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Neuronal Variability as
a Proxy for Network
State
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Characterizing how network state
modulates cortical dynamics and
information processing is an impor-
tantstep forunderstanding theneu-
ral code. In 2010, Churchland et al.
reported wide experimental evi-
dence showing that spontaneous
and stimulus-evoked conditions
are two distinct states, as indicated
by a marked reduction of neuronal
variability after stimulus onset.

The brain is an evolution-shaped dynam-
ical system optimized for guiding the
actions that maximize the chances of sur-
vival. As an information processing sys-
tem, one could expect the brain to
respond with identical activity patterns
when presented with identical inputs.
However, a large body of experiments
has revealed that cortical responses are
variable in both the number of spikes and
their precise timings [1,2]. This variability
is found even under controlled experi-
mental conditions, for instance when
the environmental variables are kept con-
stant, when eye movements are
accounted for by fixation, or even when
behavior is suppressed by anesthesia [3].

In addition to its consistency across
experimental conditions, neuronal vari-
ability can be characterized by some dis-
tinctive statistical traits. Within trials, the
distribution of inter-spike intervals (ISIs)
has been typically shown to be broad with
a long tail, resembling an exponential dis-
tribution [4]. Across trials, variability can
be assessed by the Fano factor (FF),
which is defined as the ratio between
the variance of the spike counts and their
mean. A linear relationship with a slope
close to one between the spike count
variability and its mean has been experi-
mentally shown for single neurons [2],
although for high firing rates a supralinear
regime has been reported [5]. The statis-
tical trait that the FF is roughly constant
over broad ranges of neuronal firing rates
is referred to as ‘Poisson-like firing’ [6]
owing to its resemblance to a Poisson
process (rate-independent FF = 1).

A natural question arises at this point: can
diverse network states be characterized
by different statistical traits of spiking var-
iability? And what can these differences in
neuronal variability reveal about cortical
dynamics and information processing?
Mark Churchland and colleagues [7] took
these questions in the context of sponta-
neous (ongoing) versus evoked (stimulus-

driven) cortical activity, and analyzed
whether they correspond to different
states with distinct statistical properties.
One possible scenario could be that,
before stimulus onset, cortical activity is
prepared for action – ‘waiting’, so to say,
within a small region in the abstract,
mathematical space of neuronal activity
states – and that once the network
receives an input, it diverges to a larger
region in that space (H1-1 and H1-2;
Figure 1A). Another possible scenario
could be that spontaneous activity lives
within a large region, and that after stim-
ulation the available space of cortical
activity shrinks (H2-1 and H2-2;
Figure 1B). The first scenario would be
characterized by a larger trial-by-trial

Spontaneous
Evoked

H1-2

H2-2H2-1

H1-1

(A)

(B)

Figure 1. Hypothetical Possible Changes in
Neuronal Variability during the Transition from
Spontaneous to Stimulus-Evoked Conditions.
(A) In hypothesis 1 (H1), cortical activity in the spon-
taneous condition (blue) ‘lives’ within a small region in
the neural activity space (defined as a multidimen-
sional space where each dimension is the activity of a
single neuron). Once the network receives an input, it
diverges to a larger set of available space (grey). In this
scenario, trial-by-trial variability would be larger at
evoked versus spontaneous activity. Hypothesis 1
can be further refined into two sub-categories: in
H1-1, the spontaneous activity space resides within
the evoked activity space, whereas in H1-2 it resides
outside it. (B) In hypothesis 2 (H2), cortical activity in
the spontaneous condition (blue) encompasses a
larger region of the neuronal activity space, and the
available space shrinks (grey) after stimulus presenta-
tion. In this scenario, trial-by-trial variability would
decrease after stimulus onset. In H2-1 the evoked
activity space resides within the spontaneous space,
whereas in H2-2 it resides outside it.
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variability during the evoked than the
ongoing regime, whereas the latter would
be characterized by the opposite situa-
tion. Interestingly, experimental evidence
[8] and theoretical predictions [9] seemed
to indicate that the reduction of response
variability during evoked activity could be
a general property of cortical activity.

Churchland and colleagues explored the
effects of stimulus onset upon the trial-by-
trial activity variability in a large set of exper-
imental datasets, spanning different brain
areas, stimuli, andbrain states– represent-
ing a type of comprehensive and compar-
ativeanalysis thatshouldbemorecommon
in neuroscience. The analyses were

conductedusingavarietyofstatisticalmet-
rics, but the main result was based on the
FF as a proxy for spiking variability and its
time modulation through the course of the
trial. Consistently across 14 datasets, the
authors reported a significant decrease in
single-cell variability during evoked activity
compared to the variability during the
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Figure 2. Stimulus Onset Quenches Neuronal Variability Regardless of Stimulus-Evoked Activity Modulations. (A) Fano factor (FF), as a proxy for neuronal
variability, is reduced after stimulus onset in monkey cortical areas V1 (primary visual area, left panel) andMT (middle temporal area, right panel) (datasets encompassing
other brain areas, stimuli, and brain states are given in [7]). Data are aligned to stimulus onset (arrow). The mean rate (top row, grey), the ‘mean matched’ rate (top row,
black) and the FF (bottom row, black with flanking SEM) were computed using a 50 ms sliding window. (B) The ‘mean matching’ procedure explained graphically. The
raw (grey line) and the mean-matched (black line) FF correspond to the slope obtained after regressing spike count variance versus the mean spike count (orange line,
FF = 1). Each datapoint in each time-window (panels) corresponds to the mean spike count and variance of a given neuron and experimental condition. To control for
the stimulus-evoked increase in activity when calculating the FF, points from the original distribution of mean spike counts for each time-window (grey histogram) were
randomly excluded until the distribution matched the greatest common distribution across time-windows (black histogram). Controlling for mean activity did not modify
quantitatively the reported results. Figure adapted, with permission, from [7].
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spontaneous condition (Figure 2A).
Because a decrease in the FF could simply
be a consequence of an increase in the
mean firing rate at stimulation, which is
typically observed, a novel method (mean
matching) was introduced to rule out this
possibility. This method allowed constant
firing-rate distributions to be created from
the originally recorded neuronal popula-
tions before and after stimulation by ran-
domly discarding datapoints until all the
corresponding histograms matched
across time (Figure 2B). Even after control-
ling for firing-rate differences in spontane-
ousandevokedconditionsby thismethod,
the reported FF decreased during
stimulation.

Once the effect on the variability of single
neurons was shown to be firing-rate-inde-
pendent and consistent across all data-
sets, Churchland et al. explored the
variability at the population level using
simultaneously recorded neurons. The
covariance matrix of the neuronal spike
counts was decomposed as the sum of
two matrices, one representing the vari-
ance due to single-neuron spiking vari-
ability, and another accounting for
shared variability, common to all neurons
in the population. This decomposition
showed that the decrease in variability
originated predominantly from factors
that were common to the entire popula-
tion. This observation led the authors to
an interpretation where shared variability
can be seen as a variable that is modu-
lated by network state.

Altogether, the study by Churchland and
colleagues represented a milestone in the
field for several reasons. This work has
been an inspiration for a set of theoretical
studies that aimed to reproduce the main
experimental results using neuronal net-
work models [10–12]. These studies reca-
pitulated the experimentally observed
decrease of the FF after stimulus onset,
but two different mechanisms underlie
the decrease in variability in these models.

In one of these studies [10] the spontane-
ous trial-by-trial variability arises because
of the chaotic dynamics that characterize
large recurrent networks. When this net-
work is stimulated, it undergoes a phase
transition to a non-chaotic regime,
reflected in a decrease in trial-by-trial vari-
ability. In the other account [11,12], the
network has access to a different number
of stable attractors during ongoing and
evoked activity. During spontaneous activ-
ity, the network is found in amulti-attractor
regime; therefore, it ‘visits’ different stable
states by means of its inherent chaotic
behavior, which is translated into high var-
iability. After stimulusonset, theset of avail-
able and visited attractors is reduced, and
variability across trials decreases. It
remains an open question which of the
interpretations is closer to thephysiological
reality underlying the findings by Church-
land et al., and other accounts might also
bepossible. It is alsoplausible that, despite
the consistency of the reduction of variabil-
ity phenomenon as observed experimen-
tally across brain regions, the underlying
physiological mechanism differs from one
cortical circuit to another.

The work of Churchland et al. has also
inspired follow-up experimental studies
that characterized the link between vari-
ability and network properties, or even
between variability and cognitive state.
Hussar and Pasternak [13], for instance,
examined the link between variability and
the engagement of the animal in the task,
and reported a reduction of the FF at rele-
vant task periods compared to spontane-
ous activity, as well as an inverse
relationship between variability and behav-
ioral performance. Based on the rationale
that low variability indicates that the net-
workmore closely represents the variables
that are important for the task, instead of
wandering around other irrelevant states,
FF modulations are nowadays taken as a
popular indicator of network and animal
engagement with the task at hand.

The consistency of the reduction of vari-
ability during evoked compared to spon-
taneous activity in the work of Churchland
et al. is striking. The precise implications,
however, in terms of the possible scenar-
ios depicted in Figure 1 (or other
accounts) remain unclear. Does the
reduction in variability imply that the avail-
able activity space is larger during spon-
taneous activity [14]? Do evoked
responses occupy a different region of
activity space, or are they embedded in
the spontaneous region (H2-2 vs H2-1,
respectively, in Figure 1B)? Is the reduc-
tion in variability during evoked activity
only a byproduct of statistical condition-
ing? In the latter case, during spontane-
ous activity there could be larger variability
simply because of lack of conditioning
and control of, for instance, previous his-
tory variables [15]. In sum, it is crucial, we
think, to further clarify the relationship
between variability and available activity
space (as a proxy of network state). Nail-
ing down these questions would require
novel metrics to better quantify the size of
‘visited’ and ‘available’ sections of the
neuronal activity space. We hope that
future work will help to resolve these
questions and advance our understand-
ing of the roles of neural variability.
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