus carry the cortical odor code. 121 

 122 

Low levels of spontaneous PCx spiking in the model are driven by baseline activity in mitral 123 

cells, and 2.8 ± 0.4 % (mean ± st. dev) of pyramidal cells spike during the 200 ms inhalation in 124 

the absence of odor, consistent with spontaneous firing observed in anesthetized rats (Poo and 125 

Isaacson 2009) and near, but slightly lower than, spontaneous rates in awake animals (Zhan and 126 

Luo 2010, Miura et al. 2012, Bolding and Franks 2017, Iurilli and Datta 2017). We defined any 127 

cells that fire at least one action potential during the 200 ms inhalation as “activated”. Given the 128 
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low spontaneous firing rates, there was no odor-evoked suppression of firing in the model. 129 

Because each piriform cell receives input from a random subset of mitral cells, different odors 130 

selectively and specifically activate distinct subsets of pyramidal cells (Figure 3B) so that each 131 

cell is responsive to multiple odors and each odor activates distinct ensembles of neurons 132 

distributed across PCx (Figure 3C). At our reference concentration, for which 10% of glomeruli 133 

are activated, 14.1 ± 0.59 % (mean ± st. dev., n = 6 odors) of piriform pyramidal cells fire at least 134 

one action potential during a sniff, which is consistent with experimental data (Poo and Isaacson 135 

2009, Stettler and Axel 2009, Miura et al. 2012, Bolding and Franks 2017, Iurilli and Datta 2017, 136 

Roland et al. 2017). 137 

 138 

PCx cells can exhibit considerable trial-to-trial variability in response to repeated presentations 139 

of the same odor (Otazu et al. 2015, Bolding and Franks 2017, Iurilli and Datta 2017, Roland et 140 

al. 2017). To examine trial-to-trial variability in the model we quantified responses as vectors of 141 

spike counts, one component for each pyramidal cell, either over the full 200 ms inhalation or 142 

only the first 50 ms after inhalation onset. We then compared pair-wise correlations between 143 

response vectors on either same-odor trials or trials involving different odors. Even though 144 

glomerulus onset latencies are identical in all same-odor trials, stochastic mitral cell firing results 145 

in considerable trial-to-trial variability (Figure 3D). We found correlation coefficients for same-146 

odor trial pairs over the full sniff to be 0.35 ± 0.010, mean ± st. dev. (for multiple same-odor trial 147 

pairs using 6 different odors). Pairs of model PCx responses to different odors, on the other hand, 148 

had correlations of 0.11 ± 0.016; mean ± st. dev. (for pairs from the same 6 odors), which is 149 

significantly lower than same-odor trial correlations. Both correlation coefficients are smaller 150 

than what has been measured experimentally (0.48-same, 0.38-different, Bolding and Franks 151 
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2017; 0.67-same, 0.44-different, Roland et al. 2017). A number of factors may contribute to 152 

increasing correlations beyond what is seen in the model. Gap junctions between MTCs from the 153 

same glomerulus correlate their responses (Christie et al. 2005, Schoppa 2006), and this would 154 

reduce the variability from what the model produces from independent Poisson processes. PCx 155 

contains a small subset of broadly activated cells (Zhan and Luo 2010, Otazu et al. 2015, 156 

Bolding and Franks 2017, Roland et al. 2017) that are likely over-represented in the data, and 157 

these increase response correlations to different odorants. Furthermore, although PCx cells can 158 

either be odor-activated or odor-suppressed, individual cells mostly retain their response polarity 159 

across odors, so that a cell that is activated by one odor is rarely suppressed by other odors, and 160 

vice versa (Otazu et al. 2015, Bolding and Franks 2017), a feature not captured by the model. 161 

Finally, the higher correlation values may reflect latent structure in PCx connectivity, either 162 

innate or activity-dependent, that increases the correlated activity and is not captured by our 163 

model. 164 

 165 

Evolution of cortical odor ensembles 166 

We next examined how spiking activity of the four different classes of neurons (mitral cells, 167 

pyramidal cells, FFINs and FBINs) evolve over the course of a single sniff (Figure 4A). 168 

Preceding inhalation, baseline activity in mitral cells drives low levels of spiking in both 169 

pyramidal cells and FFINs. FBINs, which do not receive mitral cell input, show no baseline 170 

activity. Shortly after inhalation, inputs from the earliest activated glomeruli initiate a dynamic 171 

cascade of cortical activity, characterized by a transient and rapid burst of spiking in a small 172 

subset of pyramidal cells that peaks ~50 ms after inhalation onset and is then sharply truncated 173 

by the strong and synchronous recruitment of FBINs. Pyramidal cell firing rebounds modestly 174 
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after the synchronous FBIN response, but then the network settles into a sustained state with 175 

somewhat elevated pyramidal cell activity that both drives and is held in check by feedback 176 

inhibition (Figure 4A). Although more mitral cells respond later in the sniff, cortical population 177 

spiking levels are stabilized by slowly increasing activity of FFINs, which cancels the increase in 178 

total mitral cell input. This rapid and transient increase in pyramidal cells firing followed by 179 

sustained cortical suppression despite continued input from olfactory bulb resembles the 180 

population spiking patterns we observed experimentally (Figure 1). 181 

 182 

What triggers the rapid transient pyramidal cell response? Each odor initially activates a group of 183 

glomeruli that project randomly onto different cortical pyramidal cells. A small subset of 184 

pyramidal cells receives enough direct input from short-latency mitral cells to reach threshold 185 

and start spiking early in the sniff (Figure 4B, cell 1). This activity produces a small amount of 186 

recurrent excitation that is dispersed across the cortex via the long-range recurrent collateral 187 

connections. The resulting recurrent excitation can recruit other pyramidal cells that receive 188 

moderate but subthreshold OB input (Figure 4B, cell 2). However, by itself, recurrent excitation 189 

is not strong enough to drive spiking in pyramidal cells that received weak OB input, including 190 

from spontaneously active MTCs (Figure 4B, cell 3). Consequently, more pyramidal cells will 191 

be activated selectively, resulting in even stronger recurrent excitation. The result is a 192 

regenerative increase in total pyramidal cell activity and recurrent excitation. However, recurrent 193 

excitation onto FBINs is stronger than onto other pyramidal cells (Stokes and Isaacson 2010, 194 

Suzuki and Bekkers 2012) so that FBINs are recruited before recurrent excitation alone can 195 

activate pyramidal cells that only received weak OB input. Thus, feedback inhibition quickly 196 
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halts the explosive growth of pyramidal cell firing. Because pure recurrent input always remains 197 

subthreshold for pyramidal cells, the odor-specificity of the cortical ensemble is maintained. 198 

 199 

Specific roles for different circuit elements in shaping cortical responses 200 

We sought to reveal the specific roles that different circuit elements play in shaping PCx output 201 

and to examine the sensitivity/robustness of our model to changes in its parameters.  In these 202 

studies, the same odor stimulus was used in all cases, so input from the olfactory bulb is identical 203 

except for the trial-to-trial stochasticity of mitral cell spiking. We first compared responses in the 204 

full circuit (Figure 4A) with those in a purely feedforward network in which pyramidal cells 205 

only receive mitral cell input (Figure 4C). Two key features of PCx response dynamics are 206 

different in this highly reduced circuit: first, pyramidal cell spiking increases continuously over 207 

the course of the sniff as more glomeruli are activated (Figure 2B); second, the strong initial 208 

transient peak in population spiking is lost in the purely feedforward circuit. Intracortical 209 

circuitry must therefore implement these features of the population response.  210 

 211 

We next varied relevant parameters of the intracortical circuitry to determine the role each 212 

element of the circuit plays in shaping output. Simply adding FFI to the reduced circuit did not 213 

restore the shape of the population response, indicating that FFI does not selectively suppress 214 

later PCx activity (Figure 5 Supplement 1A). Instead, FFI modulates the peak of the population 215 

response in the full circuit (Figure 5A). We observe subtle differences, such as more variable 216 

pyramidal activity, if we change the strength of the excitatory OB input onto FFINs rather than 217 

the FFI itself (Figure 5 Supplement 1B, C). FFI inhibits both pyramidal cells and FFINs and 218 

hence enables the overall amount of inhibition received by pyramidal cells to remain steady 219 
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across a range of FFI strengths. As the strength of inhibition onto pyramidal cells from a single 220 

FFIN increases the recurrent inhibition onto other FFINs increases as well, leading to less active 221 

FFINs and hence steady overall inhibition onto pyramidal cells.  222 

 223 

Next, we examined responses when we varied FBI (Figure 5B, C).  Runaway excitation occurs 224 

when FBI is significantly weakened (magenta traces, illustrated also in Figure 5 Supplement 225 

1D). Pyramidal cell activity is robust over a large range of FBI values. This is because FBI goes 226 

both into pyramidal cells and other FBINs (via local recurrent inhibitory connections).  Similar 227 

to FFI, decreasing FBI results in more active FBINs, ultimately resulting in similar total levels of 228 

feedback inhibition into pyramidal neuron (Figure 5Ci). Increasing the strength of FBI produces 229 

a transient decrease in both the number of active pyramidal cells and active FBIN, again, 230 

resulting in similar overall feedback inhibition and pyramidal cells activity. However, unlike 231 

FFI, this activity is modulated by oscillations due to the feedback circuit, as the FBINs recruited 232 

by pyramidal cells are silenced by the strong inhibition that the recruited FBINs themselves 233 

produce (Figure 5Ciii).  Thus, total model output is quite robust to the strength of FBIN 234 

inhibition, but population spiking becomes oscillatory when this coupling is strongly increased. 235 

 236 

Finally, we examined how model output depends on recurrent excitation. We first examined odor 237 

responses when the strength of recurrent excitation onto pyramidal cells and FBINs were co-238 

varied. Total network activity decreased substantially as recurrent excitation strength increased 239 

(Figure 6A), indicating that FBI overrides pyramidal cell recruitment. Although increasing 240 

recurrent excitation did not markedly alter overall response dynamics, both the latency and 241 

amplitude of the initial peak decreased with stronger recurrent excitation. By contrast, 242 
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substantially weakening recurrent excitation produced slow, prolonged and more variable 243 

responses. Thus, recurrent excitation is responsible for both the early amplification and the 244 

subsequent, rapid truncation of the population response. We next examined the effects of 245 

changing recurrent excitation onto either pyramidal cells or FBINs independently (Figure 6B). 246 

The upward slope to the peak is enhanced by recurrent excitation onto the pyramidal cells, 247 

indicating that indeed recurrent excitation is responsible for the recruitment, amplification and 248 

rise of pyramidal activity. Accordingly, an increase in its strength gives a higher and earlier peak 249 

(Figure 6Bi). In contrast, the recurrent excitation onto FBINs modulates the downward slope of 250 

the initial peak, as expected for the circuit component responsible for recruiting the inhibition 251 

that truncates pyramidal cells activity. Accordingly, an increase in its strength gives an earlier 252 

and lower peak (Figure 6Bii). 253 

 254 

Piriform responses are shaped by early-responding glomeruli 255 

The large and early peak in pyramidal cell spiking suggests that early-responding glomeruli play 256 

an outsized role in defining the cortical odor response. To examine the relative impact of early- 257 

versus late-responding glomeruli directly, we compared the rate population spiking in our model 258 

PCx to the sequential activation of individual glomeruli (Figure 7A). In the full network, 259 

population spiking peaks 34 ± 8.3 ms after inhalation onset (mean ± st. dev. for 6 odors with 260 

ensemble averages of 6 trials per odor at the reference concentration; Figure 7B,C). At this time, 261 

only 15 ± 1.4 glomeruli have been activated out of the 95 ± 6.0 glomeruli that will eventually be 262 

activated across the full sniff. In other words, at its peak, PCx activity is driven by the earliest 263 

~15% of activated glomeruli. Mean responses peak slightly earlier when feedforward inhibition 264 

is eliminated (28 ± 4.5 ms; Figure 7B), with peak activity driven by 12 ± 0.80 glomeruli (Figure 265 
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7B,C). Population spiking increases much more slowly when recurrent excitation is removed, 266 

peaking when (139 ± 29 ms) most of the responsive glomeruli have been activated (66 ± 0.44; 267 

Figure 7B,C). Hence, recurrent excitation helps amplify the impact of early-responsive 268 

glomeruli and discount the impact of later-responding glomeruli through the recruitment of 269 

strong feedback inhibition. 270 

 271 

We wondered whether the earliest part of the cortical response provides an especially distinctive 272 

representation of odor identity.  We therefore compared response correlations over either the full 273 

200 ms inhalation or only the first 50 ms after inhalation onset (see Methods for details). 274 

Response correlations to both same-odor and different-odor responses were lower when using 275 

only the first 50 ms (same-odor, 0.24 ± 0.019; different-odor pairs, 0.044 ± 0.014; Figure 7E). 276 

However, the ratio of correlations for same- vs. different-odor responses, which can be thought 277 

of as a signal-to-noise ratio, is almost double for responses in the first 50 ms relative to the full 278 

200 ms inhalation (Figure 7F). The cortical odor response is therefore largely shaped by the 279 

glomeruli that respond earliest in the sniff. Taken together, our model predicts that a cascade of 280 

cortical activity is initiated by the earliest-responsive inputs, amplified by recurrent excitation, 281 

and then truncated by feedback inhibition, providing a distinctive odor representation.  282 

 283 

Distinct roles for feedforward and feedback inhibition in normalizing PCx output 284 

We next determined how cortical odor representations depend on odorant concentration. 285 

Glomerular (Spors and Grinvald 2002) and MTC onset latencies decrease with increasing 286 

concentrations of odorant (Cang and Isaacson 2003, Junek et al. 2010, Fukunaga et al. 2012, 287 

Sirotin et al. 2015). We simulate this in our OB model by scaling the onset latencies from those 288 
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at the reference concentration (Figure 8A). In other words, to decrease odor concentration, we 289 

uniformly stretch latencies, causing fewer glomeruli to be activated within 200 ms, and making 290 

those that are activated respond later. Conversely, we shrink the set of latencies to simulate 291 

higher concentrations so that glomeruli that were activated later in the sniff at lower 292 

concentrations are activated earlier, and some glomeruli that were not activated at lower 293 

concentrations become activated at the end of the sniff at higher concentrations. Importantly, 294 

stretching or shrinking latencies does not change the sequence in which glomeruli become 295 

activated. We quantify odor concentration using the fraction of activated glomeruli. Note that 296 

given the nonlinear concentration-dependence of receptor activation and extensive normalization 297 

at multiple stages of the system upstream of the cortex (Cleland et al. 2011), a 10-fold increase in 298 

mitral cell output corresponds to a much greater range of concentrations. 299 

 300 

The number of responsive pyramidal cells is buffered against changes in odor concentration 301 

(Figure 8B). Across the population, we found that the number of responsive pyramidal cells only 302 

increases by 80% upon a 10-fold increase in input (mean ± s.d.; 9.7 ± 0.40 % of pyramidal cells 303 

respond when 3% of glomeruli are active; 17.3 ± 0.71 % of pyramidal cells respond when 30% 304 

of glomeruli are active; Figure 8C). This indicates that the size of cortical odor ensembles is 305 

only weakly concentration-dependent, which is consistent with experimental observations 306 

(Stettler and Axel 2009, Bolding and Franks 2017, Roland et al. 2017). In addition, both the total 307 

number of spikes across the population (Figure 8D) and the number of spikes evoked per 308 

responsive cell (Figure 8E) are only modestly, but uniformly, concentration-dependent. Recent 309 

imaging studies indicate that subsets of piriform cells are especially robust to changes in 310 

concentration (Roland et al. 2017). It is not yet known how this subset of cells emerges in PCx, 311 
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and this result is not recapitulated in our model where all cells are qualitatively similar in terms 312 

of input, intrinsic properties and local connectivity. Note that we are simulating a situation in 313 

which OB output scales very steeply with concentration. In fact, considerable normalization 314 

across concentrations occurs within OB (Cleland et al. 2011, Banerjee et al. 2015, Sirotin et al. 315 

2015, Roland et al. 2016, Bolding and Franks 2017). Nevertheless, this normalization is 316 

incomplete. Our model now shows that a relatively simple PCx-like circuit is sufficient to 317 

implement this normalization.  318 

 319 

To gain insight into how normalization is implemented, we again simulated responses at 320 

different concentrations, but now either without FFI or without recurrent excitation and FBI. 321 

Eliminating FFI increases both the number of responsive cells (Figure 8C) and total population 322 

spiking (Figure 8D). However, this increase is fairly modest, uniform across concentrations, and 323 

does not substantially change the gain of the response (i.e. the slope of the input-output 324 

function). This indicates that the effect of FFI is largely subtractive, consistent with our earlier 325 

analysis (Figure 5). In marked contrast, responses become steeply concentration-dependent after 326 

eliminating recurrent excitation and FBI, dramatically increasing response gain. Interestingly, 327 

cortical output is reduced at low odor concentrations when recurrent excitatory and FBI are 328 

removed, indicating that recurrent collateral excitation also amplifies cortical output in response 329 

to weak input (Figure 8C,D). Thus, our model demonstrates that a recurrent, piriform-like 330 

circuit bi-directionally normalizes graded input by amplifying low levels of activity via recurrent 331 

collateral excitation between pyramidal cells and suppressing high levels of activity by recruiting 332 

scaled FBI. 333 

 334 
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Early-activated PCx cells support concentration-invariant odor decoding 335 

We quantified response similarity, using spike counts over the full 200 ms inhalation. To do this, 336 

we calculated response correlations to an odor at our reference concentration (10% active 337 

glomeruli) and compared these to either responses to the same odor (Figure 9A, black curve) or 338 

different odors (Figure 9A, blue curve) at different concentrations.  Responses to the same odor 339 

became more dissimilar (i.e. response correlations decreased) as the differences in concentration 340 

increased. By contrast, although responses to different odors were markedly dissimilar (i.e. much 341 

lower correlations), these did not depend on concentration. This means that responses to other 342 

odors remain more different than same odor responses across concentrations, which could 343 

support discriminating between different odors across concentrations. However, these 344 

differences become less pronounced at the lowest and highest concentrations.   345 

 346 

We next asked if a downstream observer can reliably identify an odor using population spiking, 347 

and whether the same odor can be recognized when presented at different concentrations. To do 348 

this we trained a readout to identify a specific odor at one concentration (10% active glomeruli) 349 

and then asked how well it can distinguish that odor from other odors and how well it can 350 

identify the trained odor when it is presented at different concentrations (see Methods for 351 

details). We first used spike counts over the full 200 ms inhalation as input. Classification was 352 

excellent when trained and tested at a single concentration indicating that, despite considerable 353 

trial-to-trial variability (Figure 2D), responses to different odors can be distinguished reliably 354 

(Figure 9B). We then examined classifier performance when tested on different concentrations 355 

without retraining. Consistent with the differences in response correlations, performance was 356 
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excellent around the training concentration but fell off steeply at the lowest and highest 357 

concentrations.  358 

 359 

Because the sequence of glomerular activation latencies is preserved across concentrations, with 360 

the highest affinity glomeruli for a given odorant always activated first, we suspected that the 361 

earliest activated glomeruli could provide a more concentration-invariant odor representation of 362 

odor identity than the full 200 ms response. To test this prediction, we analyzed early responses 363 

by examining spike counts over just the first 50 ms after inhalation. Correlations over first 50 ms 364 

were substantially lower than those for the full 200 ms inhale: this was the case for both repeated 365 

presentations of the same odor (Figure9A, magenta curve) as well as for responses to different 366 

odors (Figure9A, red curve). However, as noted previously (Figure 7F), decreasing both sets of 367 

correlations increases the ratio of same-odor versus different-odor correlations. Indeed, responses 368 

within the first 50 ms contained sufficient information remained for accurate decoding (Figure 369 

9B). And, in contrast to full-inhale responses, classification was not only excellent at and near 370 

the training concentration, but across all concentrations tested. This occurs because responses 371 

remained similar across concentrations at concentrations above the reference (i.e. response 372 

correlations were unchanged), which was not the case with the full, 200 ms responses. Thus, the 373 

first 50 ms spike count correlations leave a margin between same and different odor responses 374 

across all concentrations, supporting the idea that the earliest cortical response can support 375 

concentration-invariant odor recognition (Hopfield 1995, Schaefer and Margrie 2012).  376 

 377 

Encoding odor intensity using population synchrony  378 
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Finally, we asked how odor intensity could be represented in PCx. To that end, we examined the 379 

dynamics of population spiking in response to odors at different concentrations (Figure 9C). The 380 

peak amplitude of the population response in our PCx model increases substantially at higher 381 

concentrations: a 10-fold increase in active glomeruli (3% to 30%) produces a 5.7-fold increase 382 

in peak spike rate (Figure 9D). However, the same concentration range produced a much smaller 383 

increase in the number of responsive cells (1.8-fold, Figure 8C) and total spikes (2.1-fold, 384 

Figure 8D), indicating that population synchrony is especially sensitive to concentration. 385 

Response latencies also decrease at higher concentrations (Figure 9D). These data suggest that 386 

either the population spike count, population synchrony or amplitude, timing, or a combination 387 

of these, could be used to represent odor concentration.  388 

 389 

We again used a decoding analysis to test this hypothesis (see Methods for details). For a given 390 

odor we simulated 500 presentations at each concentration, across a range of concentrations. We 391 

then trained a classifier to distinguish between responses to concentrations corresponding to r3% 392 

active glomeruli above or below the target concentration (Figure 9E), and quantified 393 

classification performance with cross-validation. We used peak rate or latency features of the full 394 

population peak response for decoding. Performance was better using the peak rate than latency 395 

to peak, and even better when we used a combination of rate and latency. Performance improved 396 

marginally using a nonlinear (log) decoder. We also decoded using non-parametric clustering 397 

(Methods), which performed almost perfectly at low concentrations, but performance 398 

deteriorated as concentration increased. Response timing is more variable as concentration is 399 

increased (Figure 9E), making it harder to decode based on similarity at large concentrations. 400 

Finally, although PCx response rates are buffered, they are not completely insensitive to 401 



 19 

concentration (a 10-fold increase in OB input results in only a 78% increase in PCx output). 402 

Because of their relatively low variability, spike counts can be used for effective concentration 403 

classification in our model. Thus, our data suggest that distinct intensity coding strategies may be 404 

optimal at different concentrations. However, as noted above, substantial normalization occurs 405 

upstream of PCx and total PCx spiking output does not increase with concentration, indicating 406 

that spike count is unlikely to be used to encode odor intensity in PCx. Instead, an ‘ensemble-407 

identity’/’temporal-intensity’ coding strategy has recently been observed in PCx in awake mice 408 

(Bolding and Franks 2017). Our model shows how this multiplexed coding strategy can be 409 

implemented in a recurrent circuit with the general properties of the PCx.  410 



 20 

DISCUSSION 411 

We sought to understand how temporally structured odor information in the OB is transformed in 412 

the PCx. A previous study (Sanders et al. 2014) proposed a general scheme for transforming 413 

latency codes into ensemble codes, but this model was incompatible with PCx circuitry. We 414 

simulated odor-evoked spiking in the OB and used it as input to a PCx network model of leaky 415 

integrate-and-fire neurons. Other computational studies have examined how PCx can support 416 

oscillatory activity (Wilson and Bower 1992, Ketchum and Haberly 1993, Protopapas and Bower 417 

1998) or auto-associative memory formation (Barkai et al. 1994, Hasselmo and Barkai 1995, 418 

Kilborn et al. 1996, Haberly 2001); we have not attempted to address these issues. Instead, we 419 

show how a PCx-like circuit is sufficient to broadly recapitulate experimental observations, 420 

including ensemble codes for odor identity, normalization across odor concentrations, and 421 

temporal codes for odor intensity. In doing so, our model provides mechanistic insight into the 422 

circuit operations that implement the transformation from a temporal to an ensemble code for 423 

odor identity. 424 

 425 

A given odor typically activates ~10% of neurons distributed across PCx (Poo and Isaacson 426 

2009, Stettler and Axel 2009, Miura et al. 2012, Bolding and Franks 2017, Roland et al. 2017). 427 

In brain slices, PCx principal cells (pyramidal and semilunar) require multiple (~6) co-active 428 

MTC inputs to reach spike threshold (Franks and Isaacson 2006, Suzuki and Bekkers 2006). Our 429 

model shows that only a small subset of the total ensemble of responsive PCx neurons need to 430 

receive supra-threshold OB input. Because pyramidal cells are connected via long-range 431 

recurrent collateral inputs, the few cells that are directly activated by early OB inputs provide 432 

diffuse excitatory synaptic input to other cells across PCx. This recurrent excitation brings a 433 
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larger subset of cells that received moderate, but still subthreshold OB input to spike threshold. 434 

This cascade of cortical activity continues until FBINs, which do not receive OB input, are 435 

activated. Once activated, FBINs strongly suppress subsequent cortical spiking. This mechanism 436 

ensures that the earliest activated glomeruli largely define cortical odor ensembles.  437 

 438 

Subtractive versus divisive inhibition 439 

Whether and why different types of GABAergic inhibition have subtractive or divisive effects is 440 

currently an area of intense interest, including in PCx (Isaacson and Scanziani, 2011). 441 

Differences in these types of operations are thought to depend on the types of inhibitory 442 

interneurons (e.g. SOM vs. PV cells) and their target sites on the postsynaptic cell (i.e. dendrite- 443 

vs. soma-targeting). For example, Sturgill & Isaacson (2015) recently showed that SOM-444 

mediated inhibition in PCx is almost completely subtractive while PV-mediated inhibition is 445 

largely divisive. Our model has two types of inhibition, FFI and FBI, that differ from each other 446 

only by their connectivity (i.e. place within the circuit) and are otherwise implemented in the 447 

same way. Nevertheless, in our model, FFI and FBI play very different roles in transforming OB 448 

input, suggesting that the circuit motif to which an inhibitory neuron belongs determines its role, 449 

whereas the inhibitory cell type may only have a secondary impact. In particular, we showed that 450 

the slope of the population input-output relationship (i.e. gain) is steeper when recurrent 451 

excitation/FBI is removed (leaving only FFI), indicating that recurrent excitation/FBI effectively 452 

controls gain while FFI is relatively ineffective at doing so (Figure 8). In contrast, gain barely 453 

changes when FFI is removed (leaving recurrent excitation/FBI), indicating that FFI’s 454 

contribution is predominantly subtractive. This result is different from many models for divisive 455 

normalization in sensory systems in which the implementation is through feedforward inhibition 456 
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(Carandini and Heeger 2012). This difference may reflect the fact that the period during which 457 

the stimulus arrives in the cortex (i.e. the duration of the sniff, here 200 ms) is much longer than 458 

the membrane time constant (20 ms) and the time course of synaptic inhibition (10 ms). Thus, a 459 

circuit motif in which recurrent excitation drives strong, scaled feedback inhibition may be better 460 

suited to normalizing representations in structures that use temporal or latency-based codes, as 461 

opposed to those using more instantaneous, rate-code-based inputs. 462 

 463 

Experimental predictions 464 

Our model makes a number of experimentally testable predictions. PCx is a highly recurrent 465 

circuit in which broad and non-specific GABAergic blockade invariably results in epileptiform 466 

activity. However, our model predicts that selectively blocking FFI should produce an additive 467 

increase in response amplitude but not dramatically alter response dynamics. In contrast, 468 

selectively and partially blocking FBI should have a large and multiplicative effect. Recent 469 

identification of genetic markers for different classes of PCx interneurons (Suzuki and Bekkers 470 

2010) should facilitate these experiments. In fact, different subtypes of PCx FBINs have been 471 

reported to have distinct effects on odor responses (Sturgill and Isaacson 2015), a result that 472 

would require additional cell-types in our model to explain. Interestingly, even though our model 473 

predicts that odor responses will be sensitive to partial blockade of excitatory input onto FBINs, 474 

it is highly robust to partial blockade of feedback inhibition.  475 

 476 

Piriform pyramidal cells are interconnected by excitatory recurrent collateral connections. Our 477 

model makes the somewhat counter-intuitive prediction that reducing pyramidal cell output will 478 

substantially increase and prolong the odor response (Figure 6A). This prediction is motivated 479 
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by the much greater impact of FBI than FFI on driving the population response. Moreover, 480 

blocking pyramidal cell output should make the usually normalized response steeply 481 

concentration-dependent (Figure 8C,D). These predictions could be tested, for example, by 482 

blocking output using viruses to selectively express tetanus toxin (Murray et al. 2011) in PCx 483 

pyramidal cells. Our model also suggests that odor intensity could be encoded in temporal 484 

features of the population response. While complicated, psychophysical experiments with 485 

optogenetic activation of subsets of PCx neurons could provide a way to test this prediction 486 

(Smear et al. 2011). Additionally, we find lower same-odor response correlations than have been 487 

observed experimentally. Independent Poisson spiking in mitral cells provides the major source 488 

of trial-to-trial variability in our model. However, sister MTCs are connected through gap 489 

junctions and often exhibit highly correlated spiking that is entirely absent in Connexin-36 490 

knock-out mice (Christie et al. 2005). Our model predicts that PCx odor responses in Connexin-491 

36 knock-out mice would exhibit more trial-to-trial variability. Finally, pyramidal cells are 492 

interconnected randomly in our model. However, this circuitry remains plastic into adulthood 493 

(Poo and Isaacson 2007) and is thought to provide a substrate for odor learning and memory 494 

(Haberly 2001, Wilson and Sullivan 2011). Selectively interconnecting pyramidal cells that 495 

receive common input and are therefore often co-active would decrease trial-to-trial variability. 496 

This prediction could be tested, for example, by constitutively eliminating NMDA receptors 497 

from pyramidal cells.  498 

 499 

 Limitations of our model circuit  500 

Bolding and Franks (2017) observed a biphasic population response in PCx in which some 501 

responses are rapid and largely concentration-invariant while others occur with longer latencies 502 
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that decrease systematically with odorant concentration. The data provided in Figure 1 show 503 

similar biphasic responses in both OB and PCx (Figure 1E). This feature is not recapitulated in 504 

the model for several possible reasons. First, we modeled a single population of MTCs without 505 

distinguishing mitral versus tufted cells. In fact, mitral cells have longer response latencies that 506 

decrease at higher odor concentrations, while tufted cells have much shorter response latencies 507 

(Fukunaga et al. 2012). Furthermore, we have not modeled centrifugal projections from PCx 508 

back to OB (Boyd et al. 2012, Markopoulos et al. 2012, Otazu et al. 2015). The initial peak in 509 

PCx firing could drive transient inhibition in OB, which could produce a biphasic response that 510 

would better match our experimental observations (Figure 1E).  511 

 512 

We did not attempt to model, in either OB or PCx, responses that are suppressed below 513 

background by odor (Shusterman et al. 2011, Fukunaga et al. 2012, Economo et al. 2016). We 514 

have also not attempted to distinguish between different subclasses of principal neurons (e.g. 515 

semilunar cells versus superficial pyramidal cells), different types of inhibitory GABAergic 516 

interneurons, or more sophisticated neural circuit motifs, such as disinhibition, which has been 517 

observed in PCx (Sturgill and Isaacson 2015, Large et al. 2016). We have also only modeled OB 518 

and PCx activity over a single respiration cycle. We justify this simplification based on the 519 

observation that highly trained rodents can discriminate between odors (Uchida and Mainen 520 

2003, Abraham et al. 2004, Rinberg et al. 2006) or odor concentrations (Resulaj and Rinberg 521 

2015) within a single sniff, indicating that sufficient information must be encoded within that 522 

time to represent these features. Nevertheless, odor responses in OB and PCx exhibit pronounced 523 

oscillations at beta and gamma frequencies, and representations can evolve over a period of 524 

seconds (Kay et al. 2009, Bathellier et al. 2010). These dynamics may be important in more 525 
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challenging and ethologically relevant conditions. While we note that beta-like oscillatory 526 

activity can emerge in our PCx model when feedback inhibition is strong (Figure 5C), we have 527 

not incorporated or examined these dynamics in detail here.  528 

 529 

What information is relevant for cortical odor coding? 530 

The PCx response in our model is dominated by early glomerular input and relatively unaffected 531 

by later glomerular activations. Why would a sensory system discard so much information about 532 

a stimulus?  To respond to a huge variety of odorants, the olfactory system employs a large 533 

number of distinct odorant receptors that each bind to multiple odorants with various affinities. 534 

This implies a reduction in OSN selectivity at high concentrations (Malnic et al. 1999, Jiang et 535 

al. 2015). Nevertheless, high-affinity glomeruli will always be activated earliest. By defining 536 

cortical odor ensembles according to the earliest responding glomeruli, the olfactory system uses 537 

information provided by high-affinity receptors and discounts information provided by less-538 

specific and possibly spurious receptor activations. Trained rodents can identify odors within 539 

~100 ms, well before most responsive glomeruli are activated (Wesson et al. 2008), indicating 540 

that activation of only the earliest-responding glomeruli conveys sufficient information to PCx to 541 

accurately decode odor identity (Hopfield 1995, Schaefer and Margrie 2007, Schaefer and 542 

Margrie 2012, Jiang et al. 2015, Wilson et al. 2017) 543 

 544 

Our model shows how a PCx-like recurrent circuit amplifies the impact of the earliest inputs and 545 

suppresses impact of those that arrive later. This not only normalizes total spiking output, but 546 

also enhances odor recognition across concentrations. In fact, we found that a downstream 547 

decoder can more accurately recognize odors across a large concentration range when using only 548 
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early activity. This occurs, in part, because the full (i.e. 200 ms) representation is corrupted by 549 

spontaneous activity at low concentrations and contaminated by inputs from late-responding 550 

glomeruli at high concentrations. However, it is important to note that, in the model, the 551 

sequential activation of glomeruli across the sniff is fully defined. In reality, activation of lower-552 

affinity glomeruli will be far less specific than higher affinity glomeruli, so that input to PCx 553 

output becomes increasingly less odor-specific later in the sniff. Our model therefore likely 554 

underestimates the advantage of decoding odor identity using the earliest-activated PCx cells. 555 

 556 

In conclusion, we find that a recurrent feedback circuit can implement a type of temporal 557 

filtering of information between OB and PCx in which the earliest-active cells in OB have an 558 

outsized role in shaping odor representations in PCx. This transformation supports multiplexed 559 

representations of odor identity and odor concentration in PCx. Recurrent normalization has been 560 

shown to be particularly effective for controlling the gain in other structures that use phasic or 561 

time-varying input (Louie et al. 2014, Sato et al. 2016). Thus, we propose that the transformation 562 

of odor information from OB to PCx is an instance of a more widely-implemented circuit motif 563 

for interpreting temporally structured input.  564 
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METHODS  565 

Modeling 566 

The model was written in C and compiled using Apple’s xcode environment. The model was run 567 

as an executable in OS 10.10+. Runtime for a single trial was approximately 1 second. Code will 568 

be made available on request. 569 

 570 

Model olfactory bulb 571 

The model bulb includes 900 glomeruli with 25 model mitral cells assigned to each glomerulus.   572 

 For every odor, each glomerulus is assigned a reference onset latency between 0 to 200 ms.  The 573 

actual glomerular onset latencies for a given concentration are obtained by dividing the set of 574 

reference latencies by f, the fraction of glomeuli activated at a particular odor concentration 575 

(odor concentrations are defined by the value of f used). Glomeruli with latencies longer than the 576 

duration of the inhalation, 200 ms, are not activated. At our reference concentration fref = 10% of 577 

the glomeruli have onset latencies < 200 ms. Mitral cell spiking is modeled as a Poisson process 578 

that generates action potentials at specified rates; the baseline spike rate is either 1.5 or 2 Hz, this 579 

steps to 100 Hz when a glomerulus is activated and then decays back to baseline with a time 580 

constant of 50 ms. Poisson-generated mitral cell spiking introduces stochasticity into our 581 

olfactory bulb model. 582 

 583 

Model piriform architecture and connectivity 584 

The piriform model includes three types of model cells: 10,000 excitatory pyramidal cells, 1,225 585 

feedforward inhibitory neurons (FFIN), and 1,225 feedback inhibitory neurons (FBIN). The 586 

model pyramidal cells and FBINs are assigned to locations on a two-layer grid.  Pyramidal cells 587 
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and FBINs are uniformly spread over the grid on their respective layers. Each pyramidal cell 588 

receives an input from 1000 other pyramidal cells and from 50 FFINs, both randomly chosen 589 

independent of location.  Each pyramidal cell receives local input from the closest 12 (on 590 

average) FBINs. Each FBIN receives input from 1,000 randomly chosen pyramidal cells and the 591 

8 (on average) closest FBINs. Each FFIN receives input from 50 other randomly chosen FFINs. 592 

Each mitral cell sends input to 25 randomly selected cells (either pyramidal cells or FFINs) in the 593 

pirifom. As a result, each pyramidal and FFIN receives input from approximately 50 randomly 594 

selected mitral cells. Our study focuses on understanding properties of the activity of pyramidal 595 

cells because these provide the only output of the piriform cortex. Hence, the connectivity 596 

structure is built to replicate the inputs statistics "seen" by the pyramidal cells, as determined 597 

experimentally.   598 

  599 

Piriform Dynamics 600 

The piriform cells are modeled as leaky integrate-and-fire neurons with membrane potential  601 

of model piriform cell i obeying the dynamical equation 602 

𝜏𝑚
𝑑𝑉𝑖

𝑑𝑡
= (𝑉𝑟 − 𝑉𝑖) + 𝐼𝑖

𝑒𝑥 − 𝐼𝑖
𝑖𝑛 

Here 𝜏 = 15 ms is the membrane time constant, 𝑉𝑟 is the resting potential and 𝐼𝑖
𝑒𝑥 and 𝐼𝑖

𝑖𝑛 are 603 

the excitatory and inhibitory synaptic currents, respectively. We have absorbed a factor of the 604 

membrane resistance into the definition of the input currents so they are measured in the same 605 

units as the membrane potential (mV). FFINs and FBINs have a resting potential of 𝑉𝑟 = −65  606 

mv.  Pyramidal cell resting potentials are taken from a Gaussian distribution with mean -64.5 mv 607 

and standard deviation 2 mV. When the membrane potential reaches the firing threshold, 608 

iV
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 𝑉𝑡ℎ = −50 mV, the neuron fires an action potential and the membrane potential is reset to a 609 

reset value 𝑉𝑟𝑒𝑠𝑒𝑡 =  −65 mV, where it remains for a refractory period 𝜏𝑟𝑒𝑓 =  1 ms. The 610 

membrane potential is clamped when it reaches a minimum value of 𝑉𝑚𝑖𝑛 =  −75 mV.  611 

 612 

The excitatory and inhibitory synaptic currents, 𝐼𝑖
𝑒𝑥 and 𝐼𝑖

𝑖𝑛, decay exponentially to zero with 613 

time constants of 20 and 10 ms, respectively.  The excitatory current combines two components, 614 

AMPA and NMDA, into a single current.  Because the NMDA synapses are relatively slow and 615 

AMPA relatively fast, we choose the time constant of this composite current in an intermediate 616 

range between these extremes.  617 

 618 

Each action potential fired by a neuron induces an instantaneous jump in the current of all its 619 

postsynaptic targets by an amount equal to the appropriate synaptic strength.  Action potentials 620 

in FFINs and FBINs affect the inhibitory currents of their postsynaptic target neurons, and action 621 

potentials in the pyramidal and mitral cells affect the excitatory currents of their postsynaptic 622 

targets. We denote the jump in the synaptic current induced by a single presynaptic action 623 

potential by ∆𝐼.  It is convenient to give, in addition, the peak postsynaptic potential produced by 624 

a single action potential, denoted by ∆𝑉.  For a membrane time constant 𝜏𝑚 and a synaptic time 625 

constant 𝜏𝑠, the relationship between ∆𝐼 and ∆𝑉 is ∆𝑉 = ∆𝐼𝜏𝑟(𝑎𝑏 − 𝑎𝑐)/𝜏𝑚 where 𝜏𝑟 =626 

 𝜏𝑚𝜏𝑠/(𝜏𝑚  − 𝜏𝑠), 𝑎 =  𝜏𝑠/𝜏𝑚,  𝑏 =  𝜏𝑟/𝜏𝑚, and 𝑐 =  𝜏𝑟/𝜏𝑠. Except where otherwise notes 627 

(figure captions), the values of ∆𝐼 for excitatory connections from pyramidal-to-pyramidal, 628 

pyramidal-to-FBIN, mitral-to-pyramidal and mitral-to-FFIN are 0.25, 1, 10 and 10 mV, 629 

respectively, corresponding to ∆𝑉 values of 0.1, 0.4, 4 and 4 mV.  The values of ∆𝐼 for inhibitory 630 
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connections from FFIN-to-pyramidal, FBIN-to-FBIN, and FBIN-to-FBIN are all -10 mV, 631 

corresponding to a ∆𝑉 value of -3 mV.  632 

 633 

Pyramidal cell population activity vectors 634 

To analyze cortical responses, we define an activity vector 𝑟.  Each component of 𝑟 is the 635 

number of spikes generated by a pyramidal neuron, starting at the beginning of the inhalation. 636 

The spike count continues across the full inhale, or stops after 50 ms in cases when we are 637 

interested in the initial response only.  The activity maps in the figures 3D and 8B are a visual 638 

representation of the activity vectors created by reshaping the vectors and assigning a color on 639 

the basis of their component values. 640 

 641 

The readout 642 

We use a readout defined by a weight vector �⃗⃗⃗� to classify odor responses to bulb input on the 643 

basis of the activity vectors explained above.  Our goal is to train the readout so that trials 644 

involving a chosen target odor are distinguished from trials using all other odors.  Because we 645 

generate odors randomly and all model mitral cells behave similarly, the results are independent 646 

of the choice of the target odor.   Distinguishing the activity for a target odor from all other 647 

activity patterns means that we wish to find �⃗⃗⃗� such that trials with a target odor have �⃗⃗⃗� ∙ 𝑟 > 0 648 

and trials with other odors have �⃗⃗⃗� ∙ 𝑟 < 0 .  Such a �⃗⃗⃗� only exists if trials using the target odor 649 

are linearly separable from trials using other odors.  If such a readout weight vector exists, this 650 

indicates that pyramidal cell activity in response to a specific odor is distinguishable from 651 

activity for other odors.  652 

 653 
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During training, 100 odors were presented at a specific concentration (10% activated glomeruli) 654 

over a total of 600 trials.  Odor 1 was chosen as the target, and the trials alternated between this 655 

target odor and the other odors.  Thus, odor 1 was presented 303 times and every other odor 3 656 

time. On every trial, the quantity �⃗⃗⃗� ∙ 𝑟 was calculated, with 𝑟 the activity vector for that trial and 657 

�⃗⃗⃗� the current readout weight vector.  Initially, �⃗⃗⃗� was zero. If classification was correct, meaning 658 

�⃗⃗⃗� ∙ 𝑟 > 0 for the target odor or �⃗⃗⃗� ∙ 𝑟 < 0 for other odors, �⃗⃗⃗� was left unchanged. Otherwise �⃗⃗⃗� 659 

was updated to �⃗⃗⃗� + 𝑟 or �⃗⃗⃗� − 𝑟 for trials of odor 1 or for other odors, respectively. The entire 660 

training procedure was repeated twice, once with activity vectors that included spikes counts 661 

around the peak of the piriform activity (the first 50 ms inhale) and once using spikes counts 662 

from the entire inhalation. 663 

 664 

To test the readout, each odor was presented at many concentrations (even though training was 665 

done for only one concentration).  For the target odor, 100 trials were tested at each 666 

concentration (30 different concentrations ranging between 3% activated glomeruli to 30% 667 

activated glomeruli).  Each trial that gave �⃗⃗⃗� ∙ 𝑟 > 0 for the test odor was considered a correct 668 

classification.  For each concentration, the percentage of trials that were correctly classified was 669 

calculated. Trials with non-target odors were tested as well, one trial for each odor at each 670 

concentration.  All the non-target odors were correctly classified as not target (�⃗⃗⃗� ∙ 𝑟 < 0) across 671 

all concentrations. The testing procedure was done using both the peak and full activity vectors, 672 

using the corresponding readout weight vectors. 673 

 674 

Concentration classification according to rate and latency of peak responses  675 
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We used the pyramidal cell peak rate responses to identify the concentration of bulb input. In 676 

each trial, pyramidal activity was characterized using two quantities, the rate of activity at the 677 

peak of response, 𝑟𝑝𝑒𝑎𝑘 , and the latency to the peak of the response from inhalation onset, 𝑡𝑝𝑒𝑎𝑘. 678 

We recoded these two features for 500 trials of a target odor in 27 concentrations, spaced equally 679 

between 3% and 27% active glomeruli (500*27 trials in total).  Because we are interested in 680 

understanding whether a concentration can be identified from peak properties for a specific odor, 681 

all trials used a single target odor. As explained above, since we generate odors randomly and all 682 

model mitral cells behave similarly, the results are independent of the choice of the target odor. 683 

For all of our classification methods, 250 trials at each concentration were used for training the 684 

classifier and the remaining 250 trials were used for testing. Because identifying the number of 685 

active glomeruli that drives the response depends on the differences between the percentages of 686 

active glomeruli (small differences are harder to detect) we chose to train and test responses 687 

within ±3% of active glomeruli relative to the target concentration. This is small enough (one 688 

tenth of the full studied range) to show identification of concentration from peak properties and 689 

large enough to allow for training and testing.  690 

 691 

We considered a number of different classifications: 692 

1) Classification based on peak rate, 𝑟𝑝𝑒𝑎𝑘: For each target concentration we determined a value 693 

of 𝑟𝑐 that optimally separates our training set of lower concentrations, with 𝑟𝑝𝑒𝑎𝑘 < 𝑟𝑐, from 694 

those with higher concentration and 𝑟𝑝𝑒𝑎𝑘 > 𝑟𝑐. We then measured the percentage of trials from 695 

our testing set that were classified correctly using this value of  𝑟𝑐. 696 
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2) Classification based on peak latency, 𝑡𝑝𝑒𝑎𝑘: The classification procedure was similar to (1), 697 

except that we determined 𝑡𝑐 (instead of 𝑟𝑐) to distinguish lower concentrations with 𝑡𝑝𝑒𝑎𝑘 > 𝑡𝑐 698 

from higher concentration with 𝑡𝑝𝑒𝑎𝑘 < 𝑡𝑐. 699 

3) Linear classification based on peak rate, 𝑟𝑝𝑒𝑎𝑘, and peak latency, 𝑡𝑝𝑒𝑎𝑘: Similar to (1), except 700 

we searched for two parameters, 𝑎𝑐 and 𝑏𝑐 (by searching exhaustively in the plane) such that the 701 

line 𝑡 = 𝑎𝑐𝑟 + 𝑏𝑐 separated lower concentrations with 𝑡𝑝𝑒𝑎𝑘 > 𝑎𝑐𝑟𝑝𝑒𝑎𝑘 + 𝑏𝑐 from higher 702 

concentration with 𝑡𝑝𝑒𝑎𝑘 < 𝑎𝑐𝑟𝑝𝑒𝑎𝑘 + 𝑏𝑐. 703 

4) Non-linear (log) classification based on peak rate, 𝑟𝑝𝑒𝑎𝑘, and peak latency, 𝑡𝑝𝑒𝑎𝑘: Similar to 704 

(3), except that we searched for a separating line of the form 𝑡 =  𝑎𝑐 log (𝑟 − 𝑏𝑐). 705 

5) Clustering: For a pair of peak rates and latencies (𝑟𝑝𝑒𝑎𝑘, 𝑡𝑝𝑒𝑎𝑘) from each test trial, we 706 

calculated all the (Euclidian) distances to pairs from all training trials. The concentration 707 

assigned to a test trial corresponded to the minimum average distance from training trials at that 708 

concentration. If the assigned concentration was within 4% of active glomeruli from the correct 709 

percentage of active glomeruli, the classification was considered correct. For each concentration, 710 

we calculated the percentage of test trials that were assigned correctly. 711 

6) Classification based on spike counts, 𝑠𝑡𝑜𝑡𝑎𝑙:  Classification was done as in (1) using the total 712 

number of spikes emitted by the full pyramidal population (independent of any peak property), 713 

with a value 𝑠𝑐 that separated lower concentrations with 𝑠𝑡𝑜𝑡𝑎𝑙 < 𝑠𝑐 from higher concentrations 714 

with 𝑠𝑡𝑜𝑡𝑎𝑙 > 𝑠𝑐.                  715 
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Experiments 716 

All experimental protocols were approved by Duke University Institutional Animal Care and Use 717 

Committee. The methods for head-fixation, data acquisition, electrode placement, stimulus 718 

delivery, and analysis of single-unit and population odor responses are adapted from those 719 

described in detail previously (Bolding & Franks, 2017).  720 

 721 

Mice 722 

Mice were adult (>P60, 20-24 g) offspring (4 males, 2 females) of Emx1-cre (+/+) breeding pairs 723 

obtained from The Jackson Laboratory (005628). Mice were singly-housed on a normal light-724 

dark cycle. Mice were habituated to head-fixation and tube restraint for 15-30 minutes on each of 725 

the two days prior to experiments.  The head post was held in place by two clamps attached to 726 

ThorLabs posts. A hinged 50 ml Falcon tube on top of a heating pad (FHC) supported and 727 

restrained the body in the head-fixed apparatus.  728 

 729 

Data acquisition 730 

Electrophysiological signals were acquired with a 32-site polytrode acute probe (A1x32-Poly3-731 

5mm-25s-177, Neuronexus) through an A32-OM32 adaptor (Neuronexus) connected to a 732 

Cereplex digital headstage (Blackrock Microsystems). Unfiltered signals were digitized at 30 733 

kHz at the headstage and recorded by a Cerebus multichannel data acquisition system 734 

(BlackRock Microsystems). Experimental events and respiration signal were acquired at 2 kHz 735 

by analog inputs of the Cerebus system. Respiration was monitored with a microbridge mass 736 

airflow sensor (Honeywell AWM3300V) positioned directly opposite the animal’s nose. 737 
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Negative airflow corresponds to inhalation and produces negative changes in the voltage of the 738 

sensor output.   739 

 740 

Electrode placement 741 

For piriform cortex recordings, the recording probe was positioned in the anterior piriform cortex 742 

using a Patchstar Micromanipulator (Scientifica), with the probe positioned at 1.32 mm anterior 743 

and 3.8 mm lateral from bregma. Recordings were targeted 3.5-4 mm ventral from the brain 744 

surface at this position with adjustment according to the local field potential (LFP) and spiking 745 

activity monitored online. Electrode sites on the polytrode span 275 Pm along the dorsal-ventral 746 

axis. The probe was lowered until a band of intense spiking activity covering 30-40% of 747 

electrode sites near the correct ventral coordinate was observed, reflecting the densely packed 748 

layer II of piriform cortex. For simultaneous ipsilateral olfactory bulb recordings, a 749 

micromanipulator holding the recording probe was set to a 10-degree angle in the coronal plane, 750 

targeting the ventrolateral mitral cell layer. The probe was initially positioned above the center of 751 

the olfactory bulb (4.85 AP, 0.6 ML) and then lowered along this angle through the dorsal mitral 752 

cell and granule layers until a dense band of high-frequency activity was encountered, signifying 753 

the targeted mitral cell layer, typically between 1.5 and 2.5 mm from the bulb surface.  754 

 755 

Spike sorting and waveform characteristics 756 

Individual units were isolated using Spyking-Circus (https://github.com/spyking-circus). Clusters 757 

with >1% of ISIs violating the refractory period (< 2 ms) or appearing otherwise contaminated 758 

were manually removed from the dataset. Pairs of units with similar waveforms and coordinated 759 

refractory periods in the cross-correlogram were combined into single clusters. Unit position 760 
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with respect to electrode sites was characterized as the average of all electrode site positions 761 

weighted by the wave amplitude on each electrode. 762 
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FIGURE LEGENDS 963 

Figure 1. Transformation of odor information from OB to PCx. 964 

(A). Experimental setup. 965 

(B) Example respiration trace. Odor deliveries (1 s pulses) were triggered by exhalation and 966 

trials are aligned to the onset of the next inhalation (red line). 967 

(C,D) Single-trial raster plots (top) and average firing rates (15 trials, bottom) for simultaneously 968 

recorded populations of cells in OB (C) and PCx (D), during a respiration as in B. Cells are 969 

sorted by mean latency to first spike. 970 

 (E,F) Population peristimulus time histograms for the cells shown above (dark traces) in OB (E) 971 

and PCx (F)  (dark traces). For comparison, the PSTHs from the other area are overlaid (light 972 

traces). 973 

 974 

Figure 2.  Mitral cells are activated with odor-specific latencies.  975 

 (A) Example raster plot showing all 22,500 model mitral cells (900 glomeruli with 25 mitral 976 

cells each) for one odor trial. Each row represents a single mitral cell and all mitral cells 977 

belonging to each glomerulus are clustered. Tick marks indicate spike times. Inhalation begins at 978 

0 ms and is indicated by the grey shaded region.   979 

(B) Raster plots showing spiking of 1,000 mitral cells (40 glomeruli) in response to 3 different 980 

odors. The red curve shows the cumulative number of glomeruli activated across the sniff, and 981 

the blue curve is the firing rate averaged across all mitral cells. 982 
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(C) Raster plots showing trial-to-trial variability for 5 mitral cells from the same glomerulus in 983 

response to repeated presentations of the same odor. Each box represents a different mitral cell, 984 

with trials 1-4 represented by the rows within each box. 985 

 986 

Figure 3.  Odors activate distributed ensembles of PCx neurons.  987 

(A) Schematic of the PCx model. 988 

(B) Voltage traces for three sequential sniffs in 4 model pyramidal cells. Time of inhalation is 989 

indicated by the dashed line. 990 

(C) Single-trial population activity map for all 10,000 pyramidal cells. Each pixel represents a 991 

single cell, and pixel color indicates the number of spikes fired during the 200 ms inhalation. 992 

Approximately 13% of cells fired at least 1 action potential, with activated cells randomly 993 

distributed across the cortex. 994 

(D) Response vectors shown for 20 cells in response to different odors presented on 4 sequential 995 

trials. Spiking levels are low for no-odor controls. Note the trial-to-trial variability and that 996 

individual cells can be activated by different odors.  997 

  998 

Figure 4.  Evolution of a cortical odor response. 999 

(A) Raster for a single sniff showing spiking activity of a subset of mitral cells (2,250 out of 1000 

22,500), all 1,225 feedforward neurons (FFINs), all 10,000 pyramidal cells, and all 1,225 1001 

feedback interneurons (FBINs).  Spiking rate for the population of pyramidal cells is shown at 1002 

the bottom (average of 6 trials). Note that the earliest activated glomeruli initiate a cascade of 1003 

pyramidal cell spiking that peaks after ~50 ms and is abruptly truncated by synchronous spiking 1004 

of FBINs. Dashed lines show peak and steady-state firing rates during inhalation. 1005 
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(B) Single-trial voltage traces (black) for 3 pyramidal cells in response to the same odor. 1006 

Inhalation onset is indicated by the dashed line. The red traces show OB input and the green 1007 

traces the recurrent input received by each cell.  Cell 1 receives strong OB input and spikes soon 1008 

after odor presentation.  Cell 2 receives subthreshold input from OB and only spikes after 1009 

receiving addition recurrent input from other pyramidal cells. Cell 3 receives no early odor-1010 

evoked input from the bulb, and its recurrent input is subthreshold, so it does not spike over the 1011 

time period shown. 1012 

(C) Raster plots for a reduced model in which pyramidal cells only get excitatory input from the 1013 

OB, without FFI, recurrent excitation or FBI. Pyramidal cell spiking tracks mitral cell input. 1014 

Population rate for the full network is shown in grey for comparison. 1015 

 1016 

Figure 5. Inhibition shapes pyramidal cell spiking. 1017 

Model output expressed by pyramidal cell population firing rates for multiple parameter values. 1018 

The varied parameter is indicated by the red circle in the circuit schematics on left. Each colored 1019 

trace represents the averaged firing rates (6 trials each with 4 different odors). The legend, with 1020 

colors corresponding to the traces, indicates the peak IPSP for the parameters generating the 1021 

traces. Black traces show results using default parameter values. 1022 

(A) Effect of FFI on pyramidal cell output. Different strengths of FFI correspond to peak IPSP 1023 

amplitudes of 0, 0.75, 1.5, 2.25, 3, 4.5 and 6 mV (see Methods for conversion to parameter 1024 

values). FFI primarily controls the amplitude of the peak response.  1025 

(B) Effect of FBI on pyramidal cell output. Different strengths of FBI corresponsd to peak IPSP 1026 

amplitudes of 0.25, 0.3, 0.75, 1.5, 2.5, 3, 4.5, 6 and 9 mV. Pyramidal cell output is largely robust 1027 
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to changes in the strength of FBI. However, extremely small values of FBI can lead to runaway 1028 

excitation (see also Figure 5 supplement figure 1D). 1029 

(C)  Raster plots for pyramidal cells (showing 3,000 cells) and FBINs with different amounts of 1030 

FBI. (i) Peak IPSP amplitude = 0.9 mV. (ii) Peak IPSP amplitude = 3 mV. (iii) Peak IPSP 1031 

amplitude = 9 mV. Population spike rates are at bottom, with rates for the control case (ii) 1032 

overlaid in grey for comparison. While the average pyramidal cell rate is robust to different FBI 1033 

strength, large values of FBI can lead to oscillations.  1034 

 1035 

Figure 6. Recurrent excitation shapes the early cortical response. 1036 

Model output expressed by pyramidal cell population firing rates using multiple parameter 1037 

values. The varied parameters are indicated by the red circle in the circuit schematics. Each 1038 

colored trace represents the average firing rate (6 trials each with 4 different odors). The legend, 1039 

with corresponding colors, indicates the maximum values of EPSPs onto pyramidal cells and 1040 

FBINs. Black traces show results using default parameter values. 1041 

(A) Pyramidal cell population activity with different recurrent collateral couplings. Peak EPSPs 1042 

onto pyramidal cells of 0, 0.03, 0.05, 0.1, 0.21, 0.32 and 0.42 mV and onto FBINs, 0, 0.13, 0.21, 1043 

0.4, 0.85, 1.3 and 1.7 mV. Strong recurrent excitation leads to a stronger initial response but 1044 

lower activity later in the sniff. Weaker recurrent excitation leads to lower initial response 1045 

followed by higher and more variable activity.  1046 

(Bi) Pyramidal cell population activity with different strength recurrent connections onto 1047 

pyramidal cells only. Peak EPSPs of 0, 0.05, 0.1, 0.13, 0.17 and 0.32 mV. Stronger recurrent 1048 

connections between pyramidal cells lead to higher and earlier initial response peaks. Even 1049 
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stronger connections lead to runaway pyramidal activity (magenta trace, see also Figure 5 1050 

supplement figure 1D).  1051 

(Bii) Pyramidal cell population activity with different recurrent connection strengths onto FBINs 1052 

only. Peak EPSPs of 0.13, 0.21, 0.34, 0.4, 0.85 and 1.3 mV. Stronger recurrent connections from 1053 

pyramidal cells onto FBINs lead to lower, yet earlier initial response peaks. Very weak 1054 

connections lead to runaway activity (purple trace).  1055 

 1056 

Figure 7.  Earliest-active glomeruli define the PCx response. 1057 

(A) Normalized population spike rates (black) in response to an odor during the sniff cycle 1058 

(inhalation indicated by grey background).  The red curve shows the cumulative number of 1059 

glomeruli activated across the sniff.  Note that population spiking peaks after only a small subset 1060 

of glomeruli have been activated. 1061 

(B) Normalized population spike rates for one odor for the full network (black trace), without 1062 

FFI (red trace) and without recurrent excitation (green trace).  Grey trace shows the cumulative 1063 

number of activated glomeruli. 1064 

(C) Fraction of the peak population spike rate as a function of the cumulative number of 1065 

activated glomeruli for 6 different odors. These curves indicate the central role recurrent 1066 

excitation plays in amplifying the impact of early-responsive glomeruli. 1067 

(D) Average correlation coefficients for repeated same-odor trials and pairs of different-odor 1068 

trials measured over the full 200 ms inhalation. 1069 

(E) As in D but measured over the first 50 ms after inhalation onset. 1070 

(F) Ratios of correlations for same- vs. different-odor trials measured over the full sniff (grey bar 1071 

on left) and over the first 50 ms (black bar on right). 1072 
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 1073 

Figure 8. Cortical output is normalized across concentrations. 1074 

(A) Mitral cell raster plots for 2 odors at 3 different concentrations, defined by the fraction of 1075 

active glomeruli during a sniff. Odors are different from the odors in Figure 1. 1076 

(B) Single-trial piriform response vectors over a concentration range corresponding to 3, 10 and 1077 

30% active glomeruli. Note that activity does not dramatically increase despite the 10-fold 1078 

increase in input. 1079 

(C) Fraction of activated pyramidal cells at different odor concentrations for the full network 1080 

(black trace), without FFI (red trace) and without recurrent excitation (green trace) for 4 different 1081 

odors (open circles, thin lines) and averaged across odors (filled circles, thicker lines). Note that 1082 

eliminating FFI primarily shifts the number of responsive cells, indicating that FFI is largely 1083 

subtractive, whereas eliminating recurrent excitation alters the gain of the response. Note also 1084 

that recurrent excitation amplifies the number of activated cells at low odor concentrations. 1085 

(D) As in C but for the total number of spikes across the population. 1086 

(E) Distribution of spike counts per cell at different odor concentrations. Data represent mean ± 1087 

s.e.m. for n = 4 odors at each concentration. 1088 

 1089 

Figure 9.  Coding of odor identity and concentration. 1090 

(A) Correlation coefficients between responses of a target odor with 10% active glomeruli (black 1091 

arrow) and the same (black and pink curves) or different (blue and red curves) odors across 1092 

concentrations. Correlations were calculated using pyramidal cell activity from the full inhale 1093 

(black and blue curves) or from the first 50 ms of inhalation (pink and red curves). For 1094 

correlations with the same odor, 25 trial with 10% active glomeruli were paired with 25 trials at 1095 
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each different concentration. For correlations with other odors, 100 trials with the target odor at 1096 

10% active glomeruli were paired with each of the 100 other odors at each different 1097 

concentration. Lines show the mean result and shaded areas show the standard deviation.     1098 

(B) Readout classifications of odor identity when presented at different concentrations. Either the 1099 

transient cortical activity (first 50 ms of the inhalation; black curve) or the activity across the full 1100 

inhalation (gray curve) was used for both training and testing. Training was performed solely at 1101 

the reference concentration (black arrow). The dashed line shows the chance level of 1102 

classification.  1103 

(C). Example of population spike rates for an odor at 3 concentrations. Response amplitudes are 1104 

normalized to the responses at the highest concentration. Dashed lines indicate inhalation onset. 1105 

(D) Average peak firing rate (blue) and latencies to peak (orange) of the population response vs. 1106 

number of activated glomeruli (4 odors). 1107 

 1108 

(E) Distribution of peak latencies and firing rates for one odor presented at 5 concentrations. 1109 

Different colors represent distinct concentrations (fraction of active glomeruli). Background 1110 

colors indicate classification into one of 5 concentrations (with clustering method) 1111 

(F) Concentration classification accuracy using different features of the population response. 1112 

(top) For each target concentration, responses within a ±3% range were presented and classified 1113 

as lower or higher than the target. Different features of the population response and techniques 1114 

used for classification (see Methods) are indicated by colored lines. Dashed lines in B indicate 1115 

classification boundaries for the clustering classifier using rate + latency. 1116 

  1117 
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SUPPLEMENTAL FIGURE LEGENDS 1118 

 1119 

Figure 5 – supplemental figure 1.  1120 

(A-C) Pyramidal cell population firing rates using different parameter values. Schematics on left 1121 

indicate the circuit being used, with the varied parameter indicated by the red circle. Each 1122 

colored trace represents the averaged firing rate (6 trials each with 4 different odors). The legend, 1123 

with colors corresponding to the traces, indicates the peak IPSP amplitude generated by the 1124 

inhibition parameters used for the traces. Black traces show results using default parameter 1125 

values. 1126 

(A) FFI effects the magnitude but not the shape of the response in a reduced circuit. Effect 1127 

of FFI on pyramidal cell output. Recurrent connections and FBI are absent in the reduced circuit 1128 

shown here. Different strengths of FFI correspond to IPSPs with peaks of 0, 0.75, 1.5, 2.25, 3, 1129 

4.5 and 6 mV (as indicated in the legend). FFI changes the amount of pyramidal activity but not 1130 

the shape of the response. 1131 

(B) OB input onto FFINs effects the magnitude but not the shape of the response in a 1132 

reduced circuit. Effect of bulb input on pyramidal cell output. Recurrent connections and FBI 1133 

are absent in the reduced circuit modeled here. Different strengths of bulb input correspond to 1134 

EPSPs from the mitral cells onto FFINs with peaks of 0, 1, 2.1, 3.2, 4.2, 6.3 and 8.4 mV (as 1135 

indicated in the legend). The strength of the OB input onto FFINs changes the amount of 1136 

pyramidal activity but not the shape of the response. 1137 

(C) OB input onto FFINs effects the shape of the response in the full circuit. Effect of bulb 1138 

input on pyramidal cell output. The full circuit is modeled here. Population firing rate with 1139 

different strengths of bulb input corresponding to EPSPs from the mitral cells onto FFINs with 1140 
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peaks of 0, 1, 2.1, 3.2, 4.2, 6.3 and 8.4 mV (as indicated in the legend). Strong OB input onto 1141 

FFINs suppresses the initial peak pyramidal response, whereas weak OB input onto FFINs 1142 

increases the peak response. 1143 

(D) Runaway excitation. The magenta trace (for a peak IPSP amplitude of 0.25 mV) from 1144 

Figure 5B rescaled. 1145 

 1146 

Source code 1.  1147 

This is the code used to generate the model. This C code is used in an environment that can 1148 

execute consecutive single steps and plot the results (e.g. xcode). 1149 

 1150 

Source code 2.  1151 

Piriform model. This compiled program launches and runs the piriform model used here as an 1152 

app. Parameters are described in the Methods. 1153 
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Figure 6. Recurrent excitation shapes the early cortical response
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