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Abstract

A fundamental goal of systems neuroscience is to understand how neural activity
gives rise to natural behavior. In order to achieve this goal, we must first build
comprehensive models that offer quantitative descriptions of behavior. We develop
a new class of probabilistic models to tackle this challenge in the study of larval ze-
brafish, an important model organism for neuroscience. Larval zebrafish locomote
via sequences of punctate swim bouts—brief flicks of the tail—which are naturally
modeled as a marked point process. However, these sequences of swim bouts belie
a set of discrete and continuous internal states, latent variables that are not captured
by standard point process models. We incorporate these variables as latent marks of
a point process and explore various models for their dynamics. To infer the latent
variables and fit the parameters of this model, we develop an amortized variational
inference algorithm that targets the collapsed posterior distribution, analytically
marginalizing out the discrete latent variables. With a dataset of over 120,000 swim
bouts, we show that our models reveal interpretable discrete classes of swim bouts
and continuous internal states like hunger that modulate their dynamics. These
models are a major step toward understanding the natural behavioral program of
the larval zebrafish and, ultimately, its neural underpinnings.

1 Introduction

Computational neuroscience—the study of how neural circuits transform sensory inputs into be-
havioral outputs—is intimately coupled with computational ethology—the quantitative analysis of
behavior [1, 2]. In order to understand the computations of the nervous system, we must first have
a rigorous description of the behavior it produces. To that end, comprehensive, quantitative, and
interpretable models of behavior are of fundamental importance to the study of the brain.

For many organisms, overt behaviors manifest as a sequence of discrete and nearly-instantaneous
events unfolding over time, often with some associated measurements, or marks. Multiple times a
second, our eyes saccade in a quick, jerking motion to fixate on a new point in our field of view [3].
Some electric fish emit pulsatile discharges to navigate, detect objects, and communicate [4]. In this
paper we study larval zebrafish, a model organism for neuroscience. They swim with brief tail flicks,
or bouts, that propel them forward, reorient them, and enable them to pursue and capture prey [5, 6].
Importantly, larval zebrafish offer exciting opportunities: if we can better quantify their behavioral
patterns, we can use whole brain functional imaging technologies to search for correlates of these
patterns in the neural activity dynamics of behaving fish [7–11].

Figure 1 illustrates our experimental setup for collecting behavioral data of freely swimming larval
zebrafish [12]. Each fish swims in a large (30cm) tank for 40 minutes while feeding on paramecia and
is recruited to the center to initiate each observational trial (a.). Each trial consists of a sequence of
up to 350 swim bouts (b.) and we recorded over 120,000 bouts from 130 fish over about 1000 trials.
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Figure 1: Overview of our experimental setup for studying zebrafish behavior over multiple time-scales. a. We
collected many trials of larval zebrafish freely swimming in a large tank with paramecia, the fish’s prey. b. Each
trial consists of a sequence of punctuated swim bouts separated by longer periods of rest. c. Most swim bout
last less than 200ms, nearly instantaneous for our modeling purposes. d. As the fish swims, we track it with an
overhead camera and record high-resolution video at 60fps. In each video frame, we identify the fish’s 2 eye
angles and the change in its 20 tail tangent angles over consecutive frames to describe its posture. For each
bout, we use ten frames starting with movement onset, giving us a 20D representation of the eyes and 180D
representation of the tail. We then use PCA to reduce the tail representation to the same dimension as the eye
angles and use the resulting 40D representations as the marks in our point process latent variable model.

Bouts are nearly instantaneous events, most lasting under 200ms (c.). As the fish swims, we track it
with a moving overhead camera and collect high-resolution video of its postural dynamics (d.). We
use eye angles and the change in tail shape through ten frames starting with movement onset as a
high-dimensional quantification of each bout.

We aim to answer two scientific questions with this dataset. First, what dynamics govern how swim
bouts are sequenced together over time? Second, how are these dynamics modulated by internal
states like hunger? We develop a new class of probabilistic models to address these questions.

Larval zebrafish behavior is naturally viewed as a marked point process, a stochastic process that
generates sets of events in time with corresponding observations, or marks. Here, each bout is a
time-stamped event marked with a corresponding vector of tail postures and eye angles. Marked
point processes offer a probabilistic framework for modeling the rate at which the observed events
occur. However, our scientific questions pertain to discrete and continuous states that are not directly
observable. This motivates the new point process latent variable models (PPLVM) we introduce in
Section 3, which blend deep state space models and marked point processes. This work builds upon
and extends many existing models, as we discuss in Section 2 and Section 5. Section 4 develops an
amortized variational inference algorithm for inferring the latent states and fitting the parameters of
the PPLVM. Sections 6 and 7 present our results from applying our methods to synthetic and real data.

2 Background

We start by introducing the key modeling ingredients that underlie our model.

Point processes and renewal processes. Point processes are stochastic processes that generate
discrete sets of events in time and space. In our case, each swim bout is characterized by a time-
stamp tn and a corresponding mark yn, here a vector of eye and tail angles. Generally, point processes
are characterized by a rate function, which implies a probability density on sets of events [13].
Unfortunately, evaluating this density requires integrating the rate function, which is intractable for
all but the simplest models. However, when the events admit a natural ordering—for example, when
events can be sorted in time—we can use a renewal process (RP) instead. Renewal processes specify
a distribution on the intervals in , tn+1 − tn between consecutive events, and the joint probability
of sets of intervals is typically easy to compute. For example, gamma renewal processes (GRP) treat
each interval as an independent gamma random variable so that the joint distribution factorizes over
intervals. When the intervals are independent exponential random variables, we recover the standard
Poisson process (PP). By changing the interval distribution or introducing dependencies between
intervals, we develop point processes with more complex structure yet still tractable distributions.
Moreover, renewal processes are easily extended to handle sets of marked events by specifying a
conditional distribution over marks given the intervals.
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Deep generative models. In practice, it can be difficult to model distributions over high dimensional
marks. Recent advances in deep generative modeling [14–16] offer new means to tackle this challenge
with neural networks. For example, deep latent Gaussian models use neural networks to capture
nonlinear mappings between low dimensional latent variables and observed data. In this way, simple
priors on latent variables give rise to complex conditional distributions over data. However, learning
the neural network weights is far from trivial because the marginal log probability of the data, or
evidence, is intractable. Instead, we resort to approximate methods like variational expectation-
maximization, which maximize a more tractable evidence lower bound (ELBO). Two advances
make this practical: recognition networks, which model the variational approximation as a learnable
function of the data, again implemented as a neural network; and the reparameterization trick, which
allows for lower variance estimates of the gradients of the ELBO for stochastic gradient ascent. These
ideas will be key to articulating and fitting our models of zebrafish behavior.

State space models. State space models capture dependencies between latent variables over time.
Deep generative models offer a very flexible approach to modeling dependencies, but we can often
make more restrictive assumptions about the nature of the temporal dynamics. In doing so, we hope
to recover more interpretable latent structure. For example, we believe that zebrafish behavior is
governed by discrete and continuous latent variables that evolve over time; these are naturally captured
by hidden Markov models (HMM) [17] and Gaussian processes (GP) [18]. HMMs model sequences of
discrete latent states with Markovian dynamics, and when the discrete states govern a distribution over
intervals of an RP, we obtain Markov renewal processes (MRP). GPs are nonparametric models for
random functions x(t) with covariance structure determined by a kernel K(t, t′). Under a GP model,
the set of function evaluations x1:N at times t1:N is jointly Gaussian distributed with covariance
matrix C, where Cn,n′ = K(tn, tn′). Given the kernel function, it is straightforward to compute the
Gaussian predictive density p(xn+1 | x1:n, t1:n+1) and its predictive covariance Cn+1|1:n. With the
predictive distribution, we can simulate the function forward in time at asynchronous time stamps.

3 Mixed Discrete and Continuous Point Process Latent Variable Models

We propose a class of point process latent variable models that blend renewal processes, deep
generative models, and state space models to build a model for sets of marked events in time. The
key idea is to view the latent variables as unobserved elements of the events’ marks. Each event has
an observed time stamp tn and mark yn; rather than modeling the time stamps directly, we model
the intervals in , tn+1 − tn;n = 1, . . . , N . (Technically, we model t1, i1:N−1, and the probability
that iN > T − tN .) We augment these marks with three latent variables: a continuous latent state xn,
a discrete state zn, and an embedding of the high dimensional mark hn. We use state space models
to link these latent variables across sequences of events, and deep generative models to relate the
embedding to the observed mark. In modeling larval zebrafish behavior, we expect these latent
variables to capture continuous internal states, like hunger, discrete states, like the type of swim bout,
and low dimensional properties of the bout kinematics. There are many ways to relate these latent
variables. We motivate one model and discuss other special cases.

3.1 Gaussian process modulated Markov renewal process

Our choice of conditional distributions is guided by three desiderata: we desire flexibility in the
aspects of the model about which we are less certain, we want to express prior knowledge when
it is available, and we want to build models that admit efficient inference algorithms. To that end,
we propose a semi-parametric point process latent variable model that we call the Gaussian process
modulated Markov renewal process (GPM-MRP).

The first component of the GPM-MRP is a deep latent Gaussian model of the high-dimensional marks.
We assume that each bout’s observed eye and tail angles yn reflect a low-dimensional continuous
latent embedding hn ∈ RH . This embedding is transformed through a neural network, which outputs
the mean and diagonal variance of a distribution over the observed mark yn ∼ N (µθ(hn),Σθ(hn)).
We expect this latent embedding to act as a low-dimensional summary of the bout’s most salient
attributes, and hence, conditioned on hn, yn is assumed to be independent of all other variables.

Based on past ethological studies of larval zebrafish [5–7], we believe that swim bouts can be catego-
rized into discrete types, and that these types are correlated over time. Intuitively, a bout’s discrete
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Figure 2: Generative models and recognition network. Left: The full generative model relates discrete and
continuous latent states to the low-dimensional mark embeddings and the observed inter-bout intervals and
marks. The continuous states follow a Gaussian process, so the preceding values and past intervals are necessary
to predict the next continuous state. These dependencies are shown in light gray. The mapping from embeddings
to observed bout kinematics is implemented via a neural network, as indicated by the square-tipped arrows.
Middle: Since the discrete latent states are connected in a Markov chain, we can efficiently sum over them via
message passing to obtain a collapsed generative model. Marginalization yields a purely continuous, densely
connected latent variable model. Right: We infer the continuous latent variables via a recognition network with
a bidirectional LSTM. The LSTM states (blue squares) are read out at only a subset of points (here, two middle
bouts), which then determine the other continuous states.

type determines the distribution over its attributes hn and subsequent intervals in. We formalize this
intuition by introducing a discrete state zn ∈ {1, . . . , B}, which determines the conditional mean and
covariance of a Gaussian prior on the embedding hn and contributes to a generalized linear model for
the following interval in. To capture the temporal correlation of these types, we include a Markovian
dependency between zn and zn+1.

While MRPs are able to model the evolution of discrete states over time, their assumption of stationary
transition distributions is overly restrictive for our application, as we expect zebrafish to vary their
transition probabilities over time. To model non-stationarities in both the discrete transitions and
interval distributions, we introduce a scalar-valued continuous latent state xn that modulates the
transition probabilities and interval distributions. In the context of modeling zebrafish behavior, we
expect these continuous states to capture slowly varying internal states like hunger, which are not
directly observable but manifest in different patterns of swim bouts and intervals. At the same time,
we do not have strong prior beliefs about the dynamics of these states, except that they are smoothly
varying with a relatively long time constant. We capture these intuitions with a zero-mean Gaussian
process prior on the continuous states, x(t) ∼ GP(K(t, t′)), with a squared exponential kernel.

Conditioned on xn = x(tn), we model the discrete transition probabilities with a generalized linear
model, πθ(zn−1, xn) = softmax(Wxxn + Pzn−1) where θ consists of Wx ∈ RB and Pzn−1 ∈ RB .
The matrix formed by stacking the row vectors {PT

b }Bb=1 can be seen as a baseline log (unnormalized)
transition matrix, which is modulated by the continuous states xn. Similarly, we model the non-
stationary interval distributions as gamma random variables parameterized by generalized linear
models aθ(xn, zn) and bθ(xn, zn) with exponential link functions.

In sum, we sample the GPM-MRP by iteratively drawing from the following conditional distributions,

xn | {xn′ , in′}n′<n ∼ N (mn|1:n−1, Cn|1:n−1), (GP predictive distribution)

zn | xn, zn−1 ∼ πθ(xn, zn−1), (Discrete transition probability)
hn | zn ∼ N (µzn ,Σzn), (Gaussian mixture of latent embeddings)

in | xn, zn ∼ Ga(aθ(xn, zn), bθ(xn, zn)), (Gamma gen. linear model of intervals)
yn | hn ∼ N (µθ(hn),Σθ(hn)). (Deep generative model of marks)
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Here, θ denotes the set of parameters that we must learn: the parameters of the generalized linear
models of discrete transition probabilities and interval densities, the means and covariances of the
latent embeddings, and the weights of the neural network observation model. We treat the GP
hyperparameters as fixed. Figure 2 (left) shows the complete graphical model.

3.2 Special cases and extensions

By restricting the form of these dependencies we obtain many well-known models as special cases.
By removing the discrete and continuous states, we recover standard renewal processes. Given
only a continuous latent state, we can model piecewise constant conditional intensity functions and
approximate log Gaussian Cox processes [19]. With only a discrete state, we recover the standard
Markov renewal process and, in discrete time, a hidden Markov model.

The GPM-MRP is only one of many possibilities for mixed discrete and continuous point process latent
variable models, and there are many clear extensions. For example, it is straightforward to allow the
marks to depend on both the discrete and the continuous states. Likewise, the interval model can also
be readily extended to more complex history dependence via an autoregressive process (AR) that
considers in−p, . . . , in−1. The continuous latent states could be multidimensional rather than scalar.
Finally, the discrete transition probabilities can be extended to include semi-Markovian dependencies
as well; i.e. to depend not only on the preceding discrete state, but also how long that state has been
used. However, as we will show in the next section, it is critical that the discrete dependencies remain
tractable so that we can efficiently compute the marginal distribution by summing them out.

4 Inference

Our data consists of a set of S sequences of marked events. To simplify notation, let bold vari-
ables as , a

(s)
1 , . . . , a

(s)
Ns

denote the values of variable a in sequence s of length Ns. Given a set of
such sequences, we aim to estimate the global model parameters θ and infer a posterior distribution
over the latent variables for each sequence pθ(xs, zs,hs | is,ys). Computing this posterior and its
reparameterization gradients is complicated by the presence of both continuous and discrete latent
variables. To handle these hybrid states, we develop an amortized variational inference algorithm that
targets the posterior of the collapsed distribution, analytically marginalizing out the discrete latent
variables,

pθ({xs,hs, is,ys}Ss=1) =

S∏
s=1

∑
zs

pθ(xs, zs,hs, is,ys). (1)

The key to this approach is that the discrete variables zs are connected in a Markov chain. Thus,
for any values of xs, hs, is, and ys, we can compute the marginal densities in (1) in O(Ns) time
using standard message passing algorithms, just as in an HMM [17]. Summing over the discrete states
yields the densely connected but purely continuous generative model shown in Figure 2 (middle).

We approximate the intractable posterior distribution of xs and hs with a variational approximation
qφ(xs,hs) ≈ pθ(xs,hs | is,ys). We seek parameters φ that minimize the Kullback-Leibler diver-
gence between the approximate and true posterior and the parameters θ that maximize the likelihood
of the data. We find both simultaneously by optimizing the ELBO,

L(φ, θ) =

S∑
s=1

Eqφ(xs,hs)
[

log pθ(xs,hs, is,ys)− log qφ(xs,hs)
]
≤ log pθ({is,ys}Ss=1).

We optimize this lower bound with stochastic gradient ascent using mini-batches of sequences.
Computing gradients of the ELBO requires back-propagating through the HMM message passing
routine. See Appendix A for details on this routine and its gradients.

Once we have obtained an approximate posterior over the continuous latent variables, we reintroduce
the discrete states zs and compute their posterior. For a given configuration of xs,hs and θ, the
conditional distribution pθ(zs | xs,hs, is,ys) admits efficient algorithms for a variety of queries. We
can compute its mode, its marginal distributions, and draw samples from it, all using similar message
passing algorithms. Thus, by optimizing the variational bound, we obtain the desired approximate
posterior over discrete and continuous variables q(zs,xs,hs) = pθ(zs | xs,hs, is,ys) qφ(xs,hs).
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Recognition networks To accelerate inference, we also learn a recognition network that maps
a sequence is,ys to a set of variational parameters over the distribution of xs,hs [14, 15]. Our
network, shown in Figure 2 (right), assumes the approximate posterior factorizes as,

qφ(xs,hs; is,ys) =
[ Ns∏
n=1

qφ(h(s)n ; y(s)n )︸ ︷︷ ︸
feed-forward

]
qφ(xs; is,hs)︸ ︷︷ ︸
bidirectional RNN

. (2)

The first term, qφ(h
(s)
n ; y

(s)
n ), is parameterized by a feed-forward neural network. Given a single

bout’s vector of eye and tail angles, this network outputs a mean and covariance of a Gaussian over
the inferred latent embedding. Since the true posterior pθ(x

(s)
n | is,hs) depends on observations

both before and after the n-th event [20–22], we use a bidirectional recurrent neural network for
qφ(xs; is,hs). Given an input sequence, the network outputs a mean and covariance of xs. Complete
details are in Appendix B.

Sparse GP inference The Gaussian process prior on xs imposes a substantial computational burden:
evaluating the ELBO requires inverting the GP covariance matrix C, which is O(N3

s ) complexity.
To overcome this computational bottleneck, we use a sparse approximation to the full GP [23,
24], computing the inverse covariance matrix at a subset ts,u ⊂ ts of Ns,u “inducing” points,
where Ns,u � Ns. (These are not technically inducing points as defined in Snelson and Ghahramani
[24] since they are fixed, not learned.) For instance, in our experiments with zebrafish behavior, we
take every 20th point in a sequence to be in this subset. For this sparse GP setup, the variational
model only decodes the RNN hidden state at each point in ts,u. For a particular configuration of xs,u
at these events, the continuous states at the times of all other events follow deterministically.

5 Related Work

We build upon a great deal of existing work on point processes, state space models, and approximate
Bayesian inference. These classes of methods have had significant impact in computational neuro-
science [21, 25–34]. Of particular interest is the work of Cunningham et al. [27, 28], which develops
Gaussian process models of the underlying intensities of renewal processes and inference algorithms
via discretization of the underlying continuous intensity. The class of Gaussian process-modulated
point processes are well-studied in statistics and machine learning more generally. Prime among
these is the log Gaussian Cox process, which models the log intensity of a Poisson process as a
Gaussian process [19]. Several sampling and variational inference schemes have been proposed
for these types of models [35–39]. Most closely related to our work, Rao and Teh [36] propose a
Gaussian process-modulated renewal process and an accompanying uniformization-based sampling
procedure for inference of the latent continuous state. While these classes of models offer reasonable
approaches for our scientific problem, they do not model co-evolving discrete and continuous latent
structure over time or incorporate deep generative models of marked data.

A more recent body of work has combined deep generative models and state space models and
developed new inference methods for these deep, dynamic models. Particularly, advances in structured
variational inference provide us with methods for efficient inference in a variety of deep state space
models [20–22]. The specific challenges of modeling mixed discrete and continuous states has also
garnered interest [40]. While our work draws upon these recent advances, we emphasize that our
work focuses on point process observations, which pose unique modeling and inference challenges.

Finally, others have used neural networks for modeling point process data [41–43]. However, these
models typically do not incorporate latent states in the dynamics. Moreover, in fully-general recurrent
neural network models like these, it is more challenging to incorporate explicit prior knowledge about
the type and dynamics of latent variables. We make use of recurrent neural networks in our amortized
variational inference procedure, but their purpose is to accelerate scalable Bayesian inference in a
structured and interpretable probabilistic model.

6 Synthetic Validation

We test our models and inference algorithm on synthetic data and ensure that we can accurately
recover the true underlying discrete and continuous latent structure from noisy marked point process
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Figure 3: Synthetic data validation. We simulate a continuous latent state x(t) from a Gaussian process and
evaluate it on a finely spaced grid. These continuous states modulate the transition probabilities of an underlying
set of discrete states, which in turn determine the likelihood of the observed time stamps and marks (not shown).
The base transition probabilities are shown at the top, along with the weights with which the continuous states
bias them. Our amortized variational inference algorithm accurately recovers the true underlying continuous
states as well as the transition probabilities at each point in time. Two time points are shown here as examples.

observations. We simulate a synthetic dataset consisting of S = 1000 sequences, each of which
contains Ns = 300 events and shares the same global parameters θ. We use Str = 750 of these
sequences for training and save 250 for evaluation. We fix the true number of discrete states
to B = 3, and we simulate H = 2 dimensional embeddings. For simplicity, we start by treating these
embeddings as directly observable and focus on learning the discrete and continuous latent states of
the model. We learn the model parameters by maximizing a lower bound on the marginal likelihood,
as described above, using a subset of size Ns,u = 15 for the sparse GP approximation.

Figure 3 shows an example of true and inferred continuous latent states from one sequence
in our synthetic dataset. The true latent states (evaluated on a fine grid) are shown in black,
and the inferred mean and 95% posterior credible intervals are shown in blue and light blue,
respectively. These are deterministic given a sample from the inferred posterior at the sub-
set of points ts,u. The continuous latent states determine the transition probabilities at each
point in time by modulating the base transition matrix with a linear set of weights, as shown
in the top left. Since x and z are defined up to a linear transformation and permutation, re-
spectively, we solve for the optimal transformations to align the true and predicted latent states.
We see that the learned weights accurately recover the true underlying transition probabilities.

# TRAIN SEQ. GPM-MRP MRP GRP

Str = 10 -239.12 -248.34 -359.45
Str = 50 -230.96 -244.76 -349.51
Str = 100 -226.68 -244.15 -353.42
Str = 250 -226.50 -245.19 -353.95

Table 1: Test marginal likelihood on synthetic data for
increasing numbers of training sequences, Str.

Standard models like gamma renewal processes
and Markov renewal processess can only ap-
proximate the effects of the mixed discrete and
continuous latent variables. This is evident in
the decreased log likelihoods on held-out test
data, as we show in Table 1. As the number of
training sequences increases, the discrepancy in
test performance increases.

7 Experimental Results on Large-Scale Larval Zebrafish Behavior Data

Finally, we use these point process latent variable models to study latent states of larval zebrafish
behavior. Figure 1 provides an overview of our experimental setup. Each fish is observed one at a
time while swimming freely in a large tank, preying on paramecia. As described in Section 1, we
track the fish and record a a 20 dimensional representation of the eyes and 180 dimensions for the
tails in each bout. To place these features on the same footing, we first reduce the tail features to 20
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Figure 4: Inferred discrete states of zebrafish behavior, their baseline transition probabilities, and their following
interval distributions. Discrete states can be understood in terms of their corresponding eye angle: positive
angles indicate hunting, negative indicate exploration. The states follow characteristic transition patterns and
intervals. We use cross-validation to select B = 8 discrete states and H = 10 embedding dimensions, a model
with high test likelihood and interpretable results.

dimensions using PCA, giving us a D = 40 dimensional mark for each bout. Each of 130 fish were
observed in trials over a 40 minute period, resulting in over 120,000 swim bouts. We use 105 fish for
training and 25 for model comparison. We fit the model with 50 epochs of stochastic gradient ascent.

Method Variables Test LL

PP in, yn -57.24
GRP in, yn -57.06
AR1 in, yn -50.01

AR10 in, yn -49.75
MRP in, yn, zn -41.15

GRP+ in, yn, hn -24.88
MRP+ in, yn, zn, hn -23.12

GPM-MRP in, yn, zn, hn, xn -22.61

Table 2: Test log likelihood of zebrafish data in units
of nats/bout.

Figure 4 shows the inferred bout types for a ran-
domly chosen 1000 bouts. We see that they cluster
intoB = 8 groups in our latent space. In the top left
panel, we display two dimensions of our H = 10
dimensional latent space. Upon inspection, we find
that these two dimensions correlate with two key
characteristics of the eye-angles over the course of
a bout. Particularly, we compute the change in eye
angle between the first and last frames of a bout,
as well as the mean eye angle over the 10 frames.
Per these features, we find that the inferred clus-
ters correspond to known bout types related to head
movement (grey), exploratory locomotion (pink, orange, red, and crimson), J-turns (yellow) that
signal the entrance to a hunt [5], pursuits (green), and hunt-ends (blue). These bouts follow an
interpretable transition matrix that suggests fish alternate between exploration and pursuing prey, and
the transition between these two modes is gated by J-turns and hunt-ends. Moreover, each bout type
entails a characteristic distribution over the following interbout interval. We chose the number of
states and embedding dimension based on the held-out ELBO and inspection. We found that with more
than B = 8 states and H = 10 dimensions, the gains in held-out likelihood diminished. Moreover,
the inferred clusters appear to further subdivide the explore bouts without fundamentally changing
the transition or interval distributions, suggesting that these refinements are less meaningful.

MRPs could identify these latent types of bouts, but they cannot easily capture the influence of internal
states like hunger. In this experiment, 57 of the fish were starved for 2-4 hours prior to entering
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Figure 5: Hunger modulates transition probabilities into each bout and the intervals following them. Top: Our
continuous latent states capture a bias in transition probabilities over time. On average, we see that starved fish
(dark lines) up-regulate hunting related bouts (J-turns and pursuits). Bottom: Starved fish also swim more often
regardless of bout type, as indicated by the decreased interbout intervals. After 40 minutes in tank preying on
paramecia, fed and starved fish equalize.

the tank. Our GPM-MRP finds that these fish change their transition probabilities and intervals as a
function of how long they have been in the tank.

Figure 5 shows the effect of the continuous state on log transition probabilities (top) and interbout-
intervals (bottom), averaged over all fish in the fed or starved groups in five minute intervals. Starved
fish up-regulate the probability of entering a hunt and pursuing prey, whereas fed fish show increased
probability of ending hunts. Across all bout types, starved fish show shorter expected inter-bout
intervals. In sum, starved fish swim more often and are more likely to engage in hunts, as we might
expect. Table 2 shows that the GPM-MRP is not only interpretable, it also outperforms existing models
in predicting held-out data. See Appendix B for further details on the baseline comparisons.

8 Discussion

The principal output of an animal’s nervous system is a sequence of actions selected from its
behavioral repertoire. Understanding the set of possible actions [44] and the ways in which they
are flexibly and adaptively combined is critical to constraining our understanding of how even the
smallest animal brains function in the natural world. The larval zebrafish is studied in thousands
of labs worldwide [45] and its behavior is unique among model organisms in that it is naturally
segmented into punctuated bouts. This simple behavioral structure lends itself well to be modeled as
a marked point process.

We develop new PPLVMs and show how a hidden continuous internal variable like hunger can
modulate both action selection and timing. Our models blend co-evolving discrete and continuous
latent states to generate marked point process observations. We show how one member of this class,
the GPM-MRP, is able to capture meaningful dynamics in a large-scale dataset of zebrafish behavior.

While the models we develop are able to uncover meaningful latent structure, there are several
potential areas for improvement. For instance, our discrete state dynamics are limited by our ability
to analytically marginalize them out, but semi-Markovian models [46] are a natural extension. In
addition, while we build on prior work on point processes, we have only explored PPLVMs within the
context of temporal observations. We leave an examination of blending point processes, state space
models, and deep generative models in the spatiotemporal domain to future work.

As models of behavior grow to incorporate multiple internal variables (e.g. stress, arousal, attention,
fear), interpretable models will be necessary to understand how unobserved variables interact to yield
natural behavioral sequences. Such models will aid in generating hypotheses about how the brain
implements behavioral algorithms that are modulated by latent internal states. For example, we find
that increased hunger promotes shorter wait times between actions. This knowledge may be used
in conjunction with whole-brain imaging studies to identify neural populations which regulate the
precise timing of action initiation in both health and disease.

9



Acknowledgements. The authors thank John Cunningham and Liam Paninski for helpful advice and
feedback. SWL thanks the Simons Foundation for their support (SCGB-418011). FE received funding from the
National Institutes of Health’s Brain Initiative U19NS104653, R24NS086601 and R43OD024879, as well as
Simons Foundation grants (SCGB-542973 and 325207).

References
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