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Abstract 
  
Background: Using canonical correlation analysis (CCA), hierarchical clustering, and machine 
learning methods, we recently identified four subtypes of depression defined by distinct patterns 
of abnormal functional connectivity in depression-related brain networks, which in turn predicted 
differing clinical symptom profiles and individual differences in treatment response. However, 
whether and how dysfunction in specific circuits may give rise to specific depressive symptoms 
and behaviors remains unclear. Furthermore, this approach assumes that there are robust and 
stable canonical correlations between functional connectivity and depressive symptoms—an 
assumption that was not extensively tested in our earlier work. 
  
Methods: First, we comprehensively re-evaluate the stability of canonical correlations between 
functional connectivity and symptoms, using optimized approaches for large-scale statistical 
testing, and we validate methods for improving stability. Next, we illustrate one approach to 
formulating hypotheses regarding subtype-specific circuit mechanisms driving depressive 
symptoms and behaviors and then testing them in animal models using optogenetic fMRI. We 
review recent work in this field and describe one example of this approach. 
  
Results: Correlations between connectivity features and clinical symptoms are robustly 
significant, and CCA solutions tested repeatedly on held-out data generalize, but they are 
sensitive to data quality, preprocessing decisions, and clinical sample heterogeneity, which can 
reduce effect sizes. Generalization can be markedly improved by adding L2-regularization to 
CCA, which decreases variance, increases canonical correlations in left-out data, and stabilizes 
feature selection. This approach, in turn, can be used to identify candidate circuits for 
optogenetic interrogation in rodent models. 
  
Conclusions: Multi-view approaches like CCA are a conceptually useful framework for 
discovering stable patient subtypes by synthesizing multiple clinical and functional measures. 
Optogenetic fMRI holds substantial promise for testing hypotheses regarding subtype-specific 
mechanisms driving specific symptoms and behaviors in depression.  
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Depression is not a unitary disease entity, but rather a heterogeneous neuropsychiatric 
syndrome that is thought to be caused by multiple distinct and interacting neurobiological 
mechanisms that may play unique roles in various patient subgroups (1– 6). Pioneering earlier 
work in this field identified melancholic, atypical, seasonal, and other clinical subtypes of 
depression, each defined by sets of specific symptoms or other clinical characteristics that tend 
to co-occur in patient subgroups (7– 11), but it has been challenging to identify subtype-specific 
neurobiological substrates that could be used as biomarkers. An alternative strategy for parsing 
heterogeneity would involve searching for patient subgroups defined by shared biological or 
objective cognitive and behavioral substrates, and then testing whether they predict clinical 
symptoms and outcomes—an approach that has already proven useful in psychosis, autism, 
and other neuropsychiatric disorders (12– 17). 
 
Motivated by these studies, our recent work identified four neurophysiological subtypes of 
depression defined by distinct patterns of altered functional connectivity as indexed by resting 
state fMRI in limbic and frontostriatal brain networks, which in turn predicted distinct clinical 
symptom profiles (18). In this work, we used canonical correlation analysis (CCA) to identify 
linear combinations of resting state functional connectivity (RSFC) features that predicted linear 
combinations of clinical symptoms, both of which could be used for either defining patient 
subtypes or for rating individual patients along continuous dimensions that capture unique 
aspects of brain dysfunction, consistent with multiple previous studies identifying correlations 
between RSFC features, clinical symptoms, and diagnostic status in depression (19– 26). 
  
However, while this approach was able to make useful predictions about clinical symptom 
presentations and treatment response probabilities, it also raised important questions. In 
identifying complex patterns of functional connectivity involving dozens of brain circuits 
associated with specific symptom combinations, it raised questions such as: which connectivity 
alterations in what circuits subserve particular symptoms and behavior; which are merely 
correlated with them; and how do connectivity alterations in multiple circuits interact? Such 
questions are difficult to answer using fMRI alone, but animal models hold promise for 
addressing them. Over the last ten years, new optogenetic approaches for experimentally 
manipulating brain circuit function in genetically defined cell types and topologically defined 
projections have begun to define causal relationships between circuit function and behavior 
(27– 32), with important implications for both neurological (33– 35) and psychiatric disease states 
(30, 36 – 42). Importantly, these methods can also be integrated with functional MRI and other 
noninvasive neuroimaging techniques that are widely used in humans, offering new 
opportunities for testing hypotheses and predictions derived from human neuroimaging studies 
(36, 43 ). 
  
Here, we illustrate one such approach to formulating hypotheses regarding subtype-specific 
circuit mechanisms driving depressive symptoms and behaviors and then testing them in animal 
models using optogenetic fMRI. We review recent work in this field and describe one example of 
this approach, integrating results from our recent subtyping work with published optogenetic 
fMRI studies. Ideally, this approach could be extended to other datasets and samples that are 
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clinically characterized but lack resting state fMRI data. But such extension would require a 
stable, low-dimensional embedding that could be readily and reliably generalized to new 
data—and such stability was not tested in our previous work. Relatedly, a recent preprint 
reported that CCA involving high-dimensional neuroimaging data tends to overfit, raising 
questions about the central assumption that functional connectivity alterations in 
depression-related brain networks are robust and reliable predictors of symptoms and behavior 
(44).  
 
Therefore, we began by comprehensively re-evaluating whether functional connectivity 
alterations in depression are stable predictors of clinical symptoms using optimized approaches 
for large-scale statistical testing. We find that correlations between RSFC features and clinical 
symptoms are robustly significant, and that CCA solutions tested repeatedly on held-out data 
generalize well, but tend to overfit with increasing numbers of features. To overcome this 
obstacle, we show that this generalization can be markedly improved by adding 
L2-regularization to CCA, which decreases variance, increases canonical correlations in left-out 
data, and stabilizes feature selection. By testing which RSFC features appear most frequently 
across the best models, we can identify candidate circuits for optogenetic interrogation in rodent 
models. We then explain why multi-view approaches like CCA are a conceptually useful 
framework for discovering stable patient subtypes by synthesizing multiple clinical and 
functional measures, and can serve as a bridge for extending these results to new subjects 
across modalities. We conclude by reviewing recent advances in optogenetic fMRI and 
illustrating how this method could be used to test for subtype-specific circuit mechanisms driving 
particular depression-related behaviors. 
 
Methods and Materials 
 
Subjects. The analyses reported in Figs. 1–3 were designed to re-evaluate our approach in 
Drysdale et al., using state-of-the-art statistical methods to test whether depression-related 
RSFC alterations are statistically significant and stable predictors of clinical symptoms. 
Therefore, these analyses were conducted in the same “subtype-discovery sample” used in the 
Drysdale report, which comprised N = 220 subjects meeting DSM-IV criteria for a diagnosis of 
(unipolar) major depressive disorder and currently experiencing an active, non-psychotic major 
depressive episode at the time of the fMRI scan. All patients in this sample also met criteria for 
treatment resistance, with a history of failing to respond to at least two antidepressant trials of 
adequate dose and duration during the current episode. The subjects were recruited from 
outpatient clinics at Cornell (mean age = 42.1 years, 58.3% female) and the University of 
Toronto (mean age = 40.4 years, 57.3% female), using identical inclusion and exclusion criteria. 
Subjects were eligible for inclusion if they presented while seeking treatment for an active 
unipolar major depressive episode with a history of treatment resistance as defined above. 
Exclusion criteria were as follows: currently active substance use disorder; bipolar depression; a 
psychotic disorder; unstable medical conditions; a history of seizures or head injury with loss of 
consciousness; current pregnancy; and other contraindications for MRI (e.g. claustrophobia, 
implanted intracranial devices or cardiac pacemakers). Diagnoses were established by a trained 
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clinician using a structured clinical interview (MINI or SCID). Subjects were not excluded on the 
basis of other psychiatric comorbidities or psychiatric medication usage. See Table 1 for details 
on medication status and psychiatric comorbidities. Symptom severity scores were quantified 
using the 17-item Hamilton Rating Scale for Depression (HAMD). As expected for a 
treatment-resistant population, they presented with moderate to severe total symptom scores 
(mean HAMD for Cornell subjects = 19.3; mean HAMD for Toronto subjects = 20.4).  

In addition, in order to better understand whether differences between this sample 
(summarized in Supplementary Table 1) and the sample used in Dinga et al. (44) may have 
influenced their power to detect statistically significant RSFC-clinical symptom correlations, we 
conducted supplementary analyses in a separate sample of N = 184 subjects (acquired during 
on-going studies at Cornell and Toronto) that more closely resembles their dataset. As in Dinga 
et al., this sample was acquired from four scanners (see below for details) and was a more 
diagnostically heterogeneous group: subjects were psychiatric outpatients presenting with 
symptoms of depression or anxiety and meeting DSM-IV criteria for a diagnosis of an anxiety 
disorder (26.1% of subjects, with generalized anxiety disorder, post-traumatic stress disorder, or 
panic disorder), major depressive disorder (53.2%), or both (20.7%), but there were no 
requirements for treatment resistance, and as in Dinga et al., they were not required to meet full 
DSM-IV criteria for a currently active major depressive episode (i.e. all MDD patients in this 
sample had experienced a major depressive episode, but some were in partial or full remission). 
Their mean age was 45.1 years, and 60.8% were female. Their medication status was as 
follows: 62.0% on an antidepressant; 12.0% on a mood stabilizer; 8.7% on an antipsychotic; 
and 53.8% taking another medication, including benzodiazepines, non-benzodiazepine 
sedative-hypnotics, thyroid hormone, and/or stimulants. Their mean HAMD total score was 17.5 
with a range of 3 to 36.  

All subjects provided written informed consent. All recruitment procedures and study 
protocols were reviewed and approved by the Institutional Review Boards of Weill Cornell 
Medicine or Toronto Western Hospital. 
 
MRI Data Acquisition. All subjects in the primary sample received a high-resolution 
T1-weighted anatomical MRI scan (MP-RAGE) and a T2*-weighted resting state functional MRI 
(gradient echo spiral in-out sequence) on a General Electric Signa 3T scanner. Scanning 
parameters for the Cornell subset were as follows: TR = 2 s, volumes = 180, FOV = 240 mm, 
slices = 28, XY resolution = 3.75 mm, Z resolution = 5 mm. Scanning parameters for the 
Toronto subset were as follows: TR = 2 s, volumes = 300, FOV = 220 mm, slices = 32, XY 
resolution = 3.44 mm, Z resolution = 5 mm.  

As noted above, additional supplementary analyses were conducted in a second sample 
that more closely resembled the sample used in Dinga et al, and as in that report, subjects in 
this sample were scanned on one of four different scanners. The scanning parameters for two of 
the scanners (N = 25 and N = 98, respectively) were identical to those above. The third scanner 
(N = 19) used the following parameters: Siemens Trio 3T, TR = 2 s, volumes = 170, FOV = 224 
mm, slices = 22, XY resolution = 3.5 mm, Z resolution = 5 mm. And the fourth scanner (N = 42) 
used the following parameters: Siemens Trio 3T, TR = 2.25 s, volumes = 166, FOV = 220 mm, 
slices = 39, XY resolution = 2.5 mm, Z resolution = 3.5 mm. 
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fMRI Data Preprocessing and Functional Connectivity Quantification. Preprocessing was 
identical to the procedure defined in our previous report. To summarize the most important 
points, preprocessing of the resting state fMRI scans was implemented in AFNI and included 
standard procedures for slice-timing correction, spatial smoothing (4-mm FWHM Gaussian 
kernel), nonlinear registration to Montreal Neurological Institute (MNI) common space (via 
AFNI’s 3dQwarp function), temporal bandpass filtering (0.01–0.1 Hz), detrending (linear and 
quadratic), and regression on nuisance signals derived from head motion (12 parameters), CSF, 
white matter, and ANATICOR correction for local and global hardware artifacts. High-motion 
volumes (framewise displacement > 0.3 mm) were censored, as were the volumes preceding 
and following these high-motion frames. Importantly, nuisance signal regression and bandpass 
filtering were performed simultaneously in a single step (excluding subjects (8.9%) if the number 
of data points remaining after censoring was insufficient for performing this regression), as 
previous studies indicate that bandpass filtering prior to nuisance signal regression and 
censoring may lead to noise from high-motion volumes contaminating additional volumes (45, 
46). The resulting residual time series volumes, registered to MNI common space, were used for 
functional connectivity quantification. See (18) for additional details, including validation of this 
protocol for controlling for motion-related artifacts. 

Functional Connectivity Quantification. Again, this procedure was identical to the one 
specified in our previous work. Briefly, to reduce the dimensionality of the resulting rsfMRI 
residual time series data, we applied an established and extensively validated functional 
parcellation system delineating 258 functional network nodes (10-mm diameter spheres) 
spanning cerebral cortex, subcortical structures and cerebellum (47). These 258 nodes included 
245 regions specified in the original parcellation by Power et al. (excluding 19 nodes from that 
parcellation that had incomplete MRI volume coverage or poor signal [SNR < 100] in our 
sample), plus 13 additional regions that have been implicated in depression with MNI 
coordinates (X, Y, Z mm) as follows: bilateral nucleus accumbens (+/–12, +8, –8); bilateral 
subgenual anterior cingulate (+/–4, +15, –11); bilateral caudate nucleus (+/–12, +18, –3); 
bilateral amygdala (+/–19, –2, –21); bilateral ventral hippocampus (+/–27, –15, –18); locus 
coeruleus (+/–3, –33, –27); ventral tegmental area (+/–6, –15, –15); and dorsal raphe nucleus 
(+/–6, –27, –21). BOLD signal time series were extracted from each ROI (averaging across all 
voxels), and a correlation matrix quantifying functional connectivity between each ROI and 
every other ROI was calculated for each subject using AFNI’s 3dNetCorr function. To aid in 
subsequent statistical analyses, we applied the Fisher z-transformation to these Pearson 
correlation coefficient matrices. We refer to these Fisher z-transformed correlation coefficients 
as resting state functional connectivity (RSFC) measures in all subsequent analyses. 

Data Quality Assessment. In addition to the controls for motion-related artifacts 
described above, we also controlled for subject- and scanner-related differences in the temporal 
signal-to-noise ratio (SNR, defined as the mean of the MR signal over time / the standard 
deviation of the time series) by 1) excluding any ROI if its SNR was less than 100 in more than 
5% of subjects; 2) including only voxels with SNR > 100 in calculating the mean BOLD signal 
time series for each ROI; and 3) excluding subjects with SNR < 100 in any of the remaining 258 
nodes described above. Finally, we used multiple linear regression to further control for scanner 
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and age effects by regressing the RSFC features (correlation coefficients) on subjects’ ages and 
dummy variables for site.  

Preprocessing for Supplementary Analyses. As noted above, we performed 
supplementary analyses in a second sample, in order to better understand whether 
preprocessing and/or clinical sample differences between the analyses reported in Drysdale et 
al. (18) and Dinga et al. (44) may have influenced their power to detect statistically significant 
RSFC-clinical symptom correlations. For these supplementary analyses, we replicated the 
preprocessing stream described in Dinga et al. (44) and summarized in Supplementary Table 1. 
Although similar overall, key differences in this preprocessing stream included motion artifact 
correction via ICA-AROMA instead of motion-related nuisance signal regression; no censoring 
of high-motion volumes; no correction for scanner- or age-related differences; and no evaluation 
or correction for individual or scanner-related differences in SNR. 
 
Data Analysis. The stability and significance of correlations between HAMD clinical features 
and RSFC features was assessed by calculating the 33,123 Pearson correlation coefficients 
(PCCs) between each RSFC feature and one of the 16 HAMD item-level measures repeatedly 
on 1000 bootstrap replicates (each replicate consisted of n = 220 draws with replacement of 
matched RSFC and HAMD measures from the same subject). The 17th HAMD measure was 
excluded as it frequently had zero variance on bootstrap replicates. We used PCCs rather than 
Spearman correlations, as Spearman correlations like those used in (18) showed no noticeable 
improvement relative to PCCs for this analysis. 

Following the procedure of Efron and colleagues (48), for each bootstrap replicate we 
converted the 33,123 PCCs between RSFC features and the chosen HAMD measure to 
z-values by taking the inverse cumulative distribution function (CDF) of the normal distribution 
applied to the p-values associated with each correlation t-statistic (see equation (1.2) and 
corresponding example in (48)). We then used estimates of the root-mean-square of the 
correlations between all pairs of z-values to correct the significance cutoff for the z-values to 
account for correlations among the RSFC features using the procedure detailed in (48). 
Applying this over the 1000 bootstrap replicates and taking the 2.5% and 97.5% percentiles of 
this empirical distribution (the “percentile bootstrap”; (49)) of the variance of the significant 
fraction of z-values cutoff variance (calculated for each replicate using equation 1.4 of (48)) led 
to the confidence intervals for the significant fractions shown in Fig. 1C for all 16 HAMD 
measures (yellow whiskers). All confidence intervals were corrected for the 16 separate tests 
using the Bonferroni-Holm step-down procedure (50) to adjust the percentiles used, and thus 
the 95% (corrected) confidence intervals shown are corrected for both correlations between 
RSFC features (using the procedure in (48) ) and for multiple tests across HAMD features 
(using Holm-Bonferroni for 16 tests). We note that the Holm-Bonferroni correction is 
conservative, and the former led to only a modest correction, thus these results may be 
somewhat conservatively corrected overall. The bars shown in Fig. 1C were calculated using 
the mean observed significant area (past the two-tailed  significance threshold) 
observed across the 1000 bootstrap replicates of z-values, with the 2.5% of z-values expected 
to be above the two-tailed  threshold for the standard normal distribution subtracted so 
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that chance level corresponds to zero. Confidence intervals reported for Fig1. D were also 
calculated using the percentile bootstrap on the 1000 bootstrap replicates. 

Canonical correlation analysis (51, 52 ) was performed between clinical measures and a 
selected subset of screened RSFC features (those with highest Spearman correlation) as 
previously described (18). Due to this feature screening step, we use validation on held-out data 
in subsequent analyses to avoid overly optimistic correlation estimates due to training-set 
overfitting (note that if we were specifically concerned with out-of-sample prediction, we should 
also have an additional fully out-of-sample test set, as recommended in the statistical learning 
(53) and neuroimaging (54) literature), but here we limit ourselves to a simple training and 
validation/test set to best focus on the stability of various approaches given limited data). To 
assess the stability of canonical variates resulting from CCA, 90% of matched RSFC/HAMD 
data was randomly sampled without replacement and used as a training set on which 
non-regularized or regularized CCA was fit, and the coefficients of this fit were then applied to 
the remaining 10% of test data to estimate the projection of these data into the CCA space as 
well as the resulting correlation between canonical variates on this held out validation data (this 
was done a total of 1000 times).  

To better stabilize CCA coefficients, L2-regularized canonical correlation analysis (CCA), 
as described in (55) was also applied. This approach uses two regularization parameters,  
and  to regularize the estimated covariance matrices for the RSFC and clinical features, 
respectively. To find the best combination of these two variables, a grid search over possible 
values of the parameters was conducted, with 1000 RCCA fits found for each parameter 
combination (over  and 

), as well as number of features selected chosen in 10 
feature increments from 10 to 200 RSFC features. For each set of parameters, model fitting was 
done on training data and then assessed via the magnitude of the 1st canonical correlation 
coefficient on held out validation “test” data, using the same procedure as described above for 
standard CCA. 

Analyses were conducted using a combination of custom Python and R code as well as 
R code for RCCA by (55), the Python Seaborn package (Michael Wascom) based on Matplotlib 
(56) for plotting, Jupyter Notebook, Ipython (57), Scipy (58) and Numpy (59).  
 
Results 
 
Testing for Robust Correlations between RSFCs and Clinical Symptoms. We begin with a 
modern approach to a classical problem: establishing the existence and strength of correlations 
between brain and behavior using mass univariate statistics. Examining number, strength, and 
effect size of these correlations gives us a strong basis from which to begin more complicated 
multivariate analyses, and convinces us of the utility of doing so. Further, understanding the 
structure of univariate correlations between RSFC and clinical symptoms gives us insight into 
what kind of challenges might present themselves in the multivariate setting.  
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To test the significance of some correlations among a large number of them, it is not uncommon 
to transform the t -statistics associated with each univariate correlation to z-values, which can 
then be compared against the standard normal distribution with mean 0 and variance 1 to test 
for significance. In the current application, we have 33,123 Pearson Correlation Coefficients 
(hereafter, PCCs), each of which can be converted into a corresponding z-value. However, 
these statistics are not independent of one another. The average correlation ( SD) between 
the RSFC features is 0.120  0.0173, or only about 2-3 times less than the largest correlations 
between the RSFC features and HAMD clinical features. As it has been established that treating 
correlated z-values as though they are independent can significantly distort results using the 
distribution of z-values (60), we must correct for this. Conveniently, recent work on large-scale 
statistical estimation in similar scenarios provides us with tools to correct our estimates for just 
such correlations (48). Further, if we are to compare PCCs against all of 16 HAMD clinical 
measures we are interested in (we exclude HAMD 17 due to insufficient variance in this study), 
we will also have to take these multiple comparisons into account when assessing how many 
z-values are significant. To do this we use the Holm-Bonferroni correction to control family-wise 
error (50).  
 
With these corrections in place, we can compare our distributions of z-values for correlations 
between RSFC and clinical features. We are interested in the number of z-values that exceeds 
the threshold of significance expected by chance (corrected for large-scale correlations and 
multiple comparisons; see Methods). We are also interested in establishing what the variance of 
the number of significant features is: is it stable, or do small changes in the data collection 
conditions translate to large changes in the number of correlations that are found to be 
significant (indicating unstable correlation estimates)? To estimate the variance of the number of 
correlations above the significance threshold, we use the bootstrap (49), resampling the RSFC 
and clinical data for each subject with replacement to generate 1000 bootstrap replicate data 
sets, and then run the z-value procedure from (48) on each replicate. The result of such a 
procedure for HAMD item 1 (HAMD1) is shown in Fig. 1A, where the histogram is of the median 
z-value for each RSFC to HAMD1 correlation over 1000 bootstrap replicates. The standard 
normal distribution against which we are comparing for significance (dotted red line) may be 
compared with a smoothed estimate of the median z-value distribution (green curve) and the 
excess area between these curves above threshold (black shading and arrow, vertical dotted 
lines are ) used as a measure of the expected number of z-values above the number 
expected by chance (where chance is 2.5% for  and a two-sided test).  
 
Using the procedure in (48) to estimate the variance in the number of z-values above threshold 
for each bootstrap replicate z-value distribution, and then the “percentile bootstrap” (49) over 
our 1000 replicates (the 2.5% and 97.5% percentiles of the bootstrap distribution, for two-tailed 

), we can generate confidence intervals for the significant z-value estimates. These 
confidence intervals can then be corrected for the 16 multiple comparisons across the HAMD 
clinical features using the Holm-Bonferroni procedure, yielding the results shown in Fig. 1B. 
Here, each bar represents the estimated number of z-values found above chance level (2.5% 
for two-tailed ) for all 16 HAMD measures considered, and the yellow whiskers show 

8 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/498964doi: bioRxiv preprint first posted online Dec. 17, 2018; 

https://www.codecogs.com/eqnedit.php?latex=%5Cpm%0
https://www.codecogs.com/eqnedit.php?latex=%5Cpm%0
https://paperpile.com/c/Htx5tQ/DU9G
https://paperpile.com/c/Htx5tQ/DU9G
https://paperpile.com/c/Htx5tQ/DU9G
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/OGKq
https://paperpile.com/c/Htx5tQ/OGKq
https://paperpile.com/c/Htx5tQ/OGKq
https://paperpile.com/c/Htx5tQ/EOT8
https://paperpile.com/c/Htx5tQ/EOT8
https://paperpile.com/c/Htx5tQ/EOT8
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://www.codecogs.com/eqnedit.php?latex=z%20%5Cpm%201.96%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.05%0
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/KJ7y
https://paperpile.com/c/Htx5tQ/EOT8
https://paperpile.com/c/Htx5tQ/EOT8
https://paperpile.com/c/Htx5tQ/EOT8
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.05%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.05%0
http://dx.doi.org/10.1101/498964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

the 95% confidence interval for each (corrected for multiple comparisons). We can see that a 
number of the z-value distributions for the correlations have significantly more correlations than 
expected by chance. In particular, HAMD measures 1, 3, 5, 6, 7, 12, and 13 have median 
significant percentages (amount above 2.5%) well in excess of 1%, and overall, 14 out of the 16 
z-value distributions show reliable, significant shifts in correlations. This pattern is recapitulated 
by the effect sizes (Fig. 1C) as measured by Cohen’s d (calculated between the smoothed 
z-value distributions like the green line in Fig. 1A with the standard normal), where  to 

 are considered small to medium effect sizes and  to  are considered 
medium to large effect sizes by convention (61).  
 
Using the bootstrap replicates, we can also examine the range of RSFC to HAMD measure 
correlations. Fig. 1D shows the 1000 most positive (left) and 1000 most negative (right) 
correlations, ordered by the average PCC across bootstrap replicates (solid blue line). 
Superimposed we see the 95% confidence interval (percentile bootstrap), showing the range 
containing 95% of the PCC estimates over the 1000 bootstrap replicates. First, it is clear from 
these results that all of the most positive 1000 PCCs and a substantial fraction of the most 
negative 1000 PCCs are significant (their confidence interval excludes zero). This is what we 
would expect in general for the tails of a normal distribution, assuming correlations are relatively 
stable. The significant shift in the distribution we see in Fig. 1A can be seen in the upward shift 
of the positive correlations indicated by the black arrow and dotted line (Fig. 1D). We also note, 
however, that there is a significant range over which different bootstrap replicates might yield 
different orderings of the coefficients within, for example, the top 1000. We can see this even 
more clearly in Fig. 1E, which shows violin plots detailing the distribution of PCCs for the 10 
most positive PCCs on average. Again these distributions are all significantly different from zero, 
with mean 95% confidence intervals  SD of 0.148   0.0152 to  0.376  0.0119 , but we note 
these distributions all look relatively exchangeable. That is, within the top 10 PCCs, the distributions 
look very similar and their ranking within the top 10 would change considerably over different 
bootstrap replicates. As described in more detail below, this is an important point when we 
consider feature selection using correlations, where a large number of very similar variables 
could result in highly variable feature selection.  
 
RSFC-clinical symptom correlations are sensitive to clinical sampling and preprocessing 
decisions. In a recent preprint, Dinga and colleagues reported the results of an analysis similar 
to our earlier work (18) and concluded that correlations between functional connectivity features 
and clinical symptoms were not statistically significant (44), which would seem to contradict the 
findings reported in Fig. 1. However, there were several important differences between these 
two studies, especially in their clinical sample characteristics and preprocessing pipelines (see 
Supplementary Table 1 for details). Of note, the sample in Ref. (44) included N=187 subjects 
scanned on four different scanners (versus N=220 subjects scanned on just two scanners in our 
previous work, yielding a larger number of subjects per scanner and potentially more stable 
corrections for scanner-related differences). Dinga et al. did not directly control for 
scanner-related differences, and they took a different approach to controlling for motion and 
other global signal artifacts. Importantly, their sample was also more clinically heterogeneous 
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(including MDD, generalized anxiety disorder, social phobia, or panic disorder with no specified 
requirements for active depressive symptoms vs. currently active, treatment-resistant MDD in 
our work). By testing for RSFC-clinical symptom correlations in this more heterogeneous 
sample, the approach in Ref. (44) assumes that the mechanisms that drive these correlations 
are the same across all these disorders, but this may not be true. For example, it is possible that 
different mechanisms may drive anxiety symptoms in MDD compared panic disorder, in which 
case an analysis of subjects with mixed diagnoses could yield smaller effect sizes and unstable 
results in held-out data.  

To test whether these clinical sample and preprocessing differences could influence their 
power to detect robust RSFC-clinical symptom correlations, we repeated the analysis reported 
in Fig. 1 in a second more clinically heterogeneous sample of N=184 subjects with MDD or an 
anxiety disorder, scanned on one of four scanners, and preprocessed exactly as in Ref. (44). 
(See Methods and Materials for additional details.) The results are depicted in Supplementary 
Fig. 1. They show that statistically significant RSFC-clinical symptom correlations are still 
detectable for 10 of 16 symptoms (vs. 14 of 16 in Fig. 1B), but these associations are modest 
compared to those in Fig. 1B, with uniformly small effect sizes (d = 0.21–0.29 for 5 symptoms, d 
< 0.2 for all others). These results are consistent with the interpretation that distinct mechanisms 
give rise to RSFC-clinical symptom correlations across these heterogeneous disorders and that 
preprocessing decisions could also be important. 
 
Stable canonical correlations between RSFC features and clinical symptoms. As noted 
above, Fig. 1D indicates that the ranking of the top 10 PCCs could change considerably over 
different bootstrap replicates. This in turn suggests that a large number of very similar variables 
could result in highly variable feature selection across bootstrap replicates. Such redundant 
structure in the correlations motivates searching for low-rank embedding of the data that might 
find a small number of dimensions in which to express the many redundant correlations 
between RSFC features and clinical measures. Canonical Correlation Analysis (CCA) (51, 52 ) is 
a classical multi-view statistical approach that in this context can be used to find linear 
combinations of RSFC measures and clinical features that have maximum correlation with each 
other. Each linear combination defines a set of canonical variates (CVs), one for the RSFC 
measures and one for the clinical measures, that define a two-dimensional embedding of the 
data in which the data are maximally correlated. After the first CVs are found, subsequent CVs 
orthogonal to the previous ones can be estimated, defining a low-rank embedding of both the 
RSFC and clinical data into a linear subspace with a rank equal to the number of CVs estimated 
(55). Thus, if effective, CCA might provide a low-dimensional representation of the relationship 
between neuroimaging and clinical features in the form of a simplified summary of the 
interesting structure between the brain and clinical symptoms, as well as the ability to generalize 
to new data, and potential targets for causal investigations. 
 
However, traditional CCA has some potential weaknesses, particularly on large-scale, 
correlated data. In particular, previous literature has shown that CCA coefficients become 
unstable in the presence of multicollinearity (significant correlations between variables, as we 
might suspect between both the RSFC features) (55). Further, CCA can only operate on as 
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many variables as there are observations, so that feature selection is necessary prior to 
applying CCA in order to reduce the 33,123 potential RSFC measures to a number less than or 
equal to the number of observations (the number of subjects in the study)(55). Despite this, 
CCA has yielded promising results on the data presented in our previous work and re-analyzed 
here, although as direct assessment of the stability of CCA solutions was not integral to the 
other analyses in that study (18), it was left to subsequent work.  
 
Here, we resample the data 1000 times (without replacement) into training (90% of subjects) 
and validation (“test”) sets (the remaining 10% of subjects) in order to assess the stability of 
CCA on this data across different numbers of features selected (see Methods for details). The 
results can be seen in Fig. 2A, where we show that standard CCA does seem to overfit, as the 
training correlations in the 1st CV subspace gradually approach values above 0.9 (although they 
break down as the number of features approaches the number of subjects, which is 198 for 90% 
of the data), while the test canonical correlations increase initially (peaking at 20 features) but 
then decrease towards 0.1 by 190 features. The violin plots also show that variance of the 
distributions for test canonical correlations is quite large, with a significant fraction of the 
distribution making excursions below zero canonical correlation as the number of selected 
features included increases. Still, the best fit has a median canonical correlation of 0.557 ( with 
1st and 3rd quartile range across replicates of [0.456, 0.642]) , suggesting the approach is 
promising.  
 
We hypothesized that these results might be stabilized via L2-regularization applied to the CCA 
coefficients associated with both the RSFC and clinical features, as both were multicollinear. We 
also suspected that the RSFC coefficients in particular would benefit from regularization as the 
number of features included increased. Such regularization is common in the high-dimensional 
regression literature (where it is frequently referred to as the “ridge” penalty (62)) and induces a 
small downward bias in coefficient magnitude in exchange for what in practice is often a large 
reduction in coefficient variance (53). In regularized CCA (RCCA), we shrink both the sample 

covariance matrix for the RSFC features  and for the clinical measures  toward the 

identity matrix by replacing them with  and , respectively (55). This 
requires specifying the value of the two regularization parameters  and  for each RCCA 
fit. To assess the effects of these parameters on fit quality, we fit each of our RCCA models over 
a grid of  and , with each parameter taking values in set 

.  
 
The median canonical correlation results on the held-out test data (over 1000 replicates) are 
shown in Fig. 2B. The left panel shows one grid (for 160 selected features) in detail, and we can 
see that just a small amount of regularization of the RSFC feature coefficients greatly improves 
the test canonical correlations, as an increase of  from 0 to 0.01 increases test canonical 
correlations across all values of . While somewhat less sensitive to changes in , 
regularization of the HAMD coefficients also benefits the fit, and we see a peak median test 
canonical correlation at  and  of 0.735  (with 1st and 3rd quartile range of 
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[0.665, 0.797] across replicates ). The right panel of Fig. 2B shows grids for the other number of 
features shown (over the same grid of regularization parameters). We can also visualize the 
distributions of the training and test 1st canonical correlations as we did in Fig. 2A, but now for 
the best RCCA fit at . We see that compared to the CCA fit in Fig. 2A, the 
test canonical correlation distributions have lower variance, remain well above zero, and appear 
to improve with increasing number of features. We can visualize the difference between the 
CCA and best RCCA directly by overlaying the median and 1st through 3rd quartiles for the test 
canonical correlation derived from taking the 25% through 75% percentiles of the 1000 train/test 
subsample replicates over both approaches (Fig. 2D; RCCA in red, CCA in gray). These show 
clearly that CCA test canonical correlations (on the 1st CV) steadily approaches zero as more 
RSFC features are included, while RCCA only improves up to 160 features and after that 
reliably maintains high canonical correlations across replicates (out to the maximum number we 
tried here: 200 features). Further, if we examine the stability of test correlations between 
additional canonical variates (Fig. 2E), we see that RCCA (taken at its best performance at 160 
RSFC features with ) uniformly outperforms CCA (taken at its best 
performance at 20 RSFC features) for the first 4 sets of canonical variates. Thus we find that 
L2-regularization of both RSFC feature and HAMD measure coefficients stabilizes and improves 
low-dimensional co-embedding of neuroimaging and clinical measures.  
 
It is also interesting to consider further the number of screened features accommodated by the 
best RCCA fit versus the best CCA fit (i.e., what selecting 160 features looks like compared to 
selecting 20). Fig. 2F and G show, over the 1000 subsamples used as the training data, the 
ranked distributions of which RSFC features were chosen by the screening procedure (18). It is 
clear that if we look at how frequently the most selected features were included across 
replicates, having just 20 features (Fig. 2F) means just 3 features are selected more than 80% 
of the time, whereas having 160 features results in 25 features appearing more than 80% of the 
time. If we run pairwise comparisons looking at how many features appear in both of two 
replicates (randomly choosing 100 of the subsample replicates) we see that the number of 
overlapping features selected by the feature selection increases linearly with the total number of 
features selected (Fig 2H). Thus, stabilizing CCA with regularization here allows the model to 
leverage more features than standard CCA, yielding a broader set of more reliable features to 
be used in the resulting low-dimensional representation that result in higher test correlations. 
 
Discussion 

 
Together, these results show that linear combinations of RSFC features are stable and 
statistically significant predictors of distinct clinical symptom combinations in MDD patients who 
are actively depressed. As shown in our previous work (18), individual depressed patients, in 
turn, can be clustered into subgroups defined by relatively homogeneous patterns of altered 
functional connectivity in depression-related brain networks, which predict distinct clinical 
symptom profiles. Of course, it remains unclear whether and how RSFC alterations in specific 
circuits are driving depression-related symptoms and behaviors, or merely correlated with them. 
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Optogenetic tools, which can be integrated with fMRI and other noninvasive neuroimaging 
modalities, offer one approach to addressing this question. 
 
First introduced in 2010 (43), this method combines high-field fMRI with opsins to manipulate 
the activity of genetically defined cellular subtypes and test for both local and global effects on 
neuronal activity and brain network function. This initial report by Lee et al. (43) underscored 
two of the most important and commonly implemented applications of optogenetic fMRI (ofMRI). 
First, it showed how ofMRI could be used to glean mechanistic insights into the 
neurophysiological basis of the fMRI BOLD signal—a critical issue for interpreting the results of 
clinical neuroimaging studies. This report (43) showed that optogenetic stimulation of 
neocortical or thalamic excitatory neurons was sufficient to drive local BOLD signal responses, 
informing an ongoing debate about the nature of the neuronal signals that underlie the BOLD 
signal, as well as the cellular subtypes that give rise to them. Subsequent ofMRI studies showed 
that the BOLD signal is more strongly correlated with local spiking activity than with the local 
field potential (63) and is driven by the effects of neuronal activity on cerebral venules (64).  
 
Second, Lee et al. (43) went on to show how ofMRI could be used for whole-brain functional 
circuit mapping, by optogenetically manipulating the activity of excitatory pyramidal cells in a 
specific brain area and testing for downstream BOLD signal effects. More recent studies have 
extended this approach to map and differentiate the functional networks activated by specific 
circuits (e.g. dorsal vs. ventral hippocampus, and other hippocampal subregions)(65– 69) and by 
specific cellular subtypes (e.g. striatal medium spiny neurons expressing D1 vs. D2 dopamine 
receptors, and dopaminergic vs. glutamatergic cells in the ventral tegmental area)(70– 72), often 
with surprising results that could not be predicted based solely on mapping the axonal projection 
fields of a given brain region (e.g. Ref. (69)). 
 
Of particular relevance for translational neuroscience studies, ofMRI methods can also be easily 
extended to recapitulate disease-related pathophysiological processes, evaluate their impact on 
brain-wide functional network dynamics, and test for causal effects on behavior. To this end, we 
illustrate one approach for formulating hypotheses regarding subtype-specific mechanisms 
driving depressive symptoms and behaviors, and testing them in animal models using 
optogenetic fMRI (Fig. 3A), drawing on the results of two recently published works. In this 
model, resting state fMRI (or potentially other neuroimaging modalities) can be used to identify 
functional connectivity features in candidate circuits that predict depression-related symptoms 
and behaviors. Optogenetic fMRI, in turn, can be used to recapitulate and validate these 
connectivity changes in functionally related circuits in rodents, and test for causal effects on 
specific depression-related behaviors. One approach to identifying promising candidate circuits 
involves searching for connectivity alterations and clinical symptoms that tend to co-occur. For 
example, our previous clinical neuroimaging work used CCA to define a low-dimensional 
representation of connectivity features in specific circuits that predicted specific symptom 
combinations (18). Hierarchical clustering on the first two canonical variates revealed at least 
four clusters or subtypes (Fig. 3B) predicting group differences in multiple symptoms, especially 
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anhedonia and anxiety (Fig. 3C). Group differences in anhedonia and anxiety, in turn, were 
associated with group differences in RSFC in depression-related brain networks (Fig. 3D).  
 
These subtype-specific patterns were complex, involving hundreds of connectivity alterations in 
dozens of neuroanatomical areas. However, qualitatively, two observations stood out. First, 
Subtypes 1 and 4 were associated with increased anxiety and deficits in functional connectivity 
in fronto-amygdala circuits (see green, dashed-line boxes in Fig. 3D), which have been 
implicated in the regulation of fear memories and the cognitive reappraisal of negative emotional 
states (73– 76). Second, Subtypes 3 and 4 were associated with increased anhedonia and 
elevated functional connectivity between the medial prefrontal cortex, ventral striatum, and other 
frontostriatal circuits that have been implicated in reward processing, effort valuation, and 
motivation (6, 23 , 77 – 83). 
 
Optogenetic tools provide one means of testing whether altering functional connectivity in these 
circuits is sufficient for driving specific depression-related behaviors. Stable step function opsins 
(SSFOs) are particularly useful in this context, in that they were designed to achieve stable, 
partial depolarization in genetically defined cell types on a timescale of minutes (30), suitable for 
use in resting state fMRI analyses of low-frequency signal fluctuations, but still immediately 
reversible, enabling within-subject statistical comparisons. Furthermore, by partially depolarizing 
neurons and rendering them more excitable and responsive to their physiological inputs, they 
can in principle be used to reversibly modulate functional connectivity in specific circuits and cell 
types.  
 
At least one recent optogenetic fMRI study by Ferenczi et al. (36) provides evidence consistent 
with the hypothesis that increased functional connectivity in a specific frontostriatal network, 
qualitatively similar to the pattern observed in Subtypes 3 and 4, is sufficient to drive anhedonic 
behavior in rats. In this study, SSFO was expressed in CaMKIIa+ projection neurons in the 
medial prefrontal cortex (mPFC), and rsfMRI was used to quantify functional connectivity 
changes elicited by SSFO activation in the mPFC (Fig. 3E). SSFO activation increased 
functional connectivity between the mPFC target and a network of structures including the 
ventral striatum, nucleus accumbens, orbitofrontal cortex, anterior cingulate cortex, and 
thalamus (Fig. 3E), qualitatively similar to many of the areas exhibiting increased functional 
connectivity in Subtypes 3 and 4. SSFO modulation of mPFC projection cells was also sufficient 
to drive anhedonia-like behavior in the sucrose preference test (Fig. 3F), and individual 
differences in functional connectivity in a frontostriatal circuit were correlated with sucrose 
preference behavior (Fig. 3G).  
 
Importantly, this approach also provides a means of testing how circuits interact to produce 
anhedonic behavior. Ferenczi et al. (36) went on to show that mPFC and the ventral tegmental 
area (VTA) compete to influence processing in striatum (data not shown). VTA stimulation drove 
a striatal BOLD response that predicted reward-seeking behavior, while SSFO modulation of 
mPFC excitability suppressed the striatal response to VTA stimulation and disrupted reward 
processing. Of course, these findings do not necessarily indicate that the same mechanism is 
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involved in driving anhedonic behavior in Subtypes 3 and 4. Rather, they show that this 
particular pattern of frontostriatal hyperconnectivity, elicited by increasing the excitability of 
mPFC projection neurons, is sufficient to disrupt reward-seeking behavior. Future studies could 
test whether these subtypes are associated with hyperexcitability in mPFC; with deficits in 
striatal reward reactivity; and with abnormal interactions between VTA, mPFC, and striatum. 
Likewise, new viral tools for targeting opsin expression to topologically defined projection 
neuron subtypes with increased ease and efficiency (84– 86) will enable more targeted 
investigations that modulate connectivity between specific nodes in this frontostriatal network. 
 
The example in Fig. 3 illustrates one approach to formulating hypotheses about candidate 
circuits driving subtype-specific dysfunction in depression, based on qualitatively similar 
connectivity alterations that tend to co-occur with specific symptoms or behaviors across 
subtypes. However, it is worth noting that candidate circuits could also be identified in a 
data-driven way, especially with larger sample sizes. Indeed, multi-view methods like RCCA are 
well suited to this purpose, in that they reduce a large number of complex correlations at the 
brain and clinical symptom level to a low dimensional space that captures the most significant 
relationships between them in a concise and orthogonal way (yielding particular combinations of 
RSFCs and clinical symptoms that covary, orthogonal to others). Reliable coefficients in the 
RCCA model suggest targets for bidirectional optogenetic control in rodent experiments that 
could be used to test if symptom dimensions can indeed be dissociated by modulating the 
candidate neural targets.  
 
It is also worth noting some important limitations and caveats associated with this approach. 
First, Fig. 2A underscores how CCA has a tendency to overfit when combined with a feature 
selection step. Therefore, when screening is used to pre-select features for further analysis, 
careful training and test validation are necessary to generate models that perform well in 
held-out data and to avoid overly optimistic results due to overfitting. Second, our approach to 
feature selection is adequate for identifying stable and robust associations between RSFC 
features and clinical symptoms, but other methods could yield superior results. In particular, 
future studies will likely use nonlinear multi-view and/or sparse methods or other more 
advanced feature selection protocols to improve the results reported here, although the general 
results and conceptual framework will likely be similar.  
 
Third, these approaches may be highly sensitive to clinical sample characteristics (e.g. distinct 
circuit mechanisms may be at play in active depression, depression in remission, and various 
anxiety disorders), as well as to data quality, head motion, and other sources of global signal 
artifacts. Therefore, it is important to optimize and validate preprocessing methods and other 
data quality controls, based on the goals of a given study. Finally, categorical subtyping is just 
one approach to parsing diagnostic heterogeneity, and the 4-cluster solution in Fig. 3B is not the 
only solution. Rather, as discussed in more detail in (18), this 4-cluster solution was stable and 
clinically useful (predicting clinical symptoms and treatment response), but also most likely 
constrained by features of the subtype discovery dataset in (18), especially sample size. 
Likewise, although a model anchored in categorical subtypes provides a familiar and clinically 
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useful heuristic for clinicians to parse diagnostic heterogeneity in depression, other methods 
might be superior. One alternative approach that warrants further examination would substitute 
a multi-dimensional rating system for categorical subtype diagnoses.  
 
These caveats notwithstanding, the results in Figs. 1-3 and the accompanying review highlight 
the potential for integrating clinical neuroimaging analyses with optogenetic fMRI studies to 
formulate and test hypotheses regarding subtype-specific mechanisms driving particular 
symptoms and behaviors in depression. RCCA can be used to discover robust and stable 
associations between functional connectivity and behavior, linking specific circuits with specific 
clinical symptom combinations that may be differentially involved in individual MDD patients. 
Optogenetic fMRI, in turn, provides a powerful tool for testing hypotheses derived from clinical 
neuroimaging data; for implicating specific patterns of network dysfunction as causal 
mechanisms, not just functional correlates; and for isolating the contributions of specific network 
nodes and circuits and studying their interactions. 
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Table 1. Subject demographics, medication status and psychiatric comorbidities. The 
analyses in Figs. 1–3 were implemented in the same dataset used in Ref. (18). Subjects 
recruited at the Toronto and Cornell sites were matched for age (p = 0.41), sex (p = 0.87), and 
depression severity (HAMD17 total score, p = 0.11). *Psychiatric medications listed as “Other” 
included benzodiazepines, non-benzodiazepine sedative-hypnotics, stimulants, and thyroid 
hormone. **Psychiatric comorbidities listed as “Other” included obsessive compulsive disorder, 
attention-deficit/hyperactivity disorder, Asperger Syndrome, and Tourette’s Syndrome. 
 
 

 Toronto Sample Cornell Sample 

Number of Subjects 124 96 

Age (mean) 40.4 years 42.1 years 

Sex 57.3% female 58.3% female 

HAMD17 Total Score (mean) 20.4 19.3 

   

Psychiatric Medications   

   Antidepressant 59.7% 57.3% 

   Mood Stabilizer 16.9% 17.7% 

   Antipsychotic 17.7% 15.6% 

   Other* 45.2% 42.7% 

   

Psychiatric Comorbidities   

   Generalized Anxiety Disorder 4.8% 5.2% 

   Post-traumatic Stress Disorder 6.5% 4.2% 

   Social Anxiety Disorder 4.8% 4.2% 

   Panic Disorder 2.4% 3.1% 

   Other** 4.0% 3.1% 
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Figure 1: Robust correlations exist between Resting State Connectivity Features (RSFCs) 
and clinical measures (HAMD). 
 
A) Histogram of z-values for the 33,123 average Pearson Correlation Coefficients (PCCs) 
between Resting-State Functional Connectivity (RSFC) features and HAMD clinical measures 
(averaged over 1000 bootstrap replicates), compared to a standard  Gaussian 
distribution (red line) and with a smoothed kernel density estimate plotted over the histogram 
(green line; see Methods). The black arrow and shaded region show the area of the z-values 
that exceeds the area expected for a standard normal distribution (outside the two-sided 
significance criterion of  for ; shown as vertical dotted black lines). Note the 
empirical distribution of z-values has sample mean and standard deviation 

, respectively, with the lower-than-expected sample variance resulting 
from correlations among the statistics; we correct for the effects of such inter-statistic 
correlations using the procedure in (48)(see Methods). B) Bar plots of the mean percentage of 
z-values that exceeded that expected by chance (e.g., the percentage above 2.5%, shown as 
the shaded black area in A for HAMD 1) for 1000 bootstrap replicates. Yellow whiskers on the 
bars denote 95% confidence intervals (corrected for multiple comparisons and data correlation 
using Bonferroni-Holm and (48), respectively). We see that HAMD measures 1, 3, 5, 6, 7, 12, 
and 13 have mean significant percentages well in excess of 1% more than expected under the 
null hypothesis. C) Histograms of z-values like that shown in A for all 16 HAMD clinical 
measures considered, ordered by effect size (Cohen’s d, given at right of each plot; magnitudes 
between 0.2 and 0.5 are considered small to medium effect sizes, between 0.5 and 0.8 are 
considered medium to large effect sizes). Red dotted lines denote the standard normal 
distribution. Asterisk (*) marks the distribution for HAMD1 shown in A. D) Bootstrapped PCCs 
for HAMD measure 1 for the 1000 most positive (left) and 1000 most negative (right) RSFC 
features (shaded regions shows 95% percentile-bootstrap confidence interval for the mean), 
ordered by mean correlation (thick blue line). Red arrow points to top 10 most positive-ranked 
RSFC features (shown in E); note both have confidence intervals excluding zero, indicating that 
while they cover an appreciable range, they are significantly different than zero across the 1000 
bootstrap replicates and thus somewhat stable across bootstrap replicates. The black arrow and 
dotted line show the upward shift resulting from the positive shift of the distribution shown by the 
black arrow in panel A. E) Violin plot (with superimposed boxplots showing 1st and 3rd quartiles 
as black bar and the median as white point) of the top ten positive ranked RSFCs by average 
PCC to HAMD measure 1 (corresponding to red arrow in D), with mean 95% confidence 
intervals  SD of [0.148   0.0152,  0.376  0.0119]. Note these look very similar, suggesting 
the rank order could easily change across replicates. 
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Figure 1: Robust correlations exist between Resting State Connectivity Features (RSFCs) 
and clinical measures (HAMD). 
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Figure 2: Stable train/test canonical correlations between RSFC features and clinical 
measures are improved by regularization 
 
A) Violin plots (with superimposed boxplots) of correlations between the first canonical variates 
of a standard Canonical Correlation Analysis (CCA) on training data (90% of subjects) and test 
data (10% of subjects) for a range of features (10 to 190 by increments of 10) selected using the 
correlation method proposed in (18), with this procedure bootstrapped 1000 times for each 
number of features to yield the plotted distributions. Feature selection and CCA fitting was done 
on training data, separately for each bootstrap replicate, and then estimated CCA coefficients 
applied to the selected features in the held-out validation set to obtain test correlations. Test 
correlations for CCA peak at 20 features selected. Black arrow: standard CCA cannot be fit to 
more correlations than there are observations (in this case 90% of n=220, or 198 subjects). B) 
Median test rates fit over a grid of regularization parameters  for each number of 
features selected. (Left) The grid corresponding to the best test correlations corresponding to 
using 160 RSFC features. The color of each square in the grid corresponds to the median test 
correlation (also printed in grey in the center of each square; colorbar at right gives hue values). 
(Right) Similar grids for other numbers of RSFC features (number of features selected shown 
above grid, test correlations shown in color only, not text). The best fit (160 features; shown on 
the left) is boxed in red box in the full set of fits on the right. Fitting more than 198 coefficients is 
possible. C) Violin plots (with superimposed boxplots) of correlations between the first canonical 
variates of the Regularized Canonical Correlation Analysis (RCCA) with the best regularization 
parameters ( , , ) on training data (90% of subjects) and test data 
(10% of subjects) for the various numbers of features selected using the correlation method 
proposed in (18) (resampled 1000 times), as in A. Fitting more than 198 coefficients is possible. 
D) Test rates for the first canonical variate (CV1) as a function of the number of features 
selected for CCA (grey) and RCCA (red); shaded region shows 1st through 3rd quartile for the 
replicate fits. E) Test correlations between canonical variates 1-15 for the best fit from A (CCA fit 
in grey; 20 features), and the best fit from C (RCCA fit in red; 160 features); shaded region 
shows 1st through 3rd quartile for the replicate fits. F) Ordered (by top rank) histogram of the top 
20 features chosen by the feature selection approach (from (18)) showing the percentage of 
times they were chosen across the 1000 subsampled replicate data sets. Just 3 features are 
selected more than 80% of the time. G) Ordered (by top rank) histogram of the top 160 features 
chosen by the feature selection approach showing the percentage of times they were chosen 
across 1000 subsampled replicates. 25 features appearing more than 80% of the time, dotted 
line denotes top 20 features; compare with F. H) Number of overlapping features in all pairwise 
combinations of 100 randomly chosen replicates as a function of number of features selected 
(dark blue line shows median and shaded region 1st through 3rd quartile across replicates). The 
median number of overlapping features selected increases approximately linearly with the total 
number of features selected.  

 
 
  

20 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/498964doi: bioRxiv preprint first posted online Dec. 17, 2018; 

https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_X%2C%20%5Clambda_Y%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_X%3D0.1%0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_Y%3D1%0
https://www.codecogs.com/eqnedit.php?latex=N_F%3D160%0
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
https://paperpile.com/c/Htx5tQ/tbQa
http://dx.doi.org/10.1101/498964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 2: Stable train/test canonical correlations between RSFC features and clinical 
measures are improved by regularization 
 

 
  

21 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/498964doi: bioRxiv preprint first posted online Dec. 17, 2018; 

http://dx.doi.org/10.1101/498964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Optogenetic fMRI for interrogating subtype-specific circuit mechanisms in 
depression 
 
A) Schematic illustration of a model for formulating hypotheses regarding subtype-specific 
mechanisms driving depressive symptoms and behaviors, and testing them in animal models 
using optogenetic fMRI. By first testing for robust and stable RSFC-clinical symptom correlations 
as in Fig. 1 and then using CCA and hierarchical clustering, relatively homogeneous subgroups 
of a heterogeneous MDD sample can be identified. These subgroups can be used to identify 
subtype-specific candidate circuits (see main text), and ofMRI can be used to test hypotheses 
about dysfunction in specific circuits driving specific behaviors, while also validating whether the 
RSFC effects evoked by the optogenetic manipulation resemble those observed in human 
subjects. B) In Ref. (18 ), hierarchical clustering on two canonical variates representing 
anhedonia- and anxiety-related RSFC revealed at least four clusters of patients in these two 
dimensions. The height of each linkage in the dendrogram represents the distance between the 
clusters joined by that link. The dashed line denotes 20 times the mean distance between pairs 
of subjects within a cluster. C) The four subtypes predicted significant group differences in 
anhedonia and anxiety (P < 0.005, Kruskal Wallis ANOVA) as indexed by item-level responses 
on the HAMD (item 7 and 11, respectively). Symptom severities are Z-scored with respect to the 
mean and standard deviation of all patients in the sample. Error bars = S.E.M. D) Heatmaps 
depicting subtype-specific patterns of altered functional connectivity for the top 50 
neuroanatomical ROIs with the most subtype-specific RSFC features by Kruskal Wallis ANOVA. 
The color scale represents Wilcoxon rank sum test scores for the difference between patients in 
each subtype and matched healthy controls. The green boxes denote RSFC features discussed 
in the main text. For additional details on panels B-D, see Ref. (18). E) In Ref. (36 ), a viral vector 
(AAV/CaMKIIa/SSFO) driving SSFO expression in projection neurons was injected into mPFC, 
and an optical fiber implanted over the mPFC target was used to activate (blue light) and 
inactivate (amber light) the opsin during alternating rsfMRI scanning periods (300 s per scan). 
SSFO activation induced a pattern of increased functional connectivity between an mPFC seed 
(denoted by the red dot) and a network of structures depicted here, where colors denote the Z 
statistic (and associated P value) for RSFC changes in the opsin-on vs. opsin-off conditions (N 
= 4 rats, 14 runs). NAc = nucleus accumbens; OFC = orbitofrontal cortex; vStr = ventral 
striatum. F) Subjects (N = 8 SSFO rats, blue; N = 10 control rats, black) were assessed on the 
sucrose preference test during a 2-day baseline period, followed by 6 days with SSFO 
activated, followed by a 4-day “washout” period with SSFO off. SSFO activation reduced 
sucrose preference behavior (F(11,176) = 2.56, P = 0.0051, two-way repeated measures 
ANOVA), compared to subjects expressing a YFP control construct. G) Individual differences in 
RSFC between the mPFC seed and the ventral striatum correlated with sucrose preference 
behavior (R2 = 0.56, P = 0.03). Panels B-D and E-G were adapted from Refs. (18) and (36), 
respectively. See corresponding references for additional details. 
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Supp. Table 1. Contrasting sample characteristics and preprocessing in Refs. (18) and (44), 
with potentially important differences highlighted in blue . S# = scanner 1, 2, 3, and 4. 
 

 Drysdale et al. ( 18) Dinga et al. ( 44) 

Sample size (N) 220 187 

Mean N/scanner 110 46.8 

Diagnostic status All subjects were psychiatric outpatients with 
major depressive disorder and a currently active 

major depressive episode meeting criteria for 
treatment resistance; moderate to severe total 
symptom scores; see text for other exclusion 

criteria; see Table 1 for psychiatric comorbidities  

Subjects were psychiatric outpatients who 
met DSM-IV criteria for one or more of the 

following: MDD, panic disorder, social 
phobia, or generalized anxiety disorder; no 
specified requirements for active symptom 

severity or other exclusion criteria 

  Medications Antidepressant (58.7%), mood stabilizer (17.2%), 
antipsychotic (16.8%), other meds including 

benzos, stimulants, etc. (44.1%) 

Not specified 

   

Data acquisition   

  # of scanners 2 4 

  Scanner type GE Signa 3T Philips Achieva 3T 

  TR (ms) 2000 2300  

  # of volumes S1: 180, S2: 300 S1, S2, S3: 200; S4: 210 

  FOV (mm) S1: 240, S2: 220 S1, S2, S3: 220; S4: 256 

  # of slices S1: 28, S2: 32 S1, S2: 35; S3: 39; S4: 37 

  XY res. (mm) S1: 3.75, S2: 3.44 S1, S2: 2.3; S3: 3.45; S4: 3.3 

  Z res. (mm) 5.0 S1, S2, S3: 3.0; S4: not specified 

   

Preprocessing Motion correction, spatial smoothing (4mm 
kernel), bandpass filtering (0.01–0.1 Hz)  

Motion correction, spatial smoothing (6mm 
kernel), high pass filtering (0.01 Hz) 

  Nuisance signals Regression on 12 motion parameters and white 
matter & CSF signals + ANATICOR correction 

Regression on white matter & CSF signals 

  Motion artifacts  Regression on 12 motion parameters + 
censoring high-motion volumes (FD>0.3 mm) 

ICA-AROMA 

  Scanner effects  Regression of RSFC features on dummy 
variables for scanner site 

No control specified 

  Data quality  Excluding ROIs with mean SNR<100 and 
subjects with SNR<100 in remaining ROIs 

No control specified 
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Supplementary Figure 1: Modest RSFC-clinical symptom correlations in a heterogeneous 
multi-site sample (44). A) Histogram of z-values for the 33,123 average Pearson Correlation 
Coefficients (PCCs) between Resting-State Functional Connectivity (RSFC) features and HAMD 
clinical measures (averaged over 1000 bootstrap replicates), compared to a standard  
Gaussian distribution (red line) and with a smoothed kernel density estimate plotted over the 
histogram (green line; see Methods), as in Fig. 1A. B) Bar plots of the mean percentage of 
z-values that exceeded that expected by chance (e.g., the percentage above 2.5%, shown as 
the shaded black area in A for HAMD 1) for 1000 bootstrap replicates. Yellow whiskers on the 
bars denote 95% confidence intervals (corrected for multiple comparisons and data correlation 
using Bonferroni-Holm and (48), respectively). Comparing with Fig. 1B, we note a severe 
disruption of the correlation pattern. C) Histograms of z-values like that shown in A for all 16 
HAMD clinical measures considered, ordered by effect size (Cohen’s d), given at right of each 
plot. Magnitudes between 0.2 and 0.5 are considered small to medium effect sizes, between 0.5 
and 0.8 are considered medium to large effect sizes. Here, none exceed 0.3 in magnitude). Red 
dotted lines denote the standard normal distribution. Asterisk (*) marks the distribution for 
HAMD1 shown in A. Again, compared with Fig 1C, we see a marked decrease in effected sizes. 
D) Bootstrapped PCCs for HAMD measure 1 for the most positive 1000 (left) and 1000 most 
negative (right) RSFC features (shaded regions shows 95% percentile-bootstrap confidence 
interval for the mean), ordered by mean correlation (thick central blue line). Red arrow points to 
top 10 most positive-ranked RSFC features (shown in E) and the black arrow to where we would 
expect an upwardly significant difference as in Fig. 1D, but now see none. E) Violin plot (with 
superimposed boxplots showing 1st and 3rd quartiles as black bar and the median as white 
point) of the top ten positive ranked RSFCs by average PCC to HAMD measure 1 
(corresponding to red arrow in D), with mean 95% confidence intervals  SD of [0.132  
0.0197, 0.391  0.0145]. Coefficient variability appears similar to that in Fig. 1. 
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