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Neural Classifiers with Limited Connectivity and Recurrent
Readouts
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For many neural network models in which neurons are trained to classify inputs like perceptrons, the number of inputs that can be
classified is limited by the connectivity of each neuron, even when the total number of neurons is very large. This poses the problem of how
the biological brain can take advantage of its huge number of neurons given that the connectivity is sparse. One solution is to combine
multiple perceptrons together, as in committee machines. The number of classifiable random patterns would then grow linearly with the
number of perceptrons, even when each perceptron has limited connectivity. However, the problem is moved to the downstream readout
neurons, which would need a number of connections as large as the number of perceptrons. Here we propose a different approach in
which the readout is implemented by connecting multiple perceptrons in a recurrent attractor neural network. We prove analytically that
the number of classifiable random patterns can grow unboundedly with the number of perceptrons, even when the connectivity of each
perceptron remains finite. Most importantly, both the recurrent connectivity and the connectivity of downstream readouts also remain
finite. Our study shows that feedforward neural classifiers with numerous long-range afferent connections can be replaced by recurrent
networks with sparse long-range connectivity without sacrificing the classification performance. Our strategy could be used to design
more general scalable network architectures with limited connectivity, which resemble more closely the brain neural circuits that are
dominated by recurrent connectivity.
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The mammalian brain has a huge number of neurons, but the connectivity is rather sparse. This observation seems to contrast with the
theoretical studies showing that for many neural network models the performance scales with the number of connections per neuron and
not with the total number of neurons. To solve this dilemma, we propose a model in which a recurrent network reads out multiple neural
classifiers. Its performance scales with the total number of neurons even when each neuron of the network has limited connectivity. Our
study reveals an important role of recurrent connections in neural systems like the hippocampus, in which the computational limitations
due to sparse long-range feedforward connectivity might be compensated by local recurrent connections. J

ignificance Statement

Introduction

The performance of a neural circuit is often evaluated by deter-
mining the number of input—output functions that can be im-
plemented or, equivalently, by the number of inputs that can be
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classified correctly by the neural circuit. Theoretical studies on
perceptrons (Rosenblatt, 1957) and recurrent neural circuits
(Amit, 1992) have shown that typically the performance of a
neural circuit scales with the number of synaptic connections that
individual neurons receive, and not with the total number of
synapses or with the total number of neurons (Roudi and
Latham, 2007). This is clearly a problem in the biological brain in
which the connectivity is sparse, especially when long-range con-
nections are considered (Bullmore and Sporns, 2012). One strik-
ing example is the mammalian hippocampus (Drew et al., 2013).
A typical pyramidal neuron in rodent CA3 receives only 50 syn-
apses from the upstream area (Amaral et al., 1990), the dentate
gyrus (DG), which contains around 10° neurons. Not only is the
connectivity sparse, but also the neural activity (Jung and Mc-
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Naughton, 1993; Chawla et al., 2005), which seems paradoxical
because a very limited connectivity could be compensated by
denser neural activity.

One possible way to overcome the limitations of sparse con-
nectivity is to adopt the strategy of “committee machines”
(Nilsson, 1965), which are basically populations of classifiers.
Each classifier is weak, as a perceptron with limited connectivity,
but the output is generated by reading out a large number of weak
classifiers and by combining them using a majority vote or some
more sophisticated strategies. The final classification perfor-
mance is significantly better than the one of each individual clas-
sifier, provided that the errors of the individual classifiers are
sufficiently independent. The term committee machines goes
back to the 1960s (Nilsson, 1965), but they have also been a focus
of more recent studies (Parmanto et al., 1996; Bishop, 2007);
basically, they are all based on strategies that in machine learning
are known as ensemble methods or hypothesis boosting (Kearns
M, unpublished observations; Zhou, 2012), strategies that are of-
ten adopted also in statistics (Rao and Subrahmaniam, 1971; Efron
and Morris, 1973; Rubin and Weisberg, 1975; Green and Strawder-
man, 1991). Some of the examples include stacking (Wolpert, 1992;
Breiman, 1996b), bagging (Breiman, 1996a), arcing (L. Breiman,
unpublished observations), and AdaBoost (Adaptive Boosting;
Freund et al., 1996; Freund and Schapire, 1997).

One class of committee machines is implemented using pop-
ulations of neurons, each essentially behaving as a neural classi-
fier, like a perceptron (Mitchison and Durbin, 1989; Monasson
and Zecchina, 1995; Kwon and Oh, 1997; Urbanczik, 1997). Clas-
sifiers with limited connectivity are weak classifiers. It is possible

Recurrent readout

N— oo

C,Cr,Cr =0(1)

Architectures of the three network classifiers considered in the study and their scaling properties. a, Fully connected
readout, considered in the subsection Fully connected readout. The capacity of this classifier grows linearly with the number of
input units N; however, the number of afferent connections (; grows as quickly as N. b, Committee machine of partially connected
perceptrons (section Committee machine). The collective decision is made using a majority vote. Even though the number of
connections per perceptron can be kept constant as the number of input neurons Nincreases, the number of readouts M has to grow
with N to match the performance scaling of a. The majority vote strategy requires another downstream readout, whose connec-
tivity grows with M and hence with N. ¢, The recurrent readout that we propose in section Committee machine with recurrent
connections. As N —> oo, the number of feedforward connections per perceptron C,, the number of recurrent connections per
perceptron g, as well as the number of connections of the downstream readout stay constant when N increases.
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to compute the classification capacity
when each neural classifier has sparse con-
nectivity (Kwon and Oh, 1997). The con-
nections between the N input neurons
and the M < N neural classifiers are as-
sumed to be nonoverlapping (N/M con-
nections per “perceptron”) and plastic.
The final response of the committee ma-
. - chine is obtained by majority vote of the
e C M neural classifiers, which can be easily
; & implemented by introducing a readout
neuron that is connected to all the neural
classifiers with equal weights. The maxi-
mum number of correctly classified in-
o puts is proportional to N/logM, whereas
each neural classifier would not go be-
yond N/M inputs. This is a favorable scal-
ing, and it is similar to the one obtained in
other committee machines. However, one
has to keep in mind that in these implemen-
tations the neural classifiers have sparse
connectivity, but the readout neuron per-
forming the majority vote should have a
number of connections that scale with N.
Here we propose a network architec-
ture that overcomes the restrictions im-
posed by the limited connectivity, as in the
committee machines, but replaces the
readout neuron that has extensive con-
nectivity with a more biologically plausi-
ble recurrent network in which all of the
neurons have a number of connections
that remains finite when the number of
classifiable patterns grows unboundedly.
More specifically, we show that the number of random inputs
that can be correctly classified scales linearly with the number
of input neurons N, even when the number of connections per
neural classifier C,. does not increase with N. The number of
neural classifiers M is assumed to be proportional to N.
Interestingly, under certain conditions the recurrent scheme
has larger classification capacity than the majority vote scheme.
This happens for sparse input representations, the regime that is
relevant for the mammalian hippocampus and that we investi-
gate in detail.

X N

Materials and Methods

The following sections describe the models in detail and cover all the
analytical calculations. They can be skipped if one is not interested in the
technical details because in the Results we reintroduce all the important
concepts, although in a less detailed format.

Fully connected readout

In this section, we derive the classification capacity of a single fully con-
nected linear threshold readout, or perceptron (Fig. 1a), achieved with a
simple learning rule that we use throughout this work. We assume that
the input patterns and labels are random and uncorrelated, meaning that
the activity of each input unit as well as the label for each pattern is chosen
independently, which makes calculations analytically tractable. We use a
simple Hebbian-like learning rule, which is not optimal and thus leads to
a lower capacity than the 2N result in the study by Cover (1965). How-
ever, the scaling of the maximal number of learned input patterns P,
with the number of input units N is still linear, as is shown below.
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Input statistics

We assume that pairs (é#, n*) of a pattern £ and alabel n* are drawn from
arandom ensemble of P pairs ( pattern, label). The pattern components &
on all N input units and labels n** are random independent variables. We
assume that each component §* (i=1...Nistheunitindexandpu =1...
P is the pattern index) is activated to 1 with probability f, called “coding
level,” and otherwise is 0, and that the label n** takes one of the following two
values: n* = +1 with probability y, called the “output sparseness,” and
n* = —1, otherwise:

w {1, with probability f

& =10, with probability 1-f

no— 1
= -1,

We have chosen different representations for the input and output variables
for mathematical convenience. One can go from {1, 0} representation to {1,
—1} and vice versa by changing the threshold of readout neurons.

with probability y

with probability 1-y (3.1)

Learning rule and the synaptic current

The linear threshold readout, or perceptron, classifies its inputs based on
the sign of the weighted sum of the input components. This sum is
sometimes called the “synaptic current,” as it is viewed as modeling the
synaptic current into a biological neuron, as follows:

N
h= Ew,f,-.
i1

We say that the network has learned the association between P input
patterns &, and P labels n* if for any pattern p, as follows:

N

sign(h* — 6) = sign ZW,@“ -0)=n"

i=1

where 6 is the threshold, which we further assume to be equal to zero.
Training the network means finding the set of weights w; that satisfies
the above expression for all P patterns.
The Hebbian-like learning rule, which we use to train the weights {w;}
of the classifier is as follows:

w,-—$ =N +1-2y) -0 - -2y

pn=1
(3.2)
In the case when patterns are equally likely to belong to either class

1
(y = 5), the learning rule simplifies to the following:

1 P
w, = ﬁé(é‘”—f)n”-

I

Here and in all that follows, we set the threshold 0 to zero.
After training, the synaptic current in response to a test pattern £” is as follows:

N N 1 P
W= Dkl = 2| 2 - N+ 1 - 2)

i=1 i=1 p=1

(1 =HA =2y & (3.3)

If& together with its label 11 was part of the training set, we can split the
sum over patterns into the contribution from the presented pattern &”
and the contribution from other learned patterns as follows:
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1 N N P
= (= 2+ X X =N+ 1= 2p) |,

(3.4)

Here we used (§)* = & because & takes value 0 or 1.
We denote the number of active input units for the pattern v by n”, as
follows:

(3.5)

The variable n"” is drawn from a binomial distribution of N trials with
probability f, B(N, f), for each realization of the random patterns. Its
expected value is determined by the number of input units N and the
coding level f, as follows:

(n") = Nf.

(Here and throughout this text, the angular brackets denote the mean
over the realizations of the input patterns.)

We replace the sum in the square brackets of Equation 3.4 with
2/Pf(1 — f)y(1 — y)z{, where we have introduced a noise random
variable, z;, with zero mean and unit variance. The coefficient is con-
cluded from the fact that each individual term (&* — f)
(m* + 1 — 2y) has variance, as follows:

=12+ 0 =)y =2y + (1 = y)4y’]
=4f(1 — f)y(1 — ),

and the fact that the £ variables are mutually independent. By the cen-
tral limit theorem, the noise variables z; can be approximated as Gauss-
ian in the limit P — o with finite f. The sum > | z/¢" is also Gaussian,
with the variance equal to n”, >N_ | z/¢} = \/? z", with z" being a Gauss-
ian random variable with zero mean and unit variance.

In terms of z” and n”, the synaptic current is written as follows:

(3.6)

(3.7)

1
W= B e 2 == G8)

If a pattern belongs to either class with equal probability (y = 1/2), this
expression simplifies to the following:

1
B = (1= Pt + (L= ez (39)
\/ﬁ

Note that the first term is the one that reflects the correct classification of
the input pattern, and the second one represents the noise caused by the
interference from other patterns that were learned by the perceptron.
The important parameter is the ratio of the two, which is proportional to

v

n

P

Integrating over the distribution of z” in the appropriate limits gives
the probability of h” to have the same sign as 1". Requiring this proba-
bility to exceed 1 — €, where € is the tolerated error rate, leads to the
capacity of a fully connected readout, as follows:

1-f
P= 2[erf™!(1 — 25)]2N'

The capacity is extensive in (grows linearly with) the number of input
neurons; however, this architecture requires the number of converging
connections that also grows linearly with N (see Fig. 3).

Committee machine
We now turn to deriving the classification capacity of a committee ma-
chine, the network shown on the Figure 1b, where each of M perceptrons
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receives feedforward connections from Cy input units. The connectivity
C;- does not scale when the number of input units N increases.

The final decision is the majority vote of the classifiers. In other words,
if classification is accurate:

M
1
sign Mzsign wag‘* —0||=n"
k=1

i€k

Here I € I, stands for all the input units (there are Cp, of them) that are
connected to the readout k, and w¥ is the strength of the connection from
the input unit i to the readout k (for the learning rule, we consider that w®
does not depend on k). -

The synaptic current into the readout unit k when pattern &” is pre-
sented is determined by the following:

1
hi =7 = N + f = fniz.
v

(3.10)
The number of active inputs connected to the perceptron k, 1} is drawn
from the binomial distribution B(C,f) of now Cj, trials with the success
rate f; and its expectation value is as follows:

(nf) = Cf. (3.11)
Since the number of connections per readout Cy. stays constant as the
number of patterns P and the size of the network (N and M) grow, the
probability of a single perceptron to classify a pattern correctly ap-
proaches the chance level. Indeed, in contrast to the fully connected
perceptron, the number of active inputs 7} per readout neuron does not
change with the size of the network (Eq. 3.11). Hence, the first term of the
expression (Eq. 3.10) decreases in the absolute value as the number of
patterns P grows, while the typical value of the second term stays the
same. However, there is always a slight tendency toward the correct an-
swer ((hym”) > 0), which can be used by having a growing number of
sparsely connected classifiers that take a collective decision by majority
vote. This scheme is known by the name of committee machine and has
been shown to largely exceed the performance of a single classifier.

It is important to note that in order for the capacity of a committee
machine to keep increasing as new classifiers (committee members) are
added, the responses of different classifiers should stay sufficiently inde-
pendent from each other. In the case of limited connectivity, which we
consider here, the correlations automatically become smaller and smaller
as we increase the number of input units. This happens because the
probability of a typical pair of readout neurons to have a common input
unit, and thus correlated responses, decreases. In order for the correla-
tions not to be a limiting factor of the classification capacity, we need to
increase the number of input units linearly with the number of percep-
trons. If one introduces some other mechanism of reducing the correla-
tions between the responses of the classifiers with common input units
(e.g., making different perceptrons learn different sets of patterns), a
sublinear scaling of the number of input units N with the number of
perceptrons M might be sufficient.

Nonoverlapping case
The majority vote of M linear threshold classifiers is given by the average
vote, as follows:

M
1
r’ = MEr}:, ry = sign(hy), (3.12)
k=1

where h is given in Equation 3.10. Positive r’n” means that the pattern v
is classified correctly.

The expectation value of r” follows from Equation 3.10 after integrat-
ing over the noise variable z;, which is approximated to be normally
distributed. We make an assumption Pf >> ny, which is justified for a
large number of patterns and allows us to use the approximation of the
error function for small arguments to get the following:
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P ,,_< [\/<1—f)nznv> (1 — f)< -
= 8180t ) njyzy = |\ eIt \/Z?f _\/ wPf RO

(3.13)

The expectation value (\/;Z) is computed over the binomial distribution
B(Cpf) as follows:

Cr

(Jnpy = 2(5) 1= .

n=0

(3.14)

In the dense regime Cgf => 1, it can be approximated by the following:

«/@ = \e/af’

and, in the extremely sparse case, when Cif >> 1 and only n; = {0, 1}
are encountered substantially often, by the following:

(3.15)

(i) = G, (3.16)
To proceed with deriving the classification capacity, let us start with
independent classifiers first. The independence of the responses can be
achieved either by forcing the connections to be nonoverlapping or by
assuming an additional mechanism that, for example, causes different
classifiers to update their incoming connections in response to different
subsets of the input patterns.

In this case, r” can be thought of as drawn from a Gaussian distri-
bution with the mean given by Equation 3.13 and the variance, as
follows:

cov(r’, ") = ]\i/[(l +0(P). (3.17)

The Gaussian assumption is justified by the law of large numbers.

From here on we ignore the contributions of the subleading order,
O(P™") in this case.

The probability p, ..., to classify a pattern correctly (r’'n” > 0) can
then be easily computed.

Fixing the tolerated error rate € and requiring p_,, .. > 1 — €leads to
the expression for the maximal number of input patterns that can be
classified with the accuracy 1 — ¢, as follows:

G
max f

1= (3.18)

P m(erf '(1 — 2€))*

Here (\/;) denotes the average over binomial distribution, 7 ~ B(Cpf).

This result only holds for the case of nonoverlapping connections or in
the presence of a decorrelation mechanism. In the following section, we
generalize it to random connectivity.

Correction to classification capacity due to overlap in

the connections

To derive an analogous expression for the overlapping case without a

decorrelation mechanism, we need to compute the variance, as follows:
cov(r’, ') = {(r" — (")), (3.19)

of the average vote 1", defined by Equation 3.12, taking into account the

correlations of individual votes ry.

We start by splitting the covariance into diagonal and nondiagonal
contributions, as follows:
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| Mo
cov(r’, ') = WEECOV(YZ, ) =

k=1I=1
M

M
1 1
= Wz cov(ry, r0) + Wz

M—>
(1 = 8y)cov(rf, 17) = .

M=

1

1

= M + cov(rys 17)isr

(3.20)
We assume that M and N scale linearly with P and M, N, P — . The
leading terms are thus of the order MONTDP and we ignore all the
subleading contributions.

When the classifiers k and I share input units, the correlation between
their responses is positive and is closely related to the correlation of the
input currents hy and h; (see Eq. 3.10).

Let 1y; be the number of input units that are connected to both the classi-
fier k and the classifier / and are active in the pattern &”. For a large number of
input units N and finite connectivity Cp, we can assume that 7, can be either
0 or 1, but not more. Including the terms corresponding to r; > 1 would
lead to corrections that scale as 1/N and become negligible in the limit for
large N. The probability of 1, being 1 is given by the following:

Cr
Prob(n}, = 1) :fﬁ

The number of active units that are connected to only one of the two
classifiers are denoted by 7} and 7}, respectively. In the current approx-
imation, both of them can be assumed to be distributed according to a
binomial distribution B(Cpf).

Then, the currents can be written as follows (see Eq. 3.10):

1
hi =$(1 = H@g+ ng)m + L = Hngzy + (1= fngz

>

1
=g DG midm L= fndil + f = e
(3.21)
where z}, z;' and z{I are all independent Gaussian variables with zero

mean and unit variance.
To compute the covariance:

cov(ry, r7) = (sign(y), sign(hy)) — (sign(hy))(sign(hy)),
(3.22)

we start by integrating over the variables z; and z; to get the

following:
. W L % ”7;:1
<Slgn(hk)>zk = erf( \E ﬁk)

o (3.23)
ion(h)). = erf | 2L 2K
(sign(h))); erf(\/E ﬁ;,>

Then, Equation 3.22 can be evaluated using the following table integral

(Geller and Ng, 1971, their Eq. 18, p. 158):

* A 1 ab
erf(az)erf(bz)e” ““dz = Ttan’l—D = Ja’ + b’ +
, o\ cD

(3.24)

In the leading order, we get the following:
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1
COV(h’:, T’;/)k# = COV(Sign(hk)> Sign(hl))kﬂ = N‘PCF,f

2fC§< . 1 >
. = — t
LA Ja+ D+ 1) — 1

In the dense regime (Cyf => 1), the expression for ¢, ;in Equation 3.25
can be approximated as follows:

(3.25)

i iIEB(CRf )

2Cr
Penf = T (3.26)
which leads to the following:
v v 2CI'
cov(rg, 1))ker = N (3.27)
while in the sparse approximation (Cpf << 1):
¢c. s = fCk- (3.28)
and
fc
cov(r, )iz =WF (3.29)

Plugging this result into Equation 3.20, we get for the variance of the
majority vote r” in the overlapping case, as follows:

1
cov(r'r*) =1+ @
which together with Equation 3.13 leads to the maximal number of input
patterns that the committee machine can learn to classify with the accu-
racy 1 — ¢, as follows:

_ <\/77k>2 1-f M
Prnax = f lerff'(1 —2¢)Pm M (3.30)
+NPok

Here ¢, sis given in Equation 3.25 and is approximated by Equation 3.26
or 3.28.

If both the number of input units N and the number of classifiers M
increase in proportion to each other, the capacity P increases linearly
with N (or M).

In the case of dense representations Cpf > 1, the last expression sim-
plifies to the following:

Poux = it M 3.31
max T lerf (1 — 2€) Pr - M2Cy (3.31)
N w
and in the ultrasparse limit Cpf << 1 to the following:
1 MC;,
Poax = z (3.32)

max - Terf Y1 — 2e) Pmr M
Lerf™!( )] 1+NC§f

Committee machine with recurrent connections

The majority rule scenario already overcomes the limitations of the
connectivity of a single perceptron, but this is not the final answer to
constructing a classifier with limited connectivity. The reason is that
we still need to implement the majority rule and bring the classifica-
tion signal to the level of a single unit. The naive way to do it would
require another final readout that would have to sample the entire
population of M intermediate layer perceptrons. Since M has to scale
linearly with the number of learned patterns P, the connectivity of the
final readout would also have to scale linearly with P (see Eq. 3.30)
and would exceed any predetermined limit for a sufficiently large
number of learned patterns.
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To implement the majority vote of the intermediate perceptrons while
keeping the connectivity of any unit in the network limited, we introduce
the recurrent connectivity in the layer of perceptrons. Our goal is to have
two attractor states of the intermediate layer dynamics that correspond to the
two classes. The feedforward input through the connections {w}}, trained
in the same way as before, will be slightly biased in the positive direction
for one class of the input patterns and in the negative for the other. This
slight bias determines which attractor state the network will choose. It is
essential that the attractors are far away from each other and do not
become closer when the number of learned patterns P increases. This
implies that the final readout will be able to discriminate between these
states, and thus indicates the class of the presented pattern, even if its
connectivity does not scale with P. It turns out that for binary classifica-
tion it is enough to have random recurrent connectivity with sufficiently
large but not increasing with P number of connections per unit. The
weights of these recurrent connections do not have to be tuned (no
learning required for recurrent connections).

We compute the probability of the network of recurrently connected
readouts to go to the correct attractor (the one assigned to the class of the
input pattern presented) as a function of the number of input units N, the
number of perceptrons M, and various parameters of the recurrently
connected network of perceptrons.

Network topology

The recurrent readout network shown on the right of Figure 1¢ consists
of the input layer (green), the intermediate layer of perceptrons (orange),
and the final readout unit ( purple).

Asbefore, the input layer of N neurons is presented with a random and
uncorrelated pattern (&)),-, ..y fromaset of P patterns (&) u=1.. pthat
the network has learned to classify.

The layer of perceptrons we now call the intermediate layer. It con-
sists of M linear threshold readouts, each of which is connected to a
randomly chosen Cj of N input units. Hence, the feedforward con-
nectivity Cpis the number of feedforward inputs that each perceptron
receives. The Cp is an important parameter in the problem as it de-
termines the classification capacity of a perceptron considered in
isolation. The intermediate layer is recurrently connected. For the
case of binary classification, the probability that two units are con-
nected is the same for each pair. The recurrent connections are not
plastic and can be chosen to be all of equal strength a.

The recurrent connectivity matrix J;;, k,/ € [1... M] is constructed
randomly, as follows:

R

C
a  with probability i

Ju = ,
0  with probabili - X
with probability 1 i

(3.33)

with a constraint of being symmetric, Jy = J; forallk, lin[1...M].
Here, Cy is the expected number of recurrent connections per unit, as
follows:

M
ZIH = aCy,

=1

Vkell...M], (3.34)

where the average is taken over different realizations of the connectivity
matrix.

The final layer consists of a single readout unit that is connected to a
randomly chosen subset of C perceptrons in the intermediate layer, with
the strength of all connections taken to be equal.

We will keep the connectivity parameters Cp, Cy, and C and coding
level f at fixed constant values, while sending the number of input units
N, the number of intermediate perceptrons M, and the number of pat-
terns P to infinity, as follows:

P, M, N — oo f, Cp, Cy, C  are constant. (3.35)

We want to recover the linear scaling of the maximal number of patterns
P« that the network can learn to classify with the number of input units
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N, which is known to hold for the fully connected perceptron (Cover,
1965).

Discrete time dynamic model
We model the recurrent dynamics as a probabilistic dynamic process in
discrete time ¢ with the probabilistic transition rule from a network state
at time ¢ to a network state at time ¢ + 1. Let 5,(¢) € [1 ... M] be the
dynamic variable describing the state of unit k at time ¢ in a recurrent
network.

Let /iy be the total current into the readout unit k, as follows:

M
R0 = X Just () + kY,

1=1

(3.36)

where the first term corresponds to the recurrent contribution, and the
second term represents the feedforward current from the input layer (Eq.
3.10), which is constant in time.

The probabilistic transition rule from the state at time ¢ to the state at
time t + 1 is as follows:

1, with probability W

s(t+1) = — 2Bk

e

—1, with ility —————
with probability TN

(3.37)

Here B is the inverse temperature parameter for the statistical model of
the recurrent dynamics, and it characterizes the level of noise.

We approximate this probabilistic recurrent dynamics with a mean
field method.

Mean field analysis of the recurrent dynamics

To compute the capacity of such a recurrent classifier, we analyze the recur-
rent dynamics in the mean field approximation. The activities of the recur-
rently connected units are represented by the variables s, = {+1, —1} with
k=1...M. The average activation of the recurrently connected intermedi-
ate layer in response to the pattern v is defined as follows:

1 M
" = 200

where () is the average over the recurrent noise. The mean field equation
for the average activation reads as follows:

M

m’ = %Etanh(B(CRamV + hy)).

k=1

(3.38)

This equation can be obtained by averaging s, over the distribution (Eq.
3.37) and by using the self-consistent expression for the recurrent part of
the total synaptic current /1;(£). It can also be derived more rigorously by
following the standard calculation for the overlaps in the Hopfield net-
work (Amit, 1992). The stored patterns of the Hopfield network are
replaced by the eigenvectors of the connectivity matrix J, as every sym-
metric matrix can be expressed as J=>1 e/, where ¢; represents the
(non-normalized) eigenvectors. We are interested in the overlap with the
eigenvector e; = 1forall kin[1...M]. That this is the eigenvector of
the chosen connectivity matrix J can be seen from Equation 3.34. The
external current /i can be easily included in the derivation. The average
activation m"” is close to zero if the amount of active and inactive units is
approximately the same. If the majority of the units is in the active state,
m” will be close to 1, and if the majority is inactive, m" will be close to —1.

Here Cy is the average number of connections per unit, « is the
strength of recurrent synapses (we assume they are all excitatory and of
equal strength), B is the inverse temperature parameter, and hy is the
feedforward input current given by Equation 3.10.
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One fixed point,

a positive input pattern
n" =+1
r m
Three fixed points,
¢ positive input pattern
Figure 2.
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One fixed point,
negative input pattern

Three fixed points,
negative input pattern

Graphical representation of the mean field equation (Eq. 3.38). The left-hand side of the equation is represented by the line, and the right-hand side, by the sigmoidal curve. The slope

of the sigmoidal curve is determined by the amount of noise relative to the strength of the recurrent connections (3C4cx), and the shift relative to m = 0 is based on the expected value of the
feedforward input /1;.. @, When the input pattern belongs to the positive class and the noise s high, there s only one solution to the equation, which corresponds to the small but positive value m =
m.. This solution is stable. b, For the “negative” input pattern, the solution is negative, m, < 0.¢, d, In the case of low noise, there are three solutions to the mean field equation, with two extreme
solutions m, and —m; being stable, and the middle one m,, which is close to zero, being unstable. For the case of the positive input pattern, m, << 0, and for the case of negative pattern m, > 0.

We proceed by analyzing the above equation graphically. The plot of
the right-hand side is a sigmoid curve, and the left-hand side is a line at
45°. The intersections of these two lines determine the solutions to the
equation. There are two possible situations that correspond to two dif-
ferent scenarios of the network dynamics.

The first scenario, shown in Figure 2, a and b, is characterized by
having only one point of intersection of the line and the sigmoid. In this
case, there is only one solution to the mean field equation (Eq. 3.38) and
only one stable state of the recurrent network. The right-hand side of the
equation is almost but not quite an odd function of its argument m", so
the sigmoidal curve representing it is slightly shifted to the left if

1 1
i >M_tanh(Bh}) > 0 and to the right if]T/I >M_ tanh(Bh)) < 0.1f

the curve is shifted to the left, the single point of its intersection with the
strait line passing thorough the origin will be in the right half-plane. So,
for the positive input pattern (n” = +1 and hy is more likely to be
positive), the mean activity of the intermediate layer in the stable state m"”
will usually be positive, while for the negative input patterns it will be
negative. Even though there is a relation between the sign of the mean
activity of the intermediate layer in the stable state and the class of the
input pattern, this is not helpful for our purposes. The reason is that we
encounter exactly the same problem as for the case of no recurrent con-
nections: the absolute value of the average activity m” will decrease with

the number of learned patterns P, which means that the number of active
and inactive units in the intermediate layer will become more and
more similar. Consequently, to sample this small imbalance we would
require larger and larger connectivity of the final readout. In short, the
regime with one stable solution (Fig. 2a,b) is not much different from the
case of no recurrent connections. Not surprisingly, this regime corre-
sponds to relatively weak recurrent connections.

It is the other situation, shown in Figure 2, ¢ and d, that is actually of
interest. There are three points of intersection of the sigmoid curve of the
right-hand side of Equation 3.38 and the straight line of the left-hand
side. The stable states of the network correspond to the rightmost and the
leftmost solutions, which are both characterized by a large imbalance
between active and inactive units (|m*] ~1). Most importantly, these
solutions are virtually insensitive to the distribution of hy, and hence to
the number of learned patterns P. So, if we postulate that the right solu-
tion corresponds to the positive input patterns and the left solution to the
negative ones, it will be easy for a downstream readout with connectivity
that does not increase with P to distinguish between them.

The middle intersection point m,, corresponds to the unstable solu-
tion. When the network is initialized at the state {s} with m, = > 0 on
the left of the unstable solution m, < m,, the recurrent dynamics will
most likely evolve to the left stable state; and if initialized at m, > m,;
it will evolve to the right stable state. As shown in Figure 2, ¢ and d, the
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point of unstable equilibrium will be to the left of the origin for a positive
input pattern, and to the right of the origin otherwise (due to the differ-
ence in the mean of the distributions of /). Hence, initiating the network
at m, = 0 will serve the purpose of biasing the evolution of the network
toward the stable state that corresponds to the class of the input pattern.
If the number of learned patterns P is large, the point of unstable equi-

1
librium is very close to zero lm,| ~ N this is the manifestation of the

N
same problem as before, namely the decrease of the signal-to-noise ratio
with the increasing number of learned patterns. Thus, the noise in the

1
initial state of the network my, should also decrease as NS This is

achieved if all of the units in the intermediate layer are initialized at
s = =1 with equal probabilities independent from each other, and the
number of units M is linear in P (the same scaling as for the committee
machine discussed earlier). We use this initialization process to derive
the classification capacity and to run the simulations. In the section The
initial condition of the recurrent network, we suggest a biologically plau-
sible way to initialize the network at the desired point.

To summarize, the information about the class of the input pattern is
contained in the feedforward input to the intermediate recurrently con-
nected layer. In the case of a single stable state (Fig. 2a,b), although the
average activity of the network reflects this information, the signal is very
small and a fully connected downstream readout is required. In the case
of two stable states (Fig. 2¢,d), this small signal biases the network to
choose the one corresponding to the class of the input pattern, and by
doing so, the network amplifies the feedforward signal, making it easy to
read out by a sparsely connected downstream unit.

Number of classifiable inputs
As discussed in the previous section, the requirement for the correct
classification of an input pattern by means of a recurrently connected
committee machine is that the average activity of the network at the
initial moment i is on the correct side of the point of unstable equilib-
rium m;, namely the following:
(my — m)m" >0, (3.39)

where 1" is the desired output (n" = { = 1}).

In what follows we drop the pattern index v.

The statistics of m,, over random initializations of the network follows
from its definition, as follows:

M
— 0
my = 25k>
k=1

where each unit is initialized at s, = +1 or s, = —1 with equal probabil-
ity, as follows:

(me) =0

cov(imy, my) = {(my — (my))*) = M
Since M is a large number, we approximate the distribution of m, by a
Gaussian distribution with these mean and variance values.

The position of the unstable equilibrium point m1,, corresponding to
one of the three solutions (the one that is close to zero) of the mean field
equation (Eq. 3.38), cannot be computed analytically in the general case.
However, there are parameter regimes in which we can compute the
approximate first- and second-order statistics of 1, over random real-
izations of the input patterns. These parameter regimes and correspond-
ing approximations are discussed in the following section. Once the
mean p,, value, which depends on the number of learned patterns P, and
the variance o2 of m,, are known, the requirement to classify P input
patterns with accuracy 1 — € can be written (assuming the distribution of
m,, to be also Gaussian), as follows:
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11 — (P
L wu(P)m

2 2 1 ’

2yt aﬁ)
The expected number P of correctly classified patterns can be found by
inverting the above equation.

In the following sections, we consider different parameter regimes that
lead to different approximations for u, and ..

l1—€= (3.40)

The uniform regime

In the current study, among other issues we are interested in the conse-
quences of the sparsity of input representations. Since we consider the
feedforward connectivity C; to be a constant number and not to scale
with the size of the network, for sparse representations there will be a
substantial number of perceptrons that receive zero feedforward input.
Unless the dynamic noise is very high, these units should be considered
separately, and in the mean field approximation an additional order
parameter should be introduced to describe their average activity [in the
derivation of the mean field equation, the overlap with the uniform
eigenvector is never the only one with a macroscopic value]. We call these
units “free units.”

The uniform regime is the parameter regime under which it is not
necessary to analyze the free units separately, and Equation 3.38 is valid
without modifications. Obviously, when the input representations are
dense, Cif => 1, the network of the intermediate layer is in the uniform
regime, since there are not enough free units to make a difference. How-
ever, it is valid to assume the uniform regime even for sparse representa-
tions, when the dynamic noise is sufficiently large. To be more precise,
the dynamic noise should be large when compared with the typical feed-
forward input (see the next section).

The conditions defining the uniform regime are as follows:

Sparse input representations and high noise Cif = 1 B7! > \/]?
or

Dense input representations  Cpf => 1

Uniform regime, high noise

One approximation we can make to find the unstable solution m,, of the
mean field equation (Eq. 3.38) is the high-noise approximation, which is
defined by the following requirement:

Bhy << 1 for most readouts k and patterns v. ~ (3.41)

It follows from Equation 3.10 for the feedforward current that this re-
quirement is met if:

BNAL =) <1

()20 (3.42)

where (11),2, stands for the mean of the number of active inputs per
readout n over the binomial distribution n ~ B(Cpf), with the instances
of n = 0 excluded. For large values of Cp, it can be approximated as

C
(Mo = 1_7%, and the above condition becomes the following:

1 Cf’(1 = f)
N e

The condition for having three solutions of Equation 3.38 rather than
one (Fig. 2) is as follows:

(3.43)

Cra > B4

Since we are looking for the solution, which is close to zero and Equation
3.42 is satisfied for most of the terms, Equation 3.38 can be approximated
by replacing the hyperbolic tangent by its argument, as follows:

M
1
my; = 212, B(Cram + ),
k=1

(note that this approximation is also valid for the terms with h; = 0).
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Solving this equation leads to the mean w,, and the standard deviation
o, ofm,

1
Bue= " Coa—p M
and
- L, G 3.44
Uu_CRa_Bfl M N ( . )

The mean p;, and the standard deviation o, of the feedforward current h;,
are computed from Equation 3.10, as follows:

1
W = ﬁﬂl —f)Cm .
oy = \/CFfZ(l *f)

The Cp/N term in Equation 3.44 comes from the correlations between the
feedforward currents h; into different readouts k due to overlapping
connections (Kushnir and Fusi, 2017, their Appendix Al).

Now the maximum number of learned patterns for the classifier in the
uniform regime for high-noise approximation can be computed from
Equation 3.40 and is given by the following:

(3.45)

_ 1—f C:M
CA 2 M BGa I (340
r P - B

We note that because of the applicability condition (Eq. 3.43) making
the last term in the denominator small requires fine tuning of the
parameter (3.

Uniform regime, low noise
The other approximation in which Equation 3.38 can be solved is as
follows:

Bhy > 1, (3.47)
which is true for most neurons if:
Bl <o, =

V(L= f)Cr

Under this condition, assuming that the uniform regime is valid only if
the input representations are dense:

Cef > 1

The condition for having three solutions to the mean field equation in the
low-noise approximation becomes (see Eq. 3.51) the following:

= \/fz(l —f)CF< \/iCRa.

In this case, the hyperbolic tangent in Equation 3.38 can be approximated
by the sign function, as follows:

(3.48)

LM
m’ = ME sign[ B(Cram” + hy)].

k=1

Let us denote the right side of this equation by g(m1,,), where:

LM
glm) = Mzsign(CRam + hy) (3.49)

k=1

is a stochastic function over different realizations of {h}.
Note that in this case, having a substantial fraction of terms with
h{ = 0would lead to a discontinuity of the right-hand side at m;, = 0.
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The mean (g(m)) can be found by integrating over the distribution of
h{ (see Eq. 3.10), as follows:

(3.50)

(g(m)) = f(m>

Voo

where w;, and o7, are the mean and standard deviation of hy, respectively,
which are given by Equation 3.45.

Thus, when averaged over training patterns, the mean field equation
becomes the following:

(CRam + Mh)
m = erf[ ————,

\/Eo-h

and it has three solutions when the derivative of the right-hand side with
respect to m at m = 0 is larger than 1, which, for w;, << gy, leads imme-
diately to Equation 3.48.

We now return to estimating the mean and the standard deviation
of m,,, which is the unstable solution to the approximated mean field
equation

(3.51)

m, = g(m,), (3.52)
where g(m) is defined by Equation 3.49.

For w;, << 07, which is always the case if the number of stored patterns
P is large enough, we assume that Cam,, is also small compared with o7,
and check the self-consistency later. Then, we can use the approximation
for the error function at small arguments to get the following:

2 Cpam +
<<m>>—\f‘";“’i

in which the variance of g(m) can be written as the sum of the diagonal
and the nondiagonal terms, as follows:

(3.53)

1
cov(g(m), g(m)) = - + cov(sign(Cram + hy), sign(Cram + h)))ez,

(3.54)

1
which is similar to Equation 3.20 for the variance of ]T/[Z,iv’: 1sign(hy)

computed previously in Equation 3.25. The only difference is that here
the distribution of h is shifted by Cram. However, because the mean
(h}) did not affect the result (Eq. 3.25) and Cram,, + w,, is still negligible
compared with o7, we can write the following:

1 Cr,
cov(glm), g(m) =+ nrn

(3.55)

where @, (is given in Equation 3.25.
As a sum of large number M of weakly correlated terms, g(m) can be
assumed to be normally distributed and can be written as follows:

2 CRam + M 1 (PCFf
e TR
g(m) = o TN

where z” is a Gaussian variable with zero mean and unit variance.
Plugging the expression for g(m) into Equation 3.52 and solving for

m,,, we get the following:
1
w O'h CRO( M N(PCFfZ >
T 0

(3.57)

(3.56)

2 CRa

7T(Th

where ¢, (is given in Equation 3.25.
So, the expectation value of m,, is as follows:
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\/E CRa \/; (o2

m Oy

1 \F\/cp(l—f)
™ \Cef*(1 = f)

and the standard deviation is given by the following:

1 1 1

> M + NFCr
\/; Jera-n !

Because uniform regime and low noise imply dense input representation,
we can use the dense approximation (Eq. 3.26) for ¢, . Plugging these
results into Equation 3.40 leads to the capacity for the uniform regime,
low noise, as follows:

1-f
Poox = [ 101 — 29 P

C:M

M2t <\/5 @ 1)2.
RN N )
Nonuniform regimes
When the input representation is sparse:
Cif =1, (3.58)
there is a substantial fraction of perceptrons for which all inputs are
silent; we call them the free units. If the noise is not very high 8 \5‘ =1,
these units are statistically different from those that do receive a nonzero
input. To analyze such a system in the mean-field approximation, two
order parameters and two coupled mean field equations should be intro-
duced. To avoid this complication, we consider a simpler case, which we
refer to as the “two-subnetwork regime.” This regime is characterized by
the recurrent connections that are relatively weak when compared with
the feedforward connections, so that the state of those units that do
receive nonzero feedforward input is determined by this input only.
Neither recurrent input nor noise can flip them. Only the free units
participate in the recurrent dynamics, and their mean activity in the final
state reflects the class of the input pattern. Which of the two stable states
the subnetwork of free units will go to is biased by the input from the
input-receiving units, which have the information about the class of the
input pattern from the feedforward input.
This approximation is valid if:

aCr <<\ (3.59)
B < \f. (3.60)

To be more precise, this condition does not guarantee that the recurrent
input will not be able to flip the input-receiving units close to the final
state, when most of the free units are aligned. However, if this is the case,
their activity already reflects the correct classification of the input pat-
tern, and the input-receiving units will flip in the right direction.

The mean field equation (Eq. 3.38) should now be seen as describing
the subnetwork of free units, and should be modified in several ways.

First, the number of units in the network is

M;= Me Y, (3.61)

since for small fthe probability of all Cr.independent inputs to be silent is
(1 — )% = e . Second, only Cre™“ of C, recurrent connections
per unit come from other free units. Also, the external input to the
network now comes from other (input-receiving) units in the interme-
diate layer, rather than from the input layer.

The modified mean-field equation reads as follows:
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2 tanh(B(Crae” “¥m* + HY)),

(3.62)

3
H

where " is the average activity of the subnetwork of free units and the
index k runs over all the free units.
The external input is as follows:

Mir

HY = Y ajysign(h)),

=1

(3.63)

where the summation is over the input-receiving units and A is the
feedforward current of Equation 3.10 with n;’ # 0. My is the number of
input-receiving units, as follows:

My = M(1 — e ).

On average, the free unit k receives Cj, inputs, and (1 — e~ “¥)Cy of them
come from input receivers. So, Equation 3.63 will have on average
Cx(1 — e ) nonzero terms. Assuming that this is a large number, Hy
is a Gaussian variable with the mean given (in the leading order) by the
following:

= aCg(1 - e_CFf)<Slgn(hV)>m¢o aCr(sign(h)),

(3.64)
which, using Equation 3.13, becomes the following:
2(1 —f)n )
pi =\ ——— Nk (3.65)
f

The number of active inputs # connected to the intermediate unit comes
from the binomial distribution, n ~ B(N, f).
The standard deviation of Hy is as follows:

oy = a/Cr(1l — e ),

(the corrections due to correlations between different input-receiving
units are suppressed as 1/N and will become negligible for large networks
when Cj does not scale with N).

To find the statistics of 171,,, the point of unstable equilibrium, we again
consider high- and low-noise approximations, but now we should com-
pare the inverse temperature parameter 3 to the standard deviation of
Hy.

What we further call intermediate noise is the noise that is small on the
scale of the feedforward input (Eq. 3.60) but large when compared with
the typical values of Hy.

(3.66)

Two-subnetwork regime, intermediate noise

The following analysis is valid if, in addition to the conditions described
in Equations 3.58, 3.59, and 3.60, the dynamic noise is high compared
with the typical external input to the subnetwork of free units:

Boy = BaCr(l — e ) < 1.

The condition for three solutions to the mean field equation (Eq. 3.62) in
this case is as follows:

BaCre 7> 1.

The former inequality allows us to approximate the hyperbolic tangent in
Equation 3.62 by its argument when looking for the unstable solution 171,,,
which is close to zero, as follows:

My Mir

= BCrae “m, + B EE]k,a51gn (h)).

fkll]

(3.67)

Each input-receiving unit [ has Cj, outgoing connections and approxi-
mately e~ Cef Cy of them terminate on a free unit. Hence, the double sum
can be rewritten as follows:
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Mir

1
mt = BCrae “ml + BCRae’C’fEEsign(h;’). (3.68)
=1

Solving this equation for 71, leads (see Eq. 3.61) to the following:

BCra

- __ PMR® iy
“ BCRae’C’f—l(l e

(3.69)

where we have introduced 7”: the sign of the feedforward current aver-
aged over the units for which this current is nonzero, as follows:

Mir

1
"= —— > sign(h}).
MIRI:E] ga(hi)

The statistics of 7 are closely related to previously computed statistics of
r” (see Eq. 3.12), which is the sign of the feedforward current averaged
over all of the intermediate units, namely:

1
(t") = m(r”>. (3.70)

The expression for () is given in Equation 3.13, which leads to the
following:

1 2(1 — n
) = Gign (Do = 1oy %qv.
V

(3.71)

To compute the second-order statistics of 7, we use the following
relation:

cov(sign(hY), sign(h))es st uteo

1
= {1 = ooy ovlsign(), sign(hy))ier

The covariance on the right-hand side was also computed in Equation
3.25, which allows us to write the following:

1 Pcrf 1

=m mﬁ (3.72)

cov(r’, 1)

Plugging in Equations 3.71 and 3.72 to Equation 3.69 leads to the expres-
sions for the mean and the standard deviation of 17,

_Pa-p BGa )
T PBCrae ¥ —1 \Efn’

M =

[the mean (\/a is computed assuming a binomial distribution for the
number of active inputs n connected to a readout #n ~ B(N, f)], and the
following:

BCra 1 - 1
74T BCrae =1 M(l —e )+ Penf N (3.73)

Now we can use Equation 3.40 to compute the maximum number of
learned patterns in the two-subnetwork regime under intermediate
noise. The number of units in the network M in Equation 3.40 should be
replaced by the number of free units Me ™. The result is as follows:

_(Yny 1—f M
P et G -20F M
Y+ N¥ens
where:
2BCra — e
y=1- BCx l—e < y<1.

(BCrar)*
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It is helpful for analyzing this result to rewrite the expression for vy in
terms of the following:
Ay =e “IBCa — 1, (3.74)

which is the measure of how far the current parameters are from the
transition to the one-solution scenario (Fig. 2a,b), at which the current
framework breaks down, as follows:

AZ
In the ultrasparse approximation:
Cf < 1,
we can use Equations 3.16 and 3.28 to get the following:
1-f MCYf

p=
mlerf '(1 — 2¢)F M
v+ O

Two-subnetwork regime, low noise

We now consider the low-noise approximation to the mean field equa-
tion for the subnetwork of free units (Eq. 3.62). This approximation is
valid when in addition to Equations 3.58, 3.59, and 3.60:

Boy = Ba/Cr(l —e ) >1.

In this approximation, the mean field equation has three solutions if:

2 Crae™ 2 JCre |
= = ——=>1.
m oy m \“1 — e CH

This condition is derived analogously from Equation 3.47.
Under the assumption (Eq. 3.75), the mean field equation (Eq. 3.62)
can then be approximated as follows:

(3.75)

My
1
m’ = MZSign(B(CRae’C’fﬁa" + HY)). (3.76)
1

k=1

As in the section Uniform regime, low noise, let us introduce a stochastic
function g(7f), as follows:

My

1
g(m) = Mfzsign(CRae"CFfrh + Hy).
k=1

For small values of the argument i, the mean of g(11) over different
realizations of H, is approximated as follows:

. 2 Cpae” il +
(g(m)) = \/;UH )

where u,; and o, are given by Equations 3.65 and 3.66.
To compute the variance of g(i71) we need to know the following:

cov(sign(Crae” “iit + H,), sign(Crae” /it + H,))i,
=~ cov(sign(H,), sign(H,))i+»

which is calculated in the study by Kushnir and Fusi, 2017, their Appen-
dix A2) and, for large absolute values of the recurrent connectivity
Cre ¥ >> 1), is approximated by the following:

2 1 Pc.f 1
cov(g(rm), g(1m)) :,TTCR M* N 1—¢ %) (3.77)

Assuming Hy, to be Gaussian, we can write the following:
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[2 Crae™ it + oy 2 1 ey 1
71 = - + . J— + — v
g(m) T oy WCR M N 1-¢%)%

(3.78)

where z” is a Gaussian variable with zero mean and unit variance.

The statistics of the unstable, close to zero, solution of Equation 3.76
can now be found by plugging in Equation 3.78 as the right-hand side of
Equation 3.76, and solving for m".

After substituting Equations 3.65 and 3.66 for w,; and o, we get the
mean and the variance of the unstable solution 1, (assuming
N Cre™ 7 >> 1), as follows:

a ¢ \/E‘

My = =

) B 1 Pcrf 1
ol =eN1—e C‘f)<M + NF 1= e’CFf)'

Using these expressions and Equation 3.40 with M replaced by the num-
ber of free units M; = Me™ 7 we get the maximal number of classifiable
inputs in the following low-noise approximation of the two-subnetworks
regime, as follows:

R M
P= f alerf '(1 —2¢)] M
1 N‘PCFJ

Note, that this is the same expression as Equation 3.30 for the majority
vote scenario (see the Results for an intuitive explanation).
For very sparse representations:

Cf <1
the expression simplifies to the following:

_-f Mor

P= mlerf '(1 — 2¢)

M
1+NCFf

Results

The task and the network architecture

To evaluate the performance of different network architectures, we
consider a task in which the network is trained to associate a specific
response with each input. The response is expressed by the activity of
one output neuron, which could represent a decision, the expected
value of an input stimulus, or an action. Each input, for example a
sensory stimulus, is a pattern of activity across N input neurons. Both
input and output neurons are either active or inactive, and hence the
variables representing their activity are binary. Moreover, we assume
that the inputs and the outputs are random and uncorrelated. Input
neurons are active with probability f, whereas the output neuron is
active on average for half of the inputs. Performing this task is equiv-
alent to solving a binary classification problem in which each input is
assigned to belong to one of two possible classes. As a measure of the
performance, we consider the classification capacity and the maxi-
mum number of input patterns that can be correctly classified, and
determine how it scales with the total number of neurons in the
network. We now consider architectures with increasing complex-
ity, and we eventually show that it is possible to design a network in
which the number of classifiable inputs is large and scales linearly
with the number of neurons while each neuron has limited connec-
tivity (i.e., the number of connections per neuron is fixed in the sense
that it does not scale with the number of neurons).
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Single fully connected readout

The most basic network that we consider is the one in which the
input neurons are directly connected to the output, which is basically
the classical perceptron (Rosenblatt, 1957; Figs. 14, 3, the first model
on the left). The network is trained by modifying the weights w; that
connect each input neuron i (Fig. 3, green) to the output (Fig. 3,
yellow). The output activity 0" in response to stimulus w is deter-
mined by thresholding the weighted sum of the inputs:

N

o = sign Ew@“ -0,

i=1

where 0 is a threshold and & is the activity of neuron i when
input pattern w is selected. The weights w; and the threshold 6 are
learned to impose that o* = n*, where n* is the desired output in
response to stimulus w. We know from many studies (Cover,
1965; Gardner, 1987) that the maximum number P of random
inputs that can be correctly classified scales linearly with the
number of input units when f = 1/2 (P ~ N; Fig. 3, table). This is
a very favorable scaling and, actually, is the optimal one in the
benchmark that we consider. Unfortunately, the number of con-
nections Cy of the output neuron (Fig. 3, feedforward connectiv-
ity) is equal to the number of input neurons, and hence when the
number of classifiable inputs grows, the connectivity also has to
increase accordingly. This is true also in the case of sparse input
representations. Indeed, for an arbitrary value of f, when we used
the following simple learning rule inspired by Tsodyks and
Feigel’'Man (1988):

1P
wi = ﬁug(é _f)”ﬂ“) (4.1)

and we obtained the limit of a large number of input neurons N,
the maximum number of input patterns that can be classified P is
given by the following:

L= f N, (4.2)

P= 2[erf (1 — 2¢)
where € is the maximum tolerated error.
Notice that the factor containing the coding level of the pat-
terns f cannot change the scaling properties of P, even in the case
in which the inputs become very sparse (i.e., when f—0as 1/N).
This seems to be in contradiction with the results of other studies
(Tsodyks and Feige’Man, 1988; Amit and Fusi, 1994) in which P
can scale as N? when the inputs are sparse. However, it is impor-
tant to remember that the N scaling can be achieved only when
both the input and the output are sparse, and in the cases that we
analyzed here the output is dense (i.e., active in half of the cases).
We now consider a different architecture that partially
overcomes the limitation imposed by the limited connectivity
assumption.

Committee machines

Consider now the architecture of Figure 1b (Fig. 3, Committee ma-
chine) in which multiple perceptrons are combined. We assume that
each perceptron has limited connectivity, or more precisely, that
when the number of input neurons becomes large (mathematically,
we consider the limit of N — ), the number of input connections
per perceptron, Cy, does not increase (i.e., Cp remains finite when
N — o5 Fig. 3, flatline). As a consequence, each perceptron will sample
only a small fraction of the input neurons, and, for this reason, it will
misclassify most of the inputs when P becomes large (P — ). More
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Figure3. Summary of the scaling properties of the three architectures considered in our study. A single fully connected readout (classical perceptron) achieves a classification capacity P that grows
linearly with the number of input neurons N. The input neurons are green and the output neuron is orange. However, the number of feedforward connections that converge onto a single neuron C,
also increases linearly with N. The committee machine with M members (orange neurons) solves this problem by limiting the number of connections C per member neuron. This number does not
scale with N, and hence it can be relatively small. The classification capacity P still scales linearly with N thanks to the contributions of M partially connected perceptrons, which are combined using
amajority vote scheme. The majority vote, however, implies the existence of a final readout, which counts the votes of all the members of the committee. This readout can be implemented with a
neuron with C connections, where Cis equal to M, and thus scales linearly with N. The suggested recurrent readout architecture on the right achieves the linear growth of the capacity while keeping

(;, C, and the number of recurrent connections per neuron C; constant as N increases.

quantitatively, the fraction of correctly classified inputs will be
slightly above the level of chance (1/2), approximately 1/2 + a/\ﬁ
when P is large (a is a constant).

In this situation, each perceptron is said to be a weak clas-
sifier. However, if the responses of different perceptrons are
sufficiently independent, they can be combined to perform
significantly better than any individual perceptron. The com-
bination of multiple perceptrons makes what is called a com-
mittee machine. Typically, the class of an input is decided by
the committee using a majority vote rule: if the majority of
perceptrons are active, then the output neuron should also be
active, otherwise it should be inactive. The majority rule can
be easily implemented by summing with equal weights the
outputs of all perceptrons.

As mentioned in the Introduction, adding new readouts with-
out increasing the number of input units N cannot increase the
classification capacity indefinitely, unless an additional mecha-
nism is introduced to decorrelate the responses of different read-
outs. Such mechanisms may very well exist in the real brain. For

example, one could imagine some local changes of synaptic plas-
ticity during the learning phase, which make different readouts
update their connections during the presentation of different
subsets of patterns. However, in this article we stick to the simple
learning rule (Eq. 4.1) and do not consider any decorrelation
mechanisms. So, in the present contexts, the only way of increas-
ing the classification capacity of the network without reaching the
saturation is to increase the number of input units N. Also, to
satisfy the requirement of limited connectivity, the number of
connections converging onto the same readout, C, cannot in-
crease with N, and we need to add new readouts to connect to the
newly added input units. We denote the number of readouts
(number of committee members) by M and we derive the classi-
fication capacity P under the assumption that N, M, and Pf are
large numbers and the Cp connections of every readout (percep-
tron) are chosen randomly and independently of any other (there
will be a random overlap).

If we use the simple local learning rule (Eq. 4.1), the maximum
number of classifiable inputs is as follows:



Kushnir and Fusi e Neural Classifiers with Limited Connectivity

M
_ny? 1—f N
P= f [lerf'(1 —2¢)P*m M (4.3)
+ N‘PCF,f

where @, ris of the order of C-and depends on the coding level f,
but not on N or M (see Eq. 3.25). The factor (\,/Z) is the mean of
the square root of the random variable n over the binomial dis-
tribution B(Cp, f), which is approximately \,/C'T;f in the case
Cgf => 1 (dense approximation) and C,f in the case of Cpf << 1
(ultrasparse approximation; in practice, ultrasparse approxima-
tion is quite accurate also for Czf = 1). As for the single readout,
the required classification accuracy is 1 — €.

Using also the approximations for ¢, ,in these two cases, we
get the following:

M
1-f “rN
P=— . N
[erf (1 — 2¢) P 2 c
1+ Oy
for Cpf >>1 (4.4)
and
C: M
b 1—f ¥N
T [erf'(1 — 2¢) P o (4.5)
+ Cy, N

for Cif > 1.

For the dense input representations, Cpf >> 1, if the number of
input neurons N is kept constant while the number of percep-
trons M is increased, the capacity P will saturate when the total
number of feedforward connections CzM is large compared with
N. The value at which P saturates is the same as for the fully
connected readout (Eq. 4.2). If the input representations are
sparse, Cgf = 1, saturation occurs when CpM becomes large
compared with N/C,f. The saturation value of P in this case dif-
fers from the fully connected case by a factor of order one, 2/m.

This implies that the committee machine is less efficient than
the fully connected readout when the total number of feedfor-
ward connections is considered. This will also be the case for the
recurrent readout scheme that we propose in the following sec-
tion. It should be noted, however, that the difference in the total
number of connections is modest (several times) unless the input
representations are extremely sparse Cpf << 1.

The dependence of P on the coding level fis weak, unless Cf
becomes smaller 1. For sparser representations, the capacity be-
comes proportional to Cgf (unless M is increased). This is not
surprising because when Cpf < 1, a significant proportion of
perceptrons will read out only inactive neurons, which are not
informative about the input. However, even for very sparse rep-
resentations the capacity can be restored by increasing the expan-
sion ratio M/N (see Fig. 5¢, green line and Fig. 5f, low-f region).

When both N and M are increased in proportion to each
other, the number of classifiable patterns increases linearly with
N, as in the case of the fully connected single perceptron (Fig. 3).
However, now the connectivity of each perceptron is Cp, which
does not scale with N or M. This means that it is possible to
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overcome the limitations of sparse connectivity. Unfortunately,
this is not a satisfactory solution to the problem of limited con-
nectivity because the readout output neuron, which now has to
count the votes of all M members of the committee, needs to be
connected to M neurons, and M scales as N. So again, we will need
a number of connections per neuron that grows linearly with N.
The last row in Figure 3 (connectivity of the final readout) shows
this dependence.

Committee machines with recurrent connections

We propose an alternative way of implementing a committee
machine, which is based on the use of recurrent connections, and
it does not require a fully connected output neuron (Fig. 3). To
understand the idea behind it, it is useful to consider a multilayer
readout as a way to count the votes of all perceptrons while re-
specting the limited connectivity constraint: each neuron in the

first layer would count the votes of different Cy, perceptrons. The

neurons in the second layer would then count the votes of C,
first-layer neurons, and so on. For this architecture, the number

of neurons would decrease by a factor C; in every new layer,
leading to a total number of neurons that would scale as log(M )
or, equivalently, as log(IN). It is also possible to set up a multilayer
network with the same number of layers in which every layer
contains the same number of neurons M. This network would
require more neurons, but it is functionally equivalent to the first
one that we considered. The reason we are considering this net-
work architecture is that it can be interpreted as a recurrent net-
work unfolded in time: if one assumes that the network dynamics
is discrete in time, then every layer could be seen as the same
recurrent network at a different time step. Importantly, the
weights of the synaptic connections should be the same for every
layer, as it is always the same network but at different time steps.
As this network would also be functionally equivalent to the first
multilayer network that we discussed, a recurrent network can in
principle replace a complex multilayer readout, which would re-
quire significantly more neurons.

These considerations induced us to study the architecture rep-
resented in Figure 1¢ (Fig. 3, Recurrent readout), as follows: each
perceptron of the committee machine is now connected to a
randomly chosen set of the others through recurrent connec-
tions, whose weights are all the same and are equal to a. The
number of recurrent connections per perceptron is Cy,.

The recurrent dynamics basically has the role of stabilizing
only two of the following attractor states of the network: one in
which all perceptrons are in the active state; and one in which they
are all in the inactive state. These two states represent the two
possible responses of the output and correspond to the two
classes the input could belong to. The recurrent network is an
attractor network similar to the one proposed by Hopfield
(1982), which in turn took inspiration from the studies on spin
glasses in the ferromagnetic state, in which the spins are all
aligned to each other in one of two possible directions. These two
states of magnetization are analogous to the two decisions of the
network that we propose. These attractor models have been used
more recently to model decision-making, both in simple, more
abstract networks (Usher and McClelland, 2001) and in very de-
tailed biologically plausible networks of spiking neurons (Wang,
2002) in which only the two states corresponding to the possible
decisions become stable when a sensory stimulus is presented.

The assumption about the excitatory nature of recurrent con-
nections is crucial to have the two attractor states described
above. For the case of binary classification, we assume that recur-
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Network regimes depend on the sparseness of the input (determined both by the sparseness of the feedforward connectivity C;and by the sparsenss f of the input representations) and

on the noise level with respect to the recurrent and feedforward inputs. 3is the inverse temperature parameter, , is the recurrent connectivity, and c is the strength of the recurrent synapses. In
the high-noise regime, the network can always be analyzed as a single homogeneous population of neurons (uniform regime). For intermediate and low noise, the network operates in the
two-subnetwork regime when the input is sparse, and in the uniform regime when the input is dense. In the two-subnetwork regime, the recurrent neurons should be divided into the following two

groups: those that receive a feedforward input and those whose input is zero.

rent connections are either zero or excitatory. For the case of
multinomial classification, however, the recurrent connections
can also be inhibitory (see subsection Random output).

Once the network has relaxed into one of the two stable
states, it becomes easy to determine the class to which the
input belongs, as in principle it is sufficient to read out a single
perceptron. However, a single neuron readout would not be
robust to noise, and hence we will consider the situation in which a
number of different perceptrons is read out. We will show that this
number remains finite when N and M become large, which is equiv-
alent to saying that it is possible to construct a network in which all of
the neurons, including the output neuron, have limited connectivity
and the number of classifiable inputs grows linearly with N. These
scaling properties are summarized in the last column of Figure 3.

The number of classifiable inputs is derived analytically in
Materials and Methods using a mean field approach. This num-
ber depends on the parameters that characterize the network
architecture (i.e., the number and the connectivity of the differ-
ent types of neurons) and on the statistics of the inputs that have

to be classified. Depending on the assumptions about the param-
eters, there are different regimes that lead to different analytical
expressions. These distinct regimes are summarized in Figure 4
and described in the following sections in great detail. The first
distinction relates to whether all the recurrently connected neu-
rons can be considered statistically equivalent or not. We call
uniform the regime in which all the neurons can be assumed to be
equivalent. This assumption is reasonable except when the con-
nectivity and/or the input representations are so sparse that there
is a significant fraction of neurons in the readout layer that do not
receive any feedforward input. The number of these neurons
depends on the product Cgf (Fig. 4). This population of neurons
behaves differently from the others, to the point that it can be
considered as a different subnetwork that requires a different
analysis (for this reason, we call this a two-subnetwork regime).
The type of analysis we perform also depends on the amount of
noise in the network. In particular, when the noise is large, the
network always operates in a uniform regime, even when the
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input is sparse. We now first discuss the uniform regime, and we
will cover the nonuniform regime later.

The uniform regimes

The behavior of the network in the uniform regime also depends
on the amount of noise that is injected into the neurons. We
introduced noise as in the Hopfield model: the state of each neu-
ron is stochastic, and its total synaptic current determines the
probability distribution of the states. The noise is characterized
by a parameter 3, which in the language of statistical mechanics
would be the inverse temperature parameter. When S is large, the
noise is small and the neurons are basically deterministic. As 8
goes to zero, the neurons become more noisy and less dependent
on the total mean synaptic input.

As we know from previous studies on attractor neural net-
works (Amit, 1992), the noise cannot be too large, otherwise the
attractor states remain stable only for a short time (Fig. 2). More
specifically, the noise should be smaller than the recurrent input
when the network already settled in one of the two attractors and
most of the presynaptic neurons of the recurrent network are in
the right state. In the uniform regime, this requirement is ex-
pressed as BCra > 1. Moreover, to guarantee attractor stability,
the recurrent input should also dominate over the feedforward
input. More formally, this condition can be expressed as A <
Cef*(1 = f) . . .
. o7 approximately the range in
which the feedforward synaptic input varies when different in-
puts are presented. It basically determines the selectivity to the
inputs in the absence of the recurrent connections (for more
details, see Materials and Methods).

The two conditions on noise versus recurrent input and re-
current input versus feedforward input impose constraints on
both A and . However, the range in which these parameters can
vary still allows the network to operate in qualitatively different
regimes that depend on how large the noise is compared with
the typical amplitude of the feedforward input.

The uniform, high-noise regime. In the high-noise regime,
the noise is so large compared with the feedforward input
(B~ ' >> A) that all of the different recurrent neurons can behave
similarly (uniform regime) even when the feedforward input is so
sparse (Cpf < 1) that many neurons receive zero input. In this
regime, the noise is large compared with A, but still small com-
pared with the recurrent input. The number of classifiable pat-
terns P for the high noise, always uniform regime, is given by the
following:

Cra, where A =

M
B 1—f CrN
T 2[erf (1 — 2€)P M ALy

“NTCra-ne

p

N)

(4.6)
where
AUH: BCRa —1>0.

The parameter A, should be positive in order for the network to
have two stable attractor states. However, increasing A, de-
creases the number of classifiable inputs P. In the following anal-
ysis, we assume that the parameters of the recurrent dynamics are
adjusted in such a way that A, is not too close to zero, so that
there is no risk of losing the two attractors, but also not too large,
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so as to not sacrifice too much of the classification performance.
A reasonable choice is A, = 0.2.

As Ay cannot be too small, and Cif*(1 — f)B* << 1 by the
high-noise assumption (Eq. 3.43), it can be seen from Equation
4.6 that the proposed network, when operating in the uniform
regime, has a worse performance than a committee machine
(Egs. 4.4 and 4.5) and a fully connected readout (Eq. 4.2). How-
ever, in the limit of large C:M/N, the performance becomes the
same.

Importantly, if the number of input units N and the number
of intermediate readouts M are increased in the same proportion,
the number of classifiable inputs scales linearly with M or N (Fig.
5a), as in the committee machine case. However, now there is not
a single neuron that is required to have a connectivity that scales
with N, so the connectivity of each neuron can remain finite even
when N and M become arbitrarily large. This supports the claim
made in Figure 3 about scaling properties of the proposed net-
work. As we will see below, this is not the only regime in which
these scaling properties are valid.

The rate at which P grows with the number of input neurons
N, P/N, depends on the expansion ratio M/N (the number of
intermediate readouts per input neuron), the coding level f, and
the parameters of the recurrent dynamics A;; and B. Instead of
using M/N as an independent parameter, it is more convenient to
express P as a function of the average number of efferent connec-
tions per input neuron, as follows:

MCF
c— N .

Indeed, C;/N is the probability that an input neuron is connected
to a readout. When multiplied by M, it gives the average number
of connections that depart from an input neuron and arrive at the
intermediate readouts. We assume that, along with C, the num-
ber of efferent connections per input neuron should also be min-
imized, given that these connections could be long range.

The dependence of the growth rate of the capacity P/N on the
input coding level fis shown in Figure 5d for different values of c.
To make these plots, we assumed that the parameters of the re-
current dynamics are chosen anew for every value of f so as to
keep Ay = 0.2 and to satisfy the high-noise condition (Eq. 3.42)
by the same margin. We also assumed that the number of feed-
forward connections per perceptron is C = 50, which is consis-
tent with the observations in the mouse hippocampus (see
Discussion).

The classification performance of the recurrent readout P/N
in the high-noise regime increases with ¢, for any value of f. In
other words, when N and Cy are kept constant, increasing the
number of perceptrons M, and hence the total number of con-
nections CpM, will always increase the capacity P. However, the
capacity cannot increase indefinitely in this way because of the
correlations between the perceptrons that we discussed above.
Interestingly, the saturation of the capacity as a function of M (or
¢) is reached sooner for denser representations.

As can be seen from Figure 54, the classification performance
reaches its maximum at f,,,, =~ 0.05, depending on the value of c.
When c¢ increases, the maximum moves toward sparser f. The
position of the maximum also depends on the number of feed-
forward afferent connections per perceptron, Cp, as f,,,., % 1/Cp.

The uniform, low-noise regime. When the noise is low com-
pared with both the recurrent and the feedforward input, the
density of the input representations starts playing a crucial role in
determining whether the network is in a uniform or a nonuni-
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Figure 5. a-c, The linear dependence of the classification capacity of the recurrent readout P on the number of input neurons N, when the number of intermediate perceptrons M is increased

C:M
FT remains constant (we assumed ¢ = 5). The red and green lines correspond to dense (f = 0.5) and sparse (f = 0.01) representations. The number of

feedforward connections per perceptron is C; = 50, and the tolerated error rate is € = 0.05. a, High-noise regime: the noise is large compared with the feedforward input. For the dense case (red
line), B = 0.04, and for the sparse case (green line) 3 = 0.9; these choices correspond to a ratio of the noise to feedforward input equal to 10. b, Intermediate level of noise: the noise is low compared
with the feedforward input, but large when compared with the input from the input receiving to the free neurons in the case of sparse input representations (two-subnetwork regime). The red line
corresponds to dense input representations (uniform low-noise regime), and the green line corresponds to the two-subnetwork intermediate-noise regime. ¢, Low level of noise. The red line
corresponds to the uniform low-noise regime, and the green line corresponds to the two-subnetwork low-noise regime (same as majority vote). d—f, Change of the slope of the plots from ato ¢, P/N

proportionally to N, so that c =

C:M
with the coding level f for different values of c. d, High-noise regime. Different curves correspond to different numbers of perceptrons M per input neuron, expressed as ¢ = N The noise

parameter 3 and the strength of the recurrent synapses c are varied with the coding level fto keep the value of A, = 0.2 and the inequality of Equation 3.42 satisfied by the factor of 10 for every
value of f. The last condition implies that the ratio of the noise to the amplitude of the feedforward input is equal to 10 for every point on the curve. e, Intermediate level of noise. The low-fsegments
of the curves represent the two-subnetwork intermediate-noise regime. Either the noise parameter 3 or the strength of the recurrent synapses o is varied with fto keep A, = 0.2. The high-f
segments correspond to the uniform low-noise regime, and « is varied with fso that A, = 0.2.f, Low noise. Low-f segments of the curves correspond to the two-subnetwork low-noise regime
(same as majority vote), the high-f segments are the same as in panel e. The dashed green line shows the performance of the fully connected readout for comparison. The green and red points on
the ¢ = 5 curve correspond to the values of fused in a—c. The curves on e and fare discontinuous because there is no consistent way to analyze the recurrent dynamics in the perceptron layer across
the entire range of ffor these levels of noise. However, we believe that the capacity changes smoothly across the unexplored region, achieving its maximum at approximately f = 0.05 for C; = 50.

Again, A;; = 0 corresponds to the transition from the network
with two stable states, which is suitable for classification, to the

form regime. If the input representation is dense, Cgf => 1, the
network is again in a uniform regime. As before, all of the neurons

have the same average activity, but the main source of inhomo-
geneity is the feedforward input rather than the noise. The num-
ber of classifiable inputs in this uniform low-noise regime is as
follows:

M
- 1—f Cry
P [t 11— 20)Fm —N (A7)
o T Au
with
Ay, = \F Cre 1>0
vt T \Cif*(1 = f) '

network where only one state is stable. In this case, it is not the re-
current noise that may destroy the two attractor states, but the
variance in the feedforward input (this is why 8 does not enter
into the expression for A ;). We assume that the strength of the
recurrent connections « is adjusted to keep A ;; from being too
close to zero.

The result (Eq. 4.7) is very similar to the case of dense represen-
tations in the high-noise regime. One obvious difference is that the
inverse temperature parameter 3 does not appear since we assumed
to be in the low-noise limit 8 — . As before, the capacity per input
neuron P/N grows as the expansion ratio M/N or the number of
feedforward connections per perceptron Cy increases.

When compared with the performance of the fully con-
nected readout (Eq. 4.2), this regime implies a slightly lower
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classification capacity. The difference disappears when c is
assumed to be large.

Figure 5, ¢ and d, summarizes the dependence of the classifi-
cation performance P/N on the coding level f when the noise in
the recurrent network is low on the scale of the feedforward in-
put. The high-fsegments of the curves correspond to the uniform
low-noise regime.

Nonuniform regimes

When the noise is small compared with the feedforward input
and the representations are sparse, the uniform approximation is
not valid and the recurrent network behaves in a qualitatively
different way; for each input pattern, there would be two distinct
populations of neurons: the free neurons, which receive zero
feedforward input, and hence are not constrained (free) by the
input; and all the others, the input receivers. The two populations
would be different for different inputs, they would have different
activity distributions, and they would evolve in time differently,
although they constantly interact with each other.

Generally, such a regime is intractable with the mean field
method, so we need to make the additional assumption that the
feedforward synapses are sufficiently strong relative to the recur-
rent ones, so that the nonzero feedforward inputs are typically
larger than the total recurrent inputs in the initial state (before the
network reaches the final state, when most of the neurons have
the same activity). Furthermore, we need to assume that these
feedforward inputs are also much larger than the noise. Under
these assumptions, the state of the input receivers is determined
by the feedforward input, at least in the initial stages of the dy-
namics, while the network is deciding which stable state to
choose. We then need only to consider the dynamics of the sub-
network of free units, treating the recurrent input from the input
receivers as a fixed external input. It is this input that contains the
information about the correct classification.

We refer to the described scenario as to the two-subnetwork
regime. The classification capacity in the two-subnetworks sce-
nario also depends on the noise. The noise has to be small com-
pared with the feedforward input, otherwise, it might modify the
input-receiving neurons. However, it can be either small or large
when compared with the amplitude of the recurrent input com-
ing from the input receivers. The noise amplitude determines
whether the network operates in a two-subnetworks low-noise
regime or in the two-subnetwork intermediate-noise regime.

The two-subnetwork intermediate-noise regime is realized
when the representations are sparse (Cpf < 1) and the noise is
small relative to the feedforward input but large in the subnet-
work of free neurons, namely relative to the input into free neu-
rons from the input receivers. This regime leads to the
classification capacity of the following:

o () 1-f MIN

f alerf (1 — 2¢)) M
Y + N‘PC}-‘J

N. (4.8)

Here <\/;> is the mean of \/n over the binomial distribution
B(Cpf), which is approximated by different functions of Crand f
depending on whether Cgf is small or large (Egs. 3.15 or 3.16).
The term ¢c, corresponds to the correlations between input
receivers (Eq. 3.25). It is of the order of C, and depends on the
coding level f. It is also approximated differently depending on
the value of C,f (see Egs. 3.26 and 3.28). The quantity vy is given
by the following:
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As in the uniform regimes, the capacity is maximal (smallest )
when the network of free units is close to transitioning from three
fixed points (Fig. 2¢,d) to one fixed point (Fig. 2a,b).

In the ultrasparse approximation Cgf << 1, the expression for
P becomes the following:
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Figure 5b shows the linear dependence of P on the number of
input neurons N for different expansion ratios in the two-
subnetwork intermediate-noise regime. As for uniform regimes,
the dependence is linear, confirming once more the scaling prop-
erties of Figure 3. The relation between the slope of this linear
dependence, P/N, and the coding level for C;, = 50 and different
values of ¢ = Cp;M/N is represented by the low-f segments of the
curves on Figure 5e. The high-f segments of the curves corre-
spond to the low-noise approximation of the uniform regime,
which is characterized by the same relationship between the noise
and the typical values of the feedforward input. We do not plot
the low-f curves beyond f = 0.05 because for denser representa-
tions the fraction of the free units becomes small (~8%), and it
becomes difficult for the randomly and sparsely connected fi-
nal readout to distinguish between the two states of the free sub-
network. However, we believe that the classification capacity
changes smoothly between the two regimes, achieving its maxi-
mum for the coding value close to f = 0.05. The location of the
maximum will change when different values of C are assumed,

1
frnax G for large C;.

The capacity in the intermediate-noise regime can be larger than
the capacity of a majority vote committee machine. Interestingly,
the capacity in the two-subnetwork intermediate-noise regime
(Eq. 4.8) is larger than in the case of a majority vote committee
machine for the same coding level f (Eq. 4.3). This result is coun-
terintuitive, but it can be explained, as follows: in the majority
vote scenario, both the input-receiving units and the free units
contribute to a collective decision, even though the free units
carry no information about the class of the input pattern and they
actually generate noise as we assume that initially they are in a
random state. In contrast, in the recurrent case, the collective
state of the network is initially determined mostly by the input-
receiving units, which then drive the free units to the right state.
The noise contained in the initial state of the free units does not
much affect the initial relaxation dynamics, provided that the
noise in dynamics is sufficiently large (relatively low B).

In the case of the majority vote committee machine, the class
is decided in only one time step and the initially random free units
generate a certain amount of noise that depends on their number.
In the case of the recurrent dynamics, the connectivity is sparse
and each neuron that participates in it samples the noisy neurons
anumber of times, which depends on the relaxation time. If these
neurons can flip randomly at every time step, then their noise is
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Optimizing the network architecture

Optimizing the architecture under the constraint that the total
number of long-range connections is constant

The expressions for the classification capacity as a function of the
parameters of the network (Egs. 4.6 to 4.12) allow us to deter-
mine the optimal network architecture under different con-
straints. More specifically, we determine the optimal relation
among the number of the input neurons N, the size of the per-
ceptron layer M, and the feedforward connectivity Cp. Note that
this notion of optimality is independent from tuning the param-
eters of the recurrent dynamics, such as «, 3, and Cy, which can
be chosen later to ensure optimal values of A, Ay, or Ay

We first discuss the optimization under the constraint on the
total number of long-range connections (i.e., the feedforward
connections). More specifically, we assume that the number of
inputs N and the total number of long-range connections Cy,, are
fixed (which implies constant ¢ = CzM/N), and we ask what
value of Cy (or M) will optimize the capacity P.

For dense input representations in the uniform regimes (high
or low noise), rearranging the connections while keeping their
total number the same has no effect on the classification capacity.
This can be seen from Equations 4.6 and 4.7. Although the pa-
rameter Cp enters Equation 4.6 not only in combination with
CyM, for dense representations, Cif (1 — )37 in the last term in
the denominator represents the ratio between the noise and the
typical value of the feedforward input, which we assume to be
constant (see Eq. 3.42).

For the case of sparse representations, independent of the level of
noise, the situation is different. In Equations 4.8 and 4.11, the param-
eter Cy enters through the quantities (\,@ ) and ¢c, 5, while in Equa-
tion 4.6 it enters explicitly in the last term of the denominator and

in the scaling of the noise parameter 8 % ————————(see
\f(l - f)<\/;>n#0

Eq. 3.42). It turns out that for constant Cy,,, when Cy is assumed
to be large (which we always do for this study), the capacity P
depends only on the product Cf, the average number of active
inputs per perceptron, but not on Cyor findividually [apart from
the factor (1 — f), which is close to 1 for sparse representations].
The dependence of the capacity on the value C,f will be repre-
sented by the same curves as the low-fregions of the curves shown
in Figure 5d—f. As we can see from these plots, the capacity P
increases as a function of Cyf.

So, for sparse representations under low or intermediate noise
the optimum of the classification capacity for a fixed number of
input neurons N and a fixed total number of feedforward con-
nections CiM is achieved for the value of Cy, which corresponds
to the boundary of applicability of the two-subnetwork regime,
Cif = 2. For high levels of noise, the optimum is also approxi-
mately Cpf = 2 (its exact position depends on the value of ¢ and
the chosen level of noise relative to the feedforward input).

Increasing C under these assumptions is equivalent to in-
creasing the coding level f.

Optimizing the architecture under the constraint that the total
number of neurons is constant

We now determine the optimal architecture in the case when
the total number of neurons is fixed. Basically, we ask how to
partition the total set of neurons between the input and the
perceptron layer to maximize the classification capacity. This
question is sensible if the dimensionality expansion in the
input layer is not a limiting factor, as we assume that all N
input neurons are independent.
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It is straightforward to derive the optimal expansion ratio
MI/N from Equations 4.6 to 4.12 under the constraint M + N =
constant.

In the uniform regime, unless the noise is very high or the
representations are very sparse (see Eqs. 4.6 and 4.7), the expan-
sion ratio that maximizes the capacity can be approximated by
the following:

M 1
NT G

The number of perceptrons M is much smaller than the number
of inputs N (converging architecture) and the number of feedfor-
ward connections per input neuron ¢ = \,/a.

In the uniform, high-noise regime, for very sparse represen-
tations or very high levels of noise, Cif*(1 — f)B* << Agy, the
optimal expansion ratio is given by the following:

M 1

Aun
@ \rCFfz(l - f)BZ)
which implies a higher proportion of the perceptrons M/(M + N)
compared with the previous result.

For the two-subnetwork regime with intermediate noise (Eq.
4.8), the result for the optimal expansion ratio is the same unless
the input representations are extremely sparse, in which case the
optimal proportion of the perceptrons increases.

The optimal expansion ratio for the low noise is identical to
the sparse limit of the intermediate-noise case, as follows:

M 1

N VGG

To summarize, our model predicts that under the constraint on
the total number of neurons M + N, the optimal expansion ratio
is given by M/N = 1/ \/a (c = \,r/a), unless the input repre-
sentations are very sparse or the noise is very large, in which case
the optimal proportion of the perceptrons increases. For the in-
termediate levels of noise, this increase is less profound (happens
for more sparse representations).

Multinomial classification

We now turn to a more difficult problem of classifying the inputs
into more than two categories. The scheme presented above can
be generalized in a straightforward way to serve as a multinomial
classifier. We first present the generalization of the model where
instead of a single population of perceptrons in the intermediate
layer, we assume multiple subpopulations, each of which is selec-
tive to its own class of input patterns. The model requires that the
recurrent connectivity in the intermediate layer is restricted to
pairs of neurons belonging to the same subpopulation. This
scheme implies that the patterns of activity in the intermediate
layer, as well as its connectivity structure, have a specific design,
which should be imposed to the network and most likely is driven
by top—down signals. The architecture that we will describe is
probably the result of a learning process, although here we just
focus on the already structured network and we do not model
explicitly the synaptic modifications that lead to it.

We later discuss a more realistic scenario that supports multi-
nomial classification. Namely, we assume that the desired activity
pattern of the intermediate layer in response to each class of the
input pattern is chosen randomly. In this case, the only role of
the external supervisor is to guarantee that the activity pattern of



9920 - J. Neurosci., November 14, 2018 - 38(46):9900 -9924

Kushnir and Fusi @ Neural Classifiers with Limited Connectivity

a Cc
CF @, R C R
w >0 o x10* 5 classes, random output
O O N
w<0 o
(=
E 15
C C g
8 1
O O g
]
\M B =
Bos
w<0 g
=
O O B T
0 0.5 1 1.5 2
w0 Number of input units, N %10°
INwoum (. /Mtotal IM
:rlﬂrfntaj — 3-‘””
Figure7. a,Networkarchitecture forthe case of structured output (see subsection Structured output). For the case of three-way classification, the intermediate layer of readout neuronsis divided

into three subpopulations, each selective for its own class of input patterns. The recurrent connectivity is random and excitatory within subpopulations, but there are no recurrent connections
between the subpopulations. The final readouts, one for each class, are connected sparsely and randomly, as before, but the sign of the connections is only positive if the presynaptic neuron belongs
to the correct subpopulation; the rest are zero or negative. b, Network architecture for the case of random output (subsection Random output). There are no distinct subpopulations in the
intermediate layer, and the desired output pattern corresponding to each class of input pattern is chosen randomly. The recurrent connections exist between any pair of readout neurons with equal
probability. The strength of these connections, however, is now adjusted according to a Hebbian learning rule (Eq. 4.13). ¢, The results of the simulation for multinomial classification. The output
patterns corresponding to L = 5 classes are chosen randomly with the coding level y = 1/2. The recurrent connectivity is sparse, and the strength of the synapses are trained with the learning rule
(Eq. 4.13). The network of recurrently connected perceptrons is in the high-noise regime with dense input representations (C; = 50, f = 0.2, (; = 200, o« = 0.015, 3 = 0.5). The error bars
correspond to standard deviations of the capacity over 10 random realizations of the input patterns and network connectivity.

the perceptron layer is the same during the presentation of dif-
ferent input patterns belonging to the same class. In this case, the
recurrent connectivity within the perceptron layer is random and
sparse, as for binary classification, but unlike the latter, the
strength of the existing connections are plastic and are modified
by the desired activity patterns via Hebbian plasticity.

This last, more realistic scenario cannot be considered an-
alytically, but we show with simulations that the capacity de-
crease compared with binary classification is moderate and,
most importantly, that the linear scaling with the network size
is preserved.

Structured output

The immediate generalization of the recurrent readout scheme to
multinomial classification task is to introduce several nonover-
lapping populations of intermediate readout neurons, each of
which would activate in response to a single class of input stimuli.
The recurrent connectivity within a population would be as de-
scribed before, while no recurrent connections would exist
among the neurons belonging to distinct populations. The de-
sired output pattern in response to an input from each class is
then structured so that the population corresponding to the given
class is active while the others are inactive. The final readout has
to contain multiple readout units, one for each class. Their con-
nectivity can still be sparse and random, but the sign of the con-
nections would have to be adjusted based on whether it comes
from the neuron in the population selective for the same class as
the given final readout or not (Fig. 7a).

The classification capacity can now be computed in the same
way as above, by noticing that each population is now doing a
binary classification, selecting for one of L classes. The only dif-
ference is that the proportion of “positive” patterns (the output
sparseness) is now y = 1/L instead of 1/2. The capacity formula
for the case of sparse output is derived in Materials and Methods,
and it differs from the capacity for a dense case by a factor that
depends on y, as follows:

1

Py(N, M) = ay(1 - y)Po.s(N» M).
It should be noted, that the number of intermediate readouts M,
entering this formula is the number of units in the population
selective for a particular class. So, if the total number of interme-
diate readout units is M,,,;, and all populations have equal size, it
is M = M/l = yM,y that should enter the formulas for the
capacity. So, in terms of the total number of intermediate units, in
the two-subnetwork intermediate-noise regime, for example
Equation 4.8, we have the following:
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where 7y is given by Equation 4.9. There are two differences with
respect to the binary classification case (Eq. 4.8). The first is the
factor L/4(L — 1), which is equal to 1/2 for the case of two classes
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(L = 2). Thisis the reflection of the fact that when only two classes
are possible, the current scheme is redundant; when the first
population is active, the other is not, and vice versa. In the limit of
a large number of classes, the prefactor is equal to 1/4. The other
difference is in the second term in the denominator, which res-
cales N, the number of the input units. Namely, for the number of
intermediate readout units, the role of correlations between them
is decreased compared with the binary classification case. This is
because there is no interference between the readout neurons
belonging to different populations.

Random output

Another, more realistic scenario is to assume that each class is
represented by a distinct random output pattern. In contrast
to the previous scenario, now the output pattern can have a
nonzero random overlap. In this case, it is necessary to train
the recurrent connections, and we assumed a simple Hebbian
learning rule, similar to the one used in the Hopfield model, as
follows:

L
Ju= 2L, (4.13)

a=1
where {} is the output pattern corresponding to class a (a =
1...L).In this case, there are no structurally distinct subpopu-
lations of the intermediate readout neurons, which are defined a
priori (Fig. 7b). In contrast, the subpopulations of neurons that
represent different classes emerge as a consequence of the learn-
ing rule (Eq. 4.13).

Figure 7 shows the simulation results for a five-way classifica-
tion (L = 5) of dense input patterns with high dynamic noise (the
parameter values are given in the caption of Fig. 7). As expected,
also in this case P increases linearly with N, even when the num-
ber of incoming connections is kept constant for all neurons (i.e.,
it does not scale with N). This result also confirms the validity of
our approach in a more realistic case for which it is significantly
more difficult to perform analytical calculations.

Notice that in this case, although we did not perform the
analysis, we know from previous studies on recurrent neural net-
works (Amit, 1992) that the number of recurrent connections
will have to scale linearly with the total number of classes L. This
would explain why the number of recurrent connections could be
much larger than the number of feedforward inputs. A future
study will address this specific issue.

The initial condition of the recurrent network

An important assumption that we made to implement the ma-
jority vote with a recurrent readout is that the recurrent network
initial condition is unbiased or, in other words, that m, = 0 (see
subsection Mean field analysis of the recurrent dynamics). This
condition might sound difficult to realize in a network that is
basically designed to amplify any small deviation from m, = 0.
However, this condition could be realized as follows: assume that
before a pattern to be classified is presented, the input layer is
spontaneously active. This spontaneous activity generates a feed-
forward input hjf, which causes the disordered state (1 = 0) to be
the only stable state of the recurrent network (Fig. 2a). There are
two conditions on the statistics of hjf that are required to have
m = 0 as the only stable state of the system in the mean field
approximation. The first requirement is that /;¥ has zero expec-
tation value, which is satisfied if the patterns of spontaneous
activity are not correlated with the training patterns. The second
requirement is that the standard deviation of the distribution is
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large enough to make the slope of the sigmoidal curve of Figure 2
less than 1. For instance, in the uniform regime (see subsection

2
The uniform regime), the latter requirement is o7? > ;CROL

(which is the opposite of Eq. 3.48), where o7 is the standard
deviation of the feedforward current due to spontaneous activity.
When the input pattern is presented, then the noise is assumed to
decrease to restore the conditions (Eq. 3.48) that allow the recur-
rent network to have three solutions, two stable, corresponding
to the possible classification outcomes, and one unstable, which
was the initial state. A reduction in noise during stimulus presen-
tation has been observed in the study by Churchland et al., 2010.

Biological interpretation and testable predictions

One of the important results of our analysis is that the sparseness
of the neural activity can play an important role, even in the case
in which the connectivity is very limited (see also the Introduc-
tion). We showed in Figure 5 that the optimal coding level f (i.e.,
the average fraction of active neurons) is always approximately
f = 0.05, when the number of feedforward afferent connections
per neuron Cy is assumed to be 50, which would be estimated as
the average number of synaptic inputs that each neuron in CA3
receives from the DG. This is a surprising result given that the
assumed connectivity is so limited, and it explains why the neural
activity in the DG can be so sparse without compromising the
computational performance of the hippocampal system.

Intuitively, the optimal sparseness can be explained as follows.
One of the reasons why the classification capacity is limited is the
noise in the synaptic strengths introduced by the other patterns
that have been learned by the classifier. This noise increases as the
representations become denser (f increases), which leads to a
decrease of the classification capacity for dense representations.
However, when the coding level is too small, the fraction of in-
termediate readouts whose inputs are all silent, and hence not
informative, becomes larger and the capacity again decreases.

The optimal coding level also has an interesting dependence on the
number of patterns P that should be classified, and this dependence
generates a specific prediction on how the richness of the environment
can change the sparseness of the representations in the DG.

We assume that the number of input neurons N, which in the
application to the mammalian hippocampus corresponds to the
number of dentate gyrus granular cells, cannot change substan-
tially. Although adult neurogenesis was observed in this area, the
number of adult-born cells is negligible compared with the total
number of neurons. It is also reasonable to assume that having
higher f (i.e., higher activity in the DG) has a metabolic cost.

When the animal is put into an enriched environment and has
to learn to classify more input patterns P than before while keep-
ing N fixed, the classification performance of the network, ex-
pressed as P/N should increase. This can be achieved either by
increasing the number of neurons in the perceptron layer (the
CA3 area in the application to the hippocampus), by increasing
the number of feedforward (DG—CA3) connections per percep-
tron (CA3 pyramidal cell) Cy, or, finally, by changing the coding
level f of the input (DG) representations.

In line with the main assumption of our work, the number of
connections per perceptron C is limited by spatial constraints
and cannot be increased further. Increasing the number of cells is
also unlikely because the number of required additional neurons
would scale as N, and this would require additional wiring and
more energy. There is a more efficient alternative, which is to
adjust the coding level f.
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a, Schematic plot demonstrating the increase of the classification capacity with the coding level for sparse input representations. When the initial demand on the number of patterns

whose classification the animal has to remember is P;, the lower level of activity in the dentate gyrus f, is sufficient. When the required number of patterns is increased to P, (e.g., the environment
of the animal is enriched) and neither the connectivity of the network nor its size change, the new classification demand can be met by increasing the coding level up to the value £,. b, The
quantitative predication of the coding level f as a function of the required capacity P/N for two values of the number of feedforward connections per input neuron (¢ = 5 and ¢ = 50) in the

intermediate- and low-noise regimes.

As neuronal firing has a metabolic cost associated with it, we
hypothesize, that fis kept as low as possible so that the demand on
the number of patterns P saturates the classification capacity of
the network. In other words, if the required number of classifi-
able patterns is P,, the coding level f; is such that the point
(P,/N, f,) lies on the curve describing the maximal classification
capacity of the network (Fig. 8a). There can be two values of fthat
correspond to the same P;, of which the network prefers the lower
one (on the left from the maximum). When the environment is
enriched and the animal needs to classify P, > P, patterns, the
coding level should increase to f, > fi, so that the point (P,/N, ;)
is still on the same curve as shown in Figure 8a (we assume that

c = N cannot change).

In Figure 8b, we present the predicted relation between the
coding level fand the number of patterns P that the animal has to
learn to classify correctly (richness of environment), as estimated
by our model. Different colors correspond to different values of
the feedforward connections per input neuron ¢ (number of
DG-CA3 connections per DG granular cell) and the different
regimes described above. It should be pointed out that the pa-
rameter c is difficult to measure in an experiment, as the number
of perceptrons M does not directly correspond to the number of
cells in the CA3 area, but rather to the number of cells in the
subpopulation whose target activity is assumed to be uniform
(see subsection Multinomial classification). However, while the
prediction that the coding level should increase with the richness
of the environment does not depend on ¢, it is true for a wide
range of values of ¢ and it is valid for both the intermediate- and
low-noise regimes, which are likely to be the only two regimes
that are relevant for a computationally efficient biological system.
The prediction of the model is that the coding level of neural
representations in the DG, which could be measured using cal-
cium imaging, would increase with the richness of the environ-
ment. If this is observed, then it would be interesting to determine
the role of neurogenesis. The number of newborn neurons in

adult animals is probably too small to account for the increase in
N that would be needed to deal with an enriched environment.
However, the newborn neurons could have a significantly larger
coding level fand affect the effective coding level of DG in a more
substantial way. A new model with mixed coding levels would
have to be studied to produce specific quantitative predictions.

Discussion
We presented a model network based on perceptrons in which all
the neurons have limited connectivity, and nevertheless the clas-
sification capacity grows unboundedly and linearly with the size
of the network. The limitations on the classification capacity of
the individual perceptrons that are imposed by the limited con-
nectivity are overcome by reading out multiple perceptrons, as in
a committee machine. However, the readout mechanism is dif-
ferent from the one normally used in committee machines as it
uses a recurrent attractor dynamics of committee members to
generate a final vote. Thanks to the recurrent dynamics, it is then
possible to read out a small sample of all the committee members
to determine the committee decision. This allows for readouts
that have a limited connectivity, even when the size of the net-
work becomes very large. The limitations imposed on the num-
ber of connections per neuron make the proposed network less
efficient than a single readout with unlimited connectivity when
the total number of feedforward connections is considered. How-
ever, the decrease in classification performance is modest unless
the input representations become extremely sparse. Moreover,
and most importantly, the scaling properties of our neural system
are the same as those of the readout with unlimited connectivity.
Recent theoretical studies (Barak et al., 2013; Cayco-Gajic et
al., 2017; Litwin-Kumar et al., 2017) considered a neural archi-
tecture that is similar to the one that we analyzed. In all of these
studies, the input neurons are connected to an intermediate layer
of neurons and then read out by a single cell with unlimited
connectivity. The inputs are completely random in the study by
Litwin-Kumar et al. (2017), are low-dimensional and correlated



Kushnir and Fusi e Neural Classifiers with Limited Connectivity

in the study by Barak et al. (2013), and are highly correlated in the
study by Cayco-Gajic et al. (2017). The intermediate layer makes
the neural representations linearly separable by expanding the
dimensionality, so that the readout, which is linear, can be
trained. One of the studies (Litwin-Kumar et al., 2017) also shows
that this dimensionality expansion can be efficiently imple-
mented using random connectivity, and, surprisingly, the opti-
mal number of random connections per neuron is very small. In
our case, we also discuss a situation in which the connectivity is
limited, but our work addresses a different computational prob-
lem: in the study by Litwin-Kumar et al. (2017), the authors
focused on the problem of dimensionality expansion and showed
that large connectivity can actually reduce the performance of a
downstream classifier that reads out randomly connected neu-
rons. In their case, which nicely applies to the cerebellum, the
classifier had unlimited connectivity. Here we focused on the
problem of how to implement this downstream classifier under
the constraint of limited connectivity. In our case, the constraint
on limited connectivity is imposed because of the metabolic and
spatial cost of wiring, whereas in the study by Litwin-Kumar et al.
(2017) it emerges as a requirement for optimizing the ability to
expand the dimensionality of the neural representations. In the
study by Cayco-Gajicetal. (2017), the authors showed that sparse
connectivity can be beneficial in a problem of pattern separation,
but again it is the connectivity of the neurons in the intermediate
layer that they refer to, and not the readout.

In our article and in one of the articles discussed in the previ-
ous paragraph (Litwin-Kumar et al., 2017), the input patterns
were assumed to be random and uncorrelated. For any analysis of
the performance of a neural circuit, we need to make an assump-
tion about the nature of the inputs and random patterns is a
standard assumption enabling theorists to perform analytical cal-
culations. Although real-world sensory inputs are likely to be
highly structured and correlated, it is not completely unreason-
able to believe that, at least in some brain areas like the hippocam-
pus, the patterns of activity can be modeled as random and
uncorrelated. Indeed, the hippocampus is known to be involved
in memory consolidation. The most efficient way of storing real-
world correlated memories is to memorize only their uncorre-
lated component. In other words, if it is possible to compress the
memories by taking advantage of their correlations, the resulting
compressed representations will look random and uncorrelated
(Fusi, 2017). This is a process that is normally not modeled ex-
plicitly, although there are some models predicting that the hip-
pocampus might be involved in this compression process (M.K.
Benna and S. Fusi, unpublished observations).

One of the results that we discussed in our article is that there
are situations in which the proposed recurrent readout scheme
can outperform classical readouts that are based on a majority
vote despite the fact that the majority vote would require a sig-
nificantly larger readout connectivity (see subsections Nonuni-
form regimes and Two-subnetwork regime, intermediate noise).
For the majority vote scheme, the classification capacity drops
drastically when the input representations are very sparse because
the fraction of classifiers whose inputs are all silent becomes sub-
stantial and these classifiers just contribute to the noise. Instead,
for the recurrent readout the classification capacity can be kept
high even for very sparse representations in certain parameter
regimes because the recurrent dynamics can align the “free” clas-
sifiers to the majority decided by the other, informative classifi-
ers. The lower limit on the coding level f, below which the
capacity drops is determined by the amount of noise in the recur-
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rent dynamics, the expansion ratio, and the number of feedfor-
ward connections per perceptron (Fig. 5).

In general, the proposed system is robust to both sparse con-
nectivity and sparse representations, which makes it suitable to
describe neural circuits like the DG and CA3 area, where the
number of connections of downstream neurons (CA3) is much
smaller than the number of neurons in the input (DG) and the
neural activity in the input can be very sparse. CA3 is known to
have the recurrent connections that would implement our pro-
posed readout mechanism. We showed that for intermediate
noise levels (see Results, sections Nonuniform regimes and Two-
subnetwork regime, intermediate noise), the classification capac-
ity stays within a reasonable range even when the expected
number of active units read out by each perceptron is smaller 1
(Fig. 5e,f). This result nicely complements the findings of the
studies by Barak et al. (2013), Litwin-Kumar et al. (2017), and
Cayco-Gajic et al. (2017), where the authors show that low-
dimensional correlated inputs require an intermediate layer of
neurons (randomly connected in the study by Barak et al., 2013;
randomly connected or learned in the studies by Cayco-Gajic et
al., 2017; Litwin-Kumar et al., 2017). For these neurons in the
intermediate layer, there is an optimal sparseness level, which
minimizes the generalization error of a single perceptron-like
readout. In the study by Cayco-Gajic et al. (2017), the authors
also showed that sparse representations in the intermediate layer
are important for performing pattern discrimination. Here we
showed that there is a readout scheme that would also work for
the sparse representations required in the intermediate layer in
the studies by Barak et al. (2013), Cayco-Gajic et al. (2017), and
Litwin-Kumar et al. (2017), and does not require an unreason-
ably large number of long-range connections.

Our model is intentionally abstract with binary neurons, and
no separation between excitation and inhibition. However, the
dynamics of the recurrent network is very similar to the attractor
dynamics so widely studied first in abstract models like the model
of Hopfield (1982) and then in more realistic models that contain
integrate-and-fire neurons with dynamic synapses, sparse repre-
sentations (Amit and Brunel, 1997; Wang, 1999; Compte et al,,
2000; Brunel and Wang, 2001), and also, in some cases, plastic
synapses (Amit and Mongillo, 2003). We believe that the path
that goes from our abstract model to more realistic models such
as those just described is very similar to the one already followed.
This will be an interesting future project, which most likely will
confirm the scaling properties that we derived and discussed in
our article, as it happened in the case of the attractor neural
networks based on the pioneering work of John Hopfield.
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