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Ourdecisionsoftendependonmultiplesensoryexperiencesseparatedbytimedelays.The
braincanremembertheseexperiencesand,simultaneously,estimatethetimingbetween
events.Tounderstandthemechanismsunderlyingworkingmemoryandtimeencodingwe
analyzeneuralactivityrecordedduringdelaysinfourexperimentsonnon-humanprimates.
Todisambiguatepotentialmechanisms,weproposetwoanalyses,namely,decodingthepas-
sageoftimefromneuraldata,andcomputingthecumulativedimensionalityoftheneural
trajectoryovertime.Timecanbedecodedwithhighprecisionintaskswheretiminginfor-
mationisrelevantandwithlowerprecisionwhenirrelevantforperformingthetask.Neural
trajectoriesarealwaysobservedtobelowdimensional.Theseconstraintsruleoutwork-
ingmemorymodelsthatrelyonconstant,sustainedactivity,andneuralnetworkswithhigh
dimensionaltrajectories,likereservoirnetworks.Instead,recurrentnetworkstrainedwith
backpropagationcapturethetimeencodingpropertiesandthedimensionalityobservedin
thedata.

1 Introduction

Humansandotheranimalsarefreefromtheimmediacyofreflexactionsthankstotheirabilityto
preserveinformationabouttheirsensoryexperiences. Wheneventslikesensoryinputs,decisions
ormotorresponsesareseparatedbytimedelays,thesubjecthastobeabletopropagateinformation
acrossthesedelays(e.g.theidentityofavisualstimulus). Moreover,itisoftenthecasethatthe
durationofthedelayintervalscanbefundamentalforinterpretingincomingstreamsofsensory
stimuli,requiringthesubjecttomeasurethetimethatpassesbetweenonerelevanteventandthe
next.Theabilitytopropagateintimetheinformationabouttheeventprecedingthedelayrelies
onwhatisoftendefinedasworkingmemory,andithasbeenextensivelystudied1,2.Analogously,
thereareseveralstudiesonthecapacityofhumansandanimalstomeasurethetimethathaselapsed
sincetheevent3,4.Hereweanalyzedthedelayactivityrecordedinmonkeysduringfourdifferent
experimentstounderstandthedynamicsoftheneuralmechanismsthatenablemonkeystopreserve
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over time the information about a particular event and, at the same time, to measure the interval
that passed since that event. We considered three classes of mechanisms that have been suggested
by previous theoretical work (Figure 1).

The first mechanism is often used to model working memory (see e.g. 5,6) and it is based on
the hypothesis that there are neural circuits that behave like an attractor neural network5, 7, 8 (Figure
1, left column), in which different events (e.g. different sensory stimuli) lead to different stable
fixed points of the neural dynamics. Persistent activity, widely observed in many cortical areas,
has been interpreted as an expression of this attractor dynamics (see e.g. 9). For these dynamical
systems, the information about the event preceding the delay is preserved as long as the neural
activity remains in the vicinity of the fixed point representing the event. However, once the fixed
point is reached, the variations of the neural activity are only due to noise; all timing information
is lost and time is not encoded.

Time and memory encoding can be obtained simultaneously in a category of models known
as reservoir networks, liquid state machines or echo state networks11–13. These are recurrent neural
networks (RNNs) with random connectivity that can generate high dimensional chaotic trajectories
(Figure 1A, center). If these trajectories are reproducible, then they can be used as clocks as
the network state will always be at the same location in the firing rate space after a certain time
interval. Thanks to the high dimensionality, one can implement the clock using a simple linear
readout. Moreover, a linear readout is also sufficient to decode any other variable that is encoded
in the initial state. To identify this computational regime we note that a prediction of the reservoir
computing framework is that neural activity at each timepoint is unique. If this is true, then it
will be possible to decode the ‘passage of time’ from the neural population (Figure 1B center
and Methods Figure M1), regardless of whether timing information is relevant for the task or not.
However, there are a few problems with these models. In principle they are very powerful, as
they can generate any input-output function (output function of spatiotemporal inputs). However,
this would require an exponential number of neurons, or equivalently, the memory span would
grow only logarithmically with the number of neurons. Moreover, the trajectories are chaotic,
and so inherently unstable and not robust to noise. Although, recent theoretical work10, 14 has
demonstrated ways of making them robust.

The third category of models is one in which the activity varies in time but across trajectories
that are low dimensional. For these models, it is still possible to encode time and also to encode
different values of other variables along separate trajectories (Figure 1, right column). Working
memory, in these models, does not rely on constant rates around a fixed activity pattern as in
standard attractor models, however, the low-dimensional evolving trajectories can still provide a
substrate for stable memories, similar to attractor models of memory storage via constant activ-
ity. One advantage of a low-dimensional evolving trajectory is that time can also be encoded,
something not possible with constant neural activity.
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Figure1:Threedifferenttypesofneuraldynamics,whichcanbeidentifiedbydecodingtimeanddimen-
sionality.(A)Trajectoriesinthefiringratespace:thefiringratesofapopulationofsimulatedneurons
areshownaftertheyhavebeenprojectedontoatwodimensionalspacecapturingthelargestvariancein
theirtrajectoriesovertime.Ontheleft,atransientresponseisfollowedbyattractordynamics.Information
abouttwobehavioralstatesisstoredinseparatefixedpointscoloredinredandblue.Thetwolinesforeach
behavioralstatecorrespondtotwodifferenttrials.Thesefixedpointsareattractorsofthedynamicsand
thefluctuationsaroundthemareduetonoise.Inthecenter,arandomlyconnected“reservoir”ofneurons
generateschaotictrajectories.ThetrajectorieshavebeenstabilizedasinLajeandBuonomano10.Theneu-
ralactivityateachtimepointisuniqueandthesechangingfiringratescanbeusedasaclocktoperform
differentcomputationsatdifferenttimes.Importantly,theredandbluetrajectoriesaredistinctandlinearly
separableforalltimes,soalsothebehavioralstateisencodedthroughouttheinterval,asintheattractor
dynamics.Ontheright:lowdimensionaltrajectories-atransientisfollowedbylinearlyrampingneural
responses.(B)Decodingtimefromthedatashownin(A).Neuralfiringratesareconstantatafixedpoint,
andaclassifiercannotdiscriminatedifferenttimepoints.Incontrast,inthereservoircomputingframework
theneuralactivityateachtimepointisuniqueanditispossibletodecodethe‘passageoftime’fromthe
neuralpopulation.Decodingtimefromneuralactivity(MethodsFigureM1)helpsidentifythecontrasting
neuralregimes.Pixel(i,j)isthedecodeaccuracyofabinaryclassifiertrainedtodiscriminatetimepointsi
andj.Ontheleft,theblockoftimewherethedecodeisnearchancelevel(50%)isasignatureoffixed
pointdynamics.Ontherightandcenter,itispossibletodecodetime(downtosomelimitingprecisiondue
tonoiseinthefiringrates)butthesetwodynamicalregimes,whiledifferentthanthefixedpointdynamics,
yieldthesametwo-intervaltimedecode.However,theyaredisambiguatedbycomputingthecumulative
dimensionalityovertime.(C)Thecumulativedimensionalityoftheneuralactivityovertimeincreaseslin-
earlyinthestandardstabilizedreservoirnetwork(center).Thisisincontrasttofixedpointandramping
dynamicswherethecumulativedimensionalityincreasesduringaninitialtransientandthenplateausduring
thefixedpointandrampingintervals.
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Here we show that the last scenario is compatible with four datasets from monkeys perform-
ing a diverse set of working memory tasks. Time can be decoded with low precision in tasks where
timing information is irrelevant, if one excludes from the analysis the short time interval imme-
diately following task relevant events (e.g. the offset of the visual stimulus) which, most likely,
provides an external clock. Time can be decoded with higher precision in tasks where it is relevant,
consistent with the idea that stable neural trajectories act as a clock to perform the task. However,
neural trajectories for all tasks are low dimensional; they evolve on slow timescales such that the
cumulative dimensionality of the neural activity over time is low.

Interestingly, many of the observed features of the data can be reproduced using recurrent
neural network models trained to perform the experimental tasks using backpropagation through
time.

2 Decoding time from neural data

Decoding time from the recorded patterns of activity is a powerful way of gaining insight into the
dynamics of the neural circuits. Indeed, temporal information can be extracted only if some of the
components of the neural dynamics are reproducible. In other words, the two-interval time decode
analysis can help us to identify the time variations that are consistent across trials and to focus on
the actual dynamics of the neural circuits, ignoring the often large dynamical components that are
just noise.

To assess whether there is any information about the time that passed since the last sensory
event, we first train a decoder to discriminate between two different time intervals (Figure 1. This
type of discriminability is a necessary condition for time to be encoded in the neural activity (if all
time intervals are indistinguishable, then of course time is not encoded). This preliminary analysis
also reveals that time is encoded in different ways in the different time intervals.

We start with the trace-conditioning experiment conducted by Saez et al.15 but we will later
report the results of the same analysis for all datasets. In Saez et al.15 monkeys were presented with
one of two visual stimuli, A or B. After a 1.5 second delay period the monkey was either rewarded
or not. This is a context dependent task: in context 1, stimulus A is rewarded and stimulus B is
not, whereas, in context 2, the associations are reversed (stimulus A is not rewarded and stimulus
B is rewarded). The trials are presented in contextual blocks; all trials within a block have the
same context. The monkey displays anticipatory behavior and in context 1 starts licking the water
spout after stimulus A and not after stimulus B. In context 2 the monkey also performs as expected,
licking after stimulus B and not after stimulus A. In Saez et al.15 it was shown that the monkey is
not just relearning the changing associations between stimuli and reward but has actually created
an abstract representation of context (see also Bernardi et al.16).

The two-interval time decode analysis is shown in Figure 2 for three brain areas: the orbito-
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frontal cortex (OFC), the anterior cingulate cortex (ACC) and the amygdala. We discretized
time (100 ms bins) and trained a binary classifier to discriminate between the patterns of activ-
ity recorded at two different discrete times. We then plotted the accuracy of the classifier for every
pair of time intervals, constructing the matrices of Figures 2A and 2C (for more details see Meth-
ods Figure M1). In Figure 2A we considered the delay interval between the offset of the visual
stimulus and before the reward, and in Figure 2C the interval preceding the presentation of the vi-
sual stimulus. The decode accuracy is near 100% during the initial �500 ms after the offset of the
visual stimulus (Figure 2A) and during the presentation of the visual stimulus (Figure 2C), but it
decreases near chance level for the remainder of the delay period and in the interval preceding the
visual stimulus. This is observed in all three brain areas. The blocks of time where the two-interval
time decode is near chance level (50%) are consistent with constant firing patterns - fixed points
of the neural dynamics; if the neural activity at all timepoints is similar it will not be possible
to discriminate between different time intervals, and hence decode the passage of time. This is
consistent with previous findings during working memory tasks, where constant firing patterns are
displayed by the self-sustaining reverberations of activity hypothesized to support time invariant
storage 17–20. Importantly, the inability to decode time from the neural data is not simply due to
excessive noise as other task relevant variables, like context and whether the monkey receives a
water reward or not, can be decoded as shown in Figure 2B and 2D. All these quantities could be
decoded throughout the delay in all three brain areas, as already reported in Saez et al.15

Reproducing the data with a recurrent neural network model An artificial recurrent neural
network (RNN) trained to reproduce monkey behavior on this task shows the same pattern of fixed
point dynamics (Figure 2A and 2C, bottom row) and the two-interval time decode analysis pro-
duces results that are similar to those observed in the experiment. This is significant because neural
connectivity in the artificial RNN was initialized randomly before training and unit activity was
not constrained to replicate neural data during training; the artificial RNN was only told ‘what’ to
do but not ‘how’ it should be done. The inputs to the RNN are time-varying signals representing
experimental stimuli and we ‘train’ the RNN so its outputs are time-varying signals representing
behavioral responses (anticipatory licking behavior). Importantly, during the delay there is no
input and the dynamics are entirely driven by the recurrent dynamics. The training procedure ad-
justs the connection weights between units using backpropagation through time, as in pioneering
work by Zipser et al.8, in which they also constructed a neural network that could reproduce delay
activity data. The weights are tuned so that every input pattern produces the desired output pat-
tern. In our case, as the tasks are significantly more complex than those modeled in Zipser et al.8

weights were optimized with truncated Newton methods using backpropagation through time21.
After training is complete the weights are fixed and the model produces the appropriate context
dependent responses for any sequence of stimuli and changing contexts. The RNN is not explicitly
given contextual information and must infer it from the pairing of stimulus and reward. In Figure
2A the fixed point dynamics appearing after stimulus offset in the RNN model correspond to the
network entering a state of either reward expectation or no-reward expectation and may correspond
to the monkey’s state of either licking in anticipation of reward or not-licking. The putative fixed
point dynamics seen in the electrode data before stimulus onset (Figure 2C) are also present in the
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RNN model. The RNN model transitions to one of two fixed points during the intertrial interval to
store contextual information between trials. This is surprising because we started with a randomly
connected network that knew nothing about context or anything else; context was not present at
the beginning of training and this information is never explicitly given to the network. The RNN
formed an abstract understanding of the environment just by learning to generate the right behav-
ior. This contextually dependent behavior is enabled by our use of a recurrent neural network (see
also Figure M7 for an extended explanation).
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Figure 2: Decoding time from neural activity reveals signatures of fixed point dynamics. (A, C) Pixel(i,j)
is the decode accuracy of a binary classifier trained to discriminate timepoints i and j using 100 ms bins of
neural activity. The blocks of time where the decode is near chance level (50%) are signatures of fixed point
dynamics. The pattern of fixed points seen in the data agree with the RNN model. In the model, the fixed
points before stimulus onset store contextual information (column C) and the fixed points after stimulus
offset encode the expected reward and the stimulus (column A). (B, D) Importantly, a linear classifier can
easily discriminate other task relevant quantities during these time intervals so the poor time-decode is not
simply due to noisy neural responses. The black curve shows the decode accuracy of a binary classifier
trained to discriminate reward and no-reward trials (B) and trials from context 1 and context 2 (D) using 100
ms bins of neural activity. Error bars show two standard deviations.
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3 Fixed points or slowly moving points?

The analysis of the activity recorded during the trace conditioning task appears to be compatible
with fixed point dynamics. However, the delay between external events is only 1.5 seconds. So
there is the possibility that the dynamics have variations on a longer time-scale that we cannot
observe with this dataset. To explore this possibility, we next looked at a dataset with a longer
interval between external events, namely, recordings from PFC in a vibrotactile discrimination
task22 which has been extensively analyzed (see e.g. 23–27) and modeled (see e.g. 26–28). In this
task a mechanical probe vibrates the monkey’s finger at one of 7 frequencies. Then there is either
a 3 or 6 second delay interval before the monkey’s finger is vibrated again at a different frequency.
The monkey’s task is to report whether the frequency of the second stimulus is higher or lower
than that of the first. This dataset has already been analyzed in multiple ways and it is known that
several neurons exhibit a time dependent ramping average activity23, 24, 27. However, time has never
been explicitly decoded.

The longer delay period intervals used in this task reveal that it is possible to discriminate
time intervals, but only if they are sufficiently separated, which means that time is encoded with
a limited precision. Figure 3A shows the two-interval time decode analysis from PFC for delay
intervals of 3 and 6 seconds. After an initial visual transient, whose duration is similar to the one
observed in the dataset of Saez et al.15, the two-interval time decode accuracy decreases in a band
around the diagonal. However, time intervals that are separated by more than 1 second can still be
distinguished, indicating that time can actually be decoded but with a low precision. The precision
is similar in the 3 and 6 seconds cases. Moreover, the two-interval time decode plots are similar
to those of Saez et al.15 when one focuses on the initial part of the interval (supplementary Figure
S1).

The dynamics observed in PFC slowly evolve on a timescale of approximately half a second
and are consistent with the putative fixed point dynamics observed in the Amygdala, OFC, and
ACC (Figure 3B). In Figure 3B we see that, after the transient following stimulus offset, the timing
uncertainty of the neural data is at chance level over an interval of half a second for both the PFC
data of Romo et al.22 and the data of Saez et al.15

To quantify the timing uncertainty of the neural data at a given point in time we train a clas-
sifier to predict the time this recording was made, and then use the spread of predictions when
classifying firing rates from different trials as our measure of timing uncertainty. This classifier
takes the firing rates from all neurons at a given timepoint (time is discretized in 100 ms bins) and
predicts the time this recording was made. This is in contrast to the two-interval time decode analy-
sis where the binary classifier only discriminates between two timepoints; the classifier attempts to
predict the actual timepoint within the trial, e.g. 1000 ms after stimulus offset, or, in other words,
it decides what is the most likely class among all the classes that correspond to different time bins.
For this reason it is a multi-class classifier.
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Figure 3: Network dynamics appear to evolve on a timescale of approximately half a second. (A) The
two-interval time decode analysis from PFC for delay intervals of 3 and 6 seconds is shown on the right
and left for both the data and RNN model. In each half second interval the decode accuracy is near chance
level, however, the longer delay period intervals used in this task reveal neural dynamics that evolve over
longer time scales. (B) The slowly varying dynamics observed in PFC are consistent with the putative fixed
point dynamics observed in the Amygdala, OFC, and ACC. To quantify the temporal uncertainty at each
point in time we train a classifier to estimate the timepoint a neural recording was made and then compare
this prediction to the actual time; we repeat this classification for many trials obtaining a distribution about
the true time. The ‘timing uncertainty’ is the standard deviation of this distribution and is shown in black.
The chance level is shown in red. The timing uncertainty is shown during the 500 ms interval with putative
fixed point dynamics in Amygdala, OFC, and ACC, and for an arbitrary 500 ms interval after the transient
at the beginning of the trial in PFC. In all brain regions the timing uncertainty is near chance level. Longer
time-scale fluctuations may not be as apparent in the Amygdala, OFC, and ACC because a shorter delay
period was used in the experiment, preventing neural dynamics from evolving sufficiently in the absence of
external stimuli. Error bars show two standard deviations.

The prediction of the multi-class classifier is compared to the actual time to obtain the timing
uncertainty. After performing this classification on many trials we obtain a distribution of pre-
dictions around the true value (Methods Figure M2). The timing uncertainty shown in Figure 3B
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(black curves) is the standard deviation of this distribution of predicted values minus the true value.
The chance level for the timing uncertainty (red curves in Figure 3B) is computed by training and
testing the classifier on neural data with random time labels. The chance level is U-shaped as a
classifier with uniform, random predictions can make larger errors when the true value is at the
edge of the interval. In Figure 3B, the timing uncertainty is shown during the 500 ms interval with
putative fixed point dynamics in Amygdala, OFC, and ACC, and for an arbitrary 500 ms interval
after the transient at the beginning of the trial in PFC. In all brain regions the timing uncertainty is
near chance level when this short interval is considered and plots are similar, even if the tasks and
the brain areas are different.

Similar long timescale dynamics are generated by a neural network model trained to repro-
duce the experimentally observed behavior of discriminating frequency pairs, plus an extra antici-
patory output that predicts the time of the next event after the delay period, namely, the delivery of
the second vibrotactile frequency. The anticipatory output is essential; without it the RNN model
uses only fixed point dynamics to store the frequency of the first stimulus and does not generate
evolving dynamics. The network reproduces both the two-interval time decode plots of Figure 3A
and the more quantitative analysis of Figure 3B.

4 Encoding time in tasks where timing is important

In both tasks we have considered the monkey was not explicitly required to keep track of timing
information. In the randomly connected recurrent networks, with stabilized trajectories, proposed
in Laje and Buonomano10 it should be possible to decode time whether the timing information is
relevant for the task or not. However, it is also possible that the task actually shapes the necessary
neural dynamics and time is encoded only when necessary. We analyzed two datasets in which
timing information was necessary in order to solve the task. The ready-set-go interval reproduc-
tion task from Jazayeri and Shadlen29 required the monkey to keep track of the interval duration
between the ready and set cues (demarcated by two peripheral flashes) in order to reproduce the
same interval with a self initiated saccadic eye movement at the appropriate time after the set cue.
The duration-discrimination task from Genovesio et al.30 required the monkey to compare the du-
ration of two visual stimuli (S1 and S2) sequentially presented and then report which stimuli lasted
longer on that trial. Each of the two stimuli could be either a red square or a blue circle.

We decoded the passage of time in these datasets during intervals in which the monkey had
to keep track of timing information, i.e. the interval between ready and set cues for Jazayeri
and Shadlen’s LIP data, and the S1 interval for Genovesio et al.’s PFC data. To see the neural
dynamics evolve in the absence of external events we only included trials with over 1000 ms
between external events. We found that we could decode time with higher precision than in the
datasets where timing information was not explicitly required (Figure 4). These results provide
support for the scenario in which the task can shape the neural dynamics depending on whether
timing information is important or not in the task. In the case of the vibrotactile task analyzed in

9

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/504936doi: bioRxiv preprint first posted online Dec. 29, 2018; 



PFC,	6s	 PFC,	3s	 LIP	 PFC	

Ti
m
in
g	
un

ce
rt
ai
nt
y	
(m

s)
	

Time	a9er	external	event	(ms)	

Stabilized	random	RNN	

400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350 Standard deviation of timing error
Standard deviation of timing error, RNN
Chance level
data1
data2
data3
data4
data5
data6

1000 5000
0

1000

2000

500 2500
0

500

1000

400 1000
0  

300

500 750 1000
0  

300

Task	does	not	explicitly	require		
tracking	Gme		

Tasks	explicitly	require		
tracking	Gme		

Timing	uncertainty,	neural	data	
Timing	uncertainty,	RNN	
Chance	level	

500 750 1000
0  

300

Figure 4: The timing uncertainty for the neural data (black curves) and RNN models (blue curves) is less
than chance level (red curves) and has better resolution for tasks in which timing information is explicitly
required, as in the duration-discrimination task of Genovesio et al.30 (PFC data) and the ready-set-go interval
reproduction task of Jazayeri and Shadlen29 (LIP data). This is consistent with the idea that stable neural
trajectories act as a clock to perform the task. Error bars show two standard deviations.

the previous section, time could be decoded with lower precision. One could argue that in that case
the timing information is not strictly necessary to perform the task, but it could help to prepare the
monkey for the arrival of the stimulus. So the difference between the three tasks in which we could
decode time is in the relative importance of the timing information, which also seems to shape the
neural dynamics.

The importance of ramping activity Next we tried to identify the component of the dynamics
that is most important for encoding time in all the cases in which we could decode it. The neural
dynamics appear to be driven by the linear ‘ramping’ component of each neuron’s firing rate.
Figure 5 shows the timing uncertainty in our ability to classify trials after the linear component
is removed for all the experiments in which time could be decoded (compare to Figure 4). For
each neuron, we calculated the linear fit to the average firing rate across trials, during the intervals
shown in Figure 5. We then subtracted this linear fit from the neuron’s firing rate on every single
trial. The mean firing rate across trials from two example neurons is shown in Figure 5A, before
and after the linear fit is subtracted. After the linear ramping component is removed we compute
the timing uncertainty, by classifying single trials as we do to compute the timing uncertainty in
all figures, and see that the timing uncertainty is near chance level for both tasks in which timing
information is, and is not, explicitly relevant (Figure 5B, black curves). This is also observed in
the RNN models we trained to solve the experimental tasks (Figure 5B, blue curves). In contrast,
for the stabilized random RNN10 it is still possible to decode time with high accuracy even after
the linear component has been removed (Figure 5B, rightmost panel).
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Figure 4: The standard deviation of the timing error is not at chance level and has better resolution
for tasks in which timing information is explicitly required for the task, as in the LIP and PFC data.
This is consistent with the idea that stable neural trajectories act as a clock to perform the task.
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Figure 5: The linear “ramping” component of each neuron’s firing rate appears to be driving the
slow timescale variations. (A) For each neuron, we calculate the linear fit to the average firing rate
across trials during the same time interval as in Figure 4. We then subtract this linear fit from each
neuron’s firing rate and calculate the standard deviation of the timing error. (B) After the linear
ramping component is removed the temporal uncertainty is near chance level. In contrast, for the
stabilized reservoir model [11] it is still possible to decode time with high accuracy even after the
linear component has been removed.

4.1 The importance of ramping activity

These long timescale dynamics appear to be driven by the linear ‘ramping’ component of each
neuron’s firing rate. Figure 4 shows the temporal uncertainty in our ability to classify test trials
before and after the linear component is removed. We calculate the linear fit to the average firing
rate across trials. We then subtract this linear fit from each neuron’s firing rate and calculate the
standard deviation of the timing error. After the linear ramping component is removed the temporal
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Figure 5: The linear “ramping” component of each neuron’s firing rate drives the decoder’s ability to
estimate the passage of time (compare with Figure 4). (A) For each neuron, we calculate the linear fit to the
average firing rate across trials during the same time interval as in Figure 4. We then subtract this linear fit
from the firing rate on every single trial and calculate the timing uncertainty. (B) After the linear ramping
component is removed the timing uncertainty in both the neural data (black curves) and trained RNN models
(blue curves) is near chance level (red curves). In contrast, for the untrained RNN with stabilized chaotic
dynamics10 it is still possible to decode time with high accuracy, down to the limiting resolution set by the
100 ms timebin of the analysis, even after the linear component has been removed. Error bars show two
standard deviations.

5 Low cumulative dimensionality improves generalization

Monkeys performing working memory tasks are able to store task relevant variables across the de-
lay period in a way that generalize to new delay intervals. For example, if the duration of the delay
interval is increased the monkey will generalize to the new task without needing to retrain.This
generalization ability places constraints on the types of neural dynamics that support working
memory. In the data, we observe that neural trajectories with high cumulative dimensionality do
not allow for good generalization, suggesting a monkey relying on these dynamics would need to
retrain to adjust to a longer delay interval. In contrast, data with low cumulative dimensionality
enables computations learned at one point in time to generalize to other points in time.
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Thelowdimensionalrampingtrajectoriesseenintheneuraldatamayoffercomputational
benefits,allowingcomputationstogeneralizeacrosstime31.Forexample,considerthetaskofSaez
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et al.15 where the offset of a visual stimulus is followed by a delay period and then either a water
reward or no reward. Imagine a neuron learns to linearly combine neural activity from prefrontal
cortex after the offset of the visual stimulus in order to predict whether a reward will be delivered.
After some time has elapsed, e.g. a second, will this same neuron still be able to correctly predict
the upcoming reward? Will this same linear combination of information from prefrontal cortex
still be useful at a different time? The answer depends on how the neural dynamics evolve. The
low dimensional ramping trajectories of the neural data allow a linear classifier trained at a few
points in time to have predictive power at other points in time (Figure 7). In particular, in OFC,
ACC and amygdala (Figure 7, top row), a linear classifier trained to decode the value of the stim-
ulus on a fraction of timepoints can decode the value with an accuracy close to 100% also at the
other timepoints. In PFC, a classifier trained to decode high versus low vibro-tactile stimuli can
also generalize across time, though the decoding performance is lower than in the case of reward
decoding. This is compatible with the stability of the geometry of neural representations observed
in Spaak et al.31 and with the ability of a linear readout to generalize across experimental condi-
tions observed in Bernardi et al.16. This ability to generalize to other timepoints is observed also
in the RNN model trained with backpropagation (Figure 7, see all the plots with the label ‘RNN’).
In contrast, for the high dimensional neural dynamics of the simulated stabilized random RNN, a
linear classifier trained at a few points in time performs near chance level at other points in time
(Figure 7, bottom row).

6 Discussion

Delay activity is widely observed in cortical recordings, and is believed to be important for two
functions that could be difficult to combine in the same neural circuit: the first, is to preserve
information robustly against the flow of time (working memory); the second, is to actually track
the passage of time to anticipate stimuli and plan future actions. To understand the mechanisms
underlying delay activity we introduced two main analyses, namely, decoding the passage of time
from neural data and computing the cumulative dimensionality of the neural trajectory as it evolves
over time. These two analyses allow us to disambiguate different classes of neural dynamics.
Our analysis of four datasets revealed that it is possible to decode time, but only with limited
precision in tasks where timing information is irrelevant. The precision is significantly higher when
timing information is important for performing the task. The dynamics of the neural activity is low
dimensional and the ability to decode time relies on the ramping component of the activity. This
is true when a transient of approximately 500 ms following the offset of the stimulus is excluded
from the analysis. During these 500 ms it is likely that the activity is still driven by the sensory
input, and it does not reflect the internal dynamics of the neural circuits. These results indicate
that the experimental observations are more compatible with low dimensional dynamical models
like the recurrent neural network that we proposed, rather than chaotic dynamics, for which the
dimensionality would grow linearly with time. Previous studies26 of the vibrotactile stimulation
experiment22 that we also analyzed show that it is not easy to reproduce the data using chaotic
networks similar to those reviewed by Buonomano and Maass13. Moreover, recent experiments on
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Figure 4: The standard deviation of the timing error is not at chance level and has better resolution
for tasks in which timing information is explicitly required for the task, as in the LIP and PFC data.
This is consistent with the idea that stable neural trajectories act as a clock to perform the task.
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Figure 5: The linear “ramping” component of each neuron’s firing rate appears to be driving the
slow timescale variations.(A)For each neuron, we calculate the linear fit to the average firing rate
across trials during the same time interval as in Figure 4. We then subtract this linear fit from each
neuron’s firing rate and calculate the standard deviation of the timing error.(B)After the linear
ramping component is removed the temporal uncertainty is near chance level. In contrast, for the
stabilized reservoir model [11] it is still possible to decode time with high accuracy even after the
linear component has been removed.

4.1 The importance of ramping activity

These long timescale dynamics appear to be driven by the linear ‘ramping’ component of each
neuron’s firing rate. Figure 4 shows the temporal uncertainty in our ability to classify test trials
before and after the linear component is removed. We calculate the linear fit to the average firing
rate across trials. We then subtract this linear fit from each neuron’s firing rate and calculate the
standard deviation of the timing error. After the linear ramping component is removed the temporal
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Figure7:Decodegeneralizationwhenclassifyingneuralactivitywithlowandhighcumulativedimension-
ality.Thedecodeaccuracyofabinaryclassifier(coloredinblackfordataandblueforRNNmodels)is
shownasthenumberoftimepointsusedduringtrainingisvaried.Thechancelevelisshowninred.The
neuralactivitywithlowcumulativedimensionality(fixedpointdynamicsinthetoprowandrampingactiv-
ityinthemiddlerow)allowsaclassifiertrainedatasingletimepointtoperformwithhighaccuracywhen
testedatothertimes.Thisisincontrasttoneuralactivitywithhighcumulativedimensionality(bottomrow)
whereadecodertrainedatasingletimepointperformsatchancelevelwhentestedatothertimepoints.To
assessgeneralizationperformancetheclassifierisalwaystestedontimepointsfromtheentiredelayinterval
withtheexceptionofthefirst500msafterstimulusoffsetfortheneuraldatasets.Inthetoprow,thedecoder
classifiesrewardedversusnon-rewardedtrials.Inthemiddlerow,thedecoderclassifieshighversuslow
frequencies.Inthebottomrow,thedecoderclassifiestrialsfromthetwopatternsthenetworkistrainedto
produceinLajeandBuonomano10.Theplotteddecodeaccuracyisthemeanoftheclassifierperformance
acrossthisinterval.Errorbarsshowtwostandarddeviations.

rodents20,32alsoshowthatthetrajectoriesinthefiringratespacearelowdimensional,withatime
varyingcomponentthatisdominatedbyrampingactivity.

Alltheseresultsrequiresomediscussion.Itispossiblethatthedynamicsarechaoticbut
withanautocorrelationtimethatisrelativelylong,comparablewiththeentiredelayintervalthat
weconsidered.Inthiscasetheactivitywouldchangeslowly,preventingtheneuralcircuitfrom
exploringalargeportionofthefiringratespaceinthelimitedtimeoftheexperiment.Thecumula-
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tive dimensionality would still grow linearly, but on a much longer timescale, and on the timescale
of the experiment, it would be approximately constant. Although possible, this scenario would
have to assume that the autocorrelation time can vary on multiple timescales in order to explain the
rapid variations observed during the initial transients and, at the same time, the very slow variations
observed later, when the cumulative dimensionality stops growing.

One of the robust results of our analysis is that the observed trajectories in the firing rate space
are low dimensional. This seems to be in contrast with other studies in which the dimensionality
of the neural representations was reported to be high (see e.g. 33–35) or, as high dimensional as
it could be36. However, it is important to stress that the dimensionality measured in these other
studies is a static dimensionality: it is the minimal number of coordinate axes needed to determine
the position of all the points in the firing rate space that correspond to different conditions of the
experiment (e.g. a single condition in the task of Romo et al.22 is all trials with the same vibrotactile
frequency). The firing rates of the different conditions are all estimated in the same time bin. In
our case, we considered the points that correspond to different time bins for the same condition. So
it seems that the dimensionality across different conditions is usually high, whereas the trajectories
corresponding to each condition is low. This is not surprising given that high dimensionality across
conditions is needed in tasks like the one studied in Rigotti et al.33, whereas it is probably not
required for the delay activity trajectories that we analyzed here or in other situations in which the
task relevant variables do not need to be mixed non-linearly (see e.g. 16). To maximize the ability
to generalize, the dimensionality should always be the minimal required by the task, and this is
probably the case also in the tasks that we analyzed.

Reservoir networks are constructed to perform difficult tasks in which time and many other
quantities (e.g. combinations of events occurring at different times) can be decoded using a simple
linear decoder. In the tasks that we considered, there is probably no need for such high dimensional
trajectories. The observation that the recurrent neural network (RNN) models that we trained with
backpropagation generate low dimensional trajectories is an indication that high dimensionality
is not needed. And low dimensional trajectories allow for better generalization as we showed in
Figure 7. It is important to note that in reservoir networks time can be decoded with a simple
linear readout. This is probably not the case for the low dimensional trajectories that we observed
(indeed, our time decoder illustrated in Figure M2A is non-linear). However, there are situations
in which a non-linear decoder is not required to be able to decode time in certain time bins. For
example, even in the low dimensional case in which a trajectory is perfectly linear, it is often
possible to linearly separate the last point from the others. So a linear readout would be able to
report that a certain time bin is at the end of a given interval, and “anticipate” the arrival of the
second stimulus. For more complex computations on the low dimensional trajectories, the brain
might employ a non-linear decoder, which could easily be implemented by a downstream neural
circuit that involves at least one hidden layer.

The RNN models that we trained using backpropagation through time (BPTT) reproduce
many of the important features of the four datasets that we analyzed. RNNs have also been suc-
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cessfully used to model the ready-set-go task when analyzing the motor production interval be-
tween the set and go cues37, 38, whereas in this work we analyze the interval when time is initially
encoded, between the ready and set cues. The success of these simulated RNN models is sur-
prising given that BPTT is an artificial algorithm, for which there is no comparable biologically
plausible implementation at the moment. Methods have been proposed for biologically plausible
learning in recurrent networks39, 40 but it should not be assumed that these methods scale to harder
problems, as this scaling has proven difficult for biological approximations to backpropagation for
feedforward networks41. However, the brain and the simulated recurrent neural networks that we
built share similar constraints as they are both trained to perform the same tasks efficiently in the
presence of noise. This is probably why some of the features of the neural representations are sim-
ilar. It remains possible that some of the important mechanisms are actually implemented in a very
different way. For example, the ramping activity might be a consequence of some biochemical
processes that are present at the level of individual neurons or synapses in the biological brain42, 43,
but not explicitly modelled in the recurrent neural network, in which all the elements are simple
rate neurons. This process can be imitated in the network by tuning the weights between neurons
of canonical circuits that essentially are devoted to implementing a specific biochemical process.
A more complex analysis will be developed to reveal these canonical circuits. In the meantime it is
important to keep in mind that we do not necessarily expect a one-to-one correspondence between
the neurons in the RNN and the neurons in the brain.

A fundamental challenge in studying neural activity that evolves over time is understanding
what computational capabilities can be supported by the activity and when these dynamics change
to support different computational demands. Our time decode and cumulative dimensionality anal-
yses offer a tool for parcellating neural activity into computationally distinct regimes across time
by objective classification of electrophysiological activity. In this work we apply these analyses
to delay period activity and find that low dimensional trajectories provide a mechanism for the
brain to solve the problem of time invariant generalization while retaining the timing information
necessary for anticipating events and coordinating behavior in a dynamic environment.
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Figure 3: Network dynamics appear to evolve on a timescale of approximately half a second.(A)
The time decode analysis from PFC for delay intervals of 6 and 3 seconds is shown on the left and
right for both the data and RNN model. In each half second interval the decode accuracy is near
chance level, however, the longer delay period intervals used in this task reveal neural dynamics that
evolve over longer time scales.(B)The slowly varying dynamics observed in PFC are consistent
with the putative fixed point dynamics observed in the Amygdala, OFC, and ACC. To quantify the
temporal uncertainty at each point in time we calculate the standard deviation of the predicted time
(on test trials) relative to the actual elapsed time from stimulus offset. The standard deviation of the
distribution is shown in black and the chance level is shown in red. The standard deviation of the
timing error is shown during the 500 ms interval with putative fixed point dynamics in Amygdala,
OFC, and ACC, and for an arbitrary interval after the transient at the beginning of the trial in PFC. In
all brain regions the temporal uncertainty is near chance level. Longer time-scale fluctuations may
not be as apparent in the Amygdala, OFC, and ACC because shorter delay periods were used in the
experiment, preventing neural dynamics from evolving sufficiently in the absence of external stimuli.

in which timing information was necessary in order to solve the task. The ready-set-go interval
reproduction task from Jazayeri and Shadlen [13] required the monkey to keep track of the interval
duration between the read and set cues (demarcated by two peripheral flashes) in order to reproduce
the same interval with a self initiated saccadic eye movement at the appropriate time after the set cue.
The duration-discrimination task from Genovesio et al. [14] required the monkey to compare the
duration of two visual stimuli (S1 and S2) and then report which stimuli lasted longer on that trial.

We decoded the passage of time in these datasets during intervals in which the monkey had to keep
track of timing information, i.e. the interval between ready and set cues for Jazayeri and Shadlen’s
LIP data, and the S1 interval for Genovesio et al.’s PFC data. To see the neural dynamics evolve in the
absence of external stimuli we only included trials with over 1000 ms between external events. We
found that we could decode time with higher precision than in the datasets where timing information
was not explicitly required (Figure 4A). These results provide support for the scenario in which the
task can shape the neural dynamics depending on whether the timing information is important or
not in the task. In the case of the vibrotactile task analyzed in the previous section, time could be
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Figure 3: Network dynamics appear to evolve on a timescale of approximately half a second.(A)
The time decode analysis from PFC for delay intervals of 6 and 3 seconds is shown on the left and
right for both the data and RNN model. In each half second interval the decode accuracy is near
chance level, however, the longer delay period intervals used in this task reveal neural dynamics that
evolve over longer time scales.(B)The slowly varying dynamics observed in PFC are consistent
with the putative fixed point dynamics observed in the Amygdala, OFC, and ACC. To quantify the
temporal uncertainty at each point in time we calculate the standard deviation of the predicted time
(on test trials) relative to the actual elapsed time from stimulus offset. The standard deviation of the
distribution is shown in black and the chance level is shown in red. The standard deviation of the
timing error is shown during the 500 ms interval with putative fixed point dynamics in Amygdala,
OFC, and ACC, and for an arbitrary interval after the transient at the beginning of the trial in PFC. In
all brain regions the temporal uncertainty is near chance level. Longer time-scale fluctuations may
not be as apparent in the Amygdala, OFC, and ACC because shorter delay periods were used in the
experiment, preventing neural dynamics from evolving sufficiently in the absence of external stimuli.

in which timing information was necessary in order to solve the task. The ready-set-go interval
reproduction task from Jazayeri and Shadlen [13] required the monkey to keep track of the interval
duration between the read and set cues (demarcated by two peripheral flashes) in order to reproduce
the same interval with a self initiated saccadic eye movement at the appropriate time after the set cue.
The duration-discrimination task from Genovesio et al. [14] required the monkey to compare the
duration of two visual stimuli (S1 and S2) and then report which stimuli lasted longer on that trial.

We decoded the passage of time in these datasets during intervals in which the monkey had to keep
track of timing information, i.e. the interval between ready and set cues for Jazayeri and Shadlen’s
LIP data, and the S1 interval for Genovesio et al.’s PFC data. To see the neural dynamics evolve in the
absence of external stimuli we only included trials with over 1000 ms between external events. We
found that we could decode time with higher precision than in the datasets where timing information
was not explicitly required (Figure 4A). These results provide support for the scenario in which the
task can shape the neural dynamics depending on whether the timing information is important or
not in the task. In the case of the vibrotactile task analyzed in the previous section, time could be

6

)ofthe
“two-intervaltimedecodematrix.”Ifthedecodeaccuracyis100%thepixeliscoloredyellowand
ifthedecodeaccuracyis50%thepixeliscoloredblue. Weuse3/5ofthetrialsfortrainingand
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testingandthenperformingcross-validation100timestoestablishthefinalmeandecodeaccuracy.

FigureM1:Two-intervaltimedecodematrix.Subdividethetimeafterstimulusoffsetintononoverlapping
intervals.Takethevectoroffiringratesrecordedfromallneuronsduringasingleinterval(interval1,for
example)andtrainabinaryclassifiertodiscriminatebetweenthisandanotherinterval(interval2).Testthe
classifieronheld-outtrialsandrecordtheperformance.Thisnumber,between50%and100%,fromthe
classifiertrainedtodiscriminateintervalsiandjisrecordedinpixel(i,j)ofthe“two-intervaltimedecode
matrix.”Ifthedecodeaccuracyis100%thepixeliscoloredyellow(asshowninthisexample)andifthe
decodeaccuracyis50%thepixeliscoloredblue.
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To quantify the timing uncertainty of the neural data at a given point in time we train a
classifier to predict the time this recording was made (Figure M2A), and then use the spread
of predictions when classifying firing rates from different trials as our measure of timing un-
certainty. This multi-class classifier takes the firing rates from all neurons at a given timepoint
(time is discretized in 100 ms bins) and predicts the time this recording was made. This is in
contrast to the two-interval time decode analysis where the binary classifier only discriminates
between two timepoints; the multi-class classifier attempts to predict the actual timepoint within
the trial, e.g. 1000 ms after stimulus offset. We classify 10,000 trials (obtained through resam-
pling single unit recordings) at each point in time yielding a distribution of predictions around the
true value (Figure M2B). We calculate the standard deviation of this distribution (Figure M2C)
and this is the metric for timing uncertainty. To classify trials we combine the pairwise binary
classifications from the “two-interval time decode matrix” (Figure M2A), however, we obtain sim-
ilar predictions with other multi-class classifiers. The chance level for the timing uncertainty is
computed by training and testing the classifier on neural data with random time labels. To gain
some intuition about the chance level distribution we can imagine the classifier predictions, X ,
are random and uniformly distributed over some interval T . We can compute various properties
of X , for example, the expectation of X is E[X] = 0:5 � (min(T ) + max(T )). Its standard de-
viation is

q
E[(X � t)2]. If the chance-level-classifier guesses uniformly on the interval T then

E[(X� t)2] = t2� t� (min(T )+max(T ))+ ((max(T )3)�min(T )3)=(3� (max(T )�min(T ))),
yielding a U-shaped curve for the timing uncertainty,

q
E[(X � t)2], as seen in the chance level

curves of Figures 3-5. Intuitively, the chance level is U-shaped as a classifier with uniform, random
predictions can make larger errors when the true value is at the edge of the interval. In practice,
we don’t use the analytic expression for

q
E[(X � t)2] but calculate this after training and testing

a classifier on neural data that has the timepoint labels randomly shuffled. We use 3/5 of the trials
for training and the remainder for testing, resampling single unit recordings to create 10,000 trials
for training and testing the classifier and then performing cross-validation 100 times.

Neural dimensionality Our measure of neural dimensionality quantifies the stable component of
the neural trajectory across trials (Figure M3). The stable component of the neural trajectory is
important as it can be used for consistent computations by downstream neurons. Other common
measures of dimensionality yield a large dimensionality even for random Gaussian noise data, with
no consistent firing rate fluctuations across trials, as shown in Figure M4. For this data, the only
consistent aspect is the mean and our ‘trajectory reconstruction dimensionality’ quantifies this data
as zero dimensional.

To compute the cumulative neural dimensionality over time we used a cross-validation pro-
cedure to estimate the number of dimensions that gave us the greatest predictive power on firing
rates from held out data. We first subdivided the time after stimulus offset into T nonoverlapping
100 ms intervals. For each timepoint, from 1 through t = 1; : : : ; T that we wished to estimate the
cumulative dimensionality we constructed a training and test matrix (FRtrain and FRtest) of size
number-of-neurons � t containing firing rates after averaging spikes in 100 ms bins and across
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FigureM2:Computingthetiminguncertainty. (A)ToclassifyneuraldataintooneofTtimebinswe
linearlycombineresultsfromthepairwisebinaryclassificationsobtainedfromthetwo-intervaltimedecode.
AschematicforT=3isshownhere.Foreachdatapoint,i-vs-jin[0,1]istheconfidenceofthebinary
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latterclassiscomputedbyj-vs-i=1-i-vs-j.Toobtainthefinalclassifierpredictionweaddtheconfidence
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thetiminguncertaintyateachpointintimewecalculatethepredictedtime(y-axis)relativetotheactual
elapsedtimefromstimulusoffset(x-axis).Thepredictedtime(cross-validated)iscalculatedforeachofthe
10,000trials(obtainedthroughresamplingsingleunitrecordings)andtheresultsareshownasaheatmap.
DataisfromthedelayintervalofRomoetal.22(C)Thestandarddeviationofthedistributionin(B)isshown
inblackandisourmetricfortiminguncertainty.Thechancelevelisshowninred.Errorbarsshowtwo
standarddeviations.

trials.FRtrainandFRtestcontainedaveragesfromnonoverlappingsetsoftrials.Iftheneural
activitywasthesameoneverytrialthenFRtrainandFRtestwouldbeequalandwewouldbeable
topredictthefiringratesinFRtestperfectlyfromFRtrain.However,thereisvariabilitythatisnot
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sharedbetweenFRtrainandFRtestsoFRtrainisnotperfectlypredictive. Wealsoexpectsome
variabilityintheneuraltrajectoryofFRtrainissharedwithFRtestsothereisanoptimalsubspace
ofFRtrainthatwillyieldthegreatestpredictionaccuracyforFRtest. Weestimatedthissubspace
byfirstprojectingFRtrainontoprincipalcomponents1throughk,sortedinorderofdescending
variancesoprincipalcomponent1capturesthemostvariance. Wedefinethedimensionalityas
thenumberofprincipalcomponentskthatyieldsthegreatestpredictiveaccuracyforFRtest,i.e.
thatyieldsthesmallestsquarederrorbetweenFRtestandthe‘denoised’trajectoryofFRtrainafter
projectingontothefirstkprincipalcomponents(FigureM3).Weused3/5ofthetrialsfortraining
andtheremainderfortesting,repeatingcross-validation200times.Singleunitrecordingswere
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Figure M4: Cumulative dimensionality of random Gaussian noise data. The cumulative dimensionality
is the dimensionality required to exaplain timepoints 1 through t where t = 1; 2; 3; : : : is increased from
1 to some maximum value. In the figure on the left, the dimensionality is quantified as the number of
principle components required to explain a fraction of the variance (e.g. 90% as shown in red). The center
figure shows the cumulative dimensionality when using the Participation Ratio44, 45. Both methods show an
increase in the dimensionality over time. However, by construction, there are no stable trajectories across
trials that can be used for consistent computation. The only consistent aspect of the data is the mean and our
‘trajectory reconstruction dimensionality’ quantifies this data as zero dimensional.

resampled to create 1000 trials for the FRtrain and FRtest matrices.

Decode generalization We first subdivide the delay period into T nonoverlapping 100 ms inter-
vals, excluding the first few hundred milliseconds after stimulus offset to better study the intrinsic
dynamics of the delay period without transient activity caused by the offset of the visual stimulus.
To quantify the ability of a classifier to generalize to other timepoints we train a logistic regression
classifier on a fraction of timepoints (from near 0 to 1) and then test its accuracy across the entire
interval (see Figure M5). The plotted decode accuracy in Figure 7 is the mean of the classifier
performance across the entire interval. In the top row of Figure 7, the decoder classifies rewarded
versus non-rewarded trials in the dataset of Saez et al.15 during the interval from 500 ms to 1500
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msafterstimulusoffset.Inthemiddlerow,thedecoderclassifieshighversuslowfrequencytrials
inthedatasetofRomoetal.22duringtheintervalfrom500msto3000msafterstimulusoffset(3s
delayperiod)and500msto6000ms(6sdelayperiod).Inthebottomrow,thedecoderclassifies
trialsfromthetwopatternsthenetworkistrainedtoproduceinLajeandBuonomano10duringthe
intervalfrom200msto1200msafterstimulusoffset.Thechanceleveliscomputedbyrandomly
shufflingtheselabelsbeforetrainingandtestingtheclassifier.Weuse3/5ofthetrialsfortraining
andtheremainderfortesting,resamplingsingleunitrecordingstocreate10,000trialsfortraining
andtestingtheclassifierandthenperformingcross-validationT
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isperformedanew,uniquesetoftimepointsarerandomlychosenandusedfortrainingtheclas-
sifier. Notethatwhenonlyasingletimepointisusedfortrainingtheclassifier,wecycleonce
througheachandeverytimepointintheinterval.Errorbarsshowtwostandarddeviations.

FigureM5:Decodeaccuracywhentrainingtheclassifierononetimepoint(blue,green,andredcurves)
andalltimepoints(blackcurve).Thedecodeaccuracyisshownforabinaryclassifiertrainedtodiscriminate
neuraldatafromrewardedversusnon-rewardedtrialsforthetaskofSaezetal.15(Amygdala,left)andhigh
versuslowfrequencytrialsduringthetaskofRomoetal.22(PFC,6sonright).Threeexamplesareshown
whentheclassifieristrainedatasingletimepoint(highlightedwithcircles);theclassifieristrainedattimes
600ms(blue),1000ms(green)and1400ms(red)afterstimulusoffsetfortheAmygdalaandattimes
2000ms(blue),4000ms(green),and6000ms(red)afterstimulusoffsetforthePFC.Thedecodeaccuracy
iscomputedusingtrialsthatwerenotusedfortrainingtheclassifier.TheleftmostdatapointinFigure7,
forexample,summarizesthedecodegeneralizationwhenthesmallestfractionoftimepointsareusedfor
trainingtheclassifierandiscomputedasthemeandecodeaccuracyofallthecurvestrainedatasingle
timepoint(asshown),alongwithallothercurvesobtainedduringtheotheriterationsofcross-validation
(notshown).
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Model description For each of the four working memory tasks we train a recurrent neural network
(RNN) model. Our network models consist of a set of recurrently connected units (N = 100). The
dynamics of each unit in the network ui(t) is governed by the standard continuous-time RNN
equation:

�
dxi(t)

dt
= �xi(t) +

NX
j=1

W rec
ij uj(t) +

NinX
k=1

W in
ik Ik(t) + bi + �i(t) (1)

for i = 1; : : : ; N . The activity of each unit, ui(t), is related to the activation of that unit, xi(t),
through a nonlinearity which in this study we take to be ui(t) = tanh(xi(t)). Each unit receives
input from other units through the recurrent weight matrix W rec and also receives external input,
I(t), that enters the network through the weight matrix W in. Each unit has two sources of bias, bi
which is learned and �i(t) which represents noise intrinsic to the network and is taken to be Gaus-
sian with zero mean and constant variance. The network was simulated using the Euler method
for T time steps, with a step size of duration �=10 = 10 ms. To perform tasks with the RNN
we linearly combine the firing rates of units in the network and use this as the output. The linear
readout neurons, yj(t), are given by the following equation:

yj(t) =
NX
i=1

W out
ji ui(t) (2)

The RNN for each working memory task has the same architecture but the network parame-
ters W rec, W in, b and W out are different for each task and adjusted to accomplish the task-specific
transformation of time-varying inputs to time-varying outputs.

We optimized the network parameters W rec, W in, b and W out to minimize the squared error
in equation (3) between target outputs and the network outputs generated according to equation
(2).

E =
1

MTNout

M;T;NoutX
m;t;j=1

(yj(t;m)� ytargetj (t;m))2 (3)

Parameters were updated with the Hessian-free algorithm 21 using minibatches of size 500, i.e. 500
sequences of length T for each parameter update. In addition to minimizing the error function in
equation (3) we regularized the input and output weights according to equation (4).

RL2 =
1

NNin

N;NinX
i;j=1

(W in
ij )

2 +
1

NNout

Nout;NX
i;j=1

(W out
ij )2 (4)

The parameters W out and b were initialized to zero. W in was initialized with random values
drawn from a normal distribution with zero mean and variance 1=Nin. W rec was initialized as a
random orthogonal matrix 46.
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For all four networks, the “firing rate” of each of the 100 units (u(t)) is stored every 100 ms
and this activity is used for all subsequent analyses.

Inputs and outputs for the network: The RNN for the context dependent working memory

In
pu

t	

Context	1	

A	

B	

Reward	

End	of	trial	cue	

Predict	reward	

Predict	no	reward	

Time	

O
ut
pu

t	

Figure M6: RNN inputs and outputs for the context dependent working memory task of Saez et al.15. The
RNN has four inputs (stimulus A, stimulus B, reward, and the end-of-trial cue) and two outputs (a reward
predictive output and a no-reward predictive output). The mapping between stimulus and reward changes
depending on context. During context 1 stimulus A is followed by a reward and stimulus B is not rewarded.
During context 2 the associations are reversed and stimulus B is rewarded while stimulus A is not rewarded.
The RNN’s task is to predict the upcoming reward following the presentation of a stimulus by selecting the
appropriate output. Outputs are shown for context 1.

task of Saez et al.15 has four inputs (stimulus A, stimulus B, reward, and the end-of-trial cue) and
two outputs (reward predictive output and a no-reward predictive output) as shown in Figure M6.
During context 1 stimulus A is followed by a reward and stimulus B is not rewarded. During con-
text 2 the associations are reversed and stimulus B is rewarded while stimulus A is not rewarded.
Context is not given to the RNN but must be inferred from the previous stimulus/reward pairing
stored in the network’s firing activity. The RNN indicates its knowledge of context by switching
the appropriate output from zero to one, after stimulus offset, to indicate either an expected future
reward or no reward. The inputs are presented serially, e.g. stimulus A, followed by the reward,
followed by the end-of-trial cue, each having a value of one for 200 ms before returning to their
baseline values of zero. The reward predictive output turns on immediately after the presentation
of the stimuli the network thinks will be rewarded and stays on until the end-of-trial cue. The
no-reward predictive output turns on immediately after the stimuli the network thinks will not be
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rewarded and stays on until the end-of-trial cue. The reward can either follow stimulus A (context
1) or stimulus B (context 2). We trained the network using sequences of length 7000 ms with
randomly switching contexts and intervals between events. An example trial is shown in Figure
M7. During training, the interval between the end-of-trial cue and new stimulus was uniformly
distributed between 0 and 1000 ms. The interval between the end of a stimulus and the reward, if
present, was uniformly distributed between 0 and 1500 ms. The interval between the end of the
reward and end-of-trial cue was uniformly distributed between 0 and 500 ms.

The RNN for the vibrotactile discrimination task of Romo et al.22 is trained to report whether
the frequency of the second stimulus (f2) is higher or lower than the frequency of the first (f1), and
also to anticipate the time when f2 is presented. The RNN has one input that varies in magnitude
to represent the frequency of f1 and f2, and two outputs; an output to indicate the choice for the
binary discrimination, and an anticipatory-timer output that turns on before f2 onset (Figure M8).
The inputs have a duration of 500 ms with amplitudes similar to Barak et al. 26 that linearly map
the frequencies between 10-34 Hz to inputs between 0.2 and 1.8: input = 0:2 + (1:8� 0:2) � (f �
10)=(34 � 10) where f is the frequency in Hz. The RNN was trained on sequences of duration
15000 ms with successive presentations of f1 and f2 randomly chosen between 10 and 34 Hz. On
each sequence the delay between f1 and f2 was fixed, selected uniformly between 200 and 7000
ms, while the intertrial interval between f2 offset and f1 onset was uniformly distributed between
200 and 1000 ms. The RNN output that performs frequency discrimination takes values of +1 if f2
> f1 and -1 if f2< f1. This output is zero until f2 onset, whereupon it takes the appropriate nonzero
value until f2 offset, at which time the amplitude returns to zero. The anticipatory-timer output is
not constrained during the first f1/f2 pairing in a sequence, because the interval between f1 and f2
has not been established for this sequence. During subsequent inputs of f1/f2 the anticipatory-timer
output takes a value of one 200 ms before f2 onset and then returns to zero immediately before f2
onset.

The RNN for the ready-set-go interval reproduction task from Jazayeri and Shadlen29 has
two inputs (ready and set cues) and one output to indicate the interval between ready and set cues
as shown in Figure M9. During training, the ready cue is followed by the set cue with an interval
selected from a uniform random distribution between 200 and 1100 ms. The RNN output follows
the set cue after a delay that matches the elapsed time between the ready and set cues. All inputs
and outputs take the value of zero when they are “off” and one for a duration of 110 ms when they
are “on”. The RNN was trained on sequences of duration 4500 ms with multiple presentations of
the ready and set cues in each sequence.

The goal of the duration-discrimination task from Genovesio et al.30, 47, 48 is to compare the
duration of two stimuli (S1 and S2) and select the stimulus that was presented for the longest dura-
tion. The RNN for this task has four inputs (S1, S2, go-cue for S1/S2 on left/right of screen, go-cue
for S1/S2 on right/left of screen) and two outputs to indicate a hand response to either the right or
left (Figure M10). The RNN was trained on sequences of length 5000 ms with a single presenta-
tion of S1, S2, and go-cue, per sequence. The order of events within a sequence is pre-stimulus
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Context	1:	S+mulus	A	is	rewarded.	S+mulus	B	is	not	rewarded.	
Context	2:	S+mulus	B	is	rewarded.	S+mulus	A	is	not	rewarded.	
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FigureM7:RNNinputsandoutputsforthecontextdependentworkingmemorytaskofSaezetal.15when
thecontextchanges.(A)TheRNNhasfourinputs(stimulusA,stimulusB,reward,andtheend-of-trial
cue)andtwooutputs(arewardpredictiveoutputandano-rewardpredictiveoutput).Themappingbetween
stimulusandrewardchangesdependingoncontext.Duringcontext1stimulusAisfollowedbyareward
andstimulusBisnotrewarded.Duringcontext2theassociationsarereversedandstimulusBisrewarded
whilestimulusAisnotrewarded.Notethatasinglepairingofstimulus/rewardorstimulus/end-of-trial-
cueissufficienttodeterminethecontext.TheRNN’staskistopredicttheupcomingrewardfollowing
thepresentationofastimulusbyselectingtheappropriateoutput.(B)Theinputsandoutputsareshown
forasinglesequencewithachangeincontext.Imagineaprecedingstimulus/rewardpairing(notshown)
hasestablishedthecontexttobe1.StimulusAandBareinputtedandtheRNNproducesthecorrect
outputs.Thecontextnowswitchesto2.NoexplicitcontextualcuesaregiventotheRNNsowhenstimulus
AispresentedtheRNNstillrespondswiththeappropriateoutputforcontext1,byactivatingthereward
predictiveunit.Norewardisinputted,aswouldbeappropriateforcontext1,sowhentheend-of-trial-cue
appearstheRNNnowknowsthecontexthaschangedto2.ForsubsequentinputstheRNNnowproduces
outputsappropriateforcontext2.

period(uniformlydistributedbetween100and500ms),S1(uniformlydistributedbetween100

26

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/504936doi: bioRxiv preprint first posted online Dec. 29, 2018; 



In
pu

t	

Frequency	

Classify	frequency	

An4cipate	input	

Time	

O
ut
pu

t	

Figure M8: RNN inputs and outputs for the vibrotactile discrimination task of Romo et al.22. The RNN
has one input representing vibrotactile frequency with the amplitude of an input pulse. After two successive
frequency inputs the RNN reports whether the frequency of the second stimulus is higher or lower than that
of the first by modulating an output to be +1 or -1 respectively. The RNN also anticipates the timing of the
second frequency input by activating a second output before the onset of the stimulus.

In
pu

t	 Ready	

Set	

Go	

Time	

O
ut
pu

t	

Figure M9: RNN inputs and outputs for the ready-set-go interval reproduction task from Jazayeri and
Shadlen29. The RNN tracks the duration of the interval between ready and set cues (demarcated by two
input pulses) in order to reproduce the same interval with a self initiated output at the appropriate time after
the set cue.

and 1500 ms), delay period (uniformly distributed between 0 and 1000 ms), S2 (uniformly dis-
tributed between 100 and 1500 ms), delay period (uniformly distributed between 0 and 1000 ms),
and a go-cue that initiated the RNN output and remained on until until the end of the sequence. In
the experiment, the go-cue was the presentation of the two stimuli (S1 and S2) simultaneously on
the right and left side of the screen. On each trial the left and right assignment of S1 and S2 was
random so the motor response could not be prepared in advance of this go-cue. To mimic this in
the RNN we use two go-cues to indicate whether the position of S1 is on the right or left of the
screen. The two RNN outputs then correspond to a hand response to either the right or left. The
outputs are zero until the time of the go-cue, when the appropriate output becomes one until the
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Figure M10: RNN inputs and outputs for the duration-discrimination task of Genovesio et al.30. The RNN
compares the duration of two stimuli (S1 and S2) and then reports which stimulus was on longer.

end of the sequence.

Stabilized random RNN We analyzed the pretrained network accompanying the paper of Laje
and Buonomano10. To ensure the number of units is similar across datasets, we randomly selected
100 out of the 800 units in the network for further analyses. We generated and analyzed 100 trials
from the network by adding Gaussian random noise, with zero mean and standard deviation of 0.2,
at each timestep of the simulation. The firing rate of each of the 100 units is stored every 100 ms
and this activity is used in all subsequent analyses.

Neural data Electrode recordings were from nonhuman primates as previously described15, 22, 29, 30.
For all datasets we only included correct trials in our analyses.

Context dependent working memory task of Saez et al.15: We analyzed units recorded for
at least 50 trials in each of the four experimental conditions (context 1 or 2 and stimulus A or B)
leading to 138 units in the Amygdala, 129 units in the OFC, and 102 units in the ACC.

Vibrotactile discrimination task of Romo et al.22: 160 PFC units were analyzed for the three
second delay interval. Each unit was recorded for at least 10 trials for each value of f1 in the set
[10 14 18 22 26 30 34] Hz. 139 PFC units were analyzed for the six second delay period. Each
unit was recorded for at least 5 trials for each value of f1 in the set [10 14 18 22 26 30 34] Hz.
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Ready-set-go interval reproduction task of Jazayeri and Shadlen29: 48 units were analyzed
in LIP. Each unit was recorded for at least 20 trials with a minimum sample duration (interval
between ready and set cues) of 1000 ms.

Duration-discrimination task of Genovesio et al.30: 148 units were analyzed in PFC. Each
unit was recorded for at least 50 trials with a minimum S1 duration of 1000 ms.
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Figure S1: Two-interval time decode matrices for datasets of Romo et al.22 (top row) and Saez et al.15

(bottom row) during the 1500 ms interval after stimulus offset.
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Figure S3: The cumulative dimensionality is stable as the number of timepoints along the neural trajectory
are varied. In the top row, firing rates are from nonoverlapping 100 ms bins calculated every 100 ms. In the
bottom row, firing rates are from overlapping 100 ms bins calculated every 25 ms. Data are from Saez et
al.15 Error bars show one standard deviation.
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Figure S4: The cumulative dimensionality is stable as the number of timepoints along the neural trajectory
are varied. In the top row, firing rates are from nonoverlapping 100 ms bins calculated every 100 ms. In the
bottom row, firing rates are from overlapping 100 ms bins calculated every 25 ms. Data are from Romo et
al.22 Error bars show one standard deviation.
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Figure S5: For the datasets of Genovesio et al.30 and Jazayeri et al.29, the cumulative dimensionality is
stable as the number of timepoints along the neural trajectory are varied. In the top row, firing rates are from
nonoverlapping 100 ms bins calculated every 100 ms. In the bottom row, firing rates are from overlapping
100 ms bins calculated every 25 ms. For the stabilized reservoir network of Laje and Buonomano10, the
cumulative dimensionality grows as the number of timepoints are sampled more densely. Error bars show
one standard deviation.
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