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Abstract

Selective visual attention modulates neural activity in the visual system and
leads to enhanced performance on difficult visual tasks. Here, we use an
existing circuit model of visual cortex, known as the stabilized supralinear
network, to demonstrate that many neural correlates of attention can arise
from simple circuit mechanisms. Using different variants of the model we
replicate results from studies of both feature and spatial attention. In addi-
tion to firing rate changes, we also replicate findings regarding how attention
impacts trial-to-trial variability. Finally, we expand this circuit model into
an architecture that can perform visual tasks in order to show that these
neural effects can enhance detection performance. This work advances our
understanding of the physical underpinnings of attention.
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1 1. Introduction

2 When an animal knows in advance what features or locations in the visual
3 scene will be relevant for completing its goals, selective top-down attention
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+ can be deployed. This attention has been shown to have a powerful modula-
s tory effect on both task performance and neuronal responses, and changes in
¢ the latter can often be powerful predictors of the former (Ress et al., 2000).
7 Numerous specific impacts of attention on neural activity have been iden-
s tified, including changes in firing rates, trial-to-trial variability, and noise
o correlations (Treue and Maunsell, 1999; Treue and Martinez Trujillo, 1999;
10 Cohen and Maunsell, 2009). Looking at the impact of attention on tuning
un curves, attention to a preferred stimulus is known to scale up the responses
12 to all stimuli; conversely, attention to a non-preferred stimulus scales re-
13 sponses down (Martinez-Trujillo and Treue, 2004). This enhancement has
1= been shown to be a largely multiplicative increase in neuronal gain (Treue
15 and Martinez Trujillo, 1999). A similar percentage change occurs in the firing
16 rates of excitatory and inhibitory neurons (Mitchell et al., 2007).

17 Many of attention’s impacts on firing rates can be understood in the
18 context of the normalization model of attention (Reynolds and Heeger, 2009;
v Lee and Maunsell, 2009; Ghose, 2009; Boynton, 2009). This model builds
2 off the canonical computation of normalization observed in multiple places
2 in the visual system as well as other brain areas (Carandini and Heeger,
» 2012). In the absence of attention, a neuron’s firing rate can be predicted
;3 by a divisive normalization equation: stimuli with the preferred features and
2+ in the classical receptive field of the neuron form the numerator (known as
s the “stimulus drive”), and the denominator is a function of a less-selective
s suppressive drive that includes surround locations and non-preferred features
2z as well. Under the normalization model of attention, attention provides a
s biasing effect that amplifies the drive coming from the attended stimulus.

20 This model captures how attention can, when two stimuli are present,
s shift responses to those of the attended stimulus alone. For example, when
a1 a preferred and non-preferred stimulus are both presented to the receptive
22 field of a V4 neuron, the cell’s response is intermediate between the responses
13 evoked by each stimulus alone. By attending to either the preferred or non-
s preferred stimulus, the response is shifted towards the response evoked by
55 the attended stimulus alone (Reynolds and Desimone, 2003). Similarly, at-
3 tention to a stimulus in the suppressive surround of a V4 neuron increases
;7 the suppression induced, whereas attention to the center reduces the sup-
3 pression (Sundberg et al., 2009). The normalization model of attention also
3 captures how attention increases contrast gain or response gain, respectively,
» depending on whether the attention is over a larger or smaller cortical area
s than the stimulus input (Reynolds and Heeger, 2009).
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Figure 1:
Expansive nonlinearity and balanced amplification yield multiplicative
scaling. We consider a simple two-unit nonlinear SSN model, with one excitatory
(E) cell and one inhibitory (I) cell (Methods 4.1.4). We drove both cells with a
series of feedforward inputs, whose strengths varied as a function of “orientation”
to generate “tuning curves”. While driving the cells with this feedforward input,
an additional constant input of one of four varying strengths (indicated by color
legend at left) was added to either the E or the I cell. With increasing input
to the E cell, both E and I rates are scaled up, whereas with increasing input
to the I cells, both E and I rates are scaled down. Normalizing each curve by
its maximum reveals that the gain change is almost exclusively multiplicative.

0 Beyond changes in firing rates described by the normalization model of
s attention, attention also decreases trial-to-trial variability and noise correla-
s tions across neuron pairs (Cohen and Maunsell, 2009; Mitchell et al., 2007).
15 We have previously shown that a simple model of cortical circuitry—
s known as the stabilized supralinear network (SSN) (Ahmadian et al., 2013)—
s can account for a wide set of phenomena described by the normalization
s model, including feature normalization and surround suppression and their
» mnonlinear dependencies on contrast (Rubin et al., 2015). It also accounts
o for the suppression of correlated variability by a stimulus (Hennequin et al.,
st 2018). The network assumes expansive or supralinear input/output functions
2 for the individual units. As described in (Ahmadian et al., 2013; Rubin et al.,
53 2015; Ahmadian and Miller, 2019), this causes effective synaptic strengths
s« between units, which are proportional to the postsynaptic neuron’s gain —
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s its change in firing rate for a given change in input — to grow with increasing
ss  postsynaptic activation. The growth of excitatory-to-excitatory effective con-
s7 nections leads to potential instability, but with sufficiently strong feedback
ss inhibition the network remains stable. However, this stabilization occurs
so through the network dynamically “loosely balancing” its inputs, so that the
s recurrent input largely cancels the feedforward input, leaving a residual net
s input that grows sublinearly as a function of the feedforward input. (The
&2 balancing is “loose” because the residual input after cancellation is compa-
3 rable in size to the factors that cancel, Ahmadian and Miller, 2019.) This
s« cancellation of feedforward input through increasingly strong inhibitory sta-
s bilization leads to the normalization and variability suppression effects just
6 described.

67 The SSN has strong recurrent excitation stabilized by strong feedback
e¢ inhibition and exhibits “balanced amplification” (Hennequin et al., 2018;
so  Murphy and Miller, 2009): small inputs biased toward either excitatory (or
70 inhibitory) cells drive large increases (or decreases) in both excitatory and
7 inhibitory firing rates. We hypothesized that attentional modulation acts
72 through the same balanced amplification and recurrent “loose balancing”
73 mechanisms that implement feature normalization and surround suppression.
72 Here we show that this model can indeed account for many of the neural
s effects of attention observed in visual cortex.

76 Finally, in addition to replicating neural effects, we also use this model
77 to show how changes in neural activity can enhance performance. Previous
s work (Lindsay and Miller, 2018) used a deep convolutional neural network
79 (CNN) as a model of the visual system to show how neural changes associated
so with attention enhance performance on a challenging visual detection task.
&1 Here, we put our circuit model into a convolutional architecture to create a
&2 model that connects low-level circuitry with behavioral outputs. This model
3 (dubbed the SSN-CNN) replicates both the neural impacts of attention as
s« well as the performance enhancements.

s 2. Results

86 We employ four instantiations of our model of visual cortex to replicate
&7 the neural effects of attention. The details of all of these models have been
ss described previously, and are included in the Methods section. All four mod-
o els feature strongly recurrently connected excitatory and inhibitory neurons
o with a supralinear neuronal input-output nonlinearity. The four models differ
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a1 only in the dimension of stimulus space over which the neurons are arranged
e and the spatial arrangement and strengths of the connections between neu-
o3 rons. In the simplest model, we consider a single pair of excitatory and
o+ inhibitory neurons (Figure 1). The two slightly more complex models rep-
s resent populations of neurons either arranged around a ring, with position
o on the ring interpreted as preferred orientation of cells with a similar retino-
o topic receptive field (RF) position(Methods 4.1.1, Figure 2), or on a line,
¢ with position on the line interpreted as retinotopic RF position of cells with
o similar preferred orientation (Methods 4.1.2, Figure 15). The most complex
w0 model has a 2-dimensional representation of retinotopic space on which is
1w superimposed a map of preferred orientations. In this model, neurons make
102 connections as probabilistic functions of difference in stimulus preference over
103 the three dimensions of stimulus quality: two spatial dimensions and orien-
s tation (Methods 4.1.3).

105 We note that the suppression of response to a preferred orientation by
s simultaneous presentation of an orthogonal orientation or “mask” (“cross-
107 orientation suppression”) in V1 is largely mediated by nonlinear changes in
s the pattern of thalamic firing induced by the mask, rather than by nonlinear
w0 V1 integration (Priebe and Ferster, 2006; Li et al., 2006), although there is
o a component mediated by V1 as shown by suppression arising when the two
- stimuli are presented to different eyes (Sengpiel and Vorobyov, 2005). In our
n2  models, the inputs to the model cortex are assumed to sum linearly, so that
uz  all nonlinear behavior arises from cortical processing. We typically refer to
us different competing stimuli presented within an RF as “orientations”, but this
us should be understood to model cortical processing given linear summation
ue of inputs induced by two stimuli, rather than the literal phenomenon of V1
17 cross-orientation suppression.

118 In all instantiations, attention is modeled as a small additional excita-
o tory input biased towards the excitatory cells within the specified locus of
120 attention. As a secondary test, we also re-ran all simulations with attention
121 instead modeled as a small inhibitory input towards the inhibitory cells (re-
122 sulting in a disinhibition of locally-connected excitatory cells). Results were
123 qualitatively similar, with a few notable exceptions discussed below.

124 To investigate the impact of neural activity changes on performance, we
125 also incorporated one of these circuit models—the ring model—into a con-
126 volutional neural network architecture (Methods 4.3). This allowed us to
127 demonstrate that the application of attention to our circuit model can in-
s crease performance on a challenging visual detection task.
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Figure 2:
A ring model of attention. The ring model represents different features (e.g.,
preferred orientation) at a single location in visual space. At each location on the
ring, a pair of excitatory (red) and inhibitory (blue) cells exist. Oriented stimuli are
modeled as Gaussians centered at a particular location on the ring (black curves).
Attention to one of the stimuli (indicated by dashed circle around it) is modeled as
an additional Gaussian input biased towards the excitatory subpopulation at the
center of the locus of attention (red curve). In this example, recording from the
E-I pair indicated with the arrow would correspond to the cyan line in Figure 3.

19 2.1. Basic mechanism of the model

130 The balanced amplification model (Murphy and Miller, 2009) demon-
1 strates that in a network with strong recurrent connectivity, small changes
12 in the difference between E and I activity can drive large changes in the sum
133 of the activity. Previously, we have used this mechanism to produce models
14 of contextual modulation that capture the experimental observation that,
135 during surround suppression, both E and I firing rates are suppressed (Ozeki
s et al., 2009). Within a locus of attention, however, the opposite effect is
137 observed: both E and I firing rates are enhanced (Mitchell et al., 2007).

138 In a network wherein neurons are described by a supralinear nonlinearity,
1o a bias in the input towards E or I shifts the responses of both cells up
o or down (respectively), and the resulting change can be almost exclusively
11 multiplicative (Figure 1). Thus we hypothesize that this simple, intrinsic
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Attention enhances the suppressive effect of non-preferred stimuli A
stimulus of preferred orientation was shown to a cell in the ring model. An or-
thogonally oriented stimulus was presented along with the preferred stimulus, and
the strength of the non-preferred “probe” was varied (blue line). The test was then
repeated with attention (indicated by dashed circle around stimulus) directed to-
wards either the preferred stimulus (cyan) or the probe stimulus (green). When
attention was directed towards the preferred stimulus, suppression was decreased.
When attention was directed to the probe stimulus, suppression was enhanced.

12 form of amplification may be sufficient to account for the observed effects
13 of attention on visual cortical circuits. We now incorporate this simple E-I
14 pair into a broader recurrent circuit and consider several recent experimental
us results on attention in visual cortex.

us  2.2. Attention influences stimulus interactions
w 2.2.1. Impact of feature attention

148 In several regions of visual cortex, attention to one of multiple stimuli
1o presented within the receptive field of a neuron can shift the response of that

7
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1o neuron towards the response evoked by the attended stimulus alone. This
151 was shown by Reynolds and Desimone (2003), who probed the responses of
12 V4 neurons with preferred and non-preferred stimuli, presented either alone
153 or together in the receptive field of a single neuron. They found that in the
15« simultaneous presentation condition, attending to a non-preferred stimulus
155 caused a relative suppression compared to an attend-away condition, whereas
156 attending to the preferred stimulus boosted the response. To simulate this
157 experiment, we recorded the response of a cell to a strong stimulus of pre-
158 ferred orientation in the ring model (for details of attention experiments see
159 Methods 4.2). We then added a non-preferred stimulus at the orthogonal
160 orientation to the ring (schematized in Figure 2) and systematically varied
11 the strength of this “probe” stimulus. As expected, the addition of the non-
12 preferred probe was always suppressive, and with increasing probe strength
163 suppression was increased (Figure 3, blue line). We then repeated the same
16« test with attention directed either towards the preferred stimulus (cyan) or
165 the probe stimulus (green). When attention was directed towards the pre-
166 ferred stimulus, the amount of suppression was decreased. When attention
17 was directed to the probe stimulus, suppression was enhanced.

168 In a related experiment, Treue and Martinez-Trujillo (1999) recorded from
10 a neuron in area MT while presenting two stimuli to the neuron’s receptive
o field. One of the stimuli was always moving in a non-preferred direction,
i while the direction of the other stimulus was systematically varied. Com-
2 pared to an attend-away condition, responses of MT neurons were relatively
13 suppressed at all stimulus directions when attention was directed towards
7a  the non-preferred stimulus, but relatively enhanced when attending towards
s the varying stimulus. We find the same result if we repeat this test in our
s ring model (Figure 4). Like Treue and Martinez-Trujillo (1999), the change
17 we observe occurred without a substantial change in the width of tuning,
s indicating a mainly multiplicative scaling (Figure 4, inset).

179 Note that in Figures 3 and 4 the same strength of attention is applied in
10 all circumstances, however attention applied to a non-preferred stimulus has
11 a weaker impact on firing rates. In our model, attention applied to a cell’s
12 preferred stimulus means additional excitatory inputs to the cell in question.
13 Attention to an orthogonal stimulus only impacts the recorded cell indirectly
18s through recurrent connections, leading to a weaker effect. Experimentally,
185 the magnitude of firing rate changes has been found to be weaker when
16 attention is applied to a non-preferred stimulus compared to a preferred one
157 (Treue and Maunsell, 1999).
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Figure 4:

Attention scales tuning multiplicatively. In the presence of a non-preferred
probe stimulus, we varied the orientation of a test stimulus between 0° and
180°, while recording from the cell at 45° and attending either to the non-
preferred probe (red), the varying stimulus (cyan), or away (blue). Atten-
tion produced an almost exclusively multiplicative change in response. Nor-
malized responses are shown in the inset. There was virtually no change in
tuning width, as observed experimentally (Treue and Martinez Trujillo, 1999).
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s 2.2.2. Correlation between feature attention and normalization

189 Several groups have considered the mechanistic relationship between at-
o tention and cortical normalization (Reynolds and Heeger, 2009; Lee and
w1 Maunsell, 2009; Ni et al., 2012). In a recent study exploring the variabil-
12 ity in the strength of attentional modulation, Ni and collegues demonstrated
13 that neurons vary in the degree to which their responses are normalized by
104 the presence of an orthogonal, non-preferred stimulus in the receptive field.
105 They further show that the degree of normalization a cell demonstrates (or
106 in their terminology, the broadness of the “tuning” of normalization — quan-
w7 tified by a normalization modulation index) is highly correlated with the
108 extent to which attention modulates the response to the cell. To simulate
100 this experiment, we employed our 2-D model of visual cortex designed to
20 reproduce both the mean effects as well as a realistic degree of variability in
201 responses. In this simulation, excitatory cells were selected at random from
22 the population. For each cell, a high contrast stimulus of preferred orienta-
203 tion was presented. An orthogonal stimulus of the same size, position, and
200 strength (the “null” stimulus) was then presented, and then the preferred
2s  and orthogonal stimuli were presented together. The firing rate response
206 in each of the three stimulus conditions was recorded, and the Normaliza-
207 tion Modulation Index was calculated as: NMI = [(r(Preferred) - r(Null)) -
208 (r(Both - r(Null))]/[(r(Preferred) - r(Null)) + (r(Both - r(Null))]. An NMI
200 of 0.33 corresponds to averaging of the two stimuli, whereas an NMI of 0
20 is considered a “winner take all” response (the response to the pair is the
a1 same as the response to the preferred stimulus alone). In the terminology of
22 Ni et al., cells with highly tuned normalization have an NMI closer to 0 (Ni
23 et al., 2012). The paired presentations were then repeated (showing both
24 preferred + null together) with attention directed towards either the pre-
a5 ferred or null stimulus. Attention was applied to the E cells in the position,
216 Size, and orientation of either the preferred or null stimulus. An Attentional
27 Modulation Index was then calculated as: AMI = (r(Attend Preferred) -
28 r(Attend Null))/(r(Attend Preferred) + r(Attend Null)). As was observed
219 experimentally, there is a wide range of NMIs and AMIs, and the NMI and
20 AMI of cells are highly correlated (Figure 5).

o1 2.2.83. Impact of spatial attention

22 The previously discussed experiments studied the response of neurons
23 to pairs of stimuli presented within the same receptive field. However, at-
24 tention has also been shown to modulate the effect of stimuli presented in

10
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Figure 5:
Normalization strength and attentional modulation are positively corre-
lated. Normalization Modulation Indices are plotted against the Attention Modu-
lation Indices for all 250 cells sampled from the 2-D model. Correlation coefficient:
0.84. See text for details.

the receptive field surround. Sundberg et al. (2009) found that in V4, the
strength of surround suppression could be either increased or decreased by
attending specifically to the surround or center stimulus. To simulate this
experiment, we next employed our line model used to simulate spatial contex-
tual interactions. Pairs of E and I cells are arranged along a one-dimensional
lattice representing an axis of retinotopic space, with recurrent excitatory
connections that decrease as a function of retinotopic/cortical distance. It is
assumed that the cells share preferred features. A stimulus was presented to
the cell in the center of the lattice, in the presence of a suppressive surround
stimulus. Attention was then directed to either the center or surround stim-
ulus. Attention to the center decreased the strength of surround suppression
(pushing firing rates towards those when the stimulus is presented alone),
while attention to the surround enhanced surround suppression (Figure 6).
We simulated this experiment in the 2-D model as well. 100 neurons
were randomly selected from the network. For each neuron, we measured
the response to a strong stimulus of preferred orientation centered on the
receptive field, and then added a strong stimulus of the same orientation
to the surround. The response to the cell was measured in the absence

11
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Attention modulates the strength of surround suppression. A stimulus
was shown in the receptive field of the neuron at position 0. A stimulus of
equal strength and size was then placed in the surround, and the response was
recorded from neurons in the vicinity. Attention was then directed either to the
center or surround stimulus. In the main figure, the E cell activity across the
network is shown in response to the center stimulus alone, the surround stimu-
lus alone, the center and surround stimuli shown together, the center and sur-
round stimuli with attention directed towards the center, and the center and sur-
round stimuli with attention directed towards the surround. The inset demon-
strates the activity at the center E cell — the dashed line is the response to
the center stimulus alone, and the three dots show the response to the cen-
ter and surround presented together, either with no attention, with attention
directed towards the center, or with attention directed towards the surround.

23 of an attentional input (the “Attend Away” condition), as well as with an
24 attentional input directed towards the center or surround stimulus. As was
us  observed experimentally, attending to the surround boosted the amount of
us  surround suppression, whereas attending to the center greatly weakened the

12
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Attention modulates the strength of surround suppression in the
large scale model. A stimulus of preferred orientation was shown to a ran-
domly selected cell. A stimulus with the same orientation and strength was
placed in the surround, and the response was recorded. Attention was then
directed either to the center or surround stimulus. The mean responses rela-
tive to the center alone is shown for a sample of 100 neurons from the 2-D
model. Error bars indicate the standard error of the mean. All three response
groups are significantly different from each other at p < .005 (student’s t-test).

2z surround suppression (Figure 7, compare the results of the 2-D model to the
25 inset of Figure 6).

s 2.3. FExperimental paradigm alters the impact of attention

w0 2.53.1. Effect on contrast and response gain

251 All of the experiments and simulations discussed thus far demonstrate
2 that attention produces a gain change in the firing rate of neurons within the
3 locus of attention. The quality of this gain change, however, can be strongly
4 influenced by the relative sizes of the stimulus and the attentional field.
s Reynolds and Heeger (2009) (their Figure 3) found in their normalization
6 model of attention that when attention is directed to a relatively large area,
7 the effect on the response to a small stimulus should be predominantly a
s change in “contrast-gain”, such that cells respond to stimuli as if they were
9 effectively at higher contrast. This would be seen as a leftward shift in a

13
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x0 contrast-response curve for a stimulus, with relatively little change in the
1 maximum firing rate. For a large stimulus and a small attentional field, they
%2 instead predict a change in “response-gain”, such that all responses are scaled
%3 multiplicatively.

264 Here we again employ the one-dimensional spatial line network model
s to study the two different effects of attention described by Reynolds and
26 Heeger (2009). Attention was still modeled as a small additional input only
7 tO excitatory cells over a defined spatial area, and we calculated “contrast
28 Tresponse curves”’ with and without attention. (Note that what we call “con-
w0 trast” is actually external input strength, 7.e. the parameter ¢ in Eq. 3; in
a0 reality, external input strength, as measured by thalamic input firing rate,
o1 is a monotonic but nonlinear, saturating function of stimulus contrast, (e.g.
o Sclar, 1987; Sclar et al., 1990).) To quantify changes in the contrast response
z3 properties, we fit each curve to a standard Naka-Rushton equation (Naka

27 and Rushton, 1966):
7(E) = T (5 ) 0

Cry +

o5 where R,,,, is the plateau firing rate, n describes the steepness of the contrast
76 response curve, and cxg is the strength of the stimulus at which the response is
orr - 50% of its maximum. In our fitting procedure, the value of n is discovered for
o7s the no-attention condition, and held at that value when fitting the attended
279 condition.

280 With a large attentional field and small stimulus, the effect of atten-
21 tion was predominantly a leftward shift in the contrast-response function,
2 as predicted by the model of Reynolds and Heeger (2009). We quantified
23 this change in “contrast gain” as the difference in the c59 parameters of the
26 contrast response curves produced with and without attention (Figure 8A).
s We compared this to the “response gain”, which we quantify as the ratio
286 Of R4, parameters with and without attention. With a large stimulus and
257 small attentional field, the effect of attention was reversed: there was little
s change in the contrast gain, and a much larger change in the response gain
20 (Figure 8B). The dashed lines in either figure show the percent change in
200 firing rate induced by attention. With a change in contrast gain there is
201 little change in firing at the largest contrast, but this is not true for a change
202 1IN TESpONSse gain.

203 While Reynolds and Heeger (2009) showed this property in their descrip-
2 tive model of attention, conditions that produce changes in contrast or re-
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Figure 8:

The qualitative effect of attention depends on the relative sizes of
the attentional and stimulus fields. Here we used the spatial line model
to study the two different effects of attention, as described by Reynolds and
Heeger (2009), Figure 3. Contrast response curves were calculated by vary-
ing the input strength logarithmically (base 10) in the presence (red curves)
and absence (cyan curves) of attention. Left: with a large attentional field
(red dashed circle) and small stimulus, the impact of attention was largely
on contrast gain, defined as the difference between csy values with and with-
out attention (Ry,., ratio: 0.98, cso difference: -6.43) . Right: in the “small
attentional field, large stimulus” condition, attention mainly affected response
gain, defined as the ratio of Ryq values (R, ratio: 1.39, cso difference: -
0.88). Dotted lines show the percent change in firing caused by attention.

205 sponse gain have also been shown experimentally. Martinez-Trujillo and
206 Treue (2002) recorded from neurons in area MT while presenting two stimuli
207 within the receptive field. One stimulus was moving in a preferred direction,
¢ and the other in a non-preferred direction. They then varied the strength of
209 the preferred stimulus while holding the contrast of the non-preferred stim-
s0 ulus fixed, and directed the monkey to attend either to the non-preferred
s stimulus or outside of the receptive field. They found that attending to
32 the non-preferred stimulus caused predominantly a change in contrast-gain.

15
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Experimental paradigm alters gain change type. A. In the ring model,
in the presence of a fixed-strength non-preferred stimulus, the contrast of a
preferred stimulus was varied logarithmically (base 10) while attention was di-
rected either away (cyan) or towards the non-preferred stimulus (red) as in Fig-
ure 4 of Reynolds and Heeger (2009). Attention to the non-preferred stimu-
lus produced mainly a reduction in contrast gain, measured as the difference
between csg values (Ryq, ratio: .97, cso difference: 5.94) (Martinez-Trujillo
and Treue, 2002). B. Showing preferred and non-preferred stimuli of equal but
varying contrast while attending to one or the other produced a much larger
change in response gain, measured as the Ry,q, ratio (Rye. ratio: 1.38, cso dif-
ference: -2.17). This was studied experimentally in Lee and Maunsell (2009).

53 However, Lee and Maunsell showed that if the contrast of both the preferred
504 and non-preferred stimulus were varied simultaneously, attending to one or
s the other stimulus would produce a much larger change in response gain (Lee
26 and Maunsell, 2009). Using the ring model again, we modeled both of these
w7 stimulus conditions, and find analogous results (Figure 9A, B).

s 2.3.2. Effect on length tuning

300 The impact of spatial attention on length tuning was explored in Roberts
s0 et al. (2007). In this study, the length of an oriented bar was varied as firing
su  rates from V1 cells were recorded. Attention was directed to the stimulus or
sz to a stimulus in the opposite hemifield. The authors found that, for receptive
a3 fields near the fovea, attention had the effect of decreasing preferred length
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Figure 10:

Size of attention influences length tuning. Using the line model, we presented
a stimulus of increasing length (left two plots). If attention was small compared
to the stimulus (far left) attention shifted the preferred length (i.e., the length
that elicits the highest firing rate) rightward, making it larger. If the area to
which attention was applied was large compared to the stimulus (middle), the
opposite occurred. Thus, varying the ratio of the size of attention to the stimulus
size (“attention scale factor”) caused a shift in the ratio of the preferred lengths
(preferred length with attention divided by preferred length without attention;
right plot). Scale factor in the far left plot is marked on the right plot by the
letter A, middle by B. In Roberts et al. (2007) the ratio of preferred lengths for
parafoveal receptive fields was .88 and for peripheral receptive fields 1.19.

se (that is, the length of the bar that elicits the highest firing rate). For receptive
a5 fields in the periphery, the reverse was true: attention increased the preferred
316 length.

317 We explored attention’s impact on length tuning using the spatial line
s1is model. For different lengths of the stimulus, firing rates were recorded from
si9 - a neuron at the center. The effect of attention varied as a function of the size
20 of the attentional field. In Figure 10 (right) the ratio of the size of attention to
;1 the size of the stimulus is on the x-axis. By keeping a fixed ratio of attention
322 size to stimulus size, we assume that the size of the attentional field scales
13 with the size of the stimulus, but this scaling factor may differ for different
24 cells. For small values of this attention scale factor, the preferred length with
»s  attention was greater than the preferred length without it. For higher values,
26 this ratio was reversed. Firing rate as a function of length for two different
227 values of the attention scale factor are shown on the left. This pattern of

17


https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875534. this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

»s how attention impacts preferred lengths reflects the impact of attending to
19 the suppressive surround. With attention larger than the stimulus, more of
;0 the suppressive surround is activated for any given stimulus length. This
s effectively increases the length of the stimulus, making the preferred length
s smaller than without attention.

333 Our results combined with the findings of Roberts et al. (2007) suggest
;4 that attention targets parafoveal receptive fields differently than it targets
s5 peripheral ones. In particular, spatial attention inputs to parafoveal cells
16 may be larger than the size of the stimuli these cells respond to. In the
;7 periphery, spatial attention inputs may represent an area smaller than the
ss stimuli. This could be a result of the differently sized receptive fields in these
330 two regions.

a0 2.53.3. Factors influencing the magnitude of attentional effects

341 In Lee and Maunsell (2010), the authors controlled attention and task dif-
sz ficulty across stimulus conditions while varying the number of stimuli in the
us  receptive field of MT neurons. Through this, they showed that attentional
s« modulation is weaker when only one stimulus is present in the receptive field,
us and that this result is well-captured by a divisive normalization model. We
s use the ring model to replicate these results. By presenting three different
w7 stimuli (a most-, moderately-, and least-preferred orientation) either alone
ug or in pairs (Figure 11, left; compare to Lee and Maunsell (2010) Figure 4),
s we show that the effect of an attentional input was strongest when applied
0 to one stimulus in a pair. In particular, effects of attention on firing rates
ss1 - were highest when moving attention from outside the receptive field to the
2 preferred stimulus inside the receptive field when a non-preferred stimulus is
353 also present (Figure 11, right). The next strongest effect was from moving
4 attention from the non-preferred stimulus in the receptive field to the pre-
35 ferred. Finally, attention effects were weakest when moving attention from
16 outside the receptive field to a preferred stimulus presented alone inside the
7 receptive field.

358 A similar comparison was done using spatial attention rather than feature
30 attention in Sundberg et al. (2009). Here, attention was moved between the
w0 receptive field center and the suppressive surround. A stimulus of preferred
1 orientation was present in the center and was present or absent in the sur-
2 round. The impact of attending the center was larger when the stimulus in
33 the surround was present (Figure 2 of Sundberg et al. (2009)). We replicated
s these results using the line model. The firing rate of an excitatory cell was
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Figure 11:
Effects of attention are greater with more than one stimulus in the
receptive field. Using the ring model, three different stimuli (preferred, in-
termediate, and null) were shown either individually or in pairs. Attention
was directed to either of the two stimuli (‘Attend 1’ or ‘Attend 2’) or out-
side of the receptive field (‘Away’; when only one stimulus was present, at-
tending to the opposite stimulus is the same as attending away). Left: Bar
plots represent steady state firing of the recorded neuron for all stimulus and
attention conditions. Right: bar plots indicate percent increase in firing rate
with attention, for three different comparisons. Arrows indicate which stim-
uli were in the receptive field for the two conditions being compared (bot-
tom arrows indicate baseline condition, top arrow(s) indicate attended condi-
tion) and dashed circles indicate attended stimulus. The comparable values for
these conditions from Lee and Maunsell (2010) are 9%, 59%, 28% respectively.

s recorded with a stimulus centered on its preferred location. Attention was
36 applied to this location, or to a location in the surround both in the presence
7 and absence of a stimulus there. There results of this are shown in Figure 12
368 (left)

369 In Sundberg et al. (2009), the impact of attention on surround suppression
s was also shown over time. The extent to which firing rates are decreased by
sn the presence of the surround was measured when attention was directed to

19


https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875534. this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

0.00
[}
£ 3
b 2-0.05
3 5
= B_
g % 0.10
[}
0 =
g '8 -0.15
X = = @
\ \|
- R 20 40 60 80 100
/\ ! \t’ T Time from Response Onset (ms)

Figure 12:
Effects of attention are greater with a stimulus in the surround. Using the
line model, a preferred stimulus was presented in the receptive field center. Left:
bar plot indicates increase in firing in preferred-attended condition (top arrows)
vs. baseline condition (bottom arrows). Rectangles indicate receptive field. The
presence of a surround stimulus is indicated by an additional arrow outside the
receptive field and attention is indicated by a dashed circle. The increase in firing
was smaller without the surround present (comparable values from Sundberg et al.
(2009) are 18.8% versus 36.8%. The authors do not report the percent increase
compared to a baseline condition without attention to either center or surround).
Right: the strength of firing rate modulation from the addition of a surround
stimulus (the surround modulation index: [r(C + S) — r(C)]/[r(C + S) + r(C)])
is plotted vs. time, for different attention conditions: attending the surround,
attending the center, and attending a distant location (modeled as no attention).
The difference between these conditions emerged over time.

sz the receptive field center, surround, or to a distant location. The authors
s note (their Figure 5) that the difference in surround modulation between
s these different attention conditions emerged over time. The model shows the
w5 same result (Figure 12, right). The differences emerge faster in our model
w than in the data (in the data, the difference is not seen in the time bin 15-
w7 bbms after response onset, but emerges sometime in the next 40ms time bin).
sis - However, our model does not take into account any delays in the onset of the
;9 attentional signal relative to the onset of stimulus-driven feedforward input
0 to the recorded neurons.
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Attention causes a reduction in trial-to-trial variability. In the ring model
with noisy background input, 35 E (red) and 35 I (blue) cells were recorded as
a stimulus that was oblique (but not orthogonal) to their preferred stimuli was
presented. Stimulus onset produced a substantial reduction in trial-to-trial vari-
ability, measured as the Fano factor, compared to spontaneous activity (left; er-
rorbars are STD). Next, the effect of an attentional modulation was observed.
On the right, fractional change in Fano factor is plotted as a function of frac-
tional change in firing rate for each of the 35 E and 35 I cells in the presence
and absence of attention. In all cells, stimulus onset produced a decrease in
the trial-to-trial variability, regardless of whether the stimulus produced an in-
crease, decrease, or no change in the mean firing rate (Churchland et al., 2010).
In the presence of attention, this decrease in variability was enhanced, as has
been observed experimentally (Mitchell et al., 2007). The percent change in both
firing rate and Fano factor was calculated for each cell by taking a time aver-
age of both the mean rate and Fano factor before and after the onset of the
stimulus (in trials with attention, it came on at the same time as the stimulus).

s 2.4. Attention reduces trial-to-trial variability and noise correlations

382 In addition to its effects on mean firing rates, attention has also been
s shown to modulate the variability in rates across trials. Mitchell et al. (2007)
;s showed that attending to a stimulus decreased the across-trial variability of
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;s neural responses when compared to trials in which attention was directed
s elsewhere. Furthermore, this experiment showed that this decrease in vari-
7 ability occurs in both broad spiking (putative excitatory) cells and narrow
s spiking (putative inhibitory) cells.

389 To study this effect in our model, we introduced a source of trial-to-trial
s0 variability into our ring network by given each neuron a noisy input in addi-
;1 tion to its stimulus inputs, similarly to Hennequin et al. (2018) (see Methods
22 4.1.1 for details). We then ran 1,000 trials of a simple stimulus presentation.
33 On half of these trials, attention was directed towards the stimulus being
s presented. On the other half there was no attentional modulation added to
35 the network. The stimulus onset produced a reduction in the trial-to-trial
36 variability, measured as the Fano factor, with this reduction occurring both
57 for neurons that are activated by the stimulus and neurons that are not acti-
s vated or suppressed (Figure 13), as in experiments (Churchland et al., 2010)
10 and as previously shown for the SSN (Hennequin et al., 2018). Addition
wo of attention caused an additional drop in Fano factor, again regardless of
w1 whether the stimulus plus attention caused a net increase, zero change, or
w2 net decrease in firing rate (Figure 13, right).

403 In addition to causing a drop in trial-to-trial variability, Cohen and col-
ws  leagues demonstrated that an even stronger effect of attention on network
w5 variability is a pronounced decrease in the magnitude of noise correlations
ws between neurons in V4 (Cohen and Maunsell, 2009). This aligns with the
w7 finding that a stimulus suppresses the shared or correlated component of
w8 neural variability, not the component private to each neuron (Churchland
wo et al.,; 2010). Cohen et al., 2009, recorded from thousands of pairs of neu-
a0 rons and multiunit clusters in V4 during a visual change detection task, and
a1 found that the presence of attention greatly enhanced performance. They
a2 further showed that the significant improvement in performance was not due
a3 to changes in single neurons, but rather to a pronounced drop in the corre-
a14 e correlations). To simulate this experiment, we recorded from pairs
a5 of excitatory cells in the ring model in the presence of noisy input while
a6 presenting the network with two high-contrast oblique stimuli. On half of
a7 the trials, attention was directed to one of the stimuli. We calculated the
as  correlation between all pairs of recorded neurons in the presence and absence
a0 of attention. Pairs of neurons were grouped based on their distance from each
20 other on the ring (i.e. difference in preferred orientation). The changes in
a1 firing for two example neurons with attention as well as the noise correlations
22 between them over the course of an example trial are shown in Figure 14
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Figure 14:

Attention decreases noise correlations between neurons. In the ring model
with noisy background input, stimulus onset produced a reduction in noise cor-
relations between pairs of neurons in the network. The correlation in firing rates
between each pair of cells was calculated as a function of time for each of the two
conditions. On the left, an example pair is shown. The mean firing rates of two
excitatory cells in each of the two conditions is plotted on top; stimulus (at 90
degrees) and attention turn on at 250ms. The correlations between the two cells
are plotted on the bottom. Correlation time-series are shown as a running average
with a 50-ms sliding window. On the right, the mean correlation between pairs
of recorded cells (representing 30-65 degrees) during the stimulus response epoch
is plotted against difference in preferred orientation. Error bars indicate SEM.

23 (left). The average value of noise correlations between neurons at various
w24 distances is shown on the right. As was observed experimentally, attention
w5 caused a reduction in the noise correlations between neurons beyond the
w6 reduction caused by the stimulus alone.

a27 The suppression of correlated variability can be understood as resulting
w28 from the normalization performed by the model (although it also explains
»o further aspects of this suppression not explained simply by normalization,
s20 Hennequin et al. (2018)). In particular, as has been observed experimen-
s tally (Busse et al., 2009), this normalization averages the responses to ap-
. proximately equal strength inputs but performs a more unequal averaging
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a3 of unequal strength stimuli, becoming “winner-take-all” when inputs differ
x4 sufficiently in strength (Rubin et al., 2015). The reduction in correlated vari-
s35  ability with increasing stimulus strength can be understood to occur because
a6 the ongoing noisy inputs become steadily weaker relative to the stimulus.
a7 The normalization thus increasingly favors the response to the stimulus and
a3 suppresses the noise. Because this suppression is mediated by the network,
130 it acts on the correlated component of the noise and not on the private noise,
w0 which is largely averaged out in its impact at the network level.

aa1 An alternative picture of the mechanism of suppression is that it oc-
a2 curs through the enhancement of the strength of feedback inhibition with
w3 increasing network activation (Hennequin et al., 2018). In particular, in
wa  linearizations about the deterministic fixed point, the real parts of the lead-
ws ing eigenvalues become more negative with increasing mean stimulus drive,
us  representing increased feedback inhibition of the corresponding eigenvector
a7 activity patterns onto themselves, dampening their fluctuations. Given struc-
as  tured connectivity, these activity patterns have similar structure and so their
uo  fluctuations represent correlated variability.

450 Investigations regarding noise correlations have indicated that a decrease
ss1 in correlation with attention should only occur for pairs of neurons that repre-
s2  sent the same stimulus whereas pairs of neurons representing different spatial
»s3 locations or features may actually see an increase in correlations (Averbeck
¢ etal., 2006). This bi-directional effect of attention was found in area V4 (Ruff
ss5s and Cohen, 2014). In our ring model, this result occasionally occurred when
6 using weaker stimuli and/or a smaller number of trials to calculate the cor-
»s7 relations in the ring model. Examples of this can be found in Supplementary
458 Figure A17.

459 The task in Ruff and Cohen (2014), however, used spatial rather than
wo feature attention. Specifically, subjects were required to perform a contrast
w1 discrimination task in the cued hemifield. To replicate this study directly
w2 we used the line model with two nearby stimuli of unequal contrast (Figure
w3 15, left). The TTS metric from Ruff and Cohen (2014) measures the extent
w4 to which a pair of cells have the same (positive TTS) or opposite (negative
w5 T'TS) preferred stimulus of the two presented. Replicating figure 5 from that
w6 paper, we see that attention decreased correlations for cells with the same
w7 preferred stimulus but increased it for those with opposite preferred stimuli
468 (Figure 15, I‘ight).
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Attention increases or decreases noise correlations between neurons
based on preferred stimulus. In Ruff and Cohen (2014), animals performed a
contrast discrimination task on two nearby stimuli, represented here as two inputs
to the line model of different strengths. During different blocks, attention was
directed to one of two such sets of stimuli, one in each hemifield. Here we model
attention to the opposite hemifield as a 'no attention’ condition (top left) and at-
tention to the hemifield of the recorded cells as attention to each of the two stimuli
simultaneously (bottom left). The 25 model cells we analyzed responded to one or
the other stimulus alone. TTS values are the product of d-primes and represent
whether a pair of cells has the same (positive) or different stimulus preference (neg-
ative). By creating 20 populations of 25 cells each, we analyzed the relationship
between TTS and the effect of correlation on attention for 6000 cell pairs. Through
this we found both a significant (p << .05) decrease in correlation with attention
for cells that preferred the same stimulus and increase for cells that had opposite
preferences (right). Error bars indicate SEM. For more details, see Methods 4.2.

wo 2.5, An alternative mechanism

470 In all of the simulation results presented thus far, attentional modulation
an has been modeled as a small excitatory input biased towards the excitatory
a2 cells within the locus of attention. Here we consider instead a small in-
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a3 hibitory input to inhibitory cells within the locus of attention, disinhibiting
aa rather than exciting the excitatory cells. This is motivated by two observa-
a5 tions. First, it was observed that inputs from Anterior Cingulate Cortex to
w6 V1 target the VIP class of inhibitory cells (Zhang et al., 2014). The VIP cells
a7 in turn are known to inhibit other inhibitory neurons and, at least in V1,
ws  disinhibit excitatory cells (e.g. Fu et al., 2014). The ACC input conceivably
ao could be involved in attentional modulation. Second, recent electrophysio-
w0 logic work has revealed the function of two classes of inhibitory cells in layer
w1 of cortex (Jiang et al., 2013). One of these classes, the single bouquet
w2 cells (SBCs) was shown to preferentially inhibit the interneurons of deeper
w3 layers, and so have a net disinhibitory effect on the local pyramidal cells. As
s layer 1 receives a significant portion of its input from higher cortical areas,
a5 1t has been suggested that this circuit may play a role in attention and other
s top-down modulation of local circuit activity (Larkum, 2013).

ag7 To test the feasibility of this mechanism in our model, we repeated our
w8 suite of simulations using this alternative, disinhibitory mechanism of at-
w0 tention. Rather than modeling attention as an additional excitatory input
w0 to E cells, we instead model it as an additional inhibitory input to I cells.
a1 The results of these simulations are presented in the Supplementary Figures.
w2 Overall, this alternative mechanism can qualitatively reproduce most of the
493 findings we report above (Supplementary Figure A.18). Frequently, however,
w0 the same value of the attention strength parameter produces weaker effects
w5 on neural firing than when attention is directed towards the excitatory cells
ws (for example, compare Figure 12 to Figure A.18G).

407 In addition, there are instances where this form of attention does not
w8 qualitatively replicate our original findings (Supplementary Figure A.19).
w0 One major discrepancy between results comes from the use of the 2-D model.
so0 Comparing Supplementary Figure A.19B to Figure 5, modeling attention as
so. inhibition to inhibitory cells creates the opposite relationship (i.e., a negative
s correlation) between attentional modulation and normalization. In the 2-D
s model, any additional inhibitory input to the inhibitory population has the
saa  effect of increasing firing rates for many of the cells, even those representing
sos unattended stimuli. The model therefore cannot replicate findings that rely
so6 on attention to a non-preferred stimulus causing a decrease in firing rate.
sov This appears to be a consequence of the strong inhibition needed to keep this
s0s more complex model in a stable regime. Attention directed toward inhibitory
so0  cells also has a surprising effect on the correlations explored in Figure 15. As
s can be seen in Supplementary Figure A.19E, this fom of attention increases
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su correlations for pairs of cells both with the same and opposite preferred
si2 - stimuli.

siz 2.6, Attention enhances detection performance in a multi-layer model

514 An important consequence of deploying attention is enhanced perfor-
si5. mance on challenging tasks. We have thus far shown how the SSN can
si6  replicate many neural effects of attention, but to truly understand attention,
si7 it is necessary to link these neural changes to performance changes. And for
si8 that it is necessary to build a functioning model of the visual system that
si0  can perform visual tasks.

520 Because the SSN replicates neural findings that have been found in various
s21 areas in the visual system, it can be thought of as a canonical circuit, which
s22 18 repeated throughout the visual hierarchy. To build a biologically-realistic
523 multi-area model of the visual system that can perform a task, we model
s each area as a set of SSNs, the outputs of which are fed into another set
s of SSNs (i.e., a downstream visual area). The precise connections between
s26 these areas are learned as part of a training procedure. In particular, the
s27 9SN circuitry is placed inside a convolutional neural network architecture,
s creating a model we have dubbed the SSN-CNN (Methods 4.3).

520 The structure of the model can be seen in Figure 16A. The network is
s a 2-layer convolutional neural network wherein the convolutional filters are
sun  constrained to be non-negative (to mimic the excitatory feedforward con-
s nections that exist between different visual areas). In addition, after each
533 pooling layer is an SSN layer. The SSN layer implements normalization
s%  (historically normalization layers have been included in CNNs; typically im-
s33  plemented via a divisive normalization equation Krizhevsky et al. (2012)).
s3  opecifically, at each 2-D spatial location, a ring SSN implements feature nor-
s malization across the different feature maps. The recurrent connections of
s38  the SSN layers are held constant while all other weights of the network are
s39 trained end-to-end via backpropagation through time on the MNIST 10-way
ss0  digit classification task.

541 After the network is trained on the standard task, the final layer is re-
si2  placed by a series of binary classifiers, one for each digit. These binary classi-
sa3 fiers are trained on digit images to determine if a given digit is present in the
s« image or not (for example, one of the binary classifiers would be trained to
ses classify images as being of the digit '4’ or not). To test the impact of atten-
ss6  tion on the abilities of these binary classifiers, we presented the network with
se7 - a more challenging task: determining if a given digit is present in an image
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Figure 16:
Attention in the SSN-CNN enhances visual detection performance. A.)
The architecture of the SSN-CNN model. In the SSN layers, a full ring model
exists at each spatial location (though only one is shown). B.) An example of
the images used in the attention task. This image contains a '5’ and ’4’ overlaid,
therefore both the binary classifier trained to detect 4s and the one trained to
detect 5s should respond positively. C.) Binary detection performance for each
digit with (right) and without (left) attention. D.) Example firing rate of two
neurons recorded from the second SSN layer with receptive fields at the center of
the image when shown the image in (B). The top neuron had a small decrease in
firing when attention was deployed to the digit 4 and the bottom had an increase.
E.) Impact of attention to the digit 4 on firing rates of excitatory cells (rate with
attention divided by rate without) as a function of tuning to the digit. A feature
map’s tuning value for a given digit is defined as its z-scored mean response to that
digit (see Methods, section 4.3). Attention is modeled as excitatory input applied
to feature maps whose tuning value is above the median value across maps for that
digit. The strength of a map’s attentional input is proportional to the difference
between that map’s tuning value and the median value. Only neurons marked in
red were above the median and given direct attentional input.

28


https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875534. this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

s that contains two overlaid digits (Figure 16B). The network performs above
ss9 chance on this challenging task, and performance increased when attention
ss0 was applied (Figure 16C, attention applied at layer 2).

551 Attention is applied in this model as previously described: an additional
ss2 positive input is given to excitatory cells that prefer the attended digit. To
53 determine which cells in the SSN layers “prefer” the attended digit we created
ss  tuning curves based on the response of excitatory cells in the SSN when pre-
sss  sented with images of different digits (See Methods 4.3). Applying attention
ss6 i this way still elicits attentional changes in the cells that are not directly
ss7 targeted—through the recurrent connections—as can be seen in Figure 16E.
sss ' T'his includes decreasing the firing rates of neurons that do not prefer the
ss0 attended digit. While this feature attention is applied the same way across
soo all ring networks at a layer, the pattern of feedforward input will influence
ss1  the ultimate impact of attention. This can be seen by comparing the ratio of
ss2  firing with and without attention in ring networks at different nearby spatial
s3 locations, which receive slightly different feedforward input (Supplementary
s Figure A.20).

565 Previous work (Lindsay and Miller (2018); Lindsay (2015)) has shown
s how attentional changes in different layers of a deep convolutional neural
ss7 network can lead to enhanced performance on challenging visual tasks. That
ss¢s work demonstrated that the attentional modulation style that works best is
se0 multiplicative and bi-directional changes (i.e., the effect of attention should
s be to scale the activity of neurons that prefer the attended stimulus up
sn and those that don’t prefer it down). What we have shown here is how
s2 an additive input solely to the excitatory neurons that prefer the attended
s73 stimulus can turn into multiplicative and bi-directional changes via the circuit
sz mechanisms of the SSN and lead to an increase in performance. This allows
sis for a straightforward mechanism by which top-down attentional signals can
st lead to enhanced performance simply by providing additional synaptic inputs
stz to the right set of excitatory cells.

sis 3. Discussion

579 The stabilized supralinear network (SSN) is a model of recurrent pro-
ss0  cessing in visual cortex that is informed by anatomy and replicates several
set features of neural activity (Rubin et al., 2015). With a simple addition to
ss2  this nonlinear circuit model, we are able to reproduce a number of exper-
ses imental results on attention in visual cortex (Treue and Martinez Trujillo,
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ssa - 1999; Cohen and Maunsell, 2009; Mitchell et al., 2007; Reynolds and Desi-
sss mone, 2003; Sundberg et al.; 2009; Lee and Maunsell, 2009; Ni et al., 2012;
sss  Martinez-Trujillo and Treue, 2002). Through balanced amplification (Mur-
se7 phy and Miller, 2009), a small additional excitatory input to excitatory cells
sss  causes a nonlinear scaling of firing rates in a manner consistent with a number
ss0  of experimental observations. Recurrent connections implement interactions
s between features and spatial locations. These simple models are able to ac-
s count for changes in stimulus interactions, differences in gain changes and the
s2  magnitude of attention’s effects, as well as changes in trial-to-trial variability.
s We are not aware of any previous model that has attempted to replicate so
s« many effects of attention simultaneously. The ability to replicate all these
sos effects via a small additional input to a subset of neurons provides a simple,
so6 plausible mechanism through which higher cortical feedback can implement
so7 - attention.

508 Previous work has identified areas in the frontal cortex that may be con-
s0 sidered the source of top-down selective visual attention (Bichot et al., 2015;
o0 Paneri and Gregoriou, 2017). Exactly how connections from these areas
so1 target visual areas to create the changes seen with attention is unknown.
o2 Studying these feedback connection can be challenging, as it requires de-
03 tailed anatomical investigations across multiple brain areas. For this reason,
sa narrowing the hypothesis space by identifying which mechanisms of feed-
s back control are theoretically capable of implementing the known effects of
s attention is important. Here, we show that positive additive input to the
o7 excitatory neurons that prefer the attended stimulus can recreate the mul-
08 tiplicative changes observed in both E and I cells and both in cells that
00 prefer and do not prefer the attended stimulus. Adding negative input to
s10 the inhibitory cells that prefer the attended stimulus can also replicate most
su1  Of these effects, except that in our 2D model it tended to raise firing rates
s12  of neurons that did not prefer the attended stimulus. We do not know if
s13 that is a fundamental problem with a disinhibitory model of attention or if
1« it could be fixed by altering model connectivity. Overall, these results show
s1s  that feedback connections do not need to be directly responsible for all of
s16 the neural effects of attention. Instead, they only need to target a subset of
si7 neurons in a simple specific way and the local recurrent circuitry can take
s care of the rest.

619 There are effects of attention that this model does not readily replicate.
s20 For example, spatial attention has been observed to shift and shrink receptive
e fields. A previous two-layer model with multiplicative attentional inputs
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s22 and inhibitory recurrent connections was able to replicate these phenomena
622 (Miconi and VanRullen, 2016). Creating a unified model that can capture
24 all of attention’s relevant effects is a goal for future work.

625 In addition to replicating known findings, the set of models presented here
26 can serve as testbeds for future work on attention. In particular, experimental
sz designs can be explored and precise predictions made before carrying out
s further experiments.

629 Circuit models in neuroscience are frequently built to replicate and under-
s30 stand the relationship between anatomy and neural activity. Traditionally,
ss1 these models do not perform a perceptual or cognitive task. Yet, an ulti-
s2 mate understanding of the circuitry of visual perception will need to repli-
13 cate behavioral as well as neural findings. We work towards this goal here
3« by incorporating the SSN model into a convolutional neural network that
e can perform digit recognition (the SSN-CNN). Through this, we connected
36 the neural changes our model replicates to enhanced detection performance.
s37 ' This model also sets a precedent for how traditional approaches from com-
38 putational neuroscience can be incorporated with the increasingly popular
620 approach of using deep neural networks to study the brain (Yamins and
s00 DiCarlo, 2016; Kell and McDermott, 2019).

641 Further connections between neural changes and performance remain to
sz be explored, and the SSN-CNN could be useful in this pursuit. For example,
sa3 we do not incorporate noise into the SSN-CNN in this work, however using
s the noisy version of the ring model (Figures 13 and 14) would allow for an
eas exploration of how noise and correlation changes impact performance. We
s also do not attempt to model or replicate effects of attention on reaction
ez time, however that is possible in this dynamic model. Using the full 2-D
s model (instead of ring models at each spatial location) would also allow for
a0 an exploration of the effects of spatial attention and the interaction between
0 spatial and feature attention.

1 4. Methods

652 Code will be publicly available upon publication.

3 4.1. Basic Circuit Models

654 In this study we employ several different configurations of a basic SSN
es5 circuit model, the central unit in all being an interconnected pair of excitatory
s (E) and inhibitory (I) cells. The two core models are the one-dimensional
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ss7 ring model and the one-dimensional line model. In addition, for Figure 1 we
s use a simplified 2-cell circuit model, and for Figures 5 and 7 we use a large
0 two-dimensional model.

660 In all models, each neuron, ¢, is represented as a firing rate unit whose
s1 activity, r;, evolves according to:

Tz'diﬁ' = —T; + k? ([Izh_)n (2)
t

2 with n > 1 (indicating a supralinear activation function). The expression
63 [v]+ = max(v,0), that is, neuronal activity cannot go below zero. The in-
s puts, I;, to a given neuron 7 are comprised of recurrent inputs, feedforward
ess stimulus inputs, and attentional inputs. These inputs and parameter values
sos are specified for each model below. In all models the time constant 7; has the
ss7 value 7 = 20 ms for all E cells and 7; = 10 ms for all I cells. Simulations
s are run using the forward Euler method with time step lms.

669 All of these models except the E-I pair model were described previously
eo in (Rubin et al., 2015), however we will recap them briefly here. We used all
er1  the same model parameters from that study, and did not tune them in any
ez way to get the current results. The models are only modified by the addition
ez of attentional inputs, and by the addition of noise inputs for Figures 13 and
674 14

o5 4.1.1. Ring Model

676 The ring model is intended to represent neurons with a shared retinotopic
ez receptive field but different preferred features. In this model, an E-I pair
e7s  exists at each location on the ring, with the preferred feature (e.g. orientation
e or direction) varying smoothly around the ring. The relative input to a cell
0 with preferred orie%tation 0 from a stimulus of orientation ¢ is given by

dgire (0—9)

e h(0,0) =e *Fr  where dy(f — @) is the shortest distance around the
2 circle between 6 and ¢. The absolute stimulus input to a cell comes from
ee3 multiplying h(6, ¢) by the scalar ¢, which represents the overall strength or
sea contrast of the stimulus. In addition, attention directed towards orientation
ess @ provides extra input to E cells with the same overall shape as a stimulus
s input, scaled by the attention strength factor, a. (In studies that modeled
7 attention as negative input to I cells rather than positive input to E cells,
ess this input is instead given to inhibitory cells, with a < 0.) In total, input to
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o the E or I cell at location # on the ring is given by:

IE(Q) = Ch(@, qf)) + ah(@, gbl) + Z WEE(Q, QI)T'E(HI) — WE[(Q, 0,)7“[(9/)
0

L(0) = ch(0,¢)+ > Win(0,0)rs(0) — Wi (0,0)r(0) (3)
0/
0 Tespectively.
,dcirc(e_el)
601 Recurrent connections fall off according to We (6 — 0') = Jupe — *ori

s> where dg;.(0 — ') is the shortest distance around the circle between 6 and
e03 0. If multiple stimuli are present the inputs are added linearly.

694 For simulations of this model, the following parameters are used: the
s number of E/I pairs is N = 180; the spacing in degrees between adjacent
06 pairs on the ring is A0 = 1°; Jgg = 0.044, J;g = 0.042, Jg; = 0.023,
oor Jrp = 0.018, 0, = 32°, opp = 30°, k = 0.04, n = 2.0.

698 The ring and its inputs are schematized in Figure 2.

699 In certain simulations, noise is added to the inputs to these cells. Specifi-
w0 cally, 10+ v(6,t) was added to input to each unit at each timestep. External
700 noise v was given by convolution of unit-integral Gaussian temporal filter
22 (stdev 10 ms) and spatial filter (stdev 8°) with Gaussian spatiotemporally
703 white noise (mean 0, stdev 40), yielding /(v?) =~ 1.

704 4.1.2. Line Model

705 In the line model, each E-I pair represents a different retinotopic location
76 but all have the same preferred features. Rather than being arranged in
707 a ring, these pairs are simply placed on a line. The line model follows the
708 same basic equations as the ring model, however the stimulus input is defined
700 differently and the recurrent connections are differently arranged.

710 A stimulus input is defined in terms of stimulus center z (taken as zero for
1 center stimuli), length [ and sharpness parameter ogp. The input to an E-I

712 pair at location x is given by s;(x—x) = (W) (1 — u+ W) )
14+e  ORF l+e  ORF

713 As in the ring model, this input is scaled by the overall strength of the stim-
72 ulus, c.

715 In this model, there are N E/I units with grid spacing Az. Recurrent
76 connections are defined with respect to distance between neurons. Excitatory

_ \z—zl\Q
n7 projections are given by W,p(x,2') = Jyge *°ax for a € {E,I}. Inhibitory
7s projections W, are only to the same line position as the projecting neuron.
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710 The parameters used in this model are: N = 101, Ax = 3 , ORF =
720 0125Al’, JEE == 10, J]E = 125, WE] == 10, W][ = 075, OFRE — %0
m o =3, k=001n=22

722 Again, if multiple stimuli are present their inputs are simply added to-
723 gether and attention takes the same shape as a stimulus but is only directed
724 toward E cells.

725 In one simulation, noise was added to the line model. This noise was
76 similar to that added to the ring model, but with a lower baseline (5 instead
77 of 10) and different spatiotemporal parameters: external noise was given
78 by convolution of unit-integral Gaussian temporal filter (stdev 15 ms) and
70 spatial filter (stdev 3Az) with Gaussian spatiotemporally white noise (mean
70 0, stdev 10).

731 413 2-D Model

732 The one-dimensional ring and line models vary either in preferred retino-
733 topic location or visual feature. To create a model wherein cells have both
74 varying retinotopic as well as feature preferences, we place E-I pairs on a
735 two-dimensional spatial grid representing retinotopy, with an overlaid map
76 of preferred orientation (which may be imagined to represent any circular
77 preferred feature). This model also incorporates randomness in parameters,
738 allowing study of diversity in responses as in Fig. 5.

739 Let Wep(x,2") be the synaptic weight from the cell of type b (E or I), at
720 position x’, with preferred orientation §(z’), to the cell of type a, at position z,
71 with preferred orientation #(x). Nonzero connections are sparse and chosen

_@=a)?  dejre(6()-0")?
. .1 2 2
x2 randomly, with probability p (Way(z,2') #0) = kpe *a e *7ori

73 Where a nonzero connection exists, Wy,(x,2’) is chosen randomly from a
72s  Gaussian distribution with mean J,, and standard deviation 0.25.J,,; weights
s of opposite sign to J,, are set to zero. For each cell, the set of recurrent
76 synaptic weights of type b (E or I) it receives are then scaled so that all
7 cells of a given type a (E or I) receive the same total inhibitory and the
ns same total excitatory synaptic weight from the network, equal to J,, times
720 the mean number of connections received under p ( ab(x ') #0). Tg, TI,
w0 ng, n;, and k are also drawn from Gaussian distributions, with standard
751 deviation 0.05 times the mean (parameter values below indicate means).

752 We use a grid of 75 x 75 E-I pairs. The preferred orientation of an E-I pair
753 is given by a map randomly generated using the method of Ref. (Kaschube
et al., 2010), (their supplemental materials, Eq. 20) with n = 30 and k. =

34


https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875534. this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

8 cycles
75 grid intervals”

6 AT = %O. Boundaries in retinotopic space are periodic. Parameters: kg =
7 0.1, ky = 0.5, Jgg = 0.10, J;p = 0.38, Jg; = 0.089, Jrr = 0.096, k£ = 0.012,
78 Np — 20, ny = 22, OfFpE — SA.I', OIg — 12A$, Opr = 011 = 4A$, Oori — 450,
0 opp = 32° orrp = Ax. Degrees can be converted to distance across cortex
70 by assuming a cortical magnification factor of 0.6 mm/deg, a typical figure
71 for 5 —10° eccentricity in the cat (Albus, 1975) giving opp = o/ = 1.54mm,
w2 oy = oy = 0.513mm, orientation map period 1.2mm.

763 In this model, the relative input to the cell at 2D-position x with pre-

e ferred orientation 0(x) from a grating of size | centered at position x’ with
_ dcirc(g(x)*qb)Q
765 orientation ¢ is h(x) = s;(|x — x'|)e *¥r ; for a full-field grating, the
_ deirc(0(0)—9)?

2
QUFF

The full map is taken to be 16° x 16°; the grid interval

755

766 relative input is simply h(x) = e
767 We used different exponents, n; > ng, to increase stability despite vari-
768 ability (as supported by experiments: Supplemental Figure S3 of Ref. Haider
0 et al.; 2010). Variability of 7’s, n’s, k was limited because larger variabil-
70 ity tended to yield instability; biologically, large variability can probably be
1 tolerated without instability because of various forms of homeostatic com-
72 pensation (Turrigiano, 2011), not modeled here.

s 4.1.4. FE-I Pair Model

774 In Figure 1 we study an isolated E-I pair. The inputs in this simple
75 two-neuron model are given by:

Ip = Wggrg —Wgr*xrr+cg
It = Wigrg —Wir*rr+cr (4)

776 We use the following parameters: Wgg = 1.00, W;g = 1.25, Wgr = 0.75,
mr Wi = 0.75, k = 0.01, and n = 2.2. The inputs cg and c¢; are the sums of
77s  two components, an “orientation tuned” input that is equal between the two
779 neurons and an untuned modulatory component added to either the E or I
750 cell on a given trial. 2The tuned component is given by a Gaussian curve at

71 orientation 6: 506_2%2, o = 20°. Modulatory input: to I cells, from 0 to 10
72 in steps of 2.5; to E cells, from 0 to 5 in steps of 1.25.

3 4.2. Attention Ezperiments

784 Unless otherwise noted, simulations ran for 300ms and final firing rates for
785 excitatory cells were reported. Attention was modeled as additional input
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76 of a specified strength given only to the excitatory cell in a pair. Unless
w7 otherwise stated, the shape of the attentional inputs was the same as that of
s the attended stimulus (as schematized in Figure 4.1.1).

780 4.2.1. Using the Ring Model

790 In Figure 3, we used the ring model to show how attention to a non-
71 preferred stimulus enhances suppression. The preferred stimulus was oriented
792 at 45 degrees, with strength 40. The non-preferred was oriented at 135
73 degrees and the strength varied from 0 to 80. Attention was applied to
704 either stimulus at strength 3.

795 In Figure 4, a non-preferred stimulus (oriented at 135 degrees with strength
96 40) for the recorded cell (located at 45 degrees) was present as another stim-
o7 ulus (also strength 40) varied from orientation 0 to 180 degrees. Attention
s (strength 2) was applied to the non-preferred probe stimulus, to the varying
790 stimulus, or not applied at all.

800 In Figure 9 (left), activity was recorded from a cell at 45 degrees while
s a preferred stimulus (45 degrees) was presented in conjunction with a non-
soo preferred (135 degrees) stimulus. While the non-preferred stimulus remained
sz at strength 50, the strength of the preferred one varied logarithmically from
sos 1 to 100. Attention was directed to the non-preferred stimulus with strength
sos b (or was absent). In Figure 9(right), the contrast of both the preferred and
sos non-preferred stimulus varied logarithmically from ~1-20. Attention was
sor applied either to the preferred or non-preferred stimulus with strength 1.

808 In Figure 11, the cell located at 10 degrees was recorded. Each combina-
so0 tion of a preferred stimulus (20 degrees), intermediate stimulus (60 degrees),
g0 non-preferred stimulus (80 degrees), or no stimulus was tested. All stimuli
s were presented with strength 20 and an additional input of 10 was given to all
sz cells to better match the baseline firing in (Sundberg et al., 2009). Attention
a3 (of strength 1.5) was applied to either of the stimuli present or not at all.
814 In Figures 13 and 14, the ring model with added noise was used and
gs1s  simulations ran for 500ms. In Figure 13, for the first 250ms, no stimulus or
a6 attentional inputs are given (noise inputs are on throughout). At 250ms, a
si7  stimulus of strength 25 located at 90 degrees turns on, and on half of the
ais  trials so does an attentional input at the same location (strength 8). 1000
s19  trials are run in total. To calculate spontaneous firing rates and Fano factor
s0 (FF), firing rates are averaged over 100-250ms. For stimulus-evoked activity,
e they are averaged over 350-500ms (these are the two epochs compared when
2 calculating the fraction change in firing and FF in the right plot of the figure).
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s23 Both E and I cells from 30-65 degrees were recorded.

824 In Figure 14, for the first 250ms, no stimulus or attentional inputs are
s given (noise inputs are on throughout). At 250ms, two stimuli (both of
26 strength 25, one located at 90 degrees and one at 45) turn on, and on half
27 of the trials so does an attentional input at 90 degrees (strength 8). 1000
28 trials are run in total. For the figure on the left, correlations are calculated in
20 overlapping windows of 50ms. On the right, correlations are calculated from
s30 firing rates averaged over 350-500ms. E cells at all locations were recorded
g1 and correlation is plotted as a function of the distance on the ring between
832 any two pairs.

83 4.2.2. Using the Line Model

834 In Figure 6, a stimulus of strength 25 and length }—2‘ spatial degrees was
s3s either placed at the center of the receptive field of the cell at position 0,
s placed in its surround (at a distance of % degrees), or placed at both locations
g7 simultaneously. In the last configuration, attention (strength 2) was applied
g3 either to the stimulus at the center or the surround (or not at all).

839 In Figure 8 (left), a stimulus of length 1 spatial degree is presented at
sa0  the center of the recorded cell with contrast varying logarithmically from
sar 1-100. Attention of strength 1 and length 25 degrees is applied at the same
sz location. For the figure on the right, the size of the attention and stimulus are
sa3 reversed. To replicate differences in baseline firing shown in (Reynolds and
sae  Heeger, 2009), an additional input of 10 is given to all cells in the simulations
sas  producing the figure on the left, and an additional input of 2 is given for those
sss - on the right.

847 In Figure 10, a stimulus of strength 15 was centered on the receptive field
sas  Of the recorded cell with length varying from 0 to 2.5 degrees. The size of
s0  attention (applied with strength 4) was equal to the length of the stimulus
5o times an attention scale factor which ranged from .3 to 1.2. The preferred
st length is defined as the length at which the maximal firing rate is elicited.
852 In Figure 12, a stimulus of length 1 degree and strength 25 is centered on
ss3  the recorded neuron’s receptive field. A stimulus of the same size and strength
s« either is or isn’t presented in the surround (1.5 degrees away). Attention
g5 (strength 1, length 1) is applied to the center or surround location in each
sss  condition.

857 In Figure 15, the line model with noise added is used. Two stimuli each
sss  of length 2.75 degrees were placed at a distance of 2 degrees on either side
sso  Of the center of the line model. One had a ¢ of 30 and the other 65. On
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so attention trials, attention was applied to both stimuli with a strength of
s D. For each ‘recording session’ simulated, excitatory cells 39-63 (roughly 4
s> degrees on either side of the center cell at 51) were recorded as these cells
g3 responded to one or the other stimulus alone. Responses to each stimulus
s« alone at ¢ = 65 (50 trials each) were used to calculate a d-prime value for
g5 each cell that represents the extent to which that cell prefers one stimulus
sss over the other. As in Ruff and Cohen (2014), the product of d-primes defined
v the T'TS (task tuning similarity) value for a pair of cells. 100 attention trials
sss and 100 no attention trials were run to calculate the correlation coefficients
g0 for each pair of cells in each condition based on the average firing over the
o final 25ms of the simulation (results are the same using 250 or 500 trials). 20
snn  different ‘recording sessions’ were created using a different random seed for
sz the noise with each one. In addition to the mean changes plotted in Figure
g3 15, we also explored the relationship between TTS and correlation by fitting
sra  separate lines to the correlation versus T'TS plot in the no attention case and
s the attention case. If attention differently affects negative and positive TTS
76 pairs, the slope of the attention line should be less than the no attention line.
ez Using the same bootstrap analysis as in Ruff and Cohen (2014) we found this
s to be true for all 20 of our populations (not shown).

sro 4.2.3. Using the 2-D Model

880 In Figure 5, the two-dimensional model was used to explore the relation-
ss1  ship between normalization and attention. We sampled 250 excitatory cells
g2 from the model. For each cell, a stimulus of preferred orientation, size 16
ss3  degrees, and strength 40 is presented to the cell. An orthogonal stimulus of
s« the same size, position, and strength (the “null” stimulus) is then presented,
sss and then the preferred and orthogonal stimuli are presented together. At-
sss tention (strength 8) is applied either to the preferred or null stimulus. These
ss7 response values are used to calculate the normalization modulation index and
sss attention modulation index for each cell.

889 In Figure 7, we sample 100 cells from the model to test the interaction
g0 between surround suppression and attention. For each cell, a stimulus of
s strength of 50 of preferred orientation and size 10 degrees is shown. A stim-
g2 Ulus with the same orientation and strength is placed in the surround at a
g3 distance of 10 degrees, and the response is recorded. The surround at 10 de-
s grees is, technically, a circumference of possible positions around the center.
ss 10 decide where to place the surround stimulus, the surrounding neuron at a
sos distance of 10 with a preferred orientation closest to that of the center neuron
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so7 1S chosen. Attention (modulation strength = 5) is then directed either to the
sos center or surround stimulus.

g0 4.3. The SSN-CNN Model and Experiments

900 The SSN-CNN is an adaptation of a traditional convolutional neural net-
o1 work. The inputs to the network are grayscale images of handwritten digits
902 (28-by-28 pixels). The first convolutional layer applies 180 separate 3x3 fil-
w3 ters, all of which are constrained during training to contain only non-negative
oa  values. The application of these filters results in 180 feature maps, each with
s a spatial dimension of 28x28. A 3x3 max-pooling layer with stride 2x2 re-
ws duces the feature map size down to 14x14. The output of the pooling layer
o7 determines the input to the ring SSNs that exist at the next layer. Specifi-
ws cally, at each of the locations on the 14x14 spatial map, there is a ring SSN
w0 with 180 E/I pairs. The activity of the units in the 180 feature maps provide
a0 the ¢ values (that is, the strength) for inputs centered at that location on
o the ring. We arbitrarily number the feature maps from 1 to 180 and let ¢
a2 be the number of a particular feature map. Then at spatial position x,y,
a3 the feedforward input to each cell in the E-I pair located at position # in the
o ring model is given by > ¢z ,(¢) h(0, @), with ¢, ,(¢) the activity of the unit
as in the ¢ feature map in the pooling layer at location x,y, and h(f, ) the
ais  function defined in section 4.1.1. While there is no concept of a ring in the
sz topology of the feature maps prior to learning, we still map the 180 feature
sis maps onto the 180 locations in the ring. Because feature maps assigned to
a9 more nearby locations in the ring will more strongly influence one another’s
o0 output on the ring, the feature maps should ultimately develop structure
o1 reflecting the ring topology (Lindsay and Miller, 2018).

022 This architecture is then repeated to create a two-layer convolutional
o3 network. The output of the second SSN layer serves as input to a fully-
o4 connected layer with 1024 units, which then projects to the final 10-unit
os layer (one for each digit). For training, the network was unrolled for 46
2 timesteps (with dt = 2ms for the SSN layers) and trained on the MNIST
o7 dataset using backpropagation through time to minimize a cross entropy loss
28 function (batch size 128). Only the final timestep was used for calculating
o9 the loss function and classification accuracy. The recurrent weights for each
a0 ring SSN at both layers were set as described above for the standard ring
a1 network. These weights were not allowed to change during training.

032 Repeating the procedure of (Lindsay and Miller, 2018), once the network
a3 was trained on the standard classification task, the final 10-unit layer was
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s replaced with a series of binary classifiers, one for each digit. The weights
a5 from the 1024-unit second-to-last layer to the 2-unit final layer were trained
a6 to perform binary classification on a balanced training set wherein half of
o7 the images were of the given digit and half without.

038 We then generate more challenging images on which to test the benefits
a0 of attention. These images consist of two regular MNIST images added
uo together. The test set for each binary classifier contains 768 images, half of
o1 which contain (as one of the two digits) the digit the classifier was trained
w2 to detect and the other half do not. Performance accuracy is given as the
a3 overall percent correct of the binary classifier on this test set.

944 To know how to apply attention, we first present 45 standard MNIST
ws images of each digit to the network and record the activity of neurons in
as the SSN. From this we calculate “tuning values” that indicate the extent to
o7 which each feature map prefers each digit. As in (Lindsay and Miller, 2018),
wus tuning values are defined as a z-scored measure of the feature map’s mean
s Tesponse to each digit. Specifically, for feature map 6 in the [ layer, we
o0 define r'(0,n) as the activity in response to image n, averaged over all units
51 in the feature map (i.e., over the spatial dimensions). Averaging these values
o over all images in the training sets (Ng = 45 images per digits, 10 digits.
o3 N=450) gives the mean activity of the feature map 7(6):

#(0) = 5 S0, m) (5)

ssa  Tuning values are defined for each feature map and digit, d as:
fl (9) . NLd Zned Tl(eﬂ n) - ,,?1(9)
L(0) =
VE SN (r1(0.0) — 7 (0))?

055 When attention is applied to a particular digit, excitatory neurons that
o6 prefer that digit are given additional input. Specifically, the cells in feature
57 maps whose tuning value for the attended digit are above the median tuning
s value for that digit are given attentional inputs. The attentional input to
w9 each feature map is proportional to how much above the median its tuning
o0 value is:

(6)

ag(0) = B(f3(0) — median(£})) (7)
w1 Note, in this model the attentional input to the excitatory cell is fully speci-

w2 fled by the above equation (that is, this value is not multiplied by the shape
93 of the feedforward input).
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964 We define digit preference on the feature map level (rather than for indi-
s vidual neurons) because feature attention is known to be a spatially-global
s phenomenon (that is, attention applied to a particular feature modulates
%7 neurons at all spatial locations, (Saenz et al., 2002)).

968 The accuracy on the same test set of overlaid images is again calculated
wo for each digit, now in the presence of attention directed to the digit being
o detected. An additional parameter representing the overall strength of at-
on  tention (J) is varied (.02, .04, or .06) and for each digit the best performing
a2 strength is used.

073 This attention was applied at each SSN layer individually as well as at
aa  both together. Here, the results of applying attention at the second SSN layer
o5 are reported as this elicited the best performance (a finding that is in line
o6 with those reported in (Lindsay and Miller, 2018; Lindsay, 2015), wherein
o7 attention at later layers better enhanced performance).
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Attention can increase correlations. Example runs of the model used to make
Figure 14 that result in attention increasing correlations for distant pairs. The
strength of the stimulus and number of trials used for each condition is given at
the top for each (in Figure 14, strength was 25 and 500 trials were used). Errorbars

are SEM.
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Figure A.18:
Findings that qualitatively replicated with attention modeled as in-
hibitory input to inhibitory cells A. Replication of Figure 4. B. Replication of
Figure 6. C. Replication of Figure 8. D. Replication of Figure 9. E. Replication of
Figure 10. F. Replication of Figure 11. G. Replication of Figure 12. H. Replication
of Figure 14.
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Figure A.19:
Findings not qualitatively replicated with attention modeled as in-
hibitory input to inhibitory cells A. Figure 3. Here much of the results
are replicated however at low probe strengths attending the probe can increase
firing rates compared to no attention. B. Figure 5. Here the relationship between
normalization and attention is negative. C. Figure 7. Here the attend-surround
condition is too similar to the attend-center one. D. Figure 13. Here for a range
of firing rate changes, inhibitory cells have their Fano Factor increased with atten-
tion (though it should be noted this result happens occasionally when modeling
attention as excitation to excitatory cells, for example, when the number of tri-
als is lower). E. Figure 15. Here cell pairs with TTS;1 also show an increase in

correlation with attention.
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Figure A.20:
Impact of feature attention at different spatial locations
in layer 2 of the SSN-CNN Ratio of attended to non-attended
firing rates for cells in a ring network as a function of tuning
value as in Figure 16E, but for different nearby spatial locations.
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