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Abstract—Current neuromorphic devices suffer from major 
limitations in their ability to perform on-chip online learning. 
These limitations often derive from their poor memory capacity, 
which is due to the low precision of the variables representing the 
synaptic weights. Here we present simple constructions of 
synaptic models with low-precision dynamical variables that can 
continually store and preserve a large number of memories, 
which grows almost linearly with the number of synapses per 
neuron. In addition, the initial memory strength, which is related 
to the generalization ability of the network, is also high in these 
models, and scales approximately like the square root of the 
number of synapses. These favorable properties are obtained by 
orchestrating multiple interacting processes that operate on 
different timescales, to ensure the memory strength decays as 
slowly as the inverse square root of the age of the corresponding 
synaptic modification. This decay curve achieves an optimal 
compromise between large memory strengths and long lifetimes. 
We discuss digital implementations of such synapses suitable for 
neuromorphic hardware. They are efficient in the sense of 
requiring only a small number of bits per synapse, and respond 
robustly to auto-correlated sequences of synaptic modifications. 
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I. INTRODUCTION 
In the biological brain, synaptic memory consolidation 

following one-shot learning relies on a complex network of 
highly diverse biochemical processes. In contrast to this 
complex structure of real synapses, the synapses used in 
machine learning applications are typically represented by a 
single high-precision variable for each weight. For hardware 
implementations of neural networks, however, energy 
efficiency considerations and design constraints typically limit 
the precision of the synaptic weights, which often are binary 
(see e.g. [1,2]). This limited precision can somewhat reduce the 
inference (prediction) performance of neural networks, but it 
constitutes a much more severe problem for online learning in 
such networks. Here we focus on the latter issue, and discuss 
strategies to circumvent it by designing more complex 
synapses that augment the low-precision weight by additional, 
internal states. We hope that this note will provide some useful 
guidance on engineering plastic synapses suitable for 
neuromorphic hardware that supports local online learning. 

A. Problem setting: local, one-shot learning 
The problem of online learning with low-precision weights 

is most easily illustrated by rephrasing it as a memory 
performance limitation of a set of N synapses exposed to an 
ongoing sequence of ever new memories (input patterns), each 
of which can induce plasticity events. Each input pattern is a 
vector of potential synaptic modifications (computed from the 
neural activity according to some learning rule), which would 
optimally store the corresponding memory. As an example, we 
can consider one-shot learning of a sequence of training 
examples each of which modifies the synapses of a perceptron 
architecture in a classification task, which requires hetero-
associative memory. To quantify the memory performance we 
compute a signal to noise ratio (SNR) for the retrieval of a 
learned pattern as a function of the number of memories that 
have been stored since the one in question [3], which is closely 
related to the generalization ability of the network around the 
learned patterns (see [4] for details). The relevant quantities to 
consider are the initial SNR, which tells us how strongly new 
inputs are encoded, and the memory capacity, which is the 
number of subsequently stored memories before the SNR drops 
below the retrieval threshold (of order one), and the memory 
can no longer be recalled (or correctly classified). We are 
particularly interested in the scaling of these quantities with the 
number N of synapses connected to our output unit, since we 
want to ensure good scalability to large system sizes. 

Memory capacities of e.g. the classical perceptron or auto-
associative networks are known to grow linearly with N, but 
the derivations of these results assume (effectively) unbounded 
synapses (with a number of distinguishable states at least of 
order 

p
N ). Furthermore, these capacities refer to the transient 

memory performance after starting out the system from a 
special initial state of zero (or small) weights. In contrast to 
this, we focus on synaptic models for which memories can be 
overwritten an arbitrary number of times, as in continual 
learning. The memory capacity we are interested in refers to 
the average number of patterns that can be recalled in the 
steady state that is reached when a very large number of 
memories have been stored. In this state the weight distribution 
no longer changes (for constant input statistics), and the oldest 
memories are gradually forgotten to make room for new ones 
(palimpsest property). The steady state capacity is typically 
lower than the transient one starting from the tabula rasa initial 
state. Crucially, these steady state models don’t suffer from a 
blackout catastrophe that would wipe out all memories at once.  This work was supported by NSF’s NeuroNex program award DBI-

1707398, the Simons Foundation, the Gatsby Charitable Foundation, the 
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In the simplest case of binary synapses, it was recognized 
long ago [3] that for online learning using local update rules, 
the capacity would grow at best as fast as 

p
N  for very rigid 

synapses (that have a small SNR), and in fact only as log(N) 
for very plastic synapses (that show good generalization). This 
would be disastrous for large systems, which is why our 
primary concern is to improve this scaling behavior with N. Of 
course, if the learning occurred offline, or if the hardware 
system in question had access to large amounts of external 
memory that could be used to store intermediate results of the 
learning procedure (and thus didn’t have to compute updates 
purely locally), the limitation of low-precision variables would 
be less pressing. Indeed, even binary synapses can achieve a 
memory capacity that scales linearly with N, albeit with a 
slightly smaller coefficient, if the binarization is performed 
only after learning is complete (which again requires 
temporary storage of higher precision weights during learning). 

Below, we will introduce a number of simple synaptic 
memory models with limited precision weights that exhibit 
excellent scaling behavior during online (one-shot) learning, 
and are suitable for a digital implementation using binary 
variables. We will consider event-driven dynamics, such that 
weights and internal states of synapses are updated only when 
new memories stored. Any mention of timescales on which 
variables change or memories decay is understood to refer to a 
discrete number of time steps demarcated by the intervening 
plasticity events. Continuous, physical time will not play any 
role, except in that we will assume that the binary components 
used to implement the synaptic dynamics are sufficiently stable 
on the longest memory timescales that we wish to achieve. If 
this is not the case, e.g. if a binary element spontaneously 
switches states at a rate that is higher than the inverse of the 
desired forgetting timescale, several such elements will have to 
be combined with error-correcting interactions in order to 
implement one sufficiently stable effective binary variable. 

B. Optimal online learning with complex synapses 
Recently we showed that by augmenting a low-precision 

(possibly binary) synaptic weight by internal (hidden) low-
precision variables, the resulting complex synapse model can 
achieve excellent scaling properties if its SNR decays as a t –1/2 
power law with the age t of the synaptic modification [4]. In 
this case, the memory capacity grows as N/ logN, and the 
initial SNR scales as 

p
N/ log(N). These scaling properties 

each differ only by logarithms from the best possible power-
law growths that can be achieved for these two quantities 
separately (at the expense of substantially reducing the other), 
and represent an optimal compromise between the two. 

Our goal here is to build simple models of steady state 
synapses that achieve the same scaling properties, and exhibit 
an approximate t –1/2 power-law decay, using only a small 
number of binary variables. The biological model of [4] can be 
fully discretized, such that it has a finite number of states 
corresponding to a joint assignment of one of the allowed 
values for every one of the discrete physical variables, which 
could trivially be represented by several binary variables each. 
However, such a representation would not be very efficient in 
terms of the number of binary variables needed. Also, it would 
require stochastic dynamics with small transition probabilities, 
which is difficult to engineer. 

In [5] the internal dynamics of the synapse was described 
by a Markov chain with M states. These authors optimized 
certain measures of memory performance over all possible 
transition matrices for a binary value of the synaptic weight 
assigned to each state. In particular, they derived an area 
bound on the integral under the (linear plot of the) SNR curve, 
which they showed cannot exceed 

p
N(M � 1) for any such 

Markov chain model. Since the SNR has to be above threshold 
for a memory to be recalled, this implies that also the memory 
capacity is bounded by 

p
N(M � 1) times a constant. The 

models that saturate these bounds are multi-state models (with 
binary weight readout) consisting of states connected in a 
linear chain topology. However, such models have small initial 
SNR, and when they achieve the longest possible memory 
lifetimes they are pathologically rigid, barely encoding new 
memories at all (due to small transition probabilities away from 
the end states). This is at least partially due to the fact that the 
area maximized also counts regions where the SNR is already 
below the retrieval threshold (of say one). It also indicates that 
one may want to choose a different optimality criterion (cost 
function) instead, such as e.g. the area under the doubly 
logarithmic plot of the SNR versus the number of memories, 
which is maximized by the t –1/2 power-law decay [4]. 

Nevertheless, we will use the deterministic version of the 
multi-state model as a starting point for our heuristic 
constructions of synaptic models, since we know that it at least 
comes close to optimal efficiency in the sense of [5]. We limit 
ourselves to deterministic models, because they are easy to 
implement, and focus on simple rules that operate on a state 
space represented by binary variables. It is likely that 
generalizing to stochastic models would allow for somewhat 
more efficient implementations, but the results of [5] suggest 
that the gains that can be derived from this step might not 
justify the additional difficulties in building such synapses. 

C. Multi-state model 
The multi-state model consists simply of a finite precision 

synaptic weight variable (with a limited number of possible 
values) without any additional hidden states [6]. We can 
consider the allowed values to be equally (say integer) spaced, 
and arranged symmetrically around zero (which is why we will 
refer to the middle of the dynamical range simply as zero). If 
we assume for simplicity that the sequence of inputs is binary 
with equal step sizes and equal probabilities for potentiation 
and depression (such that the input is trivially balanced), each 
synaptic modification will increase or decrease the value of the 
weight by one unit, except when the plasticity event would take 
the weight outside of the (hard) bounds at the upper/lower end 
of the dynamical range, in which case it will induce no change. 

If the model is implemented using b binary switches (bits) 
the number of states will be M = 2b, and for balanced inputs the 
resulting decay of the SNR will be exponential with a 
timescale (memory lifetime) of order M2 = 22b. Intuitively, this 
is because the synaptic weight executes an unbiased random 
walk under such balanced inputs, and the time until its state 
hits one of the bounds grows as the square of the number of 
steps required. The equilibrium distribution is uniform across 
the set of states. A potentiation event would simply shift it 
upwards by one step (a fraction 1/M of its dynamical range), 
leading to a distribution that again looks flat except at the 
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boundary states [6]. For the binary readout version of this 
model mentioned in the previous section, all states above zero 
are considered potentiated and assigned a weight of say one, 
and similarly all states below zero are considered depressed 
and assigned weight minus one. In this case, a fraction 1/M of 
synapses will have their internal variable cross zero, and 
therefore change their synaptic weight when a 
potentiation/depression event is applied to the equilibrium 
distribution. For both readouts of the synaptic weight, the 
initial SNR of the multi-state model is small, of order 

p
N/M . 

For any of the models discussed below, if hardware 
requirements force the synaptic weight implemented on chip to 
be binary (as e.g. in crossbars), one can construct such a binary 
readout, and retain the original low-precision weight as an 
internal variable that changes in response to synaptic plasticity 
events as before, but influences the actual synaptic weight used 
during inference only through the binary readout. These binary 
weight versions of our models will exhibit slightly lower 
memory performance, but the same scaling behavior with N 
(see Supp. Note 5 and Fig. S4 of [4]). 

II. RESULTS 
Here we describe simple constructions of synaptic models, 

and compare them in terms of the number of binary variables 
required to implement them, and their memory performance. 

A. Multiple chains: Combining multi-state models 
We can use multi-state models as building blocks for 

models with better generalization performance, and since we 
think of their exponentially large number of states as being 
implemented through binary encoding by a chain of binary 
switches, we refer to them simply as chains. In order to 
enhance its initial SNR and endow it with an approximate 
power-law decay, we can augment a multi-state model of a 
sufficiently large memory capacity (i.e., long forgetting 
timescale) with shorter chains. These consist of fewer binary 
variables (and fewer states), and therefore exhibit a smaller 
memory capacity in isolation. However, they also have a larger 
initial SNR, and we can judiciously combine the advantages of 
both large and small models by defining a joint readout. 

Since we would like the model’s SNR curve to 
approximate a power law, we choose the forgetting timescales 
of the different chains to be uniformly spaced on a logarithmic 
scale (such that the ratio of successive timescales will be a 
constant). This means that the number of bits required for each 
chain will differ by a constant between successive chain. The 
design tradeoff in choosing this constant is that for small values 
we will obtain a very good approximation to a power law 
because the timescales are closely spaced, but at the price of 
using many bits, while for a larger value the approximation 
becomes worse, but can be more efficiently implemented. We 
will consider sets of chains that differ in length by two bits, 
which we found to be a good compromise, though other 
choices are of course possible. This implies that successive 
timescales will increase by a factor of 16 for balanced inputs 
(but only by a factor of 4 for strongly unbalanced ones). If the 
longest timescale chain consists of b=2m bits (for integer m), 
this also means that there will be m chains in total. 

Because the dynamical ranges of the constituent chains are 
quite different, combining them to obtain the joint readout that 

will define our synaptic weight requires normalizing each one 
by its corresponding number of possible states, so that they can 
be compared on an equal footing. Even simpler, since we know 
that a binary readout works well for an individual multi-state 
model, it is sufficient in practice to add the signs of the 
contributions of the different chains to compute the synaptic 
weight as w = ∑i sign(wi), where wi denotes the state of the ith 
chain. Since the initial values and timescales of the exponential 
SNR curves of the different chains are proportional to 1/M and 
M2, respectively, this leads to a good approximation of a t –1/2 
decay, as shown in Fig. 1.  The number of distinguishable 
values of w equals the number of different timescales plus one 
(i.e., m+1). If a binary weight is required, we can define it by 
again taking the sign of this w (which is unambiguous for odd 
m) without substantially reducing the memory performance. 

Note that a synaptic plasticity event will alter the state of 
each of the chains in the usual manner, and in this sense we can 
think of them almost as parallel synapses connecting the same 
pair of neurons. However, crucially the actual synaptic weight 
used for inference/recall is summarized in a single (possibly 
binary) number at any point during the ongoing learning 
process. Combining different timescale chains in this way is 
similar to combining populations of binary synapses with 
different switching probabilities (see Supp. Note 9 of [4]), but 
it naturally leads to a t –1/2, rather than a t –1 decay of the SNR. 

While this multi-chain model exhibits the desired power-
law decay, and the associated good scaling properties for both 
the initial SNR and the memory capacity, its implementation is 
unfortunately not very efficient. If we compare it to a 2m bit 
multi-state model with the same longest timescale of order 24m, 
we require 2m–2 bits for the second slowest chain, 2m–4 for 
the next one, and so on down to two bits for the fastest chain. 
This adds up to a total of m(m+1) bits, which grows 
quadratically with the logarithm of the longest timescale (that 
limits the memory capacity). For large m this is worse than the 
number of bits required for (the fully discretized version of) the 
biological model of [4], with variables of the same timescales 
represented using binary encoding. Nevertheless, this model is 
a useful intermediate step, which we can build on to find more 
efficient ones that reduce the number of bits required such that 
it grows only linearly with the logarithm of the maximal 
memory capacity, which is the best-case scenario [5]. 

B. Single chain with direction markers 
Consider again a chain of b=2m bits performing binary 

encoding of a variable with M=2b possible (integer-spaced) 
values, accumulating inputs as in the multi-state model. We 
can artificially divide it up into m groups of two bits each, 
arranged from left to right to represent low to high powers of 
two (see Fig. 2a). The first group corresponds to a set of four 
states, and if we keep potentiating the synapse, thus adding to 
its weight, these four states are traversed in a cyclic order. In 
particular, whenever the state changes beyond the largest 
representable value it is reset to the smallest possible value, 
with the provision that at the same time we increment by one 
the state of the next group (which therefore changes on a 
longer timescale). Similarly, for a sequence of depression 
events the states are traversed in the opposite direction, with 
the reset from the smallest to the largest allowed value 
accompanied by a decrement of the next group of bits. 
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Because of this reset of the shorter timescale variables that 
occurs in binary encoding whenever longer timescale variables 
are changed, the current value of the shorter timescale group of 
bits is not informative about the recent history of synaptic 
modifications, which is why in the multi-state model the SNR 
decays exponentially (with only a single timescale). However, 
we can capture the trend of the accumulated recent inputs 
(averaged over a certain time interval) by augmenting the short 
timescale group of bits by an additional marker bit. Whenever 
the state of this variable crosses zero, it keeps track of the 
direction of motion, i.e., whether the input that caused the zero-
crossing was a potentiation or depression event, in which case 
the direction marker is set to one or minus one, respectively. 
Resets also change the sign of the variable, but are ignored by 
the marker bit, which is why the information it encodes is 
independent from the variable being above/below zero. 

We can repeat this construction of adding a binary direction 
marker for every group of bits (i.e., for every timescale). For 
the last group we have a choice: We can treat it as in the multi-
state model, where it has hard bounds that no plasticity event 
can overcome, in which case the relevant readout on this 
longest timescale is simply the last bit (the sign of the slowest 
variable). Alternatively, we can turn the last group of bits into 
another cyclic variable by allowing the dynamics to wrap 
around, in which case we also have to add a marker bit for this 
variable to keep track of the direction of motion on the longest 
timescale. The reason why one might want to do this at the 
expense an additional bit per synapse is that in this case the 
equilibrium distribution is flat not just for balanced, but also 
for unbalanced inputs, which can enhance the robustness of the 
model to auto-correlated inputs, as discussed below. 

Constructing a joint readout proceeds again by simply 
adding up the marker bits for the different timescale groups. 
This leads to a good approximation to the desired t –1/2 decay of 

the SNR (see Fig. 1). This larger SNR compared to the multi-
state model has been achieved at the cost of adding one bit per 
timescale, in our case for every group of two bits of the 
original chain. For the same longest timescale, the 
implementation of this model (with m different timescales) 
thus requires 3m instead of 2m bits, which still grows only 
linearly with the logarithm of the maximum memory capacity, 
instead of quadratically as for the multi-chain model. We have 
thus obtained a rather efficient construction: E.g. for a synapse 
with m=7 timescales (as in Fig. 1) this model requires 21 bits 
of storage, whereas the multi-chain model with the same 
timescales needs 56 bits, and the biological model with 32 
distinguishable values per variable uses 35 bits (and requires 
stochastic interactions with small transition probabilities). 

C. Partial reset model 
Another model that exhibits similar memory performance 

and efficiency can be obtained by a further modification of the 
direction marker model. In this model, the marker bits and the 
bits performing binary encoding are no longer independent, 
but instead we combine them into groups of (with our choice 
of timescale ratio) three binary switches, representing different 
timescale variables with eight states each (see Fig. 2b).  

As above, these variables implement a counter for the total 
cumulative input, but instead of using standard binary 
encoding, which resets each variable to the opposite end of its 
dynamical range when its value would exceed one of its 
bounds, here we instead stipulate that its value is reset to the 
state closest to zero that has the same sign. Since the reset takes 
the state of the variable close to the middle of its dynamical 
range, we refer to this as the partial reset model. As before, the 
reset is accompanied by an increment/decrement of the next 
variable by one unit, which again corresponds to a change of 
four units in the previous variable. Because of this partial reset, 
the state of each variable is correlated with the recent direction 

Fig. 1. Signal to noise ratio for ideal observer memory retrieval in a 
population of N=107 synapses as a function of the number of memories 
(stored since the one whose SNR is plotted) for four models with seven 
approximately matched timescales: The biological model of [4] with 32 levels 
per variable (dotted), the multi-chain model (dashed), the direction marker 
model (solid), and the partial reset model (dash-dotted). For each model three 
SNR curves are shown: One for uncorrelated synaptic modifications 
(bottom), in which case all models approximate a t –1/2 power-law decay, and 
two for correlated inputs with correlation timescales of –1/log(0.9) (about 10; 
middle) and –1/log(0.99) (about 100; top). While the biological model 
doesn’t respond well to correlated inputs, the other three models resume their 
power-law decay beyond the correlation timescale. Note that for uncorrelated 
inputs the first four variables would be sufficient to cover the range of 
timescales shown, but more are needed for correlated inputs.  
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Fig. 2. Schematics of the direction marker (a) and partial reset models (b). 
The former consists of 2m bits performing binary encoding of the cumulative 
input (bottom), divided up into m groups of two bits each, whose states vary 
on increasingly longer timescales from the left to the right. Whenever a 
variable would exceed its bounds, it is reset to the opposite boundary value. If 
and only if this happens the input will also change the following variable by 
one unit. Each variable has an additional marker bit (top), that records the 
direction of its last crossing of zero (not counting resets). The final synaptic 
weight is the sum of these direction markers. The marginal equilibrium 
distributions of all variables and markers are uniform. In the partial reset 
model the three bits per group are combined into one variable with eight 
states, and the reset occurs towards the middle of the dynamical range. The 
synaptic weight is given by the sum of the signs of these variables. Their 
equilibrium distributions are triangular (for balanced inputs). In both models 
the reset of the last variable can be omitted, which would alter its distribution. 
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of motion (averaged over the appropriate timescale). E.g. if a 
variable has the largest possible value, we know for certain that 
it approached this value from below, since there is no reset to 
boundary values. We can therefore use a simple readout that 
adds the signs of all variables to determine the synaptic weight, 
as for the multi-chain model. This corresponds to summing the 
values of the last bit from each group. 

The (marginal) equilibrium distributions of the different 
timescale variables are no longer flat, but in fact pyramid-
shaped. This means that the states closest to zero, which are the 
most plastic in the sense that they can lead to a change in the 
synaptic weight in one step, have the highest occupancy, in 
contrast to the rigid chains of [5] that maximize their memory 
lifetime when only their least plastic states are occupied. As 
before, we have a choice whether or not to introduce a (in this 
case partial) reset for the last variable, thus turning a bounded 
variable into a cyclic one (here with two distinguishable cycles 
for repeated potentiation and depression). The number of bits 
required to implement this model (for approximately matched 
timescales) is the same as in the previous model, and the 
memory performance is also very similar (see Fig. 1). 

D. Robustness to auto-correlated inputs 
For the biology-inspired synaptic model of [4], net 

imbalances in the effective rates of potentiation and depression 
are problematic, because it operates with bounded variables 
that can be pushed towards the edges of their dynamical range 
by a non-zero drift in the synaptic modifications, which 
prevents the synapse from correctly accumulating further 
inputs. While this problem can be solved locally, e.g. by a 
homeostatic mechanism that subtracts a running estimate of the 
mean input (averaged over an interval longer than the longest 
timescale), there remains a secondary issue when the synaptic 
inputs generated by the learning rule are correlated. An auto-
correlated sequence of desired plasticity steps, even though the 
mean subtraction renders it balanced in the long-term average, 
can look imbalanced in either direction on shorter timescales. 
E.g. for a simple exponential auto-correlation function, inputs 
will tend to align across intervals of the order of the correlation 
timescale. Such short-term imbalances can still saturate one of 
the bounded dynamical variables (especially the fastest one), 
leading to errors in the further accumulation of inputs, and we 
cannot cure this problem by simply subtracting a running 
average on this shorter timescale, since this would limit the 
memory lifetime by erasing longer-term memory traces. 

Fortunately, the direction marker and partial reset models 
use cyclic variables that by construction cannot get stuck in 
boundary states (except perhaps for the longest timescale 
variables, if one choses to not make them cyclic). Analogously, 
the multi-chain model incorporates long chains that correctly 
track inputs even when its shorter ones have hit their bounds. 
Therefore, these three models can deal much more gracefully 
with auto-correlated inputs, as shown in Fig. 1. Note that the 
overall higher magnitude of the SNR is simply due to 
successive memories being correlated, and is not indicative of 
a better memory performance in terms of information storage. 
The important feature of these SNR curves is that after an 
initial transient lasting about one correlation time interval, they 
again approximate a t –1/2 decay, and don’t exhibit a breakdown 
due to saturation that occurs in the biological model. 

III. DISCUSSION 
We have presented simple deterministic models of complex 

synapses that can be efficiently implemented using digital, 
low-precision variables and may be suitable for neuromorphic 
hardware with on-chip online learning. These models exhibit 
close to optimal scaling behavior for both the initial SNR 
(leading to good generalization), and the memory capacity. We 
have described these models as generalizations of a multi-state 
model with a long timescale. Another, equivalent view is that 
rather than building independent subsystems to implement each 
of the different timescales of our synaptic model (as for the 
multi-chain model, which uses too many bits), we have 
introduced interactions between the different low-precision 
variables (groups of bits, which separately would each have 
only a small memory capacity), to build up longer and longer 
timescales. This effectively reuses some of the bits that would 
be required to implement long timescale chains in isolation. 

Whereas in [4] the interactions between different timescale 
variables were bidirectional, here we considered simple 
feedforward inputs from shorter to longer timescale variables, 
combined with appropriate resets of the former. The reason 
bidirectional interactions were necessary in the biological 
implementation was that we insisted on the first variable alone 
interacting with the neural activity (i.e., it received the input 
and determined the synaptic weight), with the longer 
timescales being implemented by hidden variables. For 
designing neural hardware, however, it appears plausible that 
the final weight may depend on several variables. 

An additional feature of the models presented here is their 
robustness to auto-correlated inputs, which should be very 
helpful in machine learning tasks using e.g. gradient descent, in 
which successive update steps are often highly correlated. This 
feature will be even more important in real-world tasks that 
require continual learning. Many aspects of the natural world 
are known to be characterized by power-law or heavy-tailed 
distributions. To learn from such naturalistic inputs, we will 
need artificial neural systems that can deal with synaptic 
modifications which exhibit correlations on all possible 
timescales. Future studies will test the proposed synapses in 
these kinds of real-world tasks, and we hope that this will help 
pave the way for the development of energy-efficient, 
autonomous learning systems. 
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