The Journal of Neuroscience, January 24, 2018 - 38(4):989-999 - 989

Systems/Circuits

A Unifying Motif for Spatial and Directional Surround
Suppression
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In the visual system, the response to a stimulus in a neuron’s receptive field can be modulated by stimulus context, and the strength of
these contextual influences vary with stimulus intensity. Recent work has shown how a theoretical model, the stabilized supralinear
network (SSN), can account for such modulatory influences, using a small set of computational mechanisms. Although the predictions of
the SSN have been confirmed in primary visual cortex (V1), its computational principles apply with equal validity to any cortical
structure. We have therefore tested the generality of the SSN by examining modulatory influences in the middle temporal area (MT) of the
macaque visual cortex, using electrophysiological recordings and pharmacological manipulations. We developed a novel stimulus that
can be adjusted parametrically to be larger or smaller in the space of all possible motion directions. We found, as predicted by the SSN,
that MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit suppression by the same stimuli when
they are high in contrast. These results are analogous to those found in visual cortex when stimulus size is varied in the space domain. We
further tested the mechanisms of inhibition using pharmacological manipulations of inhibitory efficacy. As predicted by the SSN, local
manipulation of inhibitory strength altered firing rates, but did not change the strength of surround suppression. These results are consistent
with the idea that the SSN can account for modulatory influences along different stimulus dimensions and in different cortical areas.
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Visual neurons are selective for specific stimulus features in a region of visual space known as the receptive field, but can be
modulated by stimuli outside of the receptive field. The SSN model has been proposed to account for these and other modulatory
influences, and tested in V1. As this model is not specific to any particular stimulus feature or brain region, we wondered whether
similar modulatory influences might be observed for other stimulus dimensions and other regions. We tested for specific patterns
of modulatory influences in the domain of motion direction, using electrophysiological recordings from MT. Our data confirm the
predictions of the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory cortex. /

ignificance Statement

Introduction

What circuitry underlies sensory cortical processing? Recent
work argues that visual cortical circuitry is well described by a
circuit termed the stabilized supralinear network (SSN; Ahma-
dian etal., 2013; Rubin et al., 2015). The key idea is that neuronal
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gain, the change in output per change in input, increases with
activation. As a result, the effective connection strengths between
neurons increase with network activation, leading to a wide range
of cortical nonlinear behaviors.

One such behavior involves surround suppression: a decrease
ina neuron’s firing rate when the size of a stimulus exceeds that of
the receptive field “center” (Allman et al., 1985; Jones et al., 2001;
Cavanaugh et al., 2002). In the visual cortex, surround suppres-
sion is stronger for strong (high-contrast) stimuli than for weak
(low-contrast) stimuli, so that the optimal stimulus size is larger
for weaker stimuli (Sceniak et al., 1999; Pack et al., 2005; Tsui and
Pack, 2011).

The SSN circuit explains this observation as follows. For very
weak center stimuli, the cortical region representing the center is
weakly activated and has weak effective connection strengths.
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Therefore, monosynaptic inputs to the center from the surround,
which are primarily excitatory, dominate over disynaptic and
polysynaptic surround-driven local inputs, which are often inhibi-
tory. As a result, the surround stimulus facilitates the response. With
increasingly strong center activation, due either to a larger or higher-
contrast stimulus, recurrent interactions become increasingly strong
and increasingly inhibition-dominated [as observed in mouse pri-
mary visual cortex (V1); Adesnik (2017)]. The surround stimulus
then more strongly drives inhibitory neurons, yielding surround
suppression. Thus, contrast-dependent surround suppression
emerges from the dynamics of recurrent activity, without the
need for explicit assumptions about different contrast thresholds
for excitation and inhibition (Rubin et al., 2015).

Although the model has been primarily tested with V1 data,
the underlying principles are generic (Ozeki et al., 2009; Rubin et
al., 2015; Miller, 2016). In particular, if the connection strength
between neurons decreases with their distance in a feature space
[e.g., preferred orientation in V1; Cossell et al., 2015; or preferred
direction in the middle temporal area (MT)], then the SSN model
predicts that there should be contrast-dependent surround sup-
pression in that feature space, just as in retinotopic space (Rubin
et al., 2015). MT should show such a decrease in connection
strength with increasing difference in preferred direction, be-
cause MT contains a local columnar structure (Albright, 1984) so
that nearby neurons encode similar motion directions (Born and
Bradley, 2005). The SSN thus predicts that MT neurons should
show contrast-dependent surround suppression in the space of
motion-direction: stimuli that include a wider range of motion
directions, and thus activate MT neurons with a wider range of
motion preferences, should suppress MT responses; and this
direction-domain suppression should be stronger at higher con-
trasts and become weaker or absent at lower contrasts. Here we
test this prediction in monkey MT.

We also test a second prediction. For reasonably strong acti-
vation, the excitatory recurrence becomes strong enough that the
network becomes an inhibition-stabilized network (ISN): a net-
work in which recurrent excitation is strong enough to be
unstable (i.e., epileptic), but the network is stabilized by feedback
inhibition (Tsodyks et al., 1997; Ozeki et al., 2009). An ISN shows
a “paradoxical” response: when external excitatory drive is added
to inhibitory cells (as when a surround stimulus drives center
inhibitory cells sufficiently strongly to cause surround suppres-
sion), the inhibitory cells lower their sustained firing rates, due to
loss of recurrent excitation from suppressed excitatory cells. Thus,
both excitatory and inhibitory cells are surround suppressed, as as-
sayed by the inhibition received by excitatory cells being reduced
by surround suppression (Ozeki et al., 2009; Adesnik, 2017). The
SSN, and any model that is an ISN, predicts that surround sup-
pression is little affected by local blockade of GABAergic inputs
(Ozeki et al., 2004, 2009; Rubin et al., 2015), because the suppres-
sion is caused by a withdrawal of excitatory input that is not
disrupted by local manipulations of inhibition.

We tested the first prediction by designing a stimulus that
could be manipulated parametrically to be larger or smaller in the
space of directions, while maintaining a fixed size in visual space.
We found that responses in MT were indeed suppressed by stim-
uli with a wider range of motion directions, but only when the
stimulus was high in contrast. At low contrast, neurons inte-
grated over a larger spread of motion directions, as has been
observed for spatial integration (Levitt and Lund, 1997; Kapadia
et al., 1999; Sceniak et al., 1999). In addition, we confirmed that
local blockade of GABAergic inhibition does not reduce spatial
surround suppression in MT, just as in V1 (Ozeki et al., 2004).
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These results are consistent with the idea that the SSN is a generic
mechanism of cortical computation (Miller, 2016).

Materials and Methods

Electrophysiological recordings and visual stimuli. Two adult female rhesus
monkeys (Macaca mulatta; both 7 kg) were used for electrophysiological
recordings in this study. Before training, under general anesthesia, an
MRI-compatible titanium head post was attached to each monkey’s
skull. The head posts served to stabilize their heads during subsequent
training and experimental sessions. For both monkeys, eye movements
were monitored with an EyeLink1000 infrared eye tracking system (SR
Research) with a sampling rate of 1000 Hz. All procedures conformed to
regulations established by the Canadian Council on Animal Care and
were approved by the Institutional Animal Care Committee of the Mon-
treal Neurological Institute.

Area MT was identified based on an anatomical MRI scan, as well as
depth, prevalence of direction-selective neurons, receptive field size to
eccentricity relationship, and white matter to gray matter transition from
a dorsal-posterior approach. We recorded single units using linear mi-
croelectrode arrays (V-Probe, Plexon) with 16 contacts.

Neural signals were thresholded online, and spikes were assigned to
single units by a template-matching algorithm (Plexon MAP System).
Off-line, spikes were manually sorted using a combination of automated
template matching, visual inspection of waveform, clustering in the space
defined by the principle components, and absolute refractory period
(1 ms) violations (Plexon Offline Sorter).

Visual motion stimuli were displayed at 60 Hz at a resolution of
1280 X 800 pixels; the viewing area subtended 60° X 40° at a viewing
distance of 50 cm. Stimuli consisted of random dot stimuli displayed on
a gray background (luminance of 98.8 cd/m?). Half the dots were black,
and half the dots were white, resulting in a constant mean luminance
across stimulus conditions. At 100% contrast, the black dots had lumi-
nance of 0.4 cd/m?, and the white dots had luminance of 198 cd/m?2. The
intermediate contrasts were defined as a percentage of the luminance
difference from the gray background luminance, contrast = |(lumi-
nance — 98.8 cd/m?)/98.8 cd/m?|. Animals were trained to fixate on a
small dot at the center of the screen. Stimuli were shown after 300 ms of
fixation. Each stimulus was presented for 500 ms, and the animals were
required to maintain fixation throughout the stimulus and for another
300 ms after the end of the stimulus to receive a liquid reward. In all trials,
gaze was required to remain within 2° of the fixation point in order for
the reward to be dispensed. Data from trials with broken fixation were
discarded.

The direction tuning and contrast response of the single units were
quantified using 100% coherent dot patches placed inside the receptive
fields. Off-line the receptive field locations were further quantified by
fitting a spatial Gaussian to the neuronal response measured overa5 X 5
grid of stimulus positions. The grid consisted of moving dot patches
centered on the initially hand-mapped receptive field locations. We con-
firmed that all neurons included in our analysis had receptive field cen-
ters within the stimulus patch used.

Size-tuning stimuli in direction space. We designed a stimulus that
would allow us to study surround suppression in the motion domain in
a manner that was analogous to studies in the spatial domain. In this
conception, the input to the receptive field “center” is the strength of
motion in a range about the neuron’s preferred direction. The “sur-
round” is then motion in other directions, and the bandwidth of the
center plus surround is the size of the stimulus in direction space. That is,
a stimulus that contains motion in a range of directions spanning 180° is
larger than a stimulus that spans a range of 60°. For these experiments we
did not manipulate the spatial size of the stimulus, but rather fixed it
according to the size of the hand-mapped spatial receptive field.

Our stimuli made use of random dots, each of which could be assigned
to either a noise or a signal pool. The noise dots moved in random
directions. The signal dots moved in a range of directions that straddled
the preferred direction of each neuron. All dots moved at the same fixed
speed of 8 or 16°/s, depending on the speed preference of the neuron. In
all cases, dot patches were centered on the receptive fields determined by
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Figure 1.

Illustration of the two methods of stimulus generation. 4, lllustration of the stimulus that engages directional surround suppression in MT while the dot density is fixed. B, lllustration

of the stimulus that engages directional surround suppression in MT while the dot density increases with directional size.

Table 1. Summary of the two methods of stimulus generation

Method 1: varying the noise pool, with dot density fixed to 2 dots/degree (Fig. 14)

Method 2: varying the dot density without adding any noise dots (Fig. 18)

No. of

directions  Signal directions Noise, %  Directions Density, dots/degree >
1 25% at preferred direction 75 Preferred direction 2

3 25% at preferred; 25% at %-30° from preferred 50 Preferred; =30° from preferred 4

5 25% at preferred; 25% at +=30° and 25% at == 60° from preferred 25 Preferred; #-30°and =60° from preferred 6

7 25% at preferred; 25% at +30°% 25% at £60° and 25% at =90° from preferred 0 Preferred; +30°, £60°, and +-90° from preferred 8

hand mapping. All conditions were interleaved randomly, and each stim-
ulus was repeated 20 times.

We wished to change the size of the stimulus in direction space without
changing other stimulus variables to which the neurons were sensitive.
However, changing the size in direction space entails changing other
low-level stimulus parameters (e.g., total number of dots or total amount
of motion energy), which could confound our interpretation of the data.
We therefore used two different methods to vary the stimulus bandwidth
in direction space, each of which entailed changing a different low-level
aspect of the stimulus.

In the first method, we kept the total number of stimulus dots fixed,
and increased the motion bandwidth by drawing dots from a noise pool.
Thus the total number of dots was identical for all stimuli, across varia-
tions in direction bandwidth. We constructed stimuli that contained
signal dots moving in 1, 3, 5, and 7 directions, and each increase in the
number of motion directions involved recruiting 25% of the noise dots to
move coherently in the new direction (Fig. 1A; Table 1). This paradigm
thus allowed us to test the influence of size in direction space for stimuli
comprised of a fixed number of dots and a fixed amount of overall
motion energy. We limited the largest size in direction space to be =90°
from the preferred direction to avoid null direction suppression at larger
sizes (Snowden et al., 1991; Qian and Andersen, 1994).

However, in this approach, increases in motion bandwidth are yoked
to decreases in noise, which might be expected to affect the strength of
inhibitory inputs on their own (Hunter and Born, 2011). Thus, we also
tested neurons using a second method, in which there was no noise pool,
and we increased the size in direction space by simply adding more dots
that moved in different directions. In this case the center stimulus
strength (i.e., the strength of motion in the preferred direction) was
constant across conditions, but the total number of dots (and hence the
total motion energy) increased with stimulus size. The lowest dot density
used was 2 dots/degree”, which is beyond the density at which MT re-
sponses typically saturate, at least for 100% coherence stimuli (Snowden
etal., 1992). We again tested four different direction conditions (Fig. 1B;

Table 1). In all cases, the dot size was 0.1°. The dots were initially plotted
at random locations and moved in fixed directions from frame to frame.
A dot that left the patch was replotted at the corresponding location on
the opposite boundary of the patch on the next frame and continued its
motion from there, i.e., the lifetime was equal to the stimulus duration
(Qian and Andersen, 1994).

For all size-tuning experiments in direction space, we tested each of the
four sizes at high and low contrasts. High contrast was defined as 100%
contrast, and the low contrast was chosen online to be around the ¢, of
the contrast response function obtained with the 100% coherent dot
patch. Off-line, we eliminated one neuron for which the response at the
lowest contrast was <2 SD of the spontaneous baseline firing rate.

Grating, plaid, and pattern selectivity. We tested a subset of MT neu-
rons (n = 65) with a standard measure of motion integration, the plaid
stimulus (Movshon et al., 1985). Direction selectivity for each neuron
was first measured with a 100% contrast drifting sinusoidal grating of
spatial frequency of 0.5 cycles/°. Stimulus size and temporal frequency
were matched to the neuron’s preferences. Plaid stimuli were constructed
by superimposing two gratings (see Fig. 5A).

We used the standard approach to quantify the component and pattern
selectivity of each neuron (Smith et al., 2005). The partial correlations for the
pattern and component predictions were calculated as follows:

Ty = Telpe
PC, =,
A=)

Te = Tplpe

PC, = —

(1= =)

Here, ,, and r, are the correlations between the plaid response and the
pattern and component predictions, respectively, and r,,. is the correla-
tion between the pattern and component predictions. The partial corre-
lations are z-scored as follows:
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Figure 2.  Stabilized supralinear network can account for surround suppression in both spatial and direction domains. A, Schematic of the 1D SSN ring model as a direction space analog of the
visual space model. In the visual space model (top), stimuli of different sizes in visual space (gray circles) are simulated as input, h(x), of varying width, to a linear 1D grid of excitatory (E, red) and
inhibitory (I, blue) units. The grid positions represent visual space positions. In the direction space (bottom), there are 360 E and | units, with coordinates on the ring as preferred directions. A dot
stimulus, h(x), moving at a single direction is a Gaussian-shaped input with SD of 60°. Stimuli including multiple directions simply add such input for each direction. We considered two methods of
adding directions: including a “noise pool” stimulus of equal input to all directions, and subtracting from the noise pool as we added directions to keep total input strength unchanged (Fig. 14); or
simply adding additional input as we added directions, without a noise pool (Fig. 1B). B, Directional surround suppression at high contrast, but not at low contrast, arises from the dynamics of the
model. This simulation result is for the first method of taking dots from a noise pool to add further directions about the preferred (Fig. 14). The response at each contrast is normalized to the peak
response. C, The simulation result for the second method of adding dots to further directions about the preferred without a noise pool (Fig. 18). The response at each contrast is normalized to the peak

response.

3 (1 +PC)/(1 —PC,)
Z,= 0.51n< \/ll(n = >,
Z -0 ln((l + PC,)/(1 — PCJ)

Vl/(?’l - 3)

Where n = 12 is the number of directions. The pattern index was calcu-
latedas Z, — Z,.

Pharmacological injections. The pharmacological injection system has
been previously described (Liu and Pack, 2017). Briefly, our linear elec-
trode arrays contained a glass capillary with an inner diameter of 40 wm.
One end of the capillary was positioned at the opening between contacts
5 and 6 of the array (contact 1 was most dorsal-posterior), so that the
separation of the injection site from the recording contacts ranged be-
tween 0 and 1000 pwm. The other end of the capillary was connected via
plastic tubing to a Hamilton syringe for the injection of pharmacological
agents with a minipump.

To effectively manipulate neuronal responses without compromising
isolation, we typically used injections of 0.1-0.2 ul at 0.05 ul/min. For
GABA, we used a concentration of 25 mm, which reduced neural activity
without silencing it completely (Bolz and Gilbert, 1986; Nealey and
Maunsell, 1994). For gabazine, the concentration was 0.05 mm, and we
used injections of ~0.5 ul at 0.05 wl/min. In a few cases, this induced
unstable and synchronized responses in the nearby neurons (Chagnac-
Amitai and Connors, 1989). The electrophysiological recordings in those
sessions were not further analyzed here.

Data analysis. MT direction tuning curves r(x,;) were characterized by
fitting a Gaussian function to the mean responses using the least-squares
minimization algorithm (Isqcurvefit in MATLAB). The Gaussian func-
tion is as follows:

— 2 2
r(xd) = qge 0.5d(0, xq) /b + m,

where a scales the height of the tuning curve; b determines the tuning
curve width, the direction tuning width (DW) was defined as full width at
half maximum of the fit, i.e., 2.35b; x, is the motion direction; 0 is the
preferred direction of motion; and m is the baseline firing rate of the cell.
d(, x,) is the shortest distance around the 360° circle between 6 and x,;.
The Gaussian fit to the data was very good in most cases (median R* =
0.90 before gabazine injection and R* = 0.89 after injection).

The contrast response functions r(x,) were fitted with a Naka—Rushton
function:

n
c

X

r(xc) = Rmux n + m)

x; + ¢
where R, scales the height of the contrast response function; # deter-
mines the slope; ¢s, is the contrast at which the response function
achieves half of its maximum response; and  is the baseline firing rate of
the cell. x, is the contrast.

The neuronal size-tuning curves r(x,) in retinotopic space were fitted
by a difference of error functions (DoE; Sceniak et al., 1999; DeAngelis
and Uka, 2003):

X, X,
r(x,) = Aeerf<?> - A,-erf(s T sv> + m,

where A, and A; scale the height of the excitatory center and inhibitory
surround, respectively. s, and s; are the excitatory and inhibitory sizes,
and m is the baseline firing rate of the cell. x, is the stimulus size. The DoE
fit to the data was very good in most cases (median R* = 0.93 before
gabazine injection and R* = 0.93 after injection).

The size suppression index (SIg) for each neuronal size-tuning curve
was calculated as SIg = (R,,, — R)/R,,,, where R, is the maximum across
responses to different stimulus sizes and R, is the response observed at
the largest size. Because using the raw responses is sensitive to noise at
both the maximum response and the response at the largest size, we used
the values from the DoE fits for SI calculations.

Because we only measured the response at four sizes in the directional
space, we were unable to fit a DoE function to the directional size-tuning
curves. Instead, to capture potential suppressive influences in the direc-
tion domain, we calculated a direction integration index from the raw
datall, = (R — Rg)/(R; + Rg), where R, is the response observed at the
largest size and Ry is the response observed at the smallest size.

SSN model simulations. We first simulated a 1D ring model, which
captures putative interactions among neurons representing different
motion directions (Fig. 2A). Details of this model can be found elsewhere
(Rubin et al., 2015). Our model differs in that the ring is 360 degrees in
extent (vs 180° by Rubin et al., 2015), representing all possible motion
directions. There is an excitatory (E) and inhibitory (I) neuron at every
integer position x; = 0° 1°, ..., 359°, where x; represents the preferred
direction of the corresponding E and I cells. We can write the model
equation in matrix notation as follows:
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T%r(x,-) = —r(x) +k([W=r(x) + ch(x)].)",

where 7 (x;) is the vector of firing rates of the excitatory and inhibitory
neurons with preferred motion direction x;, W(y) is the weight matrix of
E—E,E—LI—E, and I —I connections between neurons separated
by angular distance y (measured as shortest distance around the 360°
circle). The connection weights W, (y) = ], Gy, (y), where J; = 0.044,
Jer = 0.023, J;; = 0.042, J;; = 0.018, Goy;,(y) are a Gaussian function with
SD of 64° (Ahmadian et al., 2013). W * r x; is the convolution Z]-W(x,- —
xj) r(xj), where the sum is over all preferred directions x; h(x;) is the
vector of external input to the E and I neurons preferring x;; and c is the
strength (monotonically related to contrast) of the input. The elements
of the vector of input to the neuron, W r(x;) + ch (x;), are thresholded
at zero before being raised to the power : [z] , = 0ifz < 0, = zifz = 0 (the
operations of thresholding and raising to a power are applied separately
to each element of the vector). k and » are identical for E and I neurons,
with k = 0.04 and n = 2. 7is a diagonal matrix of the time constant for E
cells, 7, = 20 ms, and for I cells, 7, = 10 ms.

Regarding the model parameter choices, the four amplitudes J,;, were
constrained to ensure stability and strong nonlinear behavior. To ensure
stability, we require JpJip > JgpJy, meaning feedback inhibition is suffi-
ciently strong. For equal-strength inputs to E and I cells as used here, the
strongest nonlinear behavior also requires J;; — J;; < Oand J;; — Ji; < Jip —
Jer (Ahmadian et al., 2013). We chose Gog;,(y) to have a SD of 64°, given
the bandwidth of MT direction tuning curves and the idea that cells with
more strongly overlapping tuning curves should more strongly connect
to each other; this value can be varied to give a diversity of surround
suppression as observed in the data. We chose n = 2 for the power-law
input—output (I/O) function, consistent with the observation in V1 that
neurons have I/O functions well described by a power law throughout the
full range of firing induced by visual stimuli, with powers in the range 2-5
(Priebe and Ferster, 2008). Atn = 2, k = 0.04 gave reasonable firing rates,
but the qualitative behavior is consistent for a large range of # and k.
Finally, we chose the ratio of the time constants for E and for I cells, 7,/7; =
2, to help ensure stability; given that the network is stable, the time
constants do not affect the steady-state network responses, which is what
we are modeling here.

We simulated network responses to random dot field stimuli of
variable coherence. We assumed that a coherent dot stimulus of a given
direction gives input to MT neurons proportional to a Gaussian func-
tion, of SD 60°, of the difference (shortest distance around a 360° circle)
between the neuron’s preferred direction and the stimulus direction. To
simulate the method using noise dots (Table 1, Method 1), the nonco-
herent (noise) dots gave equal input, proportional to 1/360, to neurons of
all preferred directions. The strength of the stimulus is given by a param-
eter ¢, identified as the “contrast” in Figure 2. As in our electrophysiolog-
ical experiments, we used stimuli corresponding to four different sizes in
direction space (Fig. 1A). Thus for the smallest size, 25% of the input, b,
was modeled as a Gaussian distribution around the preferred direction
(peak of the Gaussian = ¢/4), whereas the remaining 75% was spread
equally around the ring [uniform distribution of size (3/4) X ¢/360]. At
two directions, an additional 25% was taken from the noncoherent input
and added to Gaussian spreads ~=30° from the preferred direction
(these two Gaussians have peak = ¢/8; noise amplitude becomes (1/2) X
¢/360). Three and four directions followed in a similar manner while the
total input strength was kept constant across sizes. We also simulated
Method 2 (Table 1), which used the same set of stimuli except without a
noise background (so that the total input strength grew with increasing
number of directions), and the results were qualitatively similar as pre-
sented in Results.

Experimental design and statistical analysis. We used two female rhesus
monkeys (Macaca mulatta) for electrophysiological recordings in this
study; this is standard for electrophysiological studies involving mon-
keys. We used the Wilcoxon rank sum test to evaluate the difference
between the integration index at low and high contrast, and the differ-
ence between DW and SI before and after injection of Gabazine. As the
DW and SI can be affected by the ability to sample the tuning curves, we
performed a bootstrapping analysis to ensure the robustness of the sum-
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mary statistics. For each cell, we randomly sampled (with replacement)
10 trials per direction or size to create a tuning curve and then fitted a
circular Gaussian or DoE to the subsampled tuning curve to generate a
new direction tuning width or suppression index. We generated 100
sample distributions and tested the effects of gabazine injections with a
Wilcoxon signed rank test. To evaluate the relationship between the
pattern index and DW and the integration index, we calculated Pearson
correlation coefficients. All analyses made use of built-in MATLAB func-
tions and custom scripts. The complete results of the statistical analyses
for each experiment can be found in the corresponding Results section.

Results

In this section, we first present simulation results for the SSN. We
then test a crucial model prediction with neurophysiological re-
cordings from MT neurons in awake and behaving macaques.
The theoretical and empirical results show that surround sup-
pression in the motion domain behaves similarly to surround
suppression in the space domain, with integration at low con-
trasts switching to suppression at high contrasts (see Figs. 3, 4).
We also find that pattern-selective cells (as assayed from plaid
responses) show greater motion integration than component-
selective cells (see Fig. 5). Finally, as predicted by the SSN model,
local pharmacological manipulation of inhibition does not alter
spatial surround suppression, although our methods had the ex-
pected effects on directional tuning width (see Figs. 6, 7).

Stabilized supralinear network predicts contrast-dependent
surround suppression in the direction domain in MT

Previous instantiations of the SSN have considered a model in
which connections are defined either across a retinotopic sheet of
the kind found in V1 or across a ring of preferred orientations
(Ahmadian et al., 2013; Rubin et al., 2015; Miller, 2016). Like
orientation, motion direction is a circular variable, but it takes
values over 360° rather than 180° as for orientation. Thus to
examine the properties of the SSN in this circular space, we first
simulated a ring model (Rubin et al., 2015; Fig. 2A) of motion
direction space. This represents neurons of varying preferred di-
rections sharing a common location in retinotopic space.

In general, the SSN predicts that contrast-dependent sur-
round suppression should occur in any stimulus feature dimen-
sion, provided certain minimal connectivity conditions are met,
e.g., average connection strength between neurons decreases with
the dimensional distance between them. We accordingly assumed
that the strengths of connections between neurons on the ring
decreased with increasing difference in their preferred directions.
By analogy with the study of size-tuning in the spatial domain, we
tested the SSN with stimuli of different motion-domain sizes. We
increased the size of the stimulus in direction space by including
stimuli at increasingly wider ranges of directions about the pre-
ferred direction (the “center” of the receptive field). As described
in Materials and Methods, we considered size or bandwidth 0°
(preferred-direction stimulus only), 60° (adding stimuli at 30°
about the preferred), 120° (adding additional stimuli at =60°),
and 180° (additional stimuli at =90°). For each motion size, we
examined different levels of stimulus contrast, represented as
scaling the strengths of all inputs.

The simulation results (Fig. 2B) show that the model predicts
strong direction-domain surround suppression at high contrast,
but notat low contrast. Specifically, atlow contrasts (red), increasing
the range of motion directions leads to increased responses with a
hint of suppression for the largest stimulus size, while at high
contrasts larger motion-domain stimulus sizes lead to strong
suppression (blue). Intermediate contrasts give an intermediate
result (black). These results change very little with changes in the
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total number of dots in the stimulus (Fig.
2C), a factor that we consider in our ex-
periments below (see Fig. 4). Thus the
model consistently predicts direction-domain
suppression that is analogous to space-
domain surround suppression. In the SSN,
the dependence of surround suppression
on contrast arises generically from the dy-
namics of the SSN in summing inputs,
rather than by the assumption of a higher
contrast threshold for inhibition, as in
previous models (Somers et al., 1998;

A 40
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Spikes/s

30

Contrast 11%
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Huang et al., 2008; Schwabe et al., 2010;
Carandini and Heeger, 2011).

0

C
Surround suppression in direction
domain of MT
We tested the model predictions by re-
cording from individual MT neurons, us-
ing the same stimuli as in the simulations.
We first show results for the first type of
stimulus described above, in which there
was a noise pool of dots moving in ran-
dom directions. For each neuron we fixed
the physical size of each stimulus accord-
ing to an estimate of the classical receptive
field size. We then varied stimulus size
in the motion domain, as well as dot con-
trast. Thus for the smallest stimulus, all
the coherent dots moved in the preferred
direction of the neuron (Fig. 1A, left),
with the remaining dots in the noise pool 021 .~
moving in random directions. To increase s

0.2

Integration Index (Low Contrast)
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the size of stimuli in the motion space, we 0.2
recruited dots from the noise pool and
added them to directions around the pre-
ferred direction (Fig. 1A). This manipula-
tion kept the total motion energy and dot
density of the stimulus constant across
sizes.

Figure 3A shows the firing rate of an
example MT neuron for stimuli of differ-
ent contrasts and motion sizes. For the
low-contrast stimulus (red), firing rate increased with motion
size, while for higher contrasts (blue, black) firing rate decreased
with motion size. Thus the pattern of firing rates for this neuron
was consistent with the SSN prediction that MT neurons would
shift from motion-domain integration to suppression as the
stimulus contrast was increased (Fig. 3A). Indeed, just as in the
space domain, for large stimuli it is possible to increase firing
rates by lowering contrast (Fig. 3A; Pack et al., 2005).

To examine these effects across the MT population, we calcu-
lated the directional integration index (II; the difference be-
tween responses to the largest and smallest sizes divided by the
sum of these responses; see Materials and Methods) for data of
the kind shown in Figure 3A for 125 neurons. The II}, captures the
integration of signals across motion directions, with larger II;,
values indicating more integration. Across the population (Fig.
3C) the II;, was frequently <0, indicating a suppression of the
response when dots activated the directional surround. Overall
the II, was significantly decreased at high contrast compared
with low contrast, consistent with reduced integration at high
contrasts (p < 0.001, rank sum test; p < 0.001 for Monkey 1 and

Figure 3.

0

02 0.4

Integration Index (High Contrast)

Surround integration and suppression in the direction domain. A, Surround suppression occurs in direction space at
high contrast, but not at low contrast for an example neuron. B, Contrast response function for the same example neuron using
100% coherent dots in the preferred direction. The line indicates the Naka—Rushton function fit. C, Population data for direction
surround integration. Scatter plot of the Il at low contrast against the Il at high contrast (rank sum test, p << 0.001). The marginal
distributions are histograms of the Il (median at high contrast = 0.002; median at low contrast = 0.084). Dashed lines in the
histograms show location of Il = 0.

p = 0.01 for Monkey 2). Note that this is not due to a failure of the
low-contrast stimuli to elicit a response from the neurons, as all
neurons except one showed responses to the lowest contrast
tested that were significantly above baseline. The one neuron that
failed to meet this criterion was eliminated from further analysis.
Overall, these results are similar to previous results in the space
domain in MT (Pack et al., 2005; Tsui and Pack, 2011). However,
the mechanisms of spatial and directional integration for a given
cell appeared to be independent, as there was no correlation be-
tween the degree of spatial surround suppression and directional
surround suppression measured at high contrast in the same neu-
rons (Pearson’s r = —0.06, p = 0.46, N = 124).

We also tested 46 neurons using a second stimulus in which
there was no noise pool, and we increased the total number of
stimulus dots with size in the direction domain (Fig. 1B). This
stimulus was designed to control for a potential confound in the
previous experiment, which kept the total number of dots con-
stant across stimulus size. In the latter configuration, increases in
direction-domain size were yoked to decreases in the number of
noise dots, and because noise includes motion in all directions,
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Figure4.  Additional controls for direction surround integration and suppression. A, Population data for direction surround integration. Scatter plot of the directional Il at low contrast against
the Il at high contrast (rank sum test, p = 0.04). The marginal distributions are histograms of the Il (median at high contrast = —0.012; median at low contrast = 0.018). Dashed lines in the
histograms show location of Il = 0. B, The contrast modulation of Il for the same 46 neurons as in A, when the number of dots is held fixed by drawing from a noise pool (as in Fig. 3). The

conventions are the same as in A (median at high contrast = 0.003; median at low contrast = 0.065).
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Figure 5.  Direction integration with plaid stimuli. 4, lllustration of the grating (left) and plaid stimuli (right). B, Direction-
tuning curve for an example neuron in response to drifting gratings. €, Direction-tuning curve for the same neuron in response to
moving plaids. The dashed line indicates the component prediction, which is the expected result if the neuron fails to integrate the
motion of the plaid. D, Population data for motion integration. Scatter plot of the patternindex against the Il at low contrast (r =
0.33, p = 0.01). E, Scatter plot of the DW against the Il at low contrast (r = —0.08, p = 0.38).

this can be viewed as reduction in the strength of the directional

tuning experiments, in which the stimulus
is simply expanded to probe the influence
of the surround.

We tested this subpopulation of MT
neurons with both stimuli, and the results
are shown in Figure 4A and B. For the
control stimulus, the IIj, is still signifi-
cantly higher at low contrast than at high
contrast (Fig. 4A; p = 0.04, rank sum test).
Thus integration across direction space
was greater at low contrast, regardless of
how size was manipulated. For these neu-
rons, we also replicated the previous result
using the stimulus with a constant total
number of dots (Fig. 4B; p < 0.001, rank
sum test). The contrast modulation of II},
was not significantly different for the two
stimulus types (rank sum test, p = 0.45).

Of the complete MT population, 65
were also tested with a standard probe of
direction-domain integration, the plaid
stimulus (Movshon et al., 1985). Our plaid
stimuli consisted of two superimposed sine-
wave gratings, moving in directions sepa-
rated by 120° (Fig. 5A); stimulus size was
again matched to the classical receptive
field, and contrast was 100%. From the
resulting data we computed a pattern in-
dex (see Materials and Methods; Smith et
al., 2005), which captures the extent to
which MT neurons integrate the two mo-
tion directions; higher values indicate
greater integration (Fig. 5B, C). We found
that the pattern index was significantly
correlated with the directional II,, as
measured in our direction-size-tuning ex-
periments at both low (Fig. 5D; Pearson’s
r=0.33, p = 0.01) and high contrasts (r =

surround, analogous to the far surround in retinal space (Ange-  0.27, p = 0.03). That is, cells with higher pattern indices showed
lucci and Bullier, 2003; Angelucci and Bressloff, 2006). The new  less surround suppression in direction space, greater motion in-
stimulus was directly analogous to that typically used in size-  tegration, both at low and high stimulus contrasts. This suggests
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that area MT might use similar mechanisms to integrate motion
signals for dot stimuli and grating stimuli. We also found that
there was no correlation between the directional motion integra-
tion index and the width of the direction tuning curve, as mea-
sured using responses to standard stimuli of drifting dots moving
coherently in a single direction (Fig. 5E; Pearson’s r = —0.08, p =
0.38 for low contrast, r = 0.05, p = 0.57 for high contrast).

GABAergic influence on neuronal direction tuning and
surround suppression in the spatial domain

Another prediction of the SSN is thatlocal changes in the strength
of inhibition should have little or no effect on surround suppres-
sion, because surround suppression is a result of withdrawal of
network excitation (as well as inhibition), and a local blockade of
inhibition will not change these network dynamics (Ozeki et al.,
2009). This is different from conventional models, which posit
that suppression is induced by an increase in the inhibition that a
cell receives, so that a reduction in the inhibition to a given neu-
ron will reduce its surround suppression (Tsui and Pack, 2011).
Previous work has confirmed the SSN predictions in anesthetized
cat V1, using iontophoretic injection of GABA antagonists: in-
hibitory blockade did not reduce surround suppression (Ozeki et
al., 2004). In this section, we examine the effects of pharmacolog-
ical manipulation of GABA in MT of awake monkeys.

We first confirmed that gabazine, a GABA, receptor antago-
nist, robustly modulated neuronal firing in MT (Thiele et al.,
2012). We measured direction tuning using random-dot stimuli
of fixed spatial size, with all dots moving coherently in a single
direction (Fig. 6A). We found that injection of gabazine increased
direction tuning width, as found previously (Thiele et al., 2004;
Thiele et al., 2012). In contrast, injections of GABA decreased firing
rates across all directions (Fig. 6E), leading to narrower tuning (Lev-
enthal et al., 2003).

Figure 7A summarizes the influence of gabazine on direction
tuning widths for a population of 38 MT cells: Tuning width
increased following the injection, as determined by a rank sum
test (p = 0.04) and verified with a bootstrapping analysis (see
Materials and Methods; Wilcoxon signed rank test; p < 0.001);
these increases were particularly noticeable for cells that were
narrowly tuned before the injection, as noted previously in V1 of
anesthetized cat (Katzner et al., 2011). These changes in tuning
width were not associated with changes in spontaneous firing
rate, as the changes in spontaneous were modest and did not
reach statistical significance (rank sum test, p = 0.32). Moreover,
there was no correlation between gabazine-induced changes in
spontaneous firing and changes in tuning width (Pearson’s r =
0.05, p = 0.78). We did not have enough data from the GABA
experiments to perform statistical analyses, but in all five exper-
iments, direction tuning width decreased following injection.

To test the influence of GABA concentrations on surround
suppression, we performed standard (space-domain) measure-
ments of size tuning, using random-dot stimuli (100% coher-
ence) of different physical extents, with all dots moving in the
neuron’s preferred direction (Fig. 6B). Previous work has shown
that these stimuli elicit surround suppression in the upper and
lower layers in MT, but not in layer 4, suggesting that the sup-
pression is generated through intrinsic connections within MT
(Born and Tootell, 1992; Raiguel et al., 1995). This property
makes such stimuli useful for testing the predicted role of inhib-
itory inputs in the SSN.

Figure 6D shows size-tuning curves from the same MT neu-
ron as in Figure 6C. The preinjection data (black line) show that
the neuron exhibited substantial surround suppression, as the
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Figure 6.  Effect of GABA on motion direction and size tuning. A, B, 100% coherent random
dot patches were used to probe the direction and size tuning of MT neurons. C, E, Direction
tuning curve for an example neuron before (black) and after injection of gabazine (C, red) or
GABA (E, blue). The points are the mean responses for each direction. The lines indicate Gaussian
function fits. DW was defined as full width at half-maximum of the fit. D, F, Size-tuning curves
for an example neuron, plotting the firing rate (mean == SEM) as a function of patch size before
(black) and after injection of gabazine (D, red) or GABA (F, blue). The lines indicate difference of
error functions fits. The horizontal lines show the spontaneous firing rate.

response was reduced significantly with increasing stimulus size.
As for the direction tuning curve, injection of gabazine increased
firing rates in a nonspecific manner. However, in this neuron
there was no apparent reduction in surround suppression (Fig.
6D), and this result was generally true for the MT population
(n = 38): The SIg, defined as the difference between the peak
response and the response to the largest stimulus divided by the
peak response, was similar before and after injection of gabazine
(Fig. 7B; rank sum test, p = 0.98; bootstrapping analysis followed
by Wilcoxon signed rank test; p = 0.99). Again there was no
correlation between the effects of gabazine on SI and the effects
on spontaneous firing (Pearson’s r = —0.11, p = 0.52). These
results are similar to those found in V1 of anesthetized cats (Ozeki
et al., 2004), despite the much larger volume of gabazine used
here. In a smaller sample (n = 5), we found that injection of
GABA did not increase surround suppression, despite a strong
overall reduction in firing rate (Fig. 6F).

Discussion

Through electrophysiological recordings in awake monkeys, we
have found contrast-dependent surround suppressionin MT in a
space defined by motion directions. In addition, we found that
local manipulation of the efficacy of GABAergic inhibition had
little influence on standard measures of surround suppression.



Liu et al. ® Surround Suppression in MT

J. Neurosci., January 24, 2018 - 38(4):989-999 « 997

“normalization pool”. The precise form of
normalization, for example whether the
normalizing pool constitutes all neurons
or is restricted in some way based on neu-
ronal tuning, must be matched to fit the
particular experiments modeled.

The SSN can be regarded as a circuit
instantiation of the normalization model,

in that many SSN results closely match the
results of an appropriately constructed
normalization model (Rubin et al., 2015).
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Figure7.  Population data on the effects of gabazine on direction and size tuning. 4, Scatter plot of the direction tuning width

before the injection of gabazine against the tuning width after injection (rank sum test, p = 0.04). Red and black lines represent
the medians of the respective marginal distributions. B, Scatter plot of the neuronal Sl before the injection of gabazine against the

neuronal Sl after injection (rank sum test, p = 0.98).

Both results are consistent with predictions of the SSN, previ-
ously tested in V1 (Rubin et al., 2015).

SSN as a unifying motif for normalization in multiple

cortical areas

The contrast dependence of surround suppression in the space
domain has been observed in both V1 and MT (Polat et al., 1998;
Kapadia et al., 1999; Sceniak et al., 1999; Pack et al., 2005;
Schwabe et al., 2010; Tsui and Pack, 2011). These results have
previously been modeled under the assumption that inhibitory
neurons have higher contrast thresholds than excitatory neurons
(Somers et al., 1998; Huang et al., 2008; Schwabe et al., 2010;
Carandini and Heeger, 2011). However, there is little experimen-
tal support for this assumption, and some data that contradict it
(Contreras and Palmer, 2003; Song and Li, 2008).

In the SSN, the excitatory and inhibitory units can have the
same properties (Rubin et al., 2015). Each unit has a power-law
I/O function, but is stabilized by network inhibition (Ozeki et al.,
2009; Ahmadian et al., 2013; Rubin et al., 2015). With low-
contrast inputs, the recurrent interactions within the network are
weak, so neurons act relatively independently, summing their
feedforward inputs and responding according to their transfer
functions. With higher-contrast inputs, strong recurrent connec-
tions within the network provide contrast- and size-dependent
suppression, with size in the spatial and feature (direction) do-
mains playing similar roles.

The SSN also predicts that the local blockade of GABA , recep-
tors should not reduce surround suppression (Ozeki et al., 2009).
In the SSN, surround suppression is not a result of an increase in
inhibitory GABAergic input, but a withdrawal of both excitation
and inhibition. In contrast, in models in which surround sup-
pression results from an increase in the inhibition received by
suppressed neurons (Tsui and Pack, 2011), local blockade of in-
hibition should reduce or prevent surround suppression.

Modulatory influences in visual cortex are often modeled
within the normalization framework, which is hypothesized to be
a generic computation with equal validity across brain regions
and stimulus modalities (Carandini et al., 1997; Reynolds and
Heeger, 2009; Carandini and Heeger, 2011; Krause and Pack,
2014). The normalization model, as typically conceived, is a phe-
nomenological rather than circuit model, in which some form of
un-normalized neuronal response is suppressed by the sum of
un-normalized responses in other neurons that constitute the

In the circuit implementation, the form
of normalization is determined by the
connectivity. For example, in the SSN,
orientation-specific long-range horizontal
connectivity leads to the orientation-
selectivity of surround suppression (Ru-
bin et al., 2015); in a normalization
model, this would be explained by assum-
ing that the normalization pool consists of
neurons of similar preferred orientations to the normalized cell.
The normalization model does not explain the mechanism of
suppression, and alternative mechanisms yield different predic-
tions. For example, if the normalization pool exerted suppression
by adding inhibition to the normalized cells, then one would
expect increased inhibition and increased conductance in nor-
malized (e.g., surround-suppressed) cells, and local GABAergic
blockade would reduce or eliminate the normalization. In the
SSN mechanism, normalization typically results from a decrease
in both excitation and inhibition and thus a decreased conduc-
tance (Rubin et al., 2015).

Relationship to motion integration in MT

In MT, the integration of different motion directions has fre-
quently been probed with the plaid stimuli (Movshon et al., 1985;
Smith et al., 2005), comprised of superimposed gratings moving
in different directions. Previous work has distinguished between
pattern cells, which respond to the plaid motion direction, and
component cells, which respond to the individual grating motion
directions (Movshon et al., 1985).

In the terminology used here, a plaid stimulus moving in a
neuron’s preferred direction entails component motion confined
to the directional surround. Thus for a high-contrast plaid, the
component gratings should suppress the neuron’s response, and
this could contribute to the observed responses of component
neurons. Furthermore, component-selective neurons have small
direction centers (i.e., narrow tuning width), so that they do not
integrate input from two gratings moving in very different direc-
tions (Rust et al., 2006; Tsui et al., 2010; Khawaja et al., 2013).

Pattern cells have broader direction tuning than component
cells (Rust et al., 2006; Khawaja et al., 2013). Direction tuning,
measured from the responses to individual motion directions,
corresponds to the “minimal response field” in visual space, the
region in which small stimuli can activate the cell; this measure
does not change with contrast (Song and Li, 2008). Our measure
of motion integration is not correlated with direction tuning
width (Fig. 5E), and is best related to the “summation field size”
in visual space, the size of a stimulus that best drives a cell before
further size increases cause surround suppression. The summa-
tion field size, like our measure of motion integration, shrinks
with contrast (Sceniak et al., 1999). We found a weak correlation
between our motion integration index and the pattern index,
which quantifies integration of plaid stimuli (Fig. 5D). These
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results suggest that the motion-domain summation field and pat-
tern selectivity are linked, but that summation on its own is in-
sufficient to account for pattern selectivity.

Pattern cells also show stronger suppression than component
cells by stimuli moving opposite to their preferred directions
(Rustetal., 2006). This suggests a direction-domain analog of the
“far surround” suppression that is found in the space domain;
such suppression is also regulated by contrast both in the direc-
tion domain in MT (Pack et al., 2005) and in spatial surrounds in
V1 (Schwabe et al., 2010). Our stimuli did not contain null-
direction motion, and so they would not have probed this com-
ponent of the MT receptive fields. Nevertheless, an inference
from the existing data is that pattern cells in MT have both larger
directional summation fields and larger (or stronger) directional
surrounds.

It can be argued that random-dot stimuli are larger than grat-
ings in the direction domain, as they activate a broader range of
columns in V1 (Simoncelli and Heeger, 1998). Thus stimuli com-
posed of multiple dots fields moving in different directions might
elicit stronger suppression than grating stimuli containing a sim-
ilar number of directions. Evidence in support of this idea comes
from studies that use transparent motion stimuli, comprised of
overlapping dot fields moving in two different directions. These
stimuli evoke responses in M T that seem to reflect a suppression
of responses to stimuli that straddle the preferred direction (Xiao
and Huang, 2015), particularly for pattern cells (McDonald et al.,
2014). One prediction of the current work is that such suppres-
sion should be weaker for low-contrast stimuli.

Functional correlates of integration and suppression

A number of psychophysical studies have drawn a close link be-
tween contrast-dependent responses in MT and visual motion
perception. For simple motion discrimination tasks, performance
mirrors spatial processing in MT: for high-contrast stimuli, perfor-
mance is worse for large than for small stimuli (Tadin et al., 2003;
Liu et al., 2016). Similarly, motion perception can decrease at
high contrasts when the stimulus speed is low, mirroring the
contrast-dependent suppression found in MT (Pack et al., 2005;
Seitz et al., 2008). In the direction domain, MT neurons exhibit
higher null-direction suppression when the stimulus is high in
contrast (Pack et al., 2005). This suggests further that suppressive
influences are stronger for high-contrast stimuli, and there is
some evidence that motion perception can worsen as the size of
the stimulus increases in the direction domain (Treue et al., 2000;
Dakin et al., 2005). Conversely, motion discrimination with noisy
dots can sometimes improve at low contrast (Tadin et al., 2003).
Our results predict the ability to integrate motion signals in the
direction domain should systematically improve at low contrast,
as has been found with manipulations of stimulus speed (Seitz et
al., 2008) and spatial size (Tadin et al., 2003).

Conclusion

A growing body of evidence points to a set of generic computations
that are similar across brain regions (Creutzfeldt, 1977; Barlow,
1985; Miller, 2016) and across sensory modalities (Mountcastle,
1978; Pack and Bensmaia, 2015). Although this idea is attractive
from a theoretical standpoint, it remains somewhat speculative.
In this work, we have provided an experimental test of the gener-
icity of one computational model by comparing results in MT
with those obtained previously in V1. The qualitative pattern of
results is similar, supporting the possibility that this model pro-
vides a more general framework for modulatory responses and
integration in cortex.
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