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In the 1960s, Evarts first recorded the activity of single neurons inmotor cortex of behavingmonkeys (Evarts, 1968). In the 50 years since,
great effort has been devoted to understanding how single neuron activity relates to movement. Yet these single neurons exist within a
vast network, the nature of which has been largely inaccessible.With advances in recording technologies, algorithms, and computational
power, the ability to study these networks is increasing exponentially. Recent experimental results suggest that the dynamical properties
of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective and how it is
reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to
uncover the “latent factors” underlying observedneural population activity. Finally, we discuss efforts to use these factors to improve the
performance of brain–machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems
neuroscience.
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Introduction
Our knowledge of the motor cortices (MC) is rapidly evolving.
Traditional models of motor cortical activity held that the firing
rates of individual neurons “represent” externally measurable
movement covariates, such as hand or joint kinematics, forces, or
muscle activity. Much effort in related studies was devoted to
finding the “correct” coordinate system. However, the increased
ability to record from many neurons simultaneously has revealed
many features of population activity that are difficult to reconcile
with a purely representational viewpoint. First, much of the ob-
served, high-dimensional activity of neural populations in MC
can be explained as a combination of a modest number of “latent
factors”; abstract, time-varying patterns that cannot be observed
directly, but represent the correlated activity of the neural popu-
lation. Second, during movements, these factors appear to evolve
in time by obeying consistent dynamic rules, much like the lawful
dynamics that govern physical systems. Through this lens, the
complex, often-puzzling responses of individual neurons are nat-

urally explained as minor elements in a coordinated underlying
dynamical system. These findings have provided a new frame-
work for evaluating neural activity during many of the functions
that are ascribed to MC, such as motor preparation and execu-
tion, motor learning, bimanual control, and the production of
muscle activity.

Beyond its application to the motor cortices, the dynamical
systems framework and related computational methods may
have broad applicability throughout the brain. Over the past de-
cade, the ability to record from large populations of neurons has
increased exponentially (Stevenson and Kording, 2011; So-
froniew et al., 2016, Jun et al., 2017; Stringer et al., 2018). These
data collection tools promise to further transform our under-
standing of the brain, but only if we can process and interpret the
coming wave of massive datasets. Trying to interpret the “tuning”
of 10,000 neurons is not only onerous but a missed opportunity;
much of the brain’s computation is inaccessible from the activity
of individual neurons, but is instead instantiated via population-
level dynamics. Fortunately, modeling neural populations as low-
dimensional dynamical systems is providing new insights in
many cortical areas, including areas that mediate cognitive pro-
cesses such as decision-making (Mante et al., 2013; Raposo et al.,
2014; Carnevale et al., 2015), interval timing (Remington et al.,
2018), and navigation (Harvey et al., 2012; Morcos and Harvey,
2016). This has deep implications for systems neuroscience: mov-
ing forward, the central thrust in understanding how brain areas
perform computations and mediate behaviors may be through

Received Aug. 6, 2018; revised Sept. 24, 2018; accepted Sept. 25, 2018.
This work was supported by a Burroughs Wellcome Fund Collaborative Research Travel Grant (C.P.) and NIH

NINDSR01NS053603 (L.E.M.).We thankStevenChase, Chandramouli Chandrasekaran, JuanGallego,MatthewKauf-
man,Daniel O’Shea, David Sussillo, Sergey Stavisky, Xulu Sun, Eric Trautmann, JessicaVerhein, SaurabhVyas,Megan
Wang, and Byron Yu for their feedback on the paper.
The authors declare no competing financial interests.
Correspondence should be addressed to Chethan Pandarinath, Emory University, 101Woodruff Circle Northeast,

Atlanta, GA 30322-0001. E-mail: chethan@gatech.edu.
DOI:10.1523/JNEUROSCI.1669-18.2018

Copyright © 2018 the authors 0270-6474/18/389390-12$15.00/0

9390 • The Journal of Neuroscience, October 31, 2018 • 38(44):9390–9401



uncovering their population structure and underlying dynamics.
MC is a critical model for studying these phenomena, as its activ-
ity appears strongly governed by internal dynamics, yet is well
related to observable behavior. These characteristics make MC an
excellent “proving ground” for tools that may be useful in a wide
variety of brain areas.

Furthermore, our increasing knowledge of latent factors and
dynamics in MC creates new opportunities to harness cortical
activity to build high-performance and robust brain–machine
interfaces (BMIs) to restore mobility to people with paralysis.
BMIs aim to restore function by directly interfacing with the
brain and reading out neural activity related to a person’s move-
ment intent. To date, the vast majority of BMIs that use MC
activity have been based on a representational viewpoint, with the
assumption that individual neurons represent external move-
ment covariates. Incorporating knowledge of the latent structure
and dynamics of MC population activity potentially offers the
means to develop BMIs whose performance and long-term sta-
bility are greatly improved.

Our review is divided to cover three broad areas: (1) an over-
view of the dynamical systems view of MC, including key studies
that have tested its applicability and demonstrated new insight
into the structure of population activity in MC; (2) current tech-

niques to uncover latent structure and
dynamics from the activity of neural pop-
ulations; and (3) recent efforts to use la-
tent factors and dynamics to improve
BMI performance.

The dynamical systems view and
evidence in motor cortex
Early work to understand the relationship
between MC activity and movements
drew inspiration from studies in sensory
areas, such as the experiments of Hubel
and Wiesel (1959) in visual cortex. In
those experiments, the response of a neu-
ron was modeled as a function of carefully
controlled features of the presented stim-
uli (Hubel and Wiesel, 1959). Similarly,
studies in MC revealed that the responses
of individual neurons (e.g., spike counts
over hundreds of milliseconds) could be
reasonably well modeled as a function of
kinetic or kinematic movement parame-
ters (Evarts, 1968; Georgopoulos et al.,
1982; Schwartz et al., 1988). A complica-
tion of the motor domain is that these
movement covariates could only be stud-
ied by training animals to produce highly
stereotypic movements, replete with
many correlations across limb segments
and measurement systems. Over the next
decades, a long-simmering debate that
had originated perhaps with Hughlings
Jackson over which parameters of move-
ment were represented (Jackson, 1873;
Phillips, 1975) was given new fuel. Ana-
tomical considerations argue for a strong,
direct link between primary motor cortex
and muscle activity (Landgren et al., 1962;
Jankowska et al., 1975; Cheney and Fetz,
1985), supported by many studies which

found that neural activity covaries with muscle activation and
kinetics (Evarts, 1968; Hepp-Reymond et al., 1999; Gribble and
Scott, 2002; Holdefer and Miller, 2002). Yet correlates of higher-
level parameters such as endpoint position (Riehle and Requin,
1989), velocity (Georgopoulos et al., 1982), speed (Churchland et al.,
2006a), and curvature (Hocherman and Wise, 1991) could all be
found as well. As this list became longer, some began to notice that
these representations could also break down quite badly (Fu et al.,
1995; Churchland and Shenoy, 2007b), and that such correlations
could be spurious (Mussa-Ivaldi, 1988). This led many to wonder
whether viewing MC as a representational system is appropriate
(Fetz, 1992; Scott, 2008; Churchland et al., 2010).

Rather than asking which parameters constitute the output of
MC, one might instead view the system from a generative per-
spective: how does MC generate its output? From this perspec-
tive, MC is seen as a computational engine whose activity
translates high-level movement intention into the complex pat-
terns of muscle activity required to execute a movement (Todo-
rov and Jordan, 2002; Scott, 2004; Shenoy et al., 2013). If so, how
might this computation be performed?

For decades, theoreticians have posited that brain areas may
perform computation through network-level phenomena in
which information is distributed across the activity of many neu-

Figure 1. Intuition for latent factors and dynamical systems. A, n(t) is a vector representing observed spiking activity. Each
element of the vector captures the number of spikes a given neuron emits within a short time window around time t. n(t) can
typically be captured by the neural state variable x(t), an abstract, lower-dimensional representation that captures the state of the
network. Dynamics are the rules that govern how the state updates in time. For a completely autonomous dynamical system
without noise, if the dynamics f(x) are known, then the upcoming states are completely predictable based on an initial state x(0).
B, In a simple three-neuronexample, the ensemble’s activity at eachpoint in time traces out a trajectory in a 3-D state space,where
each axis represents the activity of a given neuron. Not all possible patterns of activity are observed, rather, activity is confined to
a 2-D planewithin the 3-D space. The axes of this plane represent the neural state dimensions. Adapted fromCunninghamand Yu,
2014. C, Conceptual low-dimensional dynamical system: a 1-D pendulum. A pendulum released from point p1 or p2 traces out
different positions and velocities over time, and the state of the system can be captured by two state variables (position and
velocity). D, The evolution of the system over time follows a fixed set of dynamic rules, i.e., the pendulum’s equations of motion.
Knowing the pendulum’s initial state [x(0), filled circles] and the dynamical rules that govern its evolution [f(x), gray vector
flow-field] is sufficient to predict the system’s state at all future time points.
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rons, and processed via lawful dynamics that dictate how the
activity of a neural population evolves over time (for review, see
Yuste, 2015). We formalize this dynamical view in Fig. 1A. We
assume that at a given time point t, the activity of a population of
D neurons can be captured by a vector of spike counts n(t) �
[n1(t), n2(t), … nD(t)]. The neural population acts as a coordi-
nated unit, with a K-dimensional internal “state” x(t) � [x1(t),
x2(t), … xK(t)]. In many brain areas, x(t) has been observed to be
much lower-dimensional than the total number of observed neu-
rons (i.e., K �� D; Fig. 1B; Cunningham and Yu, 2014). This
dimensionality is likely somewhat constrained due to the recur-
rent connectivity of the network, which restricts the possible pat-
terns of coactivation that may occur (for review, see Gallego et al.,
2017a). A notable consideration, however, is that the observed
dimensionality is often lower than might be expected due to net-
work constraints alone; this particularly low dimensionality may
be further induced by the simplicity of common behavioral par-
adigms (Gao and Ganguli, 2015; Gao et al., 2017).

The dynamical systems view posits an additional constraint:
the evolution of the population’s activity in time is largely
determined by internal rules (dynamics). In the limit of an au-
tonomous dynamical system (i.e., a system that operates inde-
pendently of any external factors), and without noise, the
system’s evolution follows the equation ẋ� f(x); that is, its future
state changes are completely dependent upon (and predicted by)
the current state. A conceptual example of a low-dimensional
system with simple rotational dynamics (a 1-D pendulum), and
its related dynamical flow-field, is presented in Figure 1,C andD.
We note that MC clearly cannot be autonomous. It must receive
and process inputs, such as sensory information, to produce re-
sponsive behaviors. However, as discussed below, the model of an
autonomous dynamical system is reasonable for MC activity dur-
ing the execution of well prepared movements. During behaviors
that are unprepared, or where unpredictable events necessitate
corrections (such as responding to task perturbations), MC ac-
tivity may be well modeled as an input-driven dynamical system,
analogous to a pendulum started from particular initial condi-
tions, and subject to external perturbations (Pandarinath et al.,
2018).

The dynamical systems framework makes testable predictions
about the nature of MC activity. First, it predicts that the initial
conditions of the system, such as those observed during move-
ment preparation, largely determine the subsequent evolution of
activity. Second, the activity of neurons in MC should relate not
only to the inputs and outputs of the system, but also to the
computations being performed. Finally, distinct computations
may be appropriated into different, non-overlapping neural di-
mensions. Here, we explore experimental evidence related to
each of these predictions.

Early studies exploring the dynamical systems hypothesis in
MC examined whether preparatory activity served as an “initial
condition” for the subsequent dynamics. In tasks with delay pe-
riods, where a subject has knowledge of the movement condition
before execution, neural activity in MC approaches distinct “pre-
paratory states” for distinct movements (Tanji and Evarts, 1976).
In a dynamical system, initial conditions determine subsequent
activity patterns, so the same dynamical “rules” can give rise to
different activity patterns and behaviors if the initial condition is
different. Similarly, in MC, an altered preparatory state relates to
altered movement execution. If neural preparatory activity is not
in the right state at the time of the go cue, either due to natural
fluctuations (Churchland et al., 2006b; Afshar et al., 2011; Mi-
chaels et al., 2015, 2018), subthreshold microstimulation during

the delay period (Churchland and Shenoy, 2007a), or a change in
the location of the target (Ames et al., 2014), the reaction time is
delayed compared with well prepared trials. This suggests that, if
motor preparation is incorrect, subjects do not move until their
preparation has been corrected. Furthermore, motor adaptation
to a visuomotor rotation (Vyas et al., 2018), visuomotor scaling
(Stavisky et al., 2017a), or a curl field (Perich and Miller, 2017;
Perich et al., 2017) has been shown to modify the motor prepa-
ratory state. These modifications correspond to altered execution
trajectories, and the associated changes in preparation states and
execution trajectories transfer from covert settings (BMI tasks
without movement) to overt movements (normal reaching
movements; Vyas et al., 2018).

Additional work has tested whether dynamical system models
continue to predict observed neural activity during the transition
from preparation to movement. A simple model in which prepa-
ratory activity seeds the initial condition for rotational dynamics
during movement generation fits neural activity well in nonhu-
man primates (Fig. 2A; Churchland et al., 2012; Elsayed et al.,
2016; Michaels et al., 2016; Pandarinath et al., 2018) and humans
(Pandarinath et al., 2015, 2018). Furthermore, recurrent neural
networks trained to generate muscle activity after receiving pre-
paratory input display dynamics similar to those recorded in MC
(Hennequin et al., 2014; Sussillo et al., 2015; Kaufman et al.,
2016), suggesting that a dynamical system that uses preparatory
activity as the initial condition for subsequent movement dynam-
ics may be a natural strategy for generating muscle activity during
reaching.

Another important prediction of the dynamical systems
model is that not all of the activity in MC must directly relate to
task parameters or muscle activity, but may instead relate to in-
ternal processes that subserve the current computation. For ex-
ample, the switch from movement preparation to movement
generation is accompanied by a substantial change in dynamics
(Kaufman et al., 2014; Elsayed et al., 2016). Recent work has
posited that this change is accomplished by a large, condition-
invariant translation in state-space, which triggers the activation
of movement-generation dynamics. Indeed, this condition-
invariant signal is not only present at the switch from preparation
to generation, but is also the largest aspect of the motor cortical
response (Kaufman et al., 2016). Furthermore, during movement
generation itself, the dominant patterns of neural activity may
also play a role in supporting neural dynamics, rather than di-
rectly encoding the output. One challenge for a dynamical system
results when the flow-field is highly “tangled”: when there are
points in the space in which very similar states lead to very differ-
ent future behavior. If two nearby points lead to different paths,
then small amounts of noise in the system can lead to dramatic
differences in the evolution of the neural state (Fig. 2B). A robust
dynamical system, therefore, must ensure that the tangling is low,
potentially by adding in additional dimensions of activity whose
job is to “pull apart” points of high tangling (Fig. 2C). In MC,
although some components of neural activity resemble muscle-
like signals during movement generation, the largest patterns of
neural activity during movement generation appear to function
to reduce tangling (Fig. 2D; Russo et al., 2018). Thus, within MC,
evidence has been found that some signals primarily support and
drive dynamics, rather than directly encoding input or output.

Finally, the dynamical systems framework predicts that to
perform different computations, neural activity may use different
dimensions (Mante et al., 2013). Although this need not be a
property of every possible dynamical system, using different di-
mensions for different functions allows a system to better main-
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tain independence between its different roles. It has long been
observed that many neurons are active both during movement
preparation and movement generation. How then does prepara-
tory activity avoid causing movement? Traditional views held

that preparatory activity lies below a movement-generation
threshold (Tanji and Evarts, 1976; Erlhagen and Schöner, 2002)
or is under the influence of a gate (Bullock and Grossberg, 1988;
Cisek, 2006). However, subthreshold activation fails to explain

Figure 2. Overview of results supporting the dynamical systems view ofmotor cortex.A, The neural state achieved during the delay period (green-red dots) predicts the subsequent trajectory of
movement activity (green-red lines). Each dot/line is a single reach condition, recorded from a 108-condition task (inset). Adapted from Churchland et al., 2012. B, In dynamical systems, places
where neighboring points in state space have very different dynamics are indications of “tangling”. Such regions would be highly sensitive to noise; small perturbations yield very different
trajectories. C, Conceptual example illustrating tangling. Imagine a system that needs to produce two sine waves, one of which has double the frequency and is phase-shifted 1/4 of a cycle relative
to the other. If it contains these sinewaveswith no additional dimensions, activitywould trace out a figure 8,with a point of “high tangling” in the center. By adding in a third dimension, the system
canmove from a high tangling to a “low tangling” configuration, using the third dimension to separate the tangled points. Adapted fromRusso et al., 2018.D, Although EMGoften displays highly-tangled
points (x-axis),MC’sneuralactivitymaintains lowtangling(y-axis).E, Illustrationofmuscle-potent/muscle-null concept. Imagineamuscle that isdrivenwithastrengthequal to thesumof the firingratesof two
units. If theunitschangeinsuchawaythatoneunit’s firingratedecreasesastheother increases, thentheoveralldrivetothemusclewill remainthesame(muscle-null). If,ontheotherhand,theneurons increase
or decrease together, then the drive to themusclewill change (muscle-potent). In this way, neural activity can change in themuscle-null spacewhile avoiding causing a direct change in the command to the
muscles.AdaptedfromKaufmanetal.,2014.F,Neuralactivity inMCoccupiesadifferentsetofdimensionsduringmotorpreparationthanduringmovement.Red,Neuralactivityacrossdifferent reachconditions
in “preparatory” dimensions; green, neural activity across different reach conditions in “movement” dimensions. Adapted fromElsayed et al., 2016.
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why preferred directions are minimally correlated between prep-
aration and movement (Churchland et al., 2010; Kaufman et al.,
2010), and there is little evidence for gating within MC, as inhib-
itory neurons in MC are not preferentially activated during mo-
tor preparation (Kaufman et al., 2013). The dynamical systems
model, by contrast, makes a different prediction: that unwanted
movements can be avoided by avoiding specific neural dimen-
sions. Some dimensions, termed “output-potent”, correspond to
activation patterns that are output to the muscles, whereas oth-
ers, termed “output-null”, do not (Fig. 2D; Kaufman et al., 2014).
In MC, different dimensions are activated during movement
preparation and generation (Fig. 2E; Elsayed et al., 2016). Fur-
thermore, the dimensions that best correlate with muscle activity
are preferentially active during movement generation, suggesting
that output-potent dimensions are selectively avoided during
preparation (Kaufman et al., 2014). Similarly, distinct dimen-
sions may be explored during cortically-dependent movement
versus non-cortically-dependent movement (Miri et al., 2017),
and sensory feedback initially enters MC in different dimensions
from those of the muscle-potent activity (Stavisky et al., 2017b).

This division of different functions into different neural di-
mensions is not limited to muscle-related activity. In BMIs,
where output-potent dimensions can be specified explicitly, ac-
tivity that is informative about experimentally induced perturba-
tions is initially orthogonal to the corresponding corrective
responses (Stavisky et al., 2017b). During long-term BMI use,
activity in output-potent dimensions is more stable than output-
null dimensions (Flint et al., 2016). Neural activity also tends to
occupy different dimensions for different movement categories:
for example, pedaling in a forward versus reverse direction (Russo et
al., 2018), isometric force production versus limb movement (Gal-
lego et al., 2017b), or moving with the contralateral versus ipsilateral
arm (Ames and Churchland, 2018). Using different neural dimen-
sions for different functions may give the MC flexibility to generate
activity patterns that support a wide variety of functions without
interfering with one another (Perich et al., 2017).

Methods for estimating and evaluating motor
cortical dynamics
As detailed above, much of the activity of MC neurons is naturally
explained as a reflection of a low-dimensional dynamical system.
Studying such dynamic processes requires techniques that can
infer latent structure and its dynamics from observed, high-
dimensional data. Related techniques have been applied to a wide
variety of model systems and brain areas over the last two decades
(for review, see Cunningham and Yu, 2014). However, MC holds
particular value for testing these techniques, as its activity is
closely tied to observable behavior (e.g., movement conditions,
arm or hand kinematics, reaction times), which provides a key
reference for validating the inferred state estimates. In this sec-
tion, we review common techniques for estimating latent state
and dynamics that have been applied in MC. We first present a
general framework for discussion. Next, we review techniques
that are applied to time points independently (i.e., do not explic-
itly model neural dynamics). Finally, we review techniques that
do explicitly model neural dynamics, thereby resulting in better
latent state estimates.

Techniques for latent state estimation typically view spiking
activity as being “generated” by an underlying state x(t) (Fig. 3A).
A common assumption is that for any given trial, the observed
high-dimensional spike counts n(t) reflect a noisy sample from
each neuron’s underlying firing rate distribution r(t), a distribu-
tion that is itself derived from the latent state x(t). For motor

cortical data, the distinction between observations n(t) and un-
derlying rates r(t) captures the empirical observation that the
spiking of any given neuron across multiple repeats (trials) of the
same movement is highly variable.

A standard approach to de-noising n(t) and approximating
r(t) is trial-averaging. Trial-averaging assumes all trials of a given
movement condition are identical, and reduces single-trial noise
in the estimate of r(t) by averaging n(t) across repeated trials. r(t)
is often further de-noised by convolving it with a smoothing
kernel. A common approach to estimate the lower dimensional
x(t) is to perform principal component analysis (PCA). Perform-
ing PCA on r(t) rather thann(t) is preferred; if performed onn(t),
PCA often results in poor latent factor estimation, because it
simply maximizes the variance captured by the low-dimensional
space, without separating variance that is shared among neurons
from variance that is independent across neurons (for review, see
Yu et al., 2009). When performed on r(t), PCA is typically accom-
panied by firing rate normalization, so that neurons with high
rates (and thus higher variability) do not dominate the dimen-
sionality reduction. Further, PCA can be extended by integrating
some supervision into the dimensionality reduction step, e.g., by
integrating information about task conditions to identify dimen-
sions that capture neural variability related to particular task vari-
ables, using de-mixed PCA (dPCA; Fig. 3B; Kobak et al., 2014;
Kaufman et al., 2016; Gallego et al., 2017b). The strategy of trial-
averaging followed by PCA has led to several insights into latent
structure and dynamics in MC (Churchland et al., 2012; Ames et
al., 2014; Kaufman et al., 2014; Pandarinath et al., 2015; Elsayed et
al., 2016; Kaufman et al., 2016; Gallego et al., 2017b; Russo et al.,
2018).

However, circumventing the need to average over trials is crit-
ical for elucidating inherently single-trial phenomena, such as the
trial-to-trial variability of real movements (and their correspond-
ing error corrections), non-repeated behaviors such as natural
movements, random target tasks, and tasks involving learning.
Likewise, studying “internal” processes that vary substantially
across trials and have limited behavioral correlates, such as
decision-making, vacillation, and internal state estimates (Golub
et al., 2015; Kaufman et al., 2015), is also impossible with trial-
averaged data. Factor analysis (FA; Everitt, 1984) is often favored
for analyzing single-trial phenomena (Santhanam et al., 2009;
Sadtler et al., 2014; Golub et al., 2015, 2018; Athalye et al., 2017).
A key assumption of FA is that activity that is correlated across
neurons represents “signal” [comprising the latent factors x(t)],
and activity that is not correlated across neurons represents
“noise”. This assumption matches the graphical model in Figure
3A. A recent, complementary approach to capturing trial-
dependent variability inn(t) without corrupting the latent factors
is to integrate information regarding trial ordering into the di-
mensionality reduction step, and introduce a set of “trial factors”
that accommodate variability across trials, as in tensor compo-
nents analysis (TCA; Williams et al., 2018).

A key limitation of the above techniques (PCA, FA) is that they
treat neighboring time points as though they are independent.
However, as discussed, a core assumption of the dynamical sys-
tems framework is that time points are intimately related, and in
particular, previous states are predictive of future states. There-
fore, methods that simultaneously infer latent states and dynam-
ics should provide more accurate state estimation by leveraging
the interdependencies of data points that are close in time. Two
well developed families of models are Gaussian process-based
approaches (Fig. 3C; Yu et al., 2009; Lakshmanan et al., 2015;
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Zhao and Park, 2017; Duncker and Sahani, 2018) and linear dy-
namical systems (LDS)-based approaches (Macke et al., 2011;
Buesing et al., 2012; Gao et al., 2015, 2016; Kao et al., 2015, 2017;
Aghagolzadeh and Truccolo, 2016). Gaussian Process ap-
proaches assume that the latent state x(t) is composed of factors
that vary smoothly and independently in time, with each factor
having its own characteristic time constant. In comparison, LDS-
based approaches assume that the latent state at a given time
point is a linear function of the previous state (i.e., ẋ�Ax), which
incorporates linear interactions between latent dimensions. One is-
sue with the LDS approach is that the matrixA is time-invariant, yet
must capture the dynamics at all time points. In MC, this is poten-
tially problematic, because activity during different behavioral
phases (e.g., preparation and movement) is governed by very differ-
ent dynamics (Kaufman et al., 2014, 2016; Elsayed et al., 2016). A
promising approach to address this challenge is switching LDS
(SLDS), which assumes that at any given time point, the system’s
evolution obeys one of a discrete set of possible dynamics, each of
which must be learned (Fig. 3D; Petreska et al., 2011; Linderman et
al., 2017; Wei et al., 2018).

An alternative approach to uncovering single-trial population
dynamics uses recurrent neural networks (RNNs). Known as la-

tent factor analysis via dynamical systems (LFADS; Sussillo et al.,
2016a; Pandarinath et al., 2018), the approach trains an RNN as a
generative model of the observed spiking activity. RNNs are pow-
erful nonlinear function approximators, capable of modeling
complex, highly nonlinear dynamics through adjustment of their
recurrent connectivity (Fig. 4A). LFADS uses a sequential auto-
encoder (SAE) framework (Fig. 4B), allowing the potentially
nonlinear dynamics to be learned from noisy, single-trial neural
population activity using stochastic gradient descent. This allows
LFADS to accurately infer dynamics on a single-trial, moment-
to-moment basis (Fig. 4C). A critical confirmation that these
dynamics are accurate and meaningful is that they lead to dra-
matic improvements in the ability to predict behavior. As shown
(Fig. 4D), the LFADS-inferred latent representations were con-
siderably more informative about subjects’ reaching movements
than was the population activity that was directly observed. These
findings reinforce that population states, rather than the activity
of individual neurons, may be a key factor in understanding how
brain areas mediate behaviors, and further, that SAEs provide a
powerful new avenue toward linking the activity of neural popu-
lations to the behaviors they mediate.

Figure3. Applications of latent state anddynamics estimationmethods toMCensemble activity.A, Generativemodel of observedneural activity. Population spiking activity is assumed to reflect
an underlying latent state x(t) whose temporal evolution follows consistent rules (dynamics). Firing rates for each neuron r(t) are derived from x(t), and observed spikes n(t) reflect a noisy sample
from r(t). B, dPCA applied to trial-averagedMC activity during a delayed reaching task separates condition-invariant and condition-variant dimensions. Each bar shows the total variance captured
by each dimension, with red portions denoting condition-invariant fraction, and blue portions denoting condition-variant fraction. Traces show projection onto first dimension found by dPCA. Each
trace corresponds to a single condition (inset, kinematic trajectories with corresponding colors). Adapted from Kaufman et al., 2016. C, GPFA reveals single-trial state space trajectories during a
delayed reaching task. Gray traces represent individual trials. Ellipses indicate across-trial variability of the neural state at reach target onset (red shading), go cue (green shading), andmovement
onset (blue shading). Adapted from Yu et al., 2009. D, SLDS enables segmentation of individual trials by their dynamics. Each horizontal trace represents a single trial for the first state dimension
found by the SLDS. Trace coloring represents time periods with distinct (discrete) dynamics for each trial, recognized in an unsupervised fashion. Switching between dynamic states reliably follow
target onset and precede movement onset, with time lags that are correlated with reaction time. Adapted from Petreska et al., 2011.
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Leveraging latent factors and dynamics for BMIs
BMIs aim to help compensate for lost motor function by directly
decoding movement intent from neuron spiking activity to con-
trol external devices or restore movement (Taylor et al., 2002;
Carmena et al., 2003; Hochberg et al., 2006, 2012; Ethier et al.,
2012; Collinger et al., 2013; Sadtler et al., 2014; Gilja et al., 2015;
Ajiboye et al., 2017; Pandarinath et al., 2017). BMIs have largely
decoded neural activity into movement through a representa-
tional viewpoint: each neuron represents a reach direction and if
the neuron fires, it votes for movement in that direction (Geor-
gopoulos et al., 1982; Taylor et al., 2002; Gilja et al., 2012; Hoch-
berg et al., 2012; Collinger et al., 2013). Efforts to decode EMG
activity have been essentially similar, though in a higher-
dimensional, more abstract space (Pohlmeyer et al., 2007; Ethier
et al., 2012). However, as previously discussed, this representa-
tional model has important limitations in describing MC activity.
In this section, we review recent studies that have asked whether
representational assumptions also limit BMI performance, and if
so, whether performance and robustness can be increased by in-
corporating MC latent factors and dynamics.

Using latent factors and dynamics to increase BMI performance
The dynamical systems view holds that movement-related vari-
ables (such as kinematics or EMG activity) are not the only fac-
tors that influence the activity of MC neurons. However, BMI
decoders based on the standard representational model do not
take other factors into account when relating observed activity to
movement intention. Recent work introduced a decoding archi-
tecture (graphically represented in Fig. 5A) that incorporates la-
tent factors and their dynamics (modeled as a simple linear
dynamical system; Kao et al., 2015; Aghagolzadeh and Truccolo,
2016). One advantage of this architecture is that modeling latent
factors can account for the multiple, diverse influences on ob-

served neural activity to better uncover movement-related vari-
ables. A second advantage is that latent factors may be more easily
de-noised than the observed high-dimensional activity, resulting
in higher BMI performance. Briefly, the dynamical systems view
assumes that the temporal evolution of MC states is largely pre-
dictable. If so, deviations from this prediction may primarily cor-
respond to noise. To de-noise, MC dynamics can be used to
adjust the latent factors so that they are more consistent with the
dynamic predictions (Fig. 5B). In closed-loop BMI experiments,
decoding the dynamically de-noised latent factors significantly
increased performance over previous approaches (Fig. 5C), in-
cluding previous representational decoders that de-noise activity
by (1) smoothing using an experimenter-chosen filter (optimal
linear estimator; Velliste et al., 2008; Collinger et al., 2013), (2)
incorporating prior knowledge about kinematic smoothness (ki-
nematic Kalman filter; Wu et al., 2003; Kim et al., 2008; Gilja et
al., 2012, 2015; Hochberg et al., 2012), and (3) learning filtering
parameters via least-squares regression (Wiener filter; Carmena
et al., 2003; Hochberg et al., 2006).

BMI performance may also be increased through the use of
non-movement signals that become apparent by examining la-
tent factors. Recently, Even-Chen et al. (2017) exploited this idea
to identify factors that reflect errors made during BMI control.
The motivation for this work is that errors inevitably happen
when controlling a BMI; however, instead of the user having to
correct an error explicitly, it is possible to detect (or predict) its
occurrence and automatically correct it (or prevent it). They ap-
plied PCA to identify an error-related signal in MC and found
dimensions where projected neural data reflected task errors (ex-
ample latent factors observed during errors are shown in Fig. 5D).
In real-time experiments with monkeys, these latent factors were

Figure 4. LFADS uses recurrent neural networks to infer precise estimates of single-trial population dynamics. A, A recurrent neural network (simplified) is a set of artificial neurons that
implements a nonlinear dynamical system,with dynamics set by adjusting theweights of its recurrent connections. Conceptually, the RNN can be “unrolled” in time, where future states of the RNN
are completely predicted based in an initial state g(0) and its learned recurrent connectivity (compare Fig. 3A). B, The SAE framework consists of an encoding network and decoding network. The
encoder (RNN) compresses single-trial observed activity n(t) into a trial code g(0), which sets the initial state of the decoder RNN. The decoder attempts to re-create n(t) based only on g(0). To do so,
the decodermustmodel the ensemble’s dynamics using its recurrent connectivity. The output of the decoder is x(t), the latent factors, and r(t), the de-noised firing rates. C, The de-noised single-trial
estimates produced by LFADS uncover known dynamic features (such as rotations; Fig. 2A) on single trials. D, Decoding the LFADS-de-noised rates using simple optimal linear estimation leads to
vastly improved predictions of behavioral variables (hand velocities) over Gaussian smoothing, even with limited numbers of neurons. Adapted from Pandarinath et al., 2018.
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decoded to both prevent and autocorrect errors, improving BMI
performance.

Using dynamics and latent factors to increase BMI longevity
Ideally, a BMI’s performance would be maintained indefinitely.
However, neural recording conditions frequently change across

days, and even within-day in pilot clinical trials, e.g., due to neu-
ron death or electrode movement and failure (Barrese et al., 2013;
Perge et al., 2013; Sussillo et al., 2016b; Downey et al., 2018),
which can lead to decoding instability. Current approaches to
solve this problem include decoding more stable neural signals

Figure5. Improving BMI performance and longevity by leveraging neural dynamics.A, Graphicalmodel of decoderwith dynamical smoothing.B, Illustration of smoothing latent state estimates
using neural dynamics. The instantaneous estimate of the latent state (blue) is augmented by a dynamical prior (gray flow-field) to produce a smoother, de-noised estimate (orange). C, Smoothing
using neural dynamics results in better closed-loop BMI performance than other approaches. Performance is achieved information bitrate. Adapted from Kao et al., 2015. D, Example of low-
dimensional signals that can be used to augment intracortical BMIs. PCA applied to neural activity around the timeof target selection identifies a putative “error signal”, allowing real-timedetection
and correction of user errors in a typing BMI. Adapted from Even-Chen et al., 2017. E, Remembering dynamics from earlier recording conditions can extend performance as neurons are lost.
Performance measure is (off-line) mean velocity correlation. F, Comparison of closed-loop performance when 110 channels are “lost” shows a �3� improvement achieved by remembering
dynamics. FIT-KF, state-of-the-art kinematic Kalman filter (Fan et al., 2014). Adapted from Kao et al., 2017. G, Dynamic neural stitching with LFADS. A single model was trained on 44 recording
sessions. Each session used a 24-channel recording probe. Left, Recording locations in MC. Right, Single-trial reaches from an example session. Arc. Sp., arcuate spur; PCd, precentral dimple; CS,
central sulcus.H, Neural state space trajectories inferred by LFADS. Each trace of a given color is from a separate recording session (44 traces per condition). Inferred trajectories are consistent across
5months. jPC1 and jPC2 are the first two components identified by jPCA (Churchland et al., 2012). I, Using LFADS to align 5months of data (“Stitched”) significantly improves decoding versus other
tested methods. Adapted from Pandarinath et al., 2018. ***Significant improvement in median R 2; P� 10�8, Wilcoxon signed-rank test.
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(e.g., threshold crossings and local field potentials; Flint et al.,
2013; Nuyujukian et al., 2014; Gilja et al., 2015; Stavisky et al.,
2015), gradually updating decoder parameters using a weighted
sliding average (Orsborn et al., 2012; Dangi et al., 2013), auto-
mated decoder recalibration by updating “tuning” estimates
daily (Bishop et al., 2014), continuous recalibration by retrospec-
tively inferring the user’s intention among a set of fixed targets
(Jarosiewicz et al., 2015), and training robust neural network
decoders on a diversity of conditions using large data volumes
(Sussillo et al., 2016b).

A separate class of approaches aims to exploit the underlying
neural latent space, which, as a property of the neural population,
should have a stable relationship with the user’s intention that is
independent of the specific neurons observed at any moment
(Gao and Ganguli, 2015; Dyer et al., 2017; Gallego et al., 2017b;
Kao et al., 2017; Pandarinath et al., 2018). However, it is challeng-
ing to relate the observed neurons from a given recording condi-
tion to the underlying latent space. Recent studies using
supervised alignment strategies have demonstrated the potential
of latent dynamics to maintain BMI performance. Kao et al.
(2017) exploited historical information about population dy-
namics (Fig. 5E,F), finding that even under severe neuron loss,
aligning the remaining neurons to previously learned dynamics
could partially rescue closed-loop performance, effectively ex-
tending BMI lifetime. Alternatively, Pandarinath et al. (2018)
trained a single LFADS model using data from 44 independently
recorded neural populations spanning many millimeters of MC
and 5 months of recording sessions (Fig. 5G,H). They then used

a single linear decoder to map these latent dynamics onto kine-
matics (Fig. 5I). This work demonstrated that, in the absence of
learning, a single, consistent dynamical model describes neural
population activity across long time periods and large cortical
areas, and yields improved off-line decoding performance for any
given recording session than was otherwise possible.

Some settings lack data for supervised alignment, i.e., directly
linking neural activity from new recording conditions to motor
intent may be challenging (settings without structured behaviors,
or where intent is less clear on a moment-by-moment basis). In
these settings, unsupervised techniques may be useful for align-
ing data. Recently, Dyer et al. (2017) introduced a semi-
supervised approach called distribution alignment decoding
(DAD; Fig. 6A–C). This approach aims to map neural data from
a new recording condition (new data) onto a previously recorded
low-dimensional movement distribution. To do this, DAD first
reduces the dimensionality of the neural data (using PCA or a
nonlinear manifold learning technique), and then searches for an
affine transformation to match the low-dimensional neural data
to movements, by minimizing the Kullback–Leibler (KL)-
divergence between the two datasets (Fig. 6B). Their results dem-
onstrate that DAD can achieve similar performance to that of a
supervised decoder that has access to corresponding measure-
ments of neural state and movement, if the underlying data dis-
tribution contains asymmetries that facilitate alignment (Fig.
6C). Although a powerful approach for aligning neural and
movement data, DAD solves a non-convex optimization prob-
lem with many local minima (Fig. 6B) by using a brute force

Figure 6. Distribution alignmentmethods for stabilizingmovement decoders across days and subjects.A, Data dimensionality is first reduced, and then low-dimensional projections are aligned
onto a previously recorded movement distribution. B, KL-divergence provides a robust metric for alignment (displayed as a function of the angle used to rotate the data). Many local minima exist
(points 1, 2, 3, 4), which makes alignment difficult. C, Prediction accuracy of 2-D kinematics for distribution alignment decoding and supervised methods. Left, Accuracy of DAD using movements
from Subject M (DAD-M), from Subject C (DAD-C), and using movements from both Subjects M and C (DAD-MC). Right, Standard L2-regularized supervised decoder (Sup) and a combined decoder
(Sup-DAD), which averages the results of the supervised and DAD decoders. All results are compared with an Oracle decoder (far right), which provides an upper bound for the best linear decoding
performance for this task. Adapted from Dyer et al., 2017. D, A schematic of a generative adversarial network strategy for distribution alignment across multiple days: generator network (left)
receives new data and learns a transformation of the data to match the prior (from a previous day).
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search. To improve alignment and avoid having to first perform
dimensionality reduction, neural network architectures such as
generative adversarial networks (GANs; Goodfellow et al., 2014;
Molano-Mazon et al., 2018) provide a potential method to learn
nonlinear mappings from one distribution to another (Fig. 6D).
By leveraging the fact that low-dimensional representations of
neural activity are consistent across days and even subjects, dis-
tribution alignment methods like DAD or GANs provide a strat-
egy for decoding movements without labeled training data from
new recording conditions.

Conclusions
The increasing ability to monitor large numbers of neurons si-
multaneously will present new opportunities to study neural ac-
tivity at the population level. Mounting evidence shows that this
provides a qualitatively different window into the nervous system
from that of single-neuron recordings, and that population-level
dynamics likely underlie neural population activity across a wide
range of systems. Here we reviewed recent evidence that such
dynamics shape activity and drive behavior in MC, outlined key
methods for inferring latent factors and dynamics that have been
applied to MC activity, and showed how uncovering latent fac-
tors and dynamics can yield higher-performing and more robust
BMIs. Continuing advances in recording technologies, algo-
rithms, and computational power will enable studies of dynamics
that were not previously possible, and further, may open new
avenues for neural prostheses to address a wide variety of disor-
ders of the nervous system.
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Erlhagen W, Schöner G (2002) Dynamic field theory of movement prepa-
ration. Psychol Rev 109:545–572. CrossRef Medline

Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp fol-
lowing paralysis through brain-controlled stimulation of muscles. Nature
485:368 –371. CrossRef Medline

Evarts EV (1968) Relation of pyramidal tract activity to force exerted during
voluntary movement. J Neurophysiol 31:14 –27. CrossRef Medline

Even-Chen N, Stavisky SD, Kao JC, Ryu SI, Shenoy KV (2017) Augmenting
intracortical brain–machine interface with neurally driven error detec-
tors. J Neural Eng 14:066007. CrossRef Medline

Everitt B (1984) An introduction to latent variable models. London: Chap-
man and Hall.

Fan JM, Nuyujukian P, Kao JC, Chestek CA, Ryu SI, Shenoy KV (2014)
Intention estimation in brain–machine interfaces. J Neural Eng 11:
016004. CrossRef Medline

Fetz EE (1992) Are movement parameters recognizably coded in the activity
of single neurons? Behav Brain Sci 15:679 – 690. CrossRef

Flint RD, Wright ZA, Scheid MR, Slutzky MW (2013) Long term, stable
brain machine interface performance using local field potentials and mul-
tiunit spikes. J Neural Eng 10:056005. CrossRef Medline

Flint RD, Scheid MR, Wright ZA, Solla SA, Slutzky MW (2016) Long-term
stability of motor cortical activity: implications for brain machine inter-
faces and optimal feedback control. J Neurosci 36:3623–3632. CrossRef
Medline

Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of move-

Pandarinath et al. • Dynamics in Motor Cortex with Application to BMIs J. Neurosci., October 31, 2018 • 38(44):9390–9401 • 9399

http://dx.doi.org/10.1016/j.neuron.2011.05.047
http://www.ncbi.nlm.nih.gov/pubmed/21835350
http://dx.doi.org/10.1109/TNSRE.2015.2470527
http://www.ncbi.nlm.nih.gov/pubmed/26336135
http://dx.doi.org/10.1016/S0140-6736(17)30601-3
http://www.ncbi.nlm.nih.gov/pubmed/28363483
http://dx.doi.org/10.1016/j.neuron.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24462104
http://dx.doi.org/10.1016/j.neuron.2017.01.016
http://www.ncbi.nlm.nih.gov/pubmed/28190641
http://dx.doi.org/10.1088/1741-2560/10/6/066014
http://www.ncbi.nlm.nih.gov/pubmed/24216311
http://dx.doi.org/10.1088/1741-2560/11/2/026001
http://www.ncbi.nlm.nih.gov/pubmed/24503597
http://dx.doi.org/10.1037/0033-295X.95.1.49
http://www.ncbi.nlm.nih.gov/pubmed/3281179
http://dx.doi.org/10.1371/journal.pbio.0000042
http://www.ncbi.nlm.nih.gov/pubmed/14624244
http://dx.doi.org/10.1016/j.neuron.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25959731
http://dx.doi.org/10.1152/jn.1985.53.3.786
http://www.ncbi.nlm.nih.gov/pubmed/2984354
http://dx.doi.org/10.1152/jn.00808.2006
http://www.ncbi.nlm.nih.gov/pubmed/17005608
http://dx.doi.org/10.1152/jn.00095.2007
http://www.ncbi.nlm.nih.gov/pubmed/17376854
http://dx.doi.org/10.1152/jn.00307.2006
http://www.ncbi.nlm.nih.gov/pubmed/16855111
http://dx.doi.org/10.1016/j.neuron.2006.10.034
http://www.ncbi.nlm.nih.gov/pubmed/17178410
http://dx.doi.org/10.1038/nature11129
http://www.ncbi.nlm.nih.gov/pubmed/22722855
http://dx.doi.org/10.1523/JNEUROSCI.5605-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16988047
http://dx.doi.org/10.1016/S0140-6736(12)61816-9
http://www.ncbi.nlm.nih.gov/pubmed/23253623
http://dx.doi.org/10.1038/nn.3776
http://www.ncbi.nlm.nih.gov/pubmed/25151264
http://dx.doi.org/10.1162/NECO_a_00460
http://www.ncbi.nlm.nih.gov/pubmed/23607558
http://dx.doi.org/10.1088/1741-2552/aab7a0
http://www.ncbi.nlm.nih.gov/pubmed/29553484
http://dx.doi.org/10.1101/331751
http://dx.doi.org/10.1038/s41551-017-0169-7
http://dx.doi.org/10.1038/ncomms13239
http://www.ncbi.nlm.nih.gov/pubmed/27807345
http://dx.doi.org/10.1037/0033-295X.109.3.545
http://www.ncbi.nlm.nih.gov/pubmed/12088245
http://dx.doi.org/10.1038/nature10987
http://www.ncbi.nlm.nih.gov/pubmed/22522928
http://dx.doi.org/10.1152/jn.1968.31.1.14
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://dx.doi.org/10.1088/1741-2552/aa8dc1
http://www.ncbi.nlm.nih.gov/pubmed/29130452
http://dx.doi.org/10.1088/1741-2560/11/1/016004
http://www.ncbi.nlm.nih.gov/pubmed/24654266
http://dx.doi.org/10.1017/S0140525X00072599
http://dx.doi.org/10.1088/1741-2560/10/5/056005
http://www.ncbi.nlm.nih.gov/pubmed/23918061
http://dx.doi.org/10.1523/JNEUROSCI.2339-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27013690


ment kinematics in the discharge of primate primary motor and premo-
tor neurons. J Neurophysiol 73:836 – 854. CrossRef Medline

Gallego JA, Perich MG, Miller LE, Solla SA (2017a) Neural manifolds for the
control of movement. Neuron 94:978 –984. CrossRef Medline

Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, Miller LE (2017b)
Multiple tasks viewed from the neural manifold: stable control of varied
behavior. bioRxiv 176081. CrossRef

Gao P, Ganguli S (2015) On simplicity and complexity in the brave new
world of large-scale neuroscience. Curr Opin Neurobiol 32:148 –155.
CrossRef Medline

Gao Y, Buesing L, Shenoy KV, Cunningham JP (2015) High-dimensional
neural spike train analysis with generalized count linear dynamical sys-
tems. Adv Neural Inform Process Syst 2:2044 –2052.

Gao Y, Archer E, Paninski L, Cunningham JP (2016) Linear dynamical neu-
ral population models through nonlinear embeddings. arXiv 1605.08454

Gao P, Trautmann E, Byron MY, Santhanam G, Ryu S, Shenoy K, Ganguli S
(2017) A theory of multineuronal dimensionality, dynamics and mea-
surement. bioRxiv 214262. CrossRef

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the rela-
tions between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. J Neurosci 2:1527–1537. CrossRef
Medline

Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM,
Churchland MM, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A
high-performance neural prosthesis enabled by control algorithm design.
Nat Neurosci 15:1752–1757. CrossRef Medline

Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA,
Sorice BL, Perge JA, Jarosiewicz B, Hochberg LR, Shenoy KV, Henderson
JM (2015) Clinical translation of a high-performance neural prosthesis.
Nat Med 21:1142–1145. CrossRef Medline

Golub MD, Yu BM, Chase SM (2015) Internal models for interpreting neu-
ral population activity during sensorimotor control. eLife 4:e10015.
CrossRef Medline

Golub MD, Sadtler PT, Oby ER, Quick KM, Ryu SI, Tyler-Kabara EC, Batista
AP, Chase SM, Yu BM (2018) Learning by neural reassociation. Nat
Neurosci 21:607– 616. CrossRef Medline

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances
in Neural Information Processing Systems 27 (eds Ghahramani, Z. et al.),
pp 2672–2680 (Curran Associates, Red Hook, NY).

Gribble PL, Scott SH (2002) Overlap of internal models in motor cortex for
mechanical loads during reaching. Nature 417:938 –941. CrossRef
Medline

Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature 484:62– 68.
CrossRef Medline

Hennequin G, Vogels TP, Gerstner W (2014) Optimal control of transient
dynamics in balanced networks supports generation of complex move-
ments. Neuron 82:1394 –1406. CrossRef Medline

Hepp-Reymond MC, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B
(1999) Context-dependent force coding in motor and premotor cortical
areas. Exp Brain Res 128:123–133. CrossRef Medline

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH,
Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442:
164 –171. CrossRef Medline

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Had-
dadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and
grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature 485:372–375. CrossRef Medline

Hocherman S, Wise SP (1991) Effects of hand movement path on motor
cortical activity in awake, behaving rhesus monkeys. Exp Brain Res 83:
285–302. Medline

Holdefer R, Miller LE (2002) Primary motor cortical neurons encode func-
tional muscle synergies. Exp Brain Res 146:233–243. CrossRef Medline

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s
striate cortex. J Physiol 148:574 –591. CrossRef Medline

Jackson JH (1873) Observations on the localisation of movements in the
cerebral hemispheres, as revealed by cases of convulsion, chorea, and
“aphasia”. The West Riding Lunatic Asylum Medical Reports 3:175–195.

Jankowska E, Padel Y, Tanaka R (1975) Projections of pyramidal tract cells

to alpha-motoneurones innervating hind-limb muscles in the monkey.
J Physiol 249:637– 667. CrossRef Medline

Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, Oakley
EM, Blabe C, Pandarinath C, Gilja V, Cash SS, Eskandar EN, Friehs G,
Henderson JM, Shenoy KV, Donoghue JP, Hochberg LR (2015) Virtual
typing by people with tetraplegia using a self-calibrating intracortical
brain-computer interface. Sci Transl Med 7:313ra179. CrossRef Medline

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK,
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