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Abstract

Selective visual attention modulates neural activity in the visual system and
leads to enhanced performance on difficult visual tasks. Here, we use an
existing circuit model of visual cortex, known as the stabilized supralinear
network, to demonstrate that many neural correlates of attention can arise
from simple circuit mechanisms. Using different variants of the model we
replicate results from studies of both feature and spatial attention. In addi-
tion to firing rate changes, we also replicate findings regarding how attention
impacts trial-to-trial variability. Finally, we expand this circuit model into
an architecture that can perform visual tasks in order to show that these
neural effects can enhance detection performance. This work advances our
understanding of the physical underpinnings of attention.
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1. Introduction1

When an animal knows in advance what features or locations in the visual2

scene will be relevant for completing its goals, selective top-down attention3
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can be deployed. This attention has been shown to have a powerful modula-4

tory effect on both task performance and neuronal responses, and changes in5

the latter can often be powerful predictors of the former (Ress et al., 2000).6

Numerous specific impacts of attention on neural activity have been iden-7

tified, including changes in firing rates, trial-to-trial variability, and noise8

correlations (Treue and Maunsell, 1999; Treue and Martinez Trujillo, 1999;9

Cohen and Maunsell, 2009). Looking at the impact of attention on tuning10

curves, attention to a preferred stimulus is known to scale up the responses11

to all stimuli; conversely, attention to a non-preferred stimulus scales re-12

sponses down (Martinez-Trujillo and Treue, 2004). This enhancement has13

been shown to be a largely multiplicative increase in neuronal gain (Treue14

and Martinez Trujillo, 1999). A similar percentage change occurs in the firing15

rates of excitatory and inhibitory neurons (Mitchell et al., 2007).16

Many of attention’s impacts on firing rates can be understood in the17

context of the normalization model of attention (Reynolds and Heeger, 2009;18

Lee and Maunsell, 2009; Ghose, 2009; Boynton, 2009). This model builds19

off the canonical computation of normalization observed in multiple places20

in the visual system as well as other brain areas (Carandini and Heeger,21

2012). In the absence of attention, a neuron’s firing rate can be predicted22

by a divisive normalization equation: stimuli with the preferred features and23

in the classical receptive field of the neuron form the numerator (known as24

the “stimulus drive”), and the denominator is a function of a less-selective25

suppressive drive that includes surround locations and non-preferred features26

as well. Under the normalization model of attention, attention provides a27

biasing effect that amplifies the drive coming from the attended stimulus.28

This model captures how attention can, when two stimuli are present,29

shift responses to those of the attended stimulus alone. For example, when30

a preferred and non-preferred stimulus are both presented to the receptive31

field of a V4 neuron, the cell’s response is intermediate between the responses32

evoked by each stimulus alone. By attending to either the preferred or non-33

preferred stimulus, the response is shifted towards the response evoked by34

the attended stimulus alone (Reynolds and Desimone, 2003). Similarly, at-35

tention to a stimulus in the suppressive surround of a V4 neuron increases36

the suppression induced, whereas attention to the center reduces the sup-37

pression (Sundberg et al., 2009). The normalization model of attention also38

captures how attention increases contrast gain or response gain, respectively,39

depending on whether the attention is over a larger or smaller cortical area40

than the stimulus input (Reynolds and Heeger, 2009).41
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Figure 1:

Expansive nonlinearity and balanced amplification yield multiplicative
scaling. We consider a simple two-unit nonlinear SSN model, with one excitatory
(E) cell and one inhibitory (I) cell (Methods 4.1.4). We drove both cells with a
series of feedforward inputs, whose strengths varied as a function of “orientation”
to generate “tuning curves”. While driving the cells with this feedforward input,
an additional constant input of one of four varying strengths (indicated by color
legend at left) was added to either the E or the I cell. With increasing input
to the E cell, both E and I rates are scaled up, whereas with increasing input
to the I cells, both E and I rates are scaled down. Normalizing each curve by
its maximum reveals that the gain change is almost exclusively multiplicative.

Beyond changes in firing rates described by the normalization model of42

attention, attention also decreases trial-to-trial variability and noise correla-43

tions across neuron pairs (Cohen and Maunsell, 2009; Mitchell et al., 2007).44

We have previously shown that a simple model of cortical circuitry—45

known as the stabilized supralinear network (SSN) (Ahmadian et al., 2013)—46

can account for a wide set of phenomena described by the normalization47

model, including feature normalization and surround suppression and their48

nonlinear dependencies on contrast (Rubin et al., 2015). It also accounts49

for the suppression of correlated variability by a stimulus (Hennequin et al.,50

2018). The network assumes expansive or supralinear input/output functions51

for the individual units. As described in (Ahmadian et al., 2013; Rubin et al.,52

2015; Ahmadian and Miller, 2019), this causes effective synaptic strengths53

between units, which are proportional to the postsynaptic neuron’s gain –54
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its change in firing rate for a given change in input – to grow with increasing55

postsynaptic activation. The growth of excitatory-to-excitatory effective con-56

nections leads to potential instability, but with sufficiently strong feedback57

inhibition the network remains stable. However, this stabilization occurs58

through the network dynamically “loosely balancing” its inputs, so that the59

recurrent input largely cancels the feedforward input, leaving a residual net60

input that grows sublinearly as a function of the feedforward input. (The61

balancing is “loose” because the residual input after cancellation is compa-62

rable in size to the factors that cancel, Ahmadian and Miller, 2019.) This63

cancellation of feedforward input through increasingly strong inhibitory sta-64

bilization leads to the normalization and variability suppression effects just65

described.66

The SSN has strong recurrent excitation stabilized by strong feedback67

inhibition and exhibits “balanced amplification” (Hennequin et al., 2018;68

Murphy and Miller, 2009): small inputs biased toward either excitatory (or69

inhibitory) cells drive large increases (or decreases) in both excitatory and70

inhibitory firing rates. We hypothesized that attentional modulation acts71

through the same balanced amplification and recurrent “loose balancing”72

mechanisms that implement feature normalization and surround suppression.73

Here we show that this model can indeed account for many of the neural74

effects of attention observed in visual cortex.75

Finally, in addition to replicating neural effects, we also use this model76

to show how changes in neural activity can enhance performance. Previous77

work (Lindsay and Miller, 2018) used a deep convolutional neural network78

(CNN) as a model of the visual system to show how neural changes associated79

with attention enhance performance on a challenging visual detection task.80

Here, we put our circuit model into a convolutional architecture to create a81

model that connects low-level circuitry with behavioral outputs. This model82

(dubbed the SSN-CNN) replicates both the neural impacts of attention as83

well as the performance enhancements.84

2. Results85

We employ four instantiations of our model of visual cortex to replicate86

the neural effects of attention. The details of all of these models have been87

described previously, and are included in the Methods section. All four mod-88

els feature strongly recurrently connected excitatory and inhibitory neurons89

with a supralinear neuronal input-output nonlinearity. The four models differ90

4

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 13, 2019. . https://doi.org/10.1101/2019.12.13.875534doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/


only in the dimension of stimulus space over which the neurons are arranged91

and the spatial arrangement and strengths of the connections between neu-92

rons. In the simplest model, we consider a single pair of excitatory and93

inhibitory neurons (Figure 1). The two slightly more complex models rep-94

resent populations of neurons either arranged around a ring, with position95

on the ring interpreted as preferred orientation of cells with a similar retino-96

topic receptive field (RF) position(Methods 4.1.1, Figure 2), or on a line,97

with position on the line interpreted as retinotopic RF position of cells with98

similar preferred orientation (Methods 4.1.2, Figure 15). The most complex99

model has a 2-dimensional representation of retinotopic space on which is100

superimposed a map of preferred orientations. In this model, neurons make101

connections as probabilistic functions of difference in stimulus preference over102

the three dimensions of stimulus quality: two spatial dimensions and orien-103

tation (Methods 4.1.3).104

We note that the suppression of response to a preferred orientation by105

simultaneous presentation of an orthogonal orientation or “mask” (“cross-106

orientation suppression”) in V1 is largely mediated by nonlinear changes in107

the pattern of thalamic firing induced by the mask, rather than by nonlinear108

V1 integration (Priebe and Ferster, 2006; Li et al., 2006), although there is109

a component mediated by V1 as shown by suppression arising when the two110

stimuli are presented to different eyes (Sengpiel and Vorobyov, 2005). In our111

models, the inputs to the model cortex are assumed to sum linearly, so that112

all nonlinear behavior arises from cortical processing. We typically refer to113

different competing stimuli presented within an RF as “orientations”, but this114

should be understood to model cortical processing given linear summation115

of inputs induced by two stimuli, rather than the literal phenomenon of V1116

cross-orientation suppression.117

In all instantiations, attention is modeled as a small additional excita-118

tory input biased towards the excitatory cells within the specified locus of119

attention. As a secondary test, we also re-ran all simulations with attention120

instead modeled as a small inhibitory input towards the inhibitory cells (re-121

sulting in a disinhibition of locally-connected excitatory cells). Results were122

qualitatively similar, with a few notable exceptions discussed below.123

To investigate the impact of neural activity changes on performance, we124

also incorporated one of these circuit models—the ring model—into a con-125

volutional neural network architecture (Methods 4.3). This allowed us to126

demonstrate that the application of attention to our circuit model can in-127

crease performance on a challenging visual detection task.128

5

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 13, 2019. . https://doi.org/10.1101/2019.12.13.875534doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 2:

A ring model of attention. The ring model represents different features (e.g.,
preferred orientation) at a single location in visual space. At each location on the
ring, a pair of excitatory (red) and inhibitory (blue) cells exist. Oriented stimuli are
modeled as Gaussians centered at a particular location on the ring (black curves).
Attention to one of the stimuli (indicated by dashed circle around it) is modeled as
an additional Gaussian input biased towards the excitatory subpopulation at the
center of the locus of attention (red curve). In this example, recording from the
E-I pair indicated with the arrow would correspond to the cyan line in Figure 3.

2.1. Basic mechanism of the model129

The balanced amplification model (Murphy and Miller, 2009) demon-130

strates that in a network with strong recurrent connectivity, small changes131

in the difference between E and I activity can drive large changes in the sum132

of the activity. Previously, we have used this mechanism to produce models133

of contextual modulation that capture the experimental observation that,134

during surround suppression, both E and I firing rates are suppressed (Ozeki135

et al., 2009). Within a locus of attention, however, the opposite effect is136

observed: both E and I firing rates are enhanced (Mitchell et al., 2007).137

In a network wherein neurons are described by a supralinear nonlinearity,138

a bias in the input towards E or I shifts the responses of both cells up139

or down (respectively), and the resulting change can be almost exclusively140

multiplicative (Figure 1). Thus we hypothesize that this simple, intrinsic141
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Figure 3:

Attention enhances the suppressive effect of non-preferred stimuli A
stimulus of preferred orientation was shown to a cell in the ring model. An or-
thogonally oriented stimulus was presented along with the preferred stimulus, and
the strength of the non-preferred “probe” was varied (blue line). The test was then
repeated with attention (indicated by dashed circle around stimulus) directed to-
wards either the preferred stimulus (cyan) or the probe stimulus (green). When
attention was directed towards the preferred stimulus, suppression was decreased.
When attention was directed to the probe stimulus, suppression was enhanced.

form of amplification may be sufficient to account for the observed effects142

of attention on visual cortical circuits. We now incorporate this simple E-I143

pair into a broader recurrent circuit and consider several recent experimental144

results on attention in visual cortex.145

2.2. Attention influences stimulus interactions146

2.2.1. Impact of feature attention147

In several regions of visual cortex, attention to one of multiple stimuli148

presented within the receptive field of a neuron can shift the response of that149
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neuron towards the response evoked by the attended stimulus alone. This150

was shown by Reynolds and Desimone (2003), who probed the responses of151

V4 neurons with preferred and non-preferred stimuli, presented either alone152

or together in the receptive field of a single neuron. They found that in the153

simultaneous presentation condition, attending to a non-preferred stimulus154

caused a relative suppression compared to an attend-away condition, whereas155

attending to the preferred stimulus boosted the response. To simulate this156

experiment, we recorded the response of a cell to a strong stimulus of pre-157

ferred orientation in the ring model (for details of attention experiments see158

Methods 4.2). We then added a non-preferred stimulus at the orthogonal159

orientation to the ring (schematized in Figure 2) and systematically varied160

the strength of this “probe” stimulus. As expected, the addition of the non-161

preferred probe was always suppressive, and with increasing probe strength162

suppression was increased (Figure 3, blue line). We then repeated the same163

test with attention directed either towards the preferred stimulus (cyan) or164

the probe stimulus (green). When attention was directed towards the pre-165

ferred stimulus, the amount of suppression was decreased. When attention166

was directed to the probe stimulus, suppression was enhanced.167

In a related experiment, Treue and Martinez-Trujillo (1999) recorded from168

a neuron in area MT while presenting two stimuli to the neuron’s receptive169

field. One of the stimuli was always moving in a non-preferred direction,170

while the direction of the other stimulus was systematically varied. Com-171

pared to an attend-away condition, responses of MT neurons were relatively172

suppressed at all stimulus directions when attention was directed towards173

the non-preferred stimulus, but relatively enhanced when attending towards174

the varying stimulus. We find the same result if we repeat this test in our175

ring model (Figure 4). Like Treue and Martinez-Trujillo (1999), the change176

we observe occurred without a substantial change in the width of tuning,177

indicating a mainly multiplicative scaling (Figure 4, inset).178

Note that in Figures 3 and 4 the same strength of attention is applied in179

all circumstances, however attention applied to a non-preferred stimulus has180

a weaker impact on firing rates. In our model, attention applied to a cell’s181

preferred stimulus means additional excitatory inputs to the cell in question.182

Attention to an orthogonal stimulus only impacts the recorded cell indirectly183

through recurrent connections, leading to a weaker effect. Experimentally,184

the magnitude of firing rate changes has been found to be weaker when185

attention is applied to a non-preferred stimulus compared to a preferred one186

(Treue and Maunsell, 1999).187

8

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 13, 2019. . https://doi.org/10.1101/2019.12.13.875534doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 25 50 75 100 125 150 175
Orientation

0

5

10

15

20

25

30

F
iri

ng
 R

at
e

Non pref

Varying

Away

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4:

Attention scales tuning multiplicatively. In the presence of a non-preferred
probe stimulus, we varied the orientation of a test stimulus between 0◦ and
180◦, while recording from the cell at 45◦ and attending either to the non-
preferred probe (red), the varying stimulus (cyan), or away (blue). Atten-
tion produced an almost exclusively multiplicative change in response. Nor-
malized responses are shown in the inset. There was virtually no change in
tuning width, as observed experimentally (Treue and Martinez Trujillo, 1999).
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2.2.2. Correlation between feature attention and normalization188

Several groups have considered the mechanistic relationship between at-189

tention and cortical normalization (Reynolds and Heeger, 2009; Lee and190

Maunsell, 2009; Ni et al., 2012). In a recent study exploring the variabil-191

ity in the strength of attentional modulation, Ni and collegues demonstrated192

that neurons vary in the degree to which their responses are normalized by193

the presence of an orthogonal, non-preferred stimulus in the receptive field.194

They further show that the degree of normalization a cell demonstrates (or195

in their terminology, the broadness of the “tuning” of normalization – quan-196

tified by a normalization modulation index) is highly correlated with the197

extent to which attention modulates the response to the cell. To simulate198

this experiment, we employed our 2-D model of visual cortex designed to199

reproduce both the mean effects as well as a realistic degree of variability in200

responses. In this simulation, excitatory cells were selected at random from201

the population. For each cell, a high contrast stimulus of preferred orienta-202

tion was presented. An orthogonal stimulus of the same size, position, and203

strength (the “null” stimulus) was then presented, and then the preferred204

and orthogonal stimuli were presented together. The firing rate response205

in each of the three stimulus conditions was recorded, and the Normaliza-206

tion Modulation Index was calculated as: NMI = [(r(Preferred) - r(Null)) -207

(r(Both - r(Null))]/[(r(Preferred) - r(Null)) + (r(Both - r(Null))]. An NMI208

of 0.33 corresponds to averaging of the two stimuli, whereas an NMI of 0209

is considered a “winner take all” response (the response to the pair is the210

same as the response to the preferred stimulus alone). In the terminology of211

Ni et al., cells with highly tuned normalization have an NMI closer to 0 (Ni212

et al., 2012). The paired presentations were then repeated (showing both213

preferred + null together) with attention directed towards either the pre-214

ferred or null stimulus. Attention was applied to the E cells in the position,215

size, and orientation of either the preferred or null stimulus. An Attentional216

Modulation Index was then calculated as: AMI = (r(Attend Preferred) -217

r(Attend Null))/(r(Attend Preferred) + r(Attend Null)). As was observed218

experimentally, there is a wide range of NMIs and AMIs, and the NMI and219

AMI of cells are highly correlated (Figure 5).220

2.2.3. Impact of spatial attention221

The previously discussed experiments studied the response of neurons222

to pairs of stimuli presented within the same receptive field. However, at-223

tention has also been shown to modulate the effect of stimuli presented in224
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Figure 5:

Normalization strength and attentional modulation are positively corre-
lated. Normalization Modulation Indices are plotted against the Attention Modu-
lation Indices for all 250 cells sampled from the 2-D model. Correlation coefficient:
0.84. See text for details.

the receptive field surround. Sundberg et al. (2009) found that in V4, the225

strength of surround suppression could be either increased or decreased by226

attending specifically to the surround or center stimulus. To simulate this227

experiment, we next employed our line model used to simulate spatial contex-228

tual interactions. Pairs of E and I cells are arranged along a one-dimensional229

lattice representing an axis of retinotopic space, with recurrent excitatory230

connections that decrease as a function of retinotopic/cortical distance. It is231

assumed that the cells share preferred features. A stimulus was presented to232

the cell in the center of the lattice, in the presence of a suppressive surround233

stimulus. Attention was then directed to either the center or surround stim-234

ulus. Attention to the center decreased the strength of surround suppression235

(pushing firing rates towards those when the stimulus is presented alone),236

while attention to the surround enhanced surround suppression (Figure 6).237

We simulated this experiment in the 2-D model as well. 100 neurons238

were randomly selected from the network. For each neuron, we measured239

the response to a strong stimulus of preferred orientation centered on the240

receptive field, and then added a strong stimulus of the same orientation241

to the surround. The response to the cell was measured in the absence242
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Figure 6:

Attention modulates the strength of surround suppression. A stimulus
was shown in the receptive field of the neuron at position 0. A stimulus of
equal strength and size was then placed in the surround, and the response was
recorded from neurons in the vicinity. Attention was then directed either to the
center or surround stimulus. In the main figure, the E cell activity across the
network is shown in response to the center stimulus alone, the surround stimu-
lus alone, the center and surround stimuli shown together, the center and sur-
round stimuli with attention directed towards the center, and the center and sur-
round stimuli with attention directed towards the surround. The inset demon-
strates the activity at the center E cell – the dashed line is the response to
the center stimulus alone, and the three dots show the response to the cen-
ter and surround presented together, either with no attention, with attention
directed towards the center, or with attention directed towards the surround.

of an attentional input (the “Attend Away” condition), as well as with an243

attentional input directed towards the center or surround stimulus. As was244

observed experimentally, attending to the surround boosted the amount of245

surround suppression, whereas attending to the center greatly weakened the246
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Figure 7:

Attention modulates the strength of surround suppression in the
large scale model. A stimulus of preferred orientation was shown to a ran-
domly selected cell. A stimulus with the same orientation and strength was
placed in the surround, and the response was recorded. Attention was then
directed either to the center or surround stimulus. The mean responses rela-
tive to the center alone is shown for a sample of 100 neurons from the 2-D
model. Error bars indicate the standard error of the mean. All three response
groups are significantly different from each other at p < .005 (student’s t-test).

surround suppression (Figure 7, compare the results of the 2-D model to the247

inset of Figure 6).248

2.3. Experimental paradigm alters the impact of attention249

2.3.1. Effect on contrast and response gain250

All of the experiments and simulations discussed thus far demonstrate251

that attention produces a gain change in the firing rate of neurons within the252

locus of attention. The quality of this gain change, however, can be strongly253

influenced by the relative sizes of the stimulus and the attentional field.254

Reynolds and Heeger (2009) (their Figure 3) found in their normalization255

model of attention that when attention is directed to a relatively large area,256

the effect on the response to a small stimulus should be predominantly a257

change in “contrast-gain”, such that cells respond to stimuli as if they were258

effectively at higher contrast. This would be seen as a leftward shift in a259
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contrast-response curve for a stimulus, with relatively little change in the260

maximum firing rate. For a large stimulus and a small attentional field, they261

instead predict a change in “response-gain”, such that all responses are scaled262

multiplicatively.263

Here we again employ the one-dimensional spatial line network model264

to study the two different effects of attention described by Reynolds and265

Heeger (2009). Attention was still modeled as a small additional input only266

to excitatory cells over a defined spatial area, and we calculated “contrast267

response curves” with and without attention. (Note that what we call “con-268

trast” is actually external input strength, i.e. the parameter c in Eq. 3; in269

reality, external input strength, as measured by thalamic input firing rate,270

is a monotonic but nonlinear, saturating function of stimulus contrast, (e.g.271

Sclar, 1987; Sclar et al., 1990).) To quantify changes in the contrast response272

properties, we fit each curve to a standard Naka-Rushton equation (Naka273

and Rushton, 1966):274

R(c) = Rmax

(
cn

cn50 + cn

)
(1)

where Rmax is the plateau firing rate, n describes the steepness of the contrast275

response curve, and c50 is the strength of the stimulus at which the response is276

50% of its maximum. In our fitting procedure, the value of n is discovered for277

the no-attention condition, and held at that value when fitting the attended278

condition.279

With a large attentional field and small stimulus, the effect of atten-280

tion was predominantly a leftward shift in the contrast-response function,281

as predicted by the model of Reynolds and Heeger (2009). We quantified282

this change in “contrast gain” as the difference in the c50 parameters of the283

contrast response curves produced with and without attention (Figure 8A).284

We compared this to the “response gain”, which we quantify as the ratio285

of Rmax parameters with and without attention. With a large stimulus and286

small attentional field, the effect of attention was reversed: there was little287

change in the contrast gain, and a much larger change in the response gain288

(Figure 8B). The dashed lines in either figure show the percent change in289

firing rate induced by attention. With a change in contrast gain there is290

little change in firing at the largest contrast, but this is not true for a change291

in response gain.292

While Reynolds and Heeger (2009) showed this property in their descrip-293

tive model of attention, conditions that produce changes in contrast or re-294

14

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 13, 2019. . https://doi.org/10.1101/2019.12.13.875534doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5 1.0 1.5 2.0
Log Input Strength

5

10

15

20

F
iri

ng
 R

at
e

No Attention

Attention

0

20

40

60

80

100

%
 In

cr
ea

se
 w

ith
 A

tte
nt

io
n

0.5 1.0 1.5 2.0
0

2

4

F
iri

ng
R

at
e

0

20

40

60

80

100

%
 In

cr
ea

se
 w

ith
 A

tte
nt

io
n

Log Input Strength

Figure 8:

The qualitative effect of attention depends on the relative sizes of
the attentional and stimulus fields. Here we used the spatial line model
to study the two different effects of attention, as described by Reynolds and
Heeger (2009), Figure 3. Contrast response curves were calculated by vary-
ing the input strength logarithmically (base 10) in the presence (red curves)
and absence (cyan curves) of attention. Left: with a large attentional field
(red dashed circle) and small stimulus, the impact of attention was largely
on contrast gain, defined as the difference between c50 values with and with-
out attention (Rmax ratio: 0.98, c50 difference: -6.43) . Right: in the “small
attentional field, large stimulus” condition, attention mainly affected response
gain, defined as the ratio of Rmax values (Rmax ratio: 1.39, c50 difference: -
0.88). Dotted lines show the percent change in firing caused by attention.

sponse gain have also been shown experimentally. Martinez-Trujillo and295

Treue (2002) recorded from neurons in area MT while presenting two stimuli296

within the receptive field. One stimulus was moving in a preferred direction,297

and the other in a non-preferred direction. They then varied the strength of298

the preferred stimulus while holding the contrast of the non-preferred stim-299

ulus fixed, and directed the monkey to attend either to the non-preferred300

stimulus or outside of the receptive field. They found that attending to301

the non-preferred stimulus caused predominantly a change in contrast-gain.302
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Figure 9:

Experimental paradigm alters gain change type. A. In the ring model,
in the presence of a fixed-strength non-preferred stimulus, the contrast of a
preferred stimulus was varied logarithmically (base 10) while attention was di-
rected either away (cyan) or towards the non-preferred stimulus (red) as in Fig-
ure 4 of Reynolds and Heeger (2009). Attention to the non-preferred stimu-
lus produced mainly a reduction in contrast gain, measured as the difference
between c50 values (Rmax ratio: .97, c50 difference: 5.94) (Martinez-Trujillo
and Treue, 2002). B. Showing preferred and non-preferred stimuli of equal but
varying contrast while attending to one or the other produced a much larger
change in response gain, measured as the Rmax ratio (Rmax ratio: 1.38, c50 dif-
ference: -2.17). This was studied experimentally in Lee and Maunsell (2009).

However, Lee and Maunsell showed that if the contrast of both the preferred303

and non-preferred stimulus were varied simultaneously, attending to one or304

the other stimulus would produce a much larger change in response gain (Lee305

and Maunsell, 2009). Using the ring model again, we modeled both of these306

stimulus conditions, and find analogous results (Figure 9A, B).307

2.3.2. Effect on length tuning308

The impact of spatial attention on length tuning was explored in Roberts309

et al. (2007). In this study, the length of an oriented bar was varied as firing310

rates from V1 cells were recorded. Attention was directed to the stimulus or311

to a stimulus in the opposite hemifield. The authors found that, for receptive312

fields near the fovea, attention had the effect of decreasing preferred length313
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Figure 10:

Size of attention influences length tuning. Using the line model, we presented
a stimulus of increasing length (left two plots). If attention was small compared
to the stimulus (far left) attention shifted the preferred length (i.e., the length
that elicits the highest firing rate) rightward, making it larger. If the area to
which attention was applied was large compared to the stimulus (middle), the
opposite occurred. Thus, varying the ratio of the size of attention to the stimulus
size (“attention scale factor”) caused a shift in the ratio of the preferred lengths
(preferred length with attention divided by preferred length without attention;
right plot). Scale factor in the far left plot is marked on the right plot by the
letter A, middle by B. In Roberts et al. (2007) the ratio of preferred lengths for
parafoveal receptive fields was .88 and for peripheral receptive fields 1.19.

(that is, the length of the bar that elicits the highest firing rate). For receptive314

fields in the periphery, the reverse was true: attention increased the preferred315

length.316

We explored attention’s impact on length tuning using the spatial line317

model. For different lengths of the stimulus, firing rates were recorded from318

a neuron at the center. The effect of attention varied as a function of the size319

of the attentional field. In Figure 10 (right) the ratio of the size of attention to320

the size of the stimulus is on the x-axis. By keeping a fixed ratio of attention321

size to stimulus size, we assume that the size of the attentional field scales322

with the size of the stimulus, but this scaling factor may differ for different323

cells. For small values of this attention scale factor, the preferred length with324

attention was greater than the preferred length without it. For higher values,325

this ratio was reversed. Firing rate as a function of length for two different326

values of the attention scale factor are shown on the left. This pattern of327
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how attention impacts preferred lengths reflects the impact of attending to328

the suppressive surround. With attention larger than the stimulus, more of329

the suppressive surround is activated for any given stimulus length. This330

effectively increases the length of the stimulus, making the preferred length331

smaller than without attention.332

Our results combined with the findings of Roberts et al. (2007) suggest333

that attention targets parafoveal receptive fields differently than it targets334

peripheral ones. In particular, spatial attention inputs to parafoveal cells335

may be larger than the size of the stimuli these cells respond to. In the336

periphery, spatial attention inputs may represent an area smaller than the337

stimuli. This could be a result of the differently sized receptive fields in these338

two regions.339

2.3.3. Factors influencing the magnitude of attentional effects340

In Lee and Maunsell (2010), the authors controlled attention and task dif-341

ficulty across stimulus conditions while varying the number of stimuli in the342

receptive field of MT neurons. Through this, they showed that attentional343

modulation is weaker when only one stimulus is present in the receptive field,344

and that this result is well-captured by a divisive normalization model. We345

use the ring model to replicate these results. By presenting three different346

stimuli (a most-, moderately-, and least-preferred orientation) either alone347

or in pairs (Figure 11, left; compare to Lee and Maunsell (2010) Figure 4),348

we show that the effect of an attentional input was strongest when applied349

to one stimulus in a pair. In particular, effects of attention on firing rates350

were highest when moving attention from outside the receptive field to the351

preferred stimulus inside the receptive field when a non-preferred stimulus is352

also present (Figure 11, right). The next strongest effect was from moving353

attention from the non-preferred stimulus in the receptive field to the pre-354

ferred. Finally, attention effects were weakest when moving attention from355

outside the receptive field to a preferred stimulus presented alone inside the356

receptive field.357

A similar comparison was done using spatial attention rather than feature358

attention in Sundberg et al. (2009). Here, attention was moved between the359

receptive field center and the suppressive surround. A stimulus of preferred360

orientation was present in the center and was present or absent in the sur-361

round. The impact of attending the center was larger when the stimulus in362

the surround was present (Figure 2 of Sundberg et al. (2009)). We replicated363

these results using the line model. The firing rate of an excitatory cell was364
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Figure 11:

Effects of attention are greater with more than one stimulus in the
receptive field. Using the ring model, three different stimuli (preferred, in-
termediate, and null) were shown either individually or in pairs. Attention
was directed to either of the two stimuli (‘Attend 1’ or ‘Attend 2’) or out-
side of the receptive field (‘Away’; when only one stimulus was present, at-
tending to the opposite stimulus is the same as attending away). Left: Bar
plots represent steady state firing of the recorded neuron for all stimulus and
attention conditions. Right: bar plots indicate percent increase in firing rate
with attention, for three different comparisons. Arrows indicate which stim-
uli were in the receptive field for the two conditions being compared (bot-
tom arrows indicate baseline condition, top arrow(s) indicate attended condi-
tion) and dashed circles indicate attended stimulus. The comparable values for
these conditions from Lee and Maunsell (2010) are 9%, 59%, 28% respectively.

recorded with a stimulus centered on its preferred location. Attention was365

applied to this location, or to a location in the surround both in the presence366

and absence of a stimulus there. There results of this are shown in Figure 12367

(left).368

In Sundberg et al. (2009), the impact of attention on surround suppression369

was also shown over time. The extent to which firing rates are decreased by370

the presence of the surround was measured when attention was directed to371
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Figure 12:

Effects of attention are greater with a stimulus in the surround. Using the
line model, a preferred stimulus was presented in the receptive field center. Left:
bar plot indicates increase in firing in preferred-attended condition (top arrows)
vs. baseline condition (bottom arrows). Rectangles indicate receptive field. The
presence of a surround stimulus is indicated by an additional arrow outside the
receptive field and attention is indicated by a dashed circle. The increase in firing
was smaller without the surround present (comparable values from Sundberg et al.
(2009) are 18.8% versus 36.8%. The authors do not report the percent increase
compared to a baseline condition without attention to either center or surround).
Right: the strength of firing rate modulation from the addition of a surround
stimulus (the surround modulation index: [r(C + S) − r(C)]/[r(C + S) + r(C)])
is plotted vs. time, for different attention conditions: attending the surround,
attending the center, and attending a distant location (modeled as no attention).
The difference between these conditions emerged over time.

the receptive field center, surround, or to a distant location. The authors372

note (their Figure 5) that the difference in surround modulation between373

these different attention conditions emerged over time. The model shows the374

same result (Figure 12, right). The differences emerge faster in our model375

than in the data (in the data, the difference is not seen in the time bin 15-376

55ms after response onset, but emerges sometime in the next 40ms time bin).377

However, our model does not take into account any delays in the onset of the378

attentional signal relative to the onset of stimulus-driven feedforward input379

to the recorded neurons.380
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Figure 13:

Attention causes a reduction in trial-to-trial variability. In the ring model
with noisy background input, 35 E (red) and 35 I (blue) cells were recorded as
a stimulus that was oblique (but not orthogonal) to their preferred stimuli was
presented. Stimulus onset produced a substantial reduction in trial-to-trial vari-
ability, measured as the Fano factor, compared to spontaneous activity (left; er-
rorbars are STD). Next, the effect of an attentional modulation was observed.
On the right, fractional change in Fano factor is plotted as a function of frac-
tional change in firing rate for each of the 35 E and 35 I cells in the presence
and absence of attention. In all cells, stimulus onset produced a decrease in
the trial-to-trial variability, regardless of whether the stimulus produced an in-
crease, decrease, or no change in the mean firing rate (Churchland et al., 2010).
In the presence of attention, this decrease in variability was enhanced, as has
been observed experimentally (Mitchell et al., 2007). The percent change in both
firing rate and Fano factor was calculated for each cell by taking a time aver-
age of both the mean rate and Fano factor before and after the onset of the
stimulus (in trials with attention, it came on at the same time as the stimulus).

2.4. Attention reduces trial-to-trial variability and noise correlations381

In addition to its effects on mean firing rates, attention has also been382

shown to modulate the variability in rates across trials. Mitchell et al. (2007)383

showed that attending to a stimulus decreased the across-trial variability of384
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neural responses when compared to trials in which attention was directed385

elsewhere. Furthermore, this experiment showed that this decrease in vari-386

ability occurs in both broad spiking (putative excitatory) cells and narrow387

spiking (putative inhibitory) cells.388

To study this effect in our model, we introduced a source of trial-to-trial389

variability into our ring network by given each neuron a noisy input in addi-390

tion to its stimulus inputs, similarly to Hennequin et al. (2018) (see Methods391

4.1.1 for details). We then ran 1,000 trials of a simple stimulus presentation.392

On half of these trials, attention was directed towards the stimulus being393

presented. On the other half there was no attentional modulation added to394

the network. The stimulus onset produced a reduction in the trial-to-trial395

variability, measured as the Fano factor, with this reduction occurring both396

for neurons that are activated by the stimulus and neurons that are not acti-397

vated or suppressed (Figure 13), as in experiments (Churchland et al., 2010)398

and as previously shown for the SSN (Hennequin et al., 2018). Addition399

of attention caused an additional drop in Fano factor, again regardless of400

whether the stimulus plus attention caused a net increase, zero change, or401

net decrease in firing rate (Figure 13, right).402

In addition to causing a drop in trial-to-trial variability, Cohen and col-403

leagues demonstrated that an even stronger effect of attention on network404

variability is a pronounced decrease in the magnitude of noise correlations405

between neurons in V4 (Cohen and Maunsell, 2009). This aligns with the406

finding that a stimulus suppresses the shared or correlated component of407

neural variability, not the component private to each neuron (Churchland408

et al., 2010). Cohen et al., 2009, recorded from thousands of pairs of neu-409

rons and multiunit clusters in V4 during a visual change detection task, and410

found that the presence of attention greatly enhanced performance. They411

further showed that the significant improvement in performance was not due412

to changes in single neurons, but rather to a pronounced drop in the corre-413

e correlations). To simulate this experiment, we recorded from pairs414

of excitatory cells in the ring model in the presence of noisy input while415

presenting the network with two high-contrast oblique stimuli. On half of416

the trials, attention was directed to one of the stimuli. We calculated the417

correlation between all pairs of recorded neurons in the presence and absence418

of attention. Pairs of neurons were grouped based on their distance from each419

other on the ring (i.e. difference in preferred orientation). The changes in420

firing for two example neurons with attention as well as the noise correlations421

between them over the course of an example trial are shown in Figure 14422
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Figure 14:

Attention decreases noise correlations between neurons. In the ring model
with noisy background input, stimulus onset produced a reduction in noise cor-
relations between pairs of neurons in the network. The correlation in firing rates
between each pair of cells was calculated as a function of time for each of the two
conditions. On the left, an example pair is shown. The mean firing rates of two
excitatory cells in each of the two conditions is plotted on top; stimulus (at 90
degrees) and attention turn on at 250ms. The correlations between the two cells
are plotted on the bottom. Correlation time-series are shown as a running average
with a 50-ms sliding window. On the right, the mean correlation between pairs
of recorded cells (representing 30-65 degrees) during the stimulus response epoch
is plotted against difference in preferred orientation. Error bars indicate SEM.

(left). The average value of noise correlations between neurons at various423

distances is shown on the right. As was observed experimentally, attention424

caused a reduction in the noise correlations between neurons beyond the425

reduction caused by the stimulus alone.426

The suppression of correlated variability can be understood as resulting427

from the normalization performed by the model (although it also explains428

further aspects of this suppression not explained simply by normalization,429

Hennequin et al. (2018)). In particular, as has been observed experimen-430

tally (Busse et al., 2009), this normalization averages the responses to ap-431

proximately equal strength inputs but performs a more unequal averaging432
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of unequal strength stimuli, becoming “winner-take-all” when inputs differ433

sufficiently in strength (Rubin et al., 2015). The reduction in correlated vari-434

ability with increasing stimulus strength can be understood to occur because435

the ongoing noisy inputs become steadily weaker relative to the stimulus.436

The normalization thus increasingly favors the response to the stimulus and437

suppresses the noise. Because this suppression is mediated by the network,438

it acts on the correlated component of the noise and not on the private noise,439

which is largely averaged out in its impact at the network level.440

An alternative picture of the mechanism of suppression is that it oc-441

curs through the enhancement of the strength of feedback inhibition with442

increasing network activation (Hennequin et al., 2018). In particular, in443

linearizations about the deterministic fixed point, the real parts of the lead-444

ing eigenvalues become more negative with increasing mean stimulus drive,445

representing increased feedback inhibition of the corresponding eigenvector446

activity patterns onto themselves, dampening their fluctuations. Given struc-447

tured connectivity, these activity patterns have similar structure and so their448

fluctuations represent correlated variability.449

Investigations regarding noise correlations have indicated that a decrease450

in correlation with attention should only occur for pairs of neurons that repre-451

sent the same stimulus whereas pairs of neurons representing different spatial452

locations or features may actually see an increase in correlations (Averbeck453

et al., 2006). This bi-directional effect of attention was found in area V4 (Ruff454

and Cohen, 2014). In our ring model, this result occasionally occurred when455

using weaker stimuli and/or a smaller number of trials to calculate the cor-456

relations in the ring model. Examples of this can be found in Supplementary457

Figure A.17.458

The task in Ruff and Cohen (2014), however, used spatial rather than459

feature attention. Specifically, subjects were required to perform a contrast460

discrimination task in the cued hemifield. To replicate this study directly461

we used the line model with two nearby stimuli of unequal contrast (Figure462

15, left). The TTS metric from Ruff and Cohen (2014) measures the extent463

to which a pair of cells have the same (positive TTS) or opposite (negative464

TTS) preferred stimulus of the two presented. Replicating figure 5 from that465

paper, we see that attention decreased correlations for cells with the same466

preferred stimulus but increased it for those with opposite preferred stimuli467

(Figure 15, right).468
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Figure 15:

Attention increases or decreases noise correlations between neurons
based on preferred stimulus. In Ruff and Cohen (2014), animals performed a
contrast discrimination task on two nearby stimuli, represented here as two inputs
to the line model of different strengths. During different blocks, attention was
directed to one of two such sets of stimuli, one in each hemifield. Here we model
attention to the opposite hemifield as a ’no attention’ condition (top left) and at-
tention to the hemifield of the recorded cells as attention to each of the two stimuli
simultaneously (bottom left). The 25 model cells we analyzed responded to one or
the other stimulus alone. TTS values are the product of d-primes and represent
whether a pair of cells has the same (positive) or different stimulus preference (neg-
ative). By creating 20 populations of 25 cells each, we analyzed the relationship
between TTS and the effect of correlation on attention for 6000 cell pairs. Through
this we found both a significant (p << .05) decrease in correlation with attention
for cells that preferred the same stimulus and increase for cells that had opposite
preferences (right). Error bars indicate SEM. For more details, see Methods 4.2.

2.5. An alternative mechanism469

In all of the simulation results presented thus far, attentional modulation470

has been modeled as a small excitatory input biased towards the excitatory471

cells within the locus of attention. Here we consider instead a small in-472
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hibitory input to inhibitory cells within the locus of attention, disinhibiting473

rather than exciting the excitatory cells. This is motivated by two observa-474

tions. First, it was observed that inputs from Anterior Cingulate Cortex to475

V1 target the VIP class of inhibitory cells (Zhang et al., 2014). The VIP cells476

in turn are known to inhibit other inhibitory neurons and, at least in V1,477

disinhibit excitatory cells (e.g. Fu et al., 2014). The ACC input conceivably478

could be involved in attentional modulation. Second, recent electrophysio-479

logic work has revealed the function of two classes of inhibitory cells in layer480

1 of cortex (Jiang et al., 2013). One of these classes, the single bouquet481

cells (SBCs) was shown to preferentially inhibit the interneurons of deeper482

layers, and so have a net disinhibitory effect on the local pyramidal cells. As483

layer 1 receives a significant portion of its input from higher cortical areas,484

it has been suggested that this circuit may play a role in attention and other485

top-down modulation of local circuit activity (Larkum, 2013).486

To test the feasibility of this mechanism in our model, we repeated our487

suite of simulations using this alternative, disinhibitory mechanism of at-488

tention. Rather than modeling attention as an additional excitatory input489

to E cells, we instead model it as an additional inhibitory input to I cells.490

The results of these simulations are presented in the Supplementary Figures.491

Overall, this alternative mechanism can qualitatively reproduce most of the492

findings we report above (Supplementary Figure A.18). Frequently, however,493

the same value of the attention strength parameter produces weaker effects494

on neural firing than when attention is directed towards the excitatory cells495

(for example, compare Figure 12 to Figure A.18G).496

In addition, there are instances where this form of attention does not497

qualitatively replicate our original findings (Supplementary Figure A.19).498

One major discrepancy between results comes from the use of the 2-D model.499

Comparing Supplementary Figure A.19B to Figure 5, modeling attention as500

inhibition to inhibitory cells creates the opposite relationship (i.e., a negative501

correlation) between attentional modulation and normalization. In the 2-D502

model, any additional inhibitory input to the inhibitory population has the503

effect of increasing firing rates for many of the cells, even those representing504

unattended stimuli. The model therefore cannot replicate findings that rely505

on attention to a non-preferred stimulus causing a decrease in firing rate.506

This appears to be a consequence of the strong inhibition needed to keep this507

more complex model in a stable regime. Attention directed toward inhibitory508

cells also has a surprising effect on the correlations explored in Figure 15. As509

can be seen in Supplementary Figure A.19E, this fom of attention increases510
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correlations for pairs of cells both with the same and opposite preferred511

stimuli.512

2.6. Attention enhances detection performance in a multi-layer model513

An important consequence of deploying attention is enhanced perfor-514

mance on challenging tasks. We have thus far shown how the SSN can515

replicate many neural effects of attention, but to truly understand attention,516

it is necessary to link these neural changes to performance changes. And for517

that it is necessary to build a functioning model of the visual system that518

can perform visual tasks.519

Because the SSN replicates neural findings that have been found in various520

areas in the visual system, it can be thought of as a canonical circuit, which521

is repeated throughout the visual hierarchy. To build a biologically-realistic522

multi-area model of the visual system that can perform a task, we model523

each area as a set of SSNs, the outputs of which are fed into another set524

of SSNs (i.e., a downstream visual area). The precise connections between525

these areas are learned as part of a training procedure. In particular, the526

SSN circuitry is placed inside a convolutional neural network architecture,527

creating a model we have dubbed the SSN-CNN (Methods 4.3).528

The structure of the model can be seen in Figure 16A. The network is529

a 2-layer convolutional neural network wherein the convolutional filters are530

constrained to be non-negative (to mimic the excitatory feedforward con-531

nections that exist between different visual areas). In addition, after each532

pooling layer is an SSN layer. The SSN layer implements normalization533

(historically normalization layers have been included in CNNs, typically im-534

plemented via a divisive normalization equation Krizhevsky et al. (2012)).535

Specifically, at each 2-D spatial location, a ring SSN implements feature nor-536

malization across the different feature maps. The recurrent connections of537

the SSN layers are held constant while all other weights of the network are538

trained end-to-end via backpropagation through time on the MNIST 10-way539

digit classification task.540

After the network is trained on the standard task, the final layer is re-541

placed by a series of binary classifiers, one for each digit. These binary classi-542

fiers are trained on digit images to determine if a given digit is present in the543

image or not (for example, one of the binary classifiers would be trained to544

classify images as being of the digit ’4’ or not). To test the impact of atten-545

tion on the abilities of these binary classifiers, we presented the network with546

a more challenging task: determining if a given digit is present in an image547
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Figure 16:

Attention in the SSN-CNN enhances visual detection performance. A.)
The architecture of the SSN-CNN model. In the SSN layers, a full ring model
exists at each spatial location (though only one is shown). B.) An example of
the images used in the attention task. This image contains a ’5’ and ’4’ overlaid,
therefore both the binary classifier trained to detect 4s and the one trained to
detect 5s should respond positively. C.) Binary detection performance for each
digit with (right) and without (left) attention. D.) Example firing rate of two
neurons recorded from the second SSN layer with receptive fields at the center of
the image when shown the image in (B). The top neuron had a small decrease in
firing when attention was deployed to the digit 4 and the bottom had an increase.
E.) Impact of attention to the digit 4 on firing rates of excitatory cells (rate with
attention divided by rate without) as a function of tuning to the digit. A feature
map’s tuning value for a given digit is defined as its z-scored mean response to that
digit (see Methods, section 4.3). Attention is modeled as excitatory input applied
to feature maps whose tuning value is above the median value across maps for that
digit. The strength of a map’s attentional input is proportional to the difference
between that map’s tuning value and the median value. Only neurons marked in
red were above the median and given direct attentional input.
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that contains two overlaid digits (Figure 16B). The network performs above548

chance on this challenging task, and performance increased when attention549

was applied (Figure 16C, attention applied at layer 2).550

Attention is applied in this model as previously described: an additional551

positive input is given to excitatory cells that prefer the attended digit. To552

determine which cells in the SSN layers “prefer” the attended digit we created553

tuning curves based on the response of excitatory cells in the SSN when pre-554

sented with images of different digits (See Methods 4.3). Applying attention555

in this way still elicits attentional changes in the cells that are not directly556

targeted—through the recurrent connections—as can be seen in Figure 16E.557

This includes decreasing the firing rates of neurons that do not prefer the558

attended digit. While this feature attention is applied the same way across559

all ring networks at a layer, the pattern of feedforward input will influence560

the ultimate impact of attention. This can be seen by comparing the ratio of561

firing with and without attention in ring networks at different nearby spatial562

locations, which receive slightly different feedforward input (Supplementary563

Figure A.20).564

Previous work (Lindsay and Miller (2018); Lindsay (2015)) has shown565

how attentional changes in different layers of a deep convolutional neural566

network can lead to enhanced performance on challenging visual tasks. That567

work demonstrated that the attentional modulation style that works best is568

multiplicative and bi-directional changes (i.e., the effect of attention should569

be to scale the activity of neurons that prefer the attended stimulus up570

and those that don’t prefer it down). What we have shown here is how571

an additive input solely to the excitatory neurons that prefer the attended572

stimulus can turn into multiplicative and bi-directional changes via the circuit573

mechanisms of the SSN and lead to an increase in performance. This allows574

for a straightforward mechanism by which top-down attentional signals can575

lead to enhanced performance simply by providing additional synaptic inputs576

to the right set of excitatory cells.577

3. Discussion578

The stabilized supralinear network (SSN) is a model of recurrent pro-579

cessing in visual cortex that is informed by anatomy and replicates several580

features of neural activity (Rubin et al., 2015). With a simple addition to581

this nonlinear circuit model, we are able to reproduce a number of exper-582

imental results on attention in visual cortex (Treue and Martinez Trujillo,583
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1999; Cohen and Maunsell, 2009; Mitchell et al., 2007; Reynolds and Desi-584

mone, 2003; Sundberg et al., 2009; Lee and Maunsell, 2009; Ni et al., 2012;585

Martinez-Trujillo and Treue, 2002). Through balanced amplification (Mur-586

phy and Miller, 2009), a small additional excitatory input to excitatory cells587

causes a nonlinear scaling of firing rates in a manner consistent with a number588

of experimental observations. Recurrent connections implement interactions589

between features and spatial locations. These simple models are able to ac-590

count for changes in stimulus interactions, differences in gain changes and the591

magnitude of attention’s effects, as well as changes in trial-to-trial variability.592

We are not aware of any previous model that has attempted to replicate so593

many effects of attention simultaneously. The ability to replicate all these594

effects via a small additional input to a subset of neurons provides a simple,595

plausible mechanism through which higher cortical feedback can implement596

attention.597

Previous work has identified areas in the frontal cortex that may be con-598

sidered the source of top-down selective visual attention (Bichot et al., 2015;599

Paneri and Gregoriou, 2017). Exactly how connections from these areas600

target visual areas to create the changes seen with attention is unknown.601

Studying these feedback connection can be challenging, as it requires de-602

tailed anatomical investigations across multiple brain areas. For this reason,603

narrowing the hypothesis space by identifying which mechanisms of feed-604

back control are theoretically capable of implementing the known effects of605

attention is important. Here, we show that positive additive input to the606

excitatory neurons that prefer the attended stimulus can recreate the mul-607

tiplicative changes observed in both E and I cells and both in cells that608

prefer and do not prefer the attended stimulus. Adding negative input to609

the inhibitory cells that prefer the attended stimulus can also replicate most610

of these effects, except that in our 2D model it tended to raise firing rates611

of neurons that did not prefer the attended stimulus. We do not know if612

that is a fundamental problem with a disinhibitory model of attention or if613

it could be fixed by altering model connectivity. Overall, these results show614

that feedback connections do not need to be directly responsible for all of615

the neural effects of attention. Instead, they only need to target a subset of616

neurons in a simple specific way and the local recurrent circuitry can take617

care of the rest.618

There are effects of attention that this model does not readily replicate.619

For example, spatial attention has been observed to shift and shrink receptive620

fields. A previous two-layer model with multiplicative attentional inputs621
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and inhibitory recurrent connections was able to replicate these phenomena622

(Miconi and VanRullen, 2016). Creating a unified model that can capture623

all of attention’s relevant effects is a goal for future work.624

In addition to replicating known findings, the set of models presented here625

can serve as testbeds for future work on attention. In particular, experimental626

designs can be explored and precise predictions made before carrying out627

further experiments.628

Circuit models in neuroscience are frequently built to replicate and under-629

stand the relationship between anatomy and neural activity. Traditionally,630

these models do not perform a perceptual or cognitive task. Yet, an ulti-631

mate understanding of the circuitry of visual perception will need to repli-632

cate behavioral as well as neural findings. We work towards this goal here633

by incorporating the SSN model into a convolutional neural network that634

can perform digit recognition (the SSN-CNN). Through this, we connected635

the neural changes our model replicates to enhanced detection performance.636

This model also sets a precedent for how traditional approaches from com-637

putational neuroscience can be incorporated with the increasingly popular638

approach of using deep neural networks to study the brain (Yamins and639

DiCarlo, 2016; Kell and McDermott, 2019).640

Further connections between neural changes and performance remain to641

be explored, and the SSN-CNN could be useful in this pursuit. For example,642

we do not incorporate noise into the SSN-CNN in this work, however using643

the noisy version of the ring model (Figures 13 and 14) would allow for an644

exploration of how noise and correlation changes impact performance. We645

also do not attempt to model or replicate effects of attention on reaction646

time, however that is possible in this dynamic model. Using the full 2-D647

model (instead of ring models at each spatial location) would also allow for648

an exploration of the effects of spatial attention and the interaction between649

spatial and feature attention.650

4. Methods651

Code will be publicly available upon publication.652

4.1. Basic Circuit Models653

In this study we employ several different configurations of a basic SSN654

circuit model, the central unit in all being an interconnected pair of excitatory655

(E) and inhibitory (I) cells. The two core models are the one-dimensional656
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ring model and the one-dimensional line model. In addition, for Figure 1 we657

use a simplified 2-cell circuit model, and for Figures 5 and 7 we use a large658

two-dimensional model.659

In all models, each neuron, i, is represented as a firing rate unit whose660

activity, ri, evolves according to:661

τi
d

dt
ri = −ri + k

(
[Ii]+

)n
(2)

with n > 1 (indicating a supralinear activation function). The expression662

[v]+ = max(v, 0), that is, neuronal activity cannot go below zero. The in-663

puts, Ii, to a given neuron i are comprised of recurrent inputs, feedforward664

stimulus inputs, and attentional inputs. These inputs and parameter values665

are specified for each model below. In all models the time constant τi has the666

value τE = 20 ms for all E cells and τI = 10 ms for all I cells. Simulations667

are run using the forward Euler method with time step 1ms.668

All of these models except the E-I pair model were described previously669

in (Rubin et al., 2015), however we will recap them briefly here. We used all670

the same model parameters from that study, and did not tune them in any671

way to get the current results. The models are only modified by the addition672

of attentional inputs, and by the addition of noise inputs for Figures 13 and673

14.674

4.1.1. Ring Model675

The ring model is intended to represent neurons with a shared retinotopic676

receptive field but different preferred features. In this model, an E-I pair677

exists at each location on the ring, with the preferred feature (e.g. orientation678

or direction) varying smoothly around the ring. The relative input to a cell679

with preferred orientation θ from a stimulus of orientation φ is given by680

h(θ, φ) = e
− dcirc(θ−φ)

2

2σ2
FF where dcirc(θ − φ) is the shortest distance around the681

circle between θ and φ. The absolute stimulus input to a cell comes from682

multiplying h(θ, φ) by the scalar c, which represents the overall strength or683

contrast of the stimulus. In addition, attention directed towards orientation684

φ′ provides extra input to E cells with the same overall shape as a stimulus685

input, scaled by the attention strength factor, a. (In studies that modeled686

attention as negative input to I cells rather than positive input to E cells,687

this input is instead given to inhibitory cells, with a < 0.) In total, input to688
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the E or I cell at location θ on the ring is given by:689

IE(θ) = ch(θ, φ) + ah(θ, φ′) +
∑
θ′

WEE(θ, θ′)rE(θ′)−WEI(θ, θ
′)rI(θ

′)

II(θ) = ch(θ, φ) +
∑
θ′

WIE(θ, θ′)rE(θ′)−WII(θ, θ
′)rI(θ

′) (3)

respectively.690

Recurrent connections fall off according to Wab(θ − θ′) = Jabe
− dcirc(θ−θ

′)
2σ2
ori ,691

where dcirc(θ − θ′) is the shortest distance around the circle between θ and692

θ′. If multiple stimuli are present the inputs are added linearly.693

For simulations of this model, the following parameters are used: the694

number of E/I pairs is N = 180; the spacing in degrees between adjacent695

pairs on the ring is ∆θ = 1◦; JEE = 0.044, JIE = 0.042, JEI = 0.023,696

JII = 0.018, σori = 32◦, σFF = 30◦, k = 0.04, n = 2.0.697

The ring and its inputs are schematized in Figure 2.698

In certain simulations, noise is added to the inputs to these cells. Specifi-699

cally, 10 +ν(θ, t) was added to input to each unit at each timestep. External700

noise ν was given by convolution of unit-integral Gaussian temporal filter701

(stdev 10 ms) and spatial filter (stdev 8◦) with Gaussian spatiotemporally702

white noise (mean 0, stdev 40), yielding
√
〈ν2〉 ≈ 1.703

4.1.2. Line Model704

In the line model, each E-I pair represents a different retinotopic location705

but all have the same preferred features. Rather than being arranged in706

a ring, these pairs are simply placed on a line. The line model follows the707

same basic equations as the ring model, however the stimulus input is defined708

differently and the recurrent connections are differently arranged.709

A stimulus input is defined in terms of stimulus center x0 (taken as zero for710

center stimuli), length l and sharpness parameter σRF . The input to an E-I711

pair at location x is given by sl(x−x0) =

(
1

1+e
− (x−x0)+l/2

σRF

)(
1− 1

1+e
− (x−x0)−l/2

σRF

)
.712

As in the ring model, this input is scaled by the overall strength of the stim-713

ulus, c.714

In this model, there are N E/I units with grid spacing ∆x. Recurrent715

connections are defined with respect to distance between neurons. Excitatory716

projections are given by WaE(x, x′) = JaEe
− |x−x

′|2

2σ2
aE for a ∈ {E, I}. Inhibitory717

projections WaI are only to the same line position as the projecting neuron.718
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The parameters used in this model are: N = 101, ∆x = 1
3

o
, σRF =719

0.125∆x, JEE = 1.0, JIE = 1.25, WEI = 1.0, WII = 0.75, σEE = 2
3

o
,720

σIE = 4
3

o
, k = 0.01, n = 2.2.721

Again, if multiple stimuli are present their inputs are simply added to-722

gether and attention takes the same shape as a stimulus but is only directed723

toward E cells.724

In one simulation, noise was added to the line model. This noise was725

similar to that added to the ring model, but with a lower baseline (5 instead726

of 10) and different spatiotemporal parameters: external noise was given727

by convolution of unit-integral Gaussian temporal filter (stdev 15 ms) and728

spatial filter (stdev 3∆x) with Gaussian spatiotemporally white noise (mean729

0, stdev 10).730

4.1.3. 2-D Model731

The one-dimensional ring and line models vary either in preferred retino-732

topic location or visual feature. To create a model wherein cells have both733

varying retinotopic as well as feature preferences, we place E-I pairs on a734

two-dimensional spatial grid representing retinotopy, with an overlaid map735

of preferred orientation (which may be imagined to represent any circular736

preferred feature). This model also incorporates randomness in parameters,737

allowing study of diversity in responses as in Fig. 5.738

Let Wab(x, x
′) be the synaptic weight from the cell of type b (E or I), at739

position x′, with preferred orientation θ(x′), to the cell of type a, at position x,740

with preferred orientation θ(x). Nonzero connections are sparse and chosen741

randomly, with probability p (Wab(x, x
′) 6= 0) = κbe

− (x−x′)2

2σ2
ab e

− dcirc(θ(x)−θ(x
′))2

2σ2
ori .742

Where a nonzero connection exists, Wab(x, x
′) is chosen randomly from a743

Gaussian distribution with mean Jab and standard deviation 0.25Jab; weights744

of opposite sign to Jab are set to zero. For each cell, the set of recurrent745

synaptic weights of type b (E or I) it receives are then scaled so that all746

cells of a given type a (E or I) receive the same total inhibitory and the747

same total excitatory synaptic weight from the network, equal to Jab times748

the mean number of connections received under p (Wab(x, x
′) 6= 0). τE, τI ,749

nE, nI , and k are also drawn from Gaussian distributions, with standard750

deviation 0.05 times the mean (parameter values below indicate means).751

We use a grid of 75× 75 E-I pairs. The preferred orientation of an E-I pair752

is given by a map randomly generated using the method of Ref. (Kaschube753

et al., 2010), (their supplemental materials, Eq. 20) with n = 30 and kc =754

34

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 13, 2019. . https://doi.org/10.1101/2019.12.13.875534doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.13.875534
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 cycles
75 grid intervals

. The full map is taken to be 16◦ × 16◦; the grid interval755

∆x = 16
75

◦
. Boundaries in retinotopic space are periodic. Parameters: κE =756

0.1, κI = 0.5, JEE = 0.10, JIE = 0.38, JEI = 0.089, JII = 0.096, k = 0.012,757

nE = 2.0, nI = 2.2, σEE = 8∆x, σIE = 12∆x, σEI = σII = 4∆x, σori = 45◦,758

σFF = 32◦, σRF = ∆x. Degrees can be converted to distance across cortex759

by assuming a cortical magnification factor of 0.6 mm/deg, a typical figure760

for 5−10◦ eccentricity in the cat (Albus, 1975) giving σEE = σIE = 1.54mm,761

σEI = σII = 0.513mm, orientation map period 1.2mm.762

In this model, the relative input to the cell at 2D-position x with pre-763

ferred orientation θ(x) from a grating of size l centered at position x′ with764

orientation φ is h(x) = sl(|x − x′|)e
− dcirc(θ(x)−φ)

2

2σ2
FF ; for a full-field grating, the765

relative input is simply h(x) = e
− dcirc(θ(x)−φ)

2

2σ2
FF .766

We used different exponents, nI > nE, to increase stability despite vari-767

ability (as supported by experiments: Supplemental Figure S3 of Ref. Haider768

et al., 2010). Variability of τ ’s, n’s, k was limited because larger variabil-769

ity tended to yield instability; biologically, large variability can probably be770

tolerated without instability because of various forms of homeostatic com-771

pensation (Turrigiano, 2011), not modeled here.772

4.1.4. E-I Pair Model773

In Figure 1 we study an isolated E-I pair. The inputs in this simple774

two-neuron model are given by:775

IE = WEErE −WEI ∗ rI + cE

II = WIErE −WII ∗ rI + cI (4)

We use the following parameters: WEE = 1.00, WIE = 1.25, WEI = 0.75,776

WII = 0.75, k = 0.01, and n = 2.2. The inputs cE and cI are the sums of777

two components, an “orientation tuned” input that is equal between the two778

neurons and an untuned modulatory component added to either the E or I779

cell on a given trial. The tuned component is given by a Gaussian curve at780

orientation θ: 50e−
θ2

2σ2 , σ = 20◦. Modulatory input: to I cells, from 0 to 10781

in steps of 2.5; to E cells, from 0 to 5 in steps of 1.25.782

4.2. Attention Experiments783

Unless otherwise noted, simulations ran for 300ms and final firing rates for784

excitatory cells were reported. Attention was modeled as additional input785
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of a specified strength given only to the excitatory cell in a pair. Unless786

otherwise stated, the shape of the attentional inputs was the same as that of787

the attended stimulus (as schematized in Figure 4.1.1).788

4.2.1. Using the Ring Model789

In Figure 3, we used the ring model to show how attention to a non-790

preferred stimulus enhances suppression. The preferred stimulus was oriented791

at 45 degrees, with strength 40. The non-preferred was oriented at 135792

degrees and the strength varied from 0 to 80. Attention was applied to793

either stimulus at strength 3.794

In Figure 4, a non-preferred stimulus (oriented at 135 degrees with strength795

40) for the recorded cell (located at 45 degrees) was present as another stim-796

ulus (also strength 40) varied from orientation 0 to 180 degrees. Attention797

(strength 2) was applied to the non-preferred probe stimulus, to the varying798

stimulus, or not applied at all.799

In Figure 9 (left), activity was recorded from a cell at 45 degrees while800

a preferred stimulus (45 degrees) was presented in conjunction with a non-801

preferred (135 degrees) stimulus. While the non-preferred stimulus remained802

at strength 50, the strength of the preferred one varied logarithmically from803

1 to 100. Attention was directed to the non-preferred stimulus with strength804

5 (or was absent). In Figure 9(right), the contrast of both the preferred and805

non-preferred stimulus varied logarithmically from ≈1-20. Attention was806

applied either to the preferred or non-preferred stimulus with strength 1.807

In Figure 11, the cell located at 10 degrees was recorded. Each combina-808

tion of a preferred stimulus (20 degrees), intermediate stimulus (60 degrees),809

non-preferred stimulus (80 degrees), or no stimulus was tested. All stimuli810

were presented with strength 20 and an additional input of 10 was given to all811

cells to better match the baseline firing in (Sundberg et al., 2009). Attention812

(of strength 1.5) was applied to either of the stimuli present or not at all.813

In Figures 13 and 14, the ring model with added noise was used and814

simulations ran for 500ms. In Figure 13, for the first 250ms, no stimulus or815

attentional inputs are given (noise inputs are on throughout). At 250ms, a816

stimulus of strength 25 located at 90 degrees turns on, and on half of the817

trials so does an attentional input at the same location (strength 8). 1000818

trials are run in total. To calculate spontaneous firing rates and Fano factor819

(FF), firing rates are averaged over 100-250ms. For stimulus-evoked activity,820

they are averaged over 350-500ms (these are the two epochs compared when821

calculating the fraction change in firing and FF in the right plot of the figure).822
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Both E and I cells from 30-65 degrees were recorded.823

In Figure 14, for the first 250ms, no stimulus or attentional inputs are824

given (noise inputs are on throughout). At 250ms, two stimuli (both of825

strength 25, one located at 90 degrees and one at 45) turn on, and on half826

of the trials so does an attentional input at 90 degrees (strength 8). 1000827

trials are run in total. For the figure on the left, correlations are calculated in828

overlapping windows of 50ms. On the right, correlations are calculated from829

firing rates averaged over 350-500ms. E cells at all locations were recorded830

and correlation is plotted as a function of the distance on the ring between831

any two pairs.832

4.2.2. Using the Line Model833

In Figure 6, a stimulus of strength 25 and length 14
15

spatial degrees was834

either placed at the center of the receptive field of the cell at position 0,835

placed in its surround (at a distance of 21
15

degrees), or placed at both locations836

simultaneously. In the last configuration, attention (strength 2) was applied837

either to the stimulus at the center or the surround (or not at all).838

In Figure 8 (left), a stimulus of length 1 spatial degree is presented at839

the center of the recorded cell with contrast varying logarithmically from840

1-100. Attention of strength 1 and length 25 degrees is applied at the same841

location. For the figure on the right, the size of the attention and stimulus are842

reversed. To replicate differences in baseline firing shown in (Reynolds and843

Heeger, 2009), an additional input of 10 is given to all cells in the simulations844

producing the figure on the left, and an additional input of 2 is given for those845

on the right.846

In Figure 10, a stimulus of strength 15 was centered on the receptive field847

of the recorded cell with length varying from 0 to 2.5 degrees. The size of848

attention (applied with strength 4) was equal to the length of the stimulus849

times an attention scale factor which ranged from .3 to 1.2. The preferred850

length is defined as the length at which the maximal firing rate is elicited.851

In Figure 12, a stimulus of length 1 degree and strength 25 is centered on852

the recorded neuron’s receptive field. A stimulus of the same size and strength853

either is or isn’t presented in the surround (1.5 degrees away). Attention854

(strength 1, length 1) is applied to the center or surround location in each855

condition.856

In Figure 15, the line model with noise added is used. Two stimuli each857

of length 2.75 degrees were placed at a distance of 2 degrees on either side858

of the center of the line model. One had a c of 30 and the other 65. On859
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attention trials, attention was applied to both stimuli with a strength of860

5. For each ‘recording session’ simulated, excitatory cells 39-63 (roughly 4861

degrees on either side of the center cell at 51) were recorded as these cells862

responded to one or the other stimulus alone. Responses to each stimulus863

alone at c = 65 (50 trials each) were used to calculate a d-prime value for864

each cell that represents the extent to which that cell prefers one stimulus865

over the other. As in Ruff and Cohen (2014), the product of d-primes defined866

the TTS (task tuning similarity) value for a pair of cells. 100 attention trials867

and 100 no attention trials were run to calculate the correlation coefficients868

for each pair of cells in each condition based on the average firing over the869

final 25ms of the simulation (results are the same using 250 or 500 trials). 20870

different ‘recording sessions’ were created using a different random seed for871

the noise with each one. In addition to the mean changes plotted in Figure872

15, we also explored the relationship between TTS and correlation by fitting873

separate lines to the correlation versus TTS plot in the no attention case and874

the attention case. If attention differently affects negative and positive TTS875

pairs, the slope of the attention line should be less than the no attention line.876

Using the same bootstrap analysis as in Ruff and Cohen (2014) we found this877

to be true for all 20 of our populations (not shown).878

4.2.3. Using the 2-D Model879

In Figure 5, the two-dimensional model was used to explore the relation-880

ship between normalization and attention. We sampled 250 excitatory cells881

from the model. For each cell, a stimulus of preferred orientation, size 16882

degrees, and strength 40 is presented to the cell. An orthogonal stimulus of883

the same size, position, and strength (the “null” stimulus) is then presented,884

and then the preferred and orthogonal stimuli are presented together. At-885

tention (strength 8) is applied either to the preferred or null stimulus. These886

response values are used to calculate the normalization modulation index and887

attention modulation index for each cell.888

In Figure 7, we sample 100 cells from the model to test the interaction889

between surround suppression and attention. For each cell, a stimulus of890

strength of 50 of preferred orientation and size 10 degrees is shown. A stim-891

ulus with the same orientation and strength is placed in the surround at a892

distance of 10 degrees, and the response is recorded. The surround at 10 de-893

grees is, technically, a circumference of possible positions around the center.894

To decide where to place the surround stimulus, the surrounding neuron at a895

distance of 10 with a preferred orientation closest to that of the center neuron896
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is chosen. Attention (modulation strength = 5) is then directed either to the897

center or surround stimulus.898

4.3. The SSN-CNN Model and Experiments899

The SSN-CNN is an adaptation of a traditional convolutional neural net-900

work. The inputs to the network are grayscale images of handwritten digits901

(28-by-28 pixels). The first convolutional layer applies 180 separate 3×3 fil-902

ters, all of which are constrained during training to contain only non-negative903

values. The application of these filters results in 180 feature maps, each with904

a spatial dimension of 28×28. A 3×3 max-pooling layer with stride 2×2 re-905

duces the feature map size down to 14×14. The output of the pooling layer906

determines the input to the ring SSNs that exist at the next layer. Specifi-907

cally, at each of the locations on the 14x14 spatial map, there is a ring SSN908

with 180 E/I pairs. The activity of the units in the 180 feature maps provide909

the c values (that is, the strength) for inputs centered at that location on910

the ring. We arbitrarily number the feature maps from 1 to 180 and let φ911

be the number of a particular feature map. Then at spatial position x, y,912

the feedforward input to each cell in the E-I pair located at position θ in the913

ring model is given by
∑

φ cx,y(φ)h(θ, φ), with cx,y(φ) the activity of the unit914

in the φ feature map in the pooling layer at location x, y, and h(θ, φ) the915

function defined in section 4.1.1. While there is no concept of a ring in the916

topology of the feature maps prior to learning, we still map the 180 feature917

maps onto the 180 locations in the ring. Because feature maps assigned to918

more nearby locations in the ring will more strongly influence one another’s919

output on the ring, the feature maps should ultimately develop structure920

reflecting the ring topology (Lindsay and Miller, 2018).921

This architecture is then repeated to create a two-layer convolutional922

network. The output of the second SSN layer serves as input to a fully-923

connected layer with 1024 units, which then projects to the final 10-unit924

layer (one for each digit). For training, the network was unrolled for 46925

timesteps (with dt = 2ms for the SSN layers) and trained on the MNIST926

dataset using backpropagation through time to minimize a cross entropy loss927

function (batch size 128). Only the final timestep was used for calculating928

the loss function and classification accuracy. The recurrent weights for each929

ring SSN at both layers were set as described above for the standard ring930

network. These weights were not allowed to change during training.931

Repeating the procedure of (Lindsay and Miller, 2018), once the network932

was trained on the standard classification task, the final 10-unit layer was933
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replaced with a series of binary classifiers, one for each digit. The weights934

from the 1024-unit second-to-last layer to the 2-unit final layer were trained935

to perform binary classification on a balanced training set wherein half of936

the images were of the given digit and half without.937

We then generate more challenging images on which to test the benefits938

of attention. These images consist of two regular MNIST images added939

together. The test set for each binary classifier contains 768 images, half of940

which contain (as one of the two digits) the digit the classifier was trained941

to detect and the other half do not. Performance accuracy is given as the942

overall percent correct of the binary classifier on this test set.943

To know how to apply attention, we first present 45 standard MNIST944

images of each digit to the network and record the activity of neurons in945

the SSN. From this we calculate “tuning values” that indicate the extent to946

which each feature map prefers each digit. As in (Lindsay and Miller, 2018),947

tuning values are defined as a z-scored measure of the feature map’s mean948

response to each digit. Specifically, for feature map θ in the lth layer, we949

define rl(θ, n) as the activity in response to image n, averaged over all units950

in the feature map (i.e., over the spatial dimensions). Averaging these values951

over all images in the training sets (Nd = 45 images per digits, 10 digits.952

N=450) gives the mean activity of the feature map r̄l(θ):953

r̄l(θ) =
1

N

N∑
n=1

rl(θ, n) (5)

Tuning values are defined for each feature map and digit, d as:954

f ld(θ) =
1
Nd

∑
n∈d r

l(θ, n)− r̄l(θ)√
1
N

∑N
i=1(r

l(θ, n)− r̄l(θ))2
(6)

When attention is applied to a particular digit, excitatory neurons that955

prefer that digit are given additional input. Specifically, the cells in feature956

maps whose tuning value for the attended digit are above the median tuning957

value for that digit are given attentional inputs. The attentional input to958

each feature map is proportional to how much above the median its tuning959

value is:960

ald(θ) = β(f ld(θ)−median(f ld)) (7)

Note, in this model the attentional input to the excitatory cell is fully speci-961

fied by the above equation (that is, this value is not multiplied by the shape962

of the feedforward input).963
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We define digit preference on the feature map level (rather than for indi-964

vidual neurons) because feature attention is known to be a spatially-global965

phenomenon (that is, attention applied to a particular feature modulates966

neurons at all spatial locations, (Saenz et al., 2002)).967

The accuracy on the same test set of overlaid images is again calculated968

for each digit, now in the presence of attention directed to the digit being969

detected. An additional parameter representing the overall strength of at-970

tention (β) is varied (.02, .04, or .06) and for each digit the best performing971

strength is used.972

This attention was applied at each SSN layer individually as well as at973

both together. Here, the results of applying attention at the second SSN layer974

are reported as this elicited the best performance (a finding that is in line975

with those reported in (Lindsay and Miller, 2018; Lindsay, 2015), wherein976

attention at later layers better enhanced performance).977
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Figure A.17:

Attention can increase correlations. Example runs of the model used to make
Figure 14 that result in attention increasing correlations for distant pairs. The
strength of the stimulus and number of trials used for each condition is given at
the top for each (in Figure 14, strength was 25 and 500 trials were used). Errorbars
are SEM.
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Figure A.18:

Findings that qualitatively replicated with attention modeled as in-
hibitory input to inhibitory cells A. Replication of Figure 4. B. Replication of
Figure 6. C. Replication of Figure 8. D. Replication of Figure 9. E. Replication of
Figure 10. F. Replication of Figure 11. G. Replication of Figure 12. H. Replication
of Figure 14.
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Figure A.19:

Findings not qualitatively replicated with attention modeled as in-
hibitory input to inhibitory cells A. Figure 3. Here much of the results
are replicated however at low probe strengths attending the probe can increase
firing rates compared to no attention. B. Figure 5. Here the relationship between
normalization and attention is negative. C. Figure 7. Here the attend-surround
condition is too similar to the attend-center one. D. Figure 13. Here for a range
of firing rate changes, inhibitory cells have their Fano Factor increased with atten-
tion (though it should be noted this result happens occasionally when modeling
attention as excitation to excitatory cells, for example, when the number of tri-
als is lower). E. Figure 15. Here cell pairs with TTS¿1 also show an increase in
correlation with attention.
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Figure A.20:

Impact of feature attention at different spatial locations
in layer 2 of the SSN-CNN Ratio of attended to non-attended
firing rates for cells in a ring network as a function of tuning
value as in Figure 16E, but for different nearby spatial locations.
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