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Abstract

An electrocardiogram (EKG) is a common, non-invasive test that measures the
electrical activity of a patient’s heart. EKGs contain useful diagnostic information
about patient health that may be absent from other electronic health record (EHR)
data. As multi-dimensional waveforms, they could be modeled using generic
machine learning tools, such as a linear factor model or a variational autoencoder.
We take a different approach: we specify a model that directly represents the
underlying electrophysiology of the heart and the EKG measurement process. We
apply our model to two datasets, including a sample of emergency department EKG
reports with missing data. We show that our model can more accurately reconstruct
missing data (measured by test reconstruction error) than a standard baseline when
there is significant missing data. More broadly, this physiological representation of
heart function may be useful in a variety of settings, including prediction, causal
analysis, and discovery.

1 Introduction

Heart disease annually claims the lives of over 600,000 people in the United States and over 17
million people worldwide [1, 2]. Early detection of cardiovascular disease is critical, and accurate
characterization of patient risk can improve care. Consequently, a commonly used diagnostic tool
is the electrocardiogram (EKG), which uses electrodes placed on the patient’s body to measure the
heart’s electrical activity. EKGs are widely administered to diagnose a variety of cardiac abnormalities,
including ischemia, heart attack, and arrhythmias. EKGs (and other waveform and image data) likely
carry additional information about the overall health of a patient, beyond what is already in electronic
health records (e.g. past diagnoses, medications, and lab tests). As we begin to use EHR data to
inform health care decisions, EKG features can be used alongside patient EHR data to construct more
accurate predictors, similar to unstructured physician notes [3] or the dynamics of ICU vital signs [4].

However, unlike discrete records, the EKG is a high-dimensional, dynamic object that is difficult to
summarize. While an EKG could be summarized with standard ML tools, a generic approach would
ignore the underlying physiology that drives EKG observations: the waveforms are a measurement of
an electrical signal originating in the heart and propagating through the body.

In this work, we pursue a physiological representation of an EKG by modeling the location, orienta-
tion, and strength of the electric potential induced by cardiac activity. Such a model has many benefits.
First, because our model represents physical electrode locations, our approach can flexibly and coher-
ently incorporate data from systems with more (or fewer) electrodes than standard 12-lead EKGs,
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Figure 1: (a) Graphical depiction of the latent moving dipole model. The instantaneous electrical
activity of the heart is summarized by a latent moving dipole, with location st and moment pt. This
object induces a potential field (depicted by dotted lines), which is measured by the electrodes located
at re according to Equation 2 — we depict the right arm (e = ra), left leg (e = ll) and two precordial
electrodes, e = v1 and e = v2. The electrode measurements are linearly combined to produce the
EKG lead observations (mentioned in Section 2 and detailed in Appendix A). (b) Prior distribution
over the 3-d spatial location of the precordial electrodes, v1 - v6.

including higher-dimensional (e.g.256-electrode body surface EKGs [5]) and lower-dimensional
(e.g. 5-electrode Holter monitors) electrocardiographic signals. Second, we show that our model
is robust to large amounts of missing observations. Finally, it produces a physically interpretable
representation of the EKG that can be used in a variety of applications, such as prediction or causal
analysis — for example, measuring the effect of a therapy on some aspect of cardiac function.

We evaluate our model with a lead reconstruction task — given an EKG where data from some leads
are missing, how accurately can we reconstruct the held out data? We find that our model can more
accurately reconstruct missing EKG leads than non-physical factor models when we have a lot of
missing data (which is common in our clinical emergency department setting). We conclude with a
discussion of statistical inference challenges and model extensions.

2 Data Description and Model

EKG Background An EKG lead measures the electric potential difference between two (or
more) electrodes. An electrode is a conductive pad placed on a part of the body (e.g. left leg
or chest) that measures instantaneous electric potential. A lead records the difference between a
pair (or a specific combination) of electrode readings (typically in millivolts); cardiologists visu-
ally inspect the lead outputs for abnormalities. The standard twelve leads are commonly referred
to as L = {I, II, III, aV R, aV L, aV F, V 1, . . . , V 6}.2 An EKG tracing of length T consists of
|L| = 12-dimensional observations at T time steps,

x = (x1, . . . ,xT ) xt ∈ R|L| . (1)

We model lead EKG observations by describing the physical location, orientation, and strength of the
electric potential induced by cardiac activity. We introduce model components that (i) describe the
underlying state of electrical activity; (ii) map latent electrical activity to electrode potential values;
and (iii) map electrode values to lead observations. To address point (i) we model electrical activity
with a single moving dipole, following [6]. We address point (ii) by modeling the 3-d location of
electrodes and using a simplified torso conductance model. Point (iii) is straightforward and can be
modeled by a fixed linear map — we describe this step in detail in Appendix A.

Moving Dipole Generative Model Each observation xt is generated by the electric potential
induced by a single latent dipole with state zt , (st,pt), where st ∈ R3 is the spatial location of the
dipole and pt ∈ R3 is its moment. A dipole is an idealized point whose location and moment induce
a spatial electrostatic potential that is measured by each electrode. At time t, the latent dipole induces
a potential at each of the |E| electrodes that are spatially located at points re where e = 1, . . . , |E|
and re ∈ R3. Assuming a uniform conductance torso model, a single dipole with state zt = (st,pt)

2There are typically nine electrodes used to produce a twelve lead EKG — see Appendix A.
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(a) ptb example (b) ed example

Figure 2: Observed and held out data. We fit each model on the observed (solid blue) signal and
test on the held out (dashed red) areas. Left: ptb examples have data from all twelve leads over the
observation period. Right: ed examples have three “long leads” (II, V1, V5) and observe roughly 2.5
second chunks of every other lead, which yields large amounts of missing data. Note that only six of
the twelve leads are depicted above.

will have a potential measured at electrode e, located at re, given by

x̃t,e =
1

4πκ
· (re − st)

ᵀpt

||re − st||3
, g(st,pt, re, κ) , (2)

where κ is the (constant) electrical conductivity of the torso [6] (which we set to .2, following [7]).
To get from electrode to lead, there is a fixed linear function which produces the twelve standard
leads, namely xt = Ox̃, where x̃t = (x̃t,1, . . . x̃t,|E|) and O is detailed in Appendix A.

Priors To complete the model, we specify a prior distribution over the latent dipole state, st and
pt, and the location of each electrode re. We put zero-centered spherical Gaussian priors over st and
pt and weakly informative priors over electrode locations, pe(r), described in Appendix B.1. The
data generating process is

re ∼ pe(r) for e = 1, . . . , |E| (3)

st,pt ∼ N (0, Iσ2
s),N (0, Iσ2

p) for t = 1, . . . , T (4)

xt ∼ N (Ox̃t, Iσ
2) where x̃t,e = g(st,pt, re, κ) (5)

In this current iteration we ignore temporal correlation in st and pt, leaving this for future work.

Inference The above generative model will admit tractable (though approximate) variational
inference [8]. As a first step, however, we use MAP inference to show the utility of this modeling
approach, solving the optimization problem

{ẑ}, {r̂} = argmax
z,r

ln p(x, z|r)p(r) (6)

ln p(x, z|r)p(r) = ln

T∑
t=1

ln p(xt|zt, r) + ln p(zt) +

|E|∑
e=1

ln pe(re) . (7)

To solve this optimization problem, we use L-BFGS [9] with gradients computed by automatic
differentiation [10]. See Section D for further discussion of inference.

3 Experiments

We assess model performance by measuring held-out lead reconstruction error. For each EKG, we
hold out portions of the waveform during training (depicted in Figure 2). We then use the model to
impute the held-out values and compute the root mean squared error (RMSE). A model that better
captures the underlying phenomenon will more accurately impute missing lead values.

We apply our model to a small sample of 10-second EKG segments from two datasets:
• ptb: the PTB Diagnostic ECG Database [11], a database of 549 full twelve-lead EKG records.

Figure 2a displays a typical ptb record.
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(a) median rmse: ed (b) median rmse: ptb

Figure 3: Median RMSE on held out leads for the dipole, PCA-3, and PCA-6 models (distributions
computed with 1,000 bootstrap samples) on the ed (997 EKGs) and ptb (549 EKGs). The dipole
model outperforms the PCA baselines in the ed dataset (which has a lot of missing data), while they
perform similarly on the ptb dataset.

• ed: a subset of 997 EKG recordings from emergency department patients from a large metropolitan
hospital, each exhibiting “normal sinus rhythm.” These EKGs are derived from a traditional report
that saves the full time series for leads II, V1, and V5, and short (approximately 2.5 second)
segments of the other 9 leads. This missingness can frustrate analysis of the full EKG object, which
we address with both our model and baseline approaches. Figure 2b shows a typical ed record.

Baseline linear factor model We compare the latent dipole model to probabilistic PCA (with
K = 3 and K = 6 latent dimensions), which describes lead observations as

xt = Fzt + ε , where F ∈ R12×K , zt ∈ RK , ε ∼ N
(
0, σ2I

)
. (8)

Here F are the K latent factors, and zt is the K-dimensional latent state that describes observation
xt (analogous to our dipole location and moment). We use an implementation of PCA designed to
handle missing entries [12].

Empirical Results For each dataset, we fit the dipole model and two PCA models (K = 3 and
K = 6) to each EKG. We compare the median RMSE over all patients in each dataset. Figure 3
depicts the median RMSE for each model for the ed and ptb. We observe that the dipole model
more reliably reconstructs out of sample lead observations in the ed setting, where the short leads
are missing most entries (see Figure 2). We observe similar performance for all three models in the
ptb dataset. The dipole model is constrained to produce a spatially consistent reconstruction of EKG
leads, which may help in the absence of many lead observations.

We produce a full imputation of an ed EKG in Figure 5, which shows that the dipole model can
have more stable imputations. To contrast this, the ptb EKG imputation in Figure 6 shows that both
models have an easier time reconstructing out of sample leads when most of the tracing is present.
Figure 4a shows the dipole model reconstruction on an ed EKG. Figure 4b compares the residuals
for the dipole model and two PCA models on the same EKG. We see that the dipole model accurately
reconstructs leads II and aVF (almost no structure in the residual), but has a difficult time with the
precordial leads V1 and V5, which may be due to inaccurate reconstruction of electrode location.
The PCA models have structured residuals for all leads around regions of high voltage.

4 Discussion

We developed a model of EKG observations with a physiological inductive bias. We compared our
model to non-physical latent factor models, showing its potential to more accurately characterize
patient physiology. There are many directions of future work. We will model temporal dynamics in
the latent variables zt, incorporating local temporal smoothness and quasi-periodicity into the prior.
Such dynamics may better characterize arrhythmias or other abnormalities not present in normal
sinus rhythm EKGs. The non-conjugacy of the dipole-electrode model complicates inference; a focus
will be on efficient approximate inference methods for this model, following [13] and [14]. We also
aim to use model output in downstream statistical analyses — exploring the structure of patients with
adverse cardiac events, building risk predictors alongside historical patient medical record that can
aid physician decision-making, and measuring the causal effect of therapies on aspects of cardiac
function.
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A Electrode to Lead transformation

Electrocardiogram data are presented as leads, which are differences in potential values between
electrode measurements (or averages of electrode measurements). This is a somewhat straightforward
transformation that we will account for in the likelihood. The output potential difference for each
lead are simple functions of the electrode readings:

I = la− ra aV R = ra− 1

2
(la+ ll)

II = ll − ra aV L = la− 1

2
(ra+ ll)

III = ll − la aV F = ll − 1

2
(ra+ la)

Vi = vi −
1

3
(ra+ la+ ll)

We can express these relationships as a simple linear transformation of the electrode values x̃ into
lead values x

xt = Ox̃t , O =

(
Oe 03×6
Oa 03×6
Ov I6×6

)
∈ R12×9 (9)

where the transformation matrix O has a fixed block structure, where the blocks are defined

Oe =

(
1 −1 0
0 −1 1
−1 0 1

)
, Oa =

(−1/2 1 −1/2
1 −1/2 −1/2
−1/2 −1/2 1

)
, Ov =

(−1/3 −1/3 −1/3
. . . . . . . . .
−1/3 −1/3 −1/3

)
.

(10)

B Priors

B.1 Electrode location prior

Fitting data with the above appearance model will require inferring the electrode locations R. We
can use the general guidelines of where to attach electrodes to place a prior on their relative location.

We use a simple elliptical model of the thorax to set prior values on the location of V1 - V6. We set
the chest width to be 25 centimeters and the major-minor axis ratio to be 2.75. The V1 - V6 locations
are at even angular locations from 260 degrees to 360 degrees (all the way to the left side of the chest).
Figure 1b depicts the prior (with 2 standard deviations for the precordial (chest) electrodes (v1 - v6).

The location of the right arm, left arm, and left leg electrodes will be given diffuse priors flanking the
modeled torso depicted in Figure 1b.

B.2 Conductance Parameter Priors

Average thoracic tissue impedance can be approximated as resistive with conductivity values around
.2 S/m [15].

C Additional Model Fit

Figure 4 depicts held-out data, showing the reconstruction performance of the dipole model in leads
V1, V5, II and aVF. Figure 4b also depicts the residuals for the dipole model and both PCA models.
Figure 5 displays the full missing data imputation for an emergency department patient. Similarly,
Figure 6 shows the missing data imputation for the ptb example, which has no missing data.
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(a) test reconstruction (ed example)

(b) test residuals (ed example)

Figure 4: (a) dipole model test reconstruction. (b) residual comparison for pca-3, pca-6, and dipole
model.
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(a) Dipole model

(b) PCA K = 3

(c) PCA K = 6

Figure 5: Held out and missing reconstruction for ed data (depicting only 8 leads). Held out sections
were selected to be non-overlapping.
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(a) Dipole model

(b) PCA K = 3

(c) PCA K = 6

Figure 6: Held out and missing reconstruction for ptb data (depicting only 8 leads).
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D Inference

We currently fit the model with MAP inference over both the latent zt and global re parameters. This
joint maximization, however, may lead to overfitting — we would prefer to maximize the following
marginal likelihood objective

{r̂} = argmax
r

ln p(x|r)p(r) (11)

= argmax
r

ln

∫
p(x|z, r)p(z)p(r)dz . (12)

As an example, this is the objective that PCA essentially fits — the local weights are integrated out
(in the E-step) and the global factors are optimized (in the M-step).

Our dipole is challenging, however, because the latent factors z and global variables r enter into the
likelihood term, p(x|z, r) with a complex function, given by Equation 5.

The posterior distribution over z given the observations x and electrode locations r does not admit a
closed form

p(zt|xt, r) ∝ p(xt|z, r)p(zt) (13)

=

 |L|∏
`=1

p(xt,`|zt, r)

 p(zt) (14)

=

 |L|∏
`=1

N (xt,`|(O` · g(zt, r), σ
2

 p(zt) (15)

where we define g to be the |E|-length electrode observations

g(zt, r) =
(
g(st,pt, r1, κ), . . . , g(st,pt, r|E|, κ)

)ᵀ
, (16)

recalling that the latent state zt , (st,pt) is divided into a location and moment component. Because
g(st,pt, re, κ) is nonlinear in st, the posterior distribution over st becomes intractable. We do note
that g(·) is linear in pt when you fix st, re, and κ. If we place a Gaussian prior over pt, this
conditional posterior should be tractable. We plan to use this tractable conditional structure in future
work to scale inference in this model.
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