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Summary 

Inhibitory neurons, which play a critical role in decision-making models, are often simplified as 
a single pool of non-selective neurons lacking connection specificity. This assumption is 
supported by observations in primary visual cortex: inhibitory neurons are broadly tuned in vivo, 
and show non-specific connectivity in slice. Selectivity of excitatory and inhibitory neurons 
within decision circuits, and hence the validity of decision-making models, is unknown. We 
simultaneously measured excitatory and inhibitory neurons in posterior parietal cortex of mice 
judging multisensory stimuli. Surprisingly, excitatory and inhibitory neurons were equally 
selective for the animal’s choice, both at the single cell and population level. Further, both cell 
types exhibited similar changes in selectivity and temporal dynamics during learning, paralleling 
behavioral improvements. These observations, combined with modeling, argue against circuit 
architectures assuming non-selective inhibitory neurons. Instead, they argue for selective 
subnetworks of inhibitory and excitatory neurons that are shaped by experience to support expert 
decision-making. 
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Introduction  1 

In many decisions, noisy evidence is accumulated over time to support a categorical choice. At 2 
the neural level, there are a number of models that can implement evidence accumulation (Wang, 3 
2002; Machens et al., 2005; Bogacz et al., 2006; Lo and Wang, 2006; Wong and Wang, 2006; 4 
Beck et al., 2008; Lim and Goldman, 2013; Rustichini and Padoa-Schioppa, 2015; Mi et al., 5 
2017). Although these circuit models have successfully reproduced key characteristics of 6 
behavioral and neural data during perceptual decision-making, their empirical evaluation has 7 
been elusive, mainly due to the challenge of identifying inhibitory neurons reliably and in large 8 
numbers in behaving animals. Inhibition, which constitutes an essential component of these 9 
models, is usually provided by a single pool of inhibitory neurons receiving broad input from all 10 
excitatory neurons  (non-selective inhibition, Deneve et al., 1999; Wang, 2002; Mi et al., 2017).  11 

The assumption of non-selective inhibition in theoretical models was, perhaps, motivated by 12 
some empirical studies that examined the connectivity and tuning of inhibitory and excitatory 13 
neurons. Many studies in primary visual cortex report that inhibitory neurons have, on average, 14 
broader tuning curves than excitatory neurons for visual stimulus features such as orientation 15 
(Sohya et al., 2007; Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010; Bock et al., 16 
2011; Hofer et al., 2011; Atallah et al., 2012; Chen et al., 2013; Znamenskiy et al., 2018), spatial 17 
frequency (Niell and Stryker, 2008; Kerlin et al., 2010; Znamenskiy et al., 2018), and temporal 18 
frequency (Znamenskiy et al., 2018). The broad tuning in inhibitory neurons has been mostly 19 
attributed to their dense (Hofer et al., 2011; Packer and Yuste, 2011) and functionally unbiased 20 
inputs from the surrounding excitatory neurons (Kerlin et al., 2010; Bock et al., 2011; Hofer et 21 
al., 2011). This is in contrast to excitatory neurons, which show relatively sharp selectivity to 22 
stimulus features (Sohya et al., 2007; Niell and Stryker, 2008; Ch'ng and Reid, 2010; Kerlin et 23 
al., 2010; Hofer et al., 2011; Isaacson and Scanziani, 2011; Lee et al., 2016), reflecting their 24 
specific and non-random connectivity (Yoshimura et al., 2005; Ch'ng and Reid, 2010; Hofer et 25 
al., 2011; Ko et al., 2011; Cossell et al., 2015; Ringach et al., 2016). 26 

Based on the relatively weak tuning of inhibition, it seems reasonable to assume that inhibition in 27 
decision circuits is non-specific. However, the overall picture from experimental observations is 28 
more nuanced than the original studies would suggest. First, a number of V1 studies report 29 
tuning of inhibitory neurons that is on par with excitatory neurons (Ma et al., 2010; Runyan et 30 
al., 2010), likely supported by targeted connectivity with excitatory neurons (Yoshimura and 31 
Callaway, 2005). Strong tuning of inhibitory neurons has also been reported in primary auditory 32 
cortex (Moore and Wehr, 2013). Further, interneurons have been shown to selectively represent 33 
key task parameters in behaving animals in areas beyond sensory cortices. In frontal and parietal 34 
areas, interneurons can distinguish go vs. no-go responses (For example, Allen et al., 2017) as 35 
well as the trial outcome (Pinto and Dan, 2015). Similarly, in the hippocampus, interneurons 36 
have strong selectivity for the stimulus (Lowett-Brown 2017), and the animal’s location (Maurer 37 
et al., 2006; Ego-Stengel and Wilson, 2007). 38 

This selectivity of inhibitory neurons in a wealth of areas and conditions argue that the 39 
assumption of non-selective interneurons in decision-making models must be revisited. Here, we 40 
aimed to evaluate this assumption directly. We compared the selectivity of inhibitory and 41 
excitatory neurons in PPC of mice during rate discrimination decisions. Surprisingly, we found 42 
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that excitatory and inhibitory neurons in PPC are equally choice-selective. Moreover, during 43 
learning, the specificity of excitatory and inhibitory neurons increased in parallel. These results 44 
constrain decision-making models, and in particular argue that in decision areas, subnetworks of 45 
selective inhibitory neurons emerge during learning and are engaged during expert decisions. 46 

Results 47 

To test how excitatory and inhibitory neurons coordinate during decision-making, we measured 48 
neural activity in transgenic mice trained to report decisions about the repetition rate of a 49 
sequence of multisensory events by licking to a left or right waterspout (Figure 1A; Figure S1A). 50 
Trials consisted of simultaneous clicks and flashes, generated randomly (via a Poisson process) 51 
at rates that ranged from 5 to 27 Hz over a 1000 ms period (Brunton et al., 2013; Odoemene et 52 
al., 2017). Mice reported whether event rates were high or low compared to an abstract category 53 
boundary (16 Hz) that they learned from experience. Decisions depended strongly on stimulus 54 
rate: performance was at chance when the stimulus rate was at the category boundary, and was 55 
better at rates further from the category boundary (Figure 1B). A logistic regression model 56 
demonstrated that choice depends on the current stimulus strength, previous choice outcome 57 
(Hwang et al., 2017), and the time elapsed since the previous trial (Figure S1B).  58 

We imaged excitatory and inhibitory neural activity by injecting a viral vector containing the 59 
calcium indicator GCaMP6f to layer 2/3 of mouse Posterior Parietal Cortex (PPC; 2mm posterior 60 
to Bregma, 1.7mm lateral to midline (Harvey et al., 2012; Funamizu et al., 2016; Goard et al., 61 
2016; Morcos and Harvey, 2016; Hwang et al., 2017; Song et al., 2017)). Mice expressed the red 62 
fluorescent protein tdTomato transgenically in all GABAergic inhibitory neurons. We used a 63 
two-channel two-photon microscope to record the activity of all neurons, a subset of which were 64 
identified as inhibitory neurons (Figure 1C). This allowed us to measure the activity of excitatory 65 
and inhibitory populations in the same animal.  66 

To detect neurons and extract calcium signals from imaging data, we leveraged an algorithm that 67 
simultaneously identifies neurons, de-noises the fluorescence signal and de-mixes signals from 68 
spatially overlapping components (Pnevmatikakis et al., 2016; Giovannucci et al., 2018) (Figure 69 
1D middle). The algorithm also estimates spiking activity for each neuron, yielding, for each 70 
frame, a number that is related to the spiking activity during that frame (Figure 1D right). We 71 
refer to this number as “inferred spiking activity”, acknowledging that estimating spikes from 72 
calcium signals is challenging (Chen et al., 2013). In particular, while higher inferred spiking 73 
activity within a single neuron indicates higher firing rates, comparison of firing rates across 74 
neurons is not possible with this method. Analyses were performed on inferred spiking activity. 75 
To identify inhibitory neurons, we used a method that we developed to correct for bleed-through 76 
from the green to the red channel (Methods). Next, we identified a subset of GCaMP6f-77 
expressing neurons as inhibitory neurons based on the signal intensity on the red channel as well 78 
as the spatial correlation between red and green channels (Figure 1C right, cyan circles). 79 
Inhibitory neurons constituted 11% of the population, within the range of the previous reports 80 
(Beaulieu, 1993; Gabbott et al., 1997; Rudy et al., 2011; Sahara et al., 2012), but on the lower 81 
side due to our desire to be conservative in assigning neurons to the inhibitory pool (Methods).  82 

83 
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Confirming previous reports (Funamizu et al., 2016; Morcos and Harvey, 2016; Runyan et al., 85 
2017), we observed that the activity of individual neurons peaked at time points that spanned the 86 
trial (Figure 1E,F). Diverse temporal dynamics were evident in both cell types (Figure 1E,F) and 87 
did not appreciably differ between the two (Figure S2). The magnitude of inferred spiking 88 
activity was significantly different for inhibitory compared to excitatory neurons throughout the 89 
trial (Figure 1G; t-test, p<0.001). In the moments before the choice (97.1ms, average of 3 90 
frames), this difference was clear (Figure 1H) and significant for all mice (Figure 1I). The 91 
probable differences in GCaMP expression levels and calcium buffering between excitatory and 92 
inhibitory neurons, as well as how spiking activity is inferred (Methods), precludes a direct 93 
estimate of the underlying firing rates (Kwan and Dan, 2012). However, the significant 94 
difference in the inferred spiking activity between excitatory and inhibitory neurons provides 95 
further evidence that we successfully identified two separate neural populations.  96 

Figure 1. Simultaneous imaging of inhibitory and excitatory populations during decision-making to test 
decision-making models. 
A. Behavioral apparatus in which a head-fixed mouse is atop a cylindrical wheel. Visual display and speaker 
present the multisensory stimulus. To initiate a trial, mice licked the middle waterspout. To report the decision 
about the stimulus rate, mice licked left/right spouts. Objective belongs to the 2-photon microscope used to 
image neural activity through a window implanted in the skull. B. Psychometric function showing the fraction of 
trials in which the mouse judged the stimulus as high rate as a function of stimulus rate. Dots: data, mean across 
10 mice. Line: Logit regression model fit using glmfit.m; mean across mice. Shaded area: standard deviation of 
the fit across mice. Dashed vertical line: category boundary (16Hz). C, Average image of 10,000 frames. Left: 
green channel showing GCaMP6f expression. Middle: red channel showing tdTomato expression. Right: merge 
of left and middle. Cyan circles indicate GCaMP6f-expressing neurons that were identified as inhibitory. D, Five 
example neurons identified by the CNMF algorithm (arrow: inhibitory neuron). Left: raw ∆F/F traces. Middle: 
de-noised traces. Right: inferred spiking activity. Imaging was not performed during inter-trial intervals; traces 
from 13 consecutive trials are concatenated; dashed lines: trial onsets. E, Example session with 568 neurons. 
Each row shows the trial-averaged inferred spiking activity of a neuron (frame resolution: 32.4ms). Neurons are 
sorted according to the timing of their peak activity. To ensure peaks were not driven simply by noisy 
fluctuations, we first computed trial-averaged activity using half of the trials for each neuron. We then identified 
the time of peak activity for the trial-averaged response. Finally, these peak times were used to determine the 
plotting order for the trial-averaged activity corresponding to the remaining half of the trials. This cross-
validated approach ensured that the tiling appearance of peak activities was not due to the combination of sorting 
and false-color-plotting. Inhibitory neurons (n=45) are indicated by red ticks on the right. Red vertical lines mark 
trial events: initiation (start) tone, stimulus onset, choice, and reward. Duration between events (e.g. between 
start tone and stimulus) varied across trials; so in order to make trial-averaged traces that represent how neural 
activity changes following trial events (e.g. start tone, stimulus, etc), traces were separately aligned to each trial 
event, and then averaged across trials. Next, these averaged traces (each aligned to a different trial event) were 
concatenated to represent neural activity during the entire trial duration, and in response to different trial events. 
Vertical blue lines indicate the border between the concatenated traces. F, Trial-averaged inferred spiking 
activity of 4 excitatory (top) and 4 inhibitory (bottom) neurons, for ipsi- (black) and contralateral (green) choices 
(mean +/- standard error; ~250 trials per session). G, Inferred spiking activity for excitatory (blue) and inhibitory 
(red) neurons during the course of a trial. Example mouse; mean +/- standard error across days (n=46). Each 
point corresponds to an average over trials and neurons. Inferred spiking activity was initially downsampled by 
averaging over three adjacent frames (Methods). Spiking activity was significantly higher for inhibitory neurons 
(t-test; p<0.001) at all times. H, Distribution of inferred spiking activity at time bin 0-97ms (averaged over the 
three frames before the choice) for all mice and all sessions (41,723 excitatory and 5,142 inhibitory neurons). I, 
Inferred spiking activity at time bin 0-97ms before the choice for each individual mouse (mean +/- standard error 
across days). Differences were significant for all subjects (t-test; p<0.001).  
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Individual excitatory and inhibitory neurons are similarly choice-selective  97 

To assess the selectivity of individual excitatory and inhibitory neurons for the decision outcome, 98 
we performed receiver operating characteristic (ROC) analysis (Green and Swets, 1966) on 99 
single-neuron responses. For each neuron, at each time point, we calculated the area under the 100 
ROC curve (AUC) as a measure of the amount of overlap between the response distributions for 101 
ipsilateral vs. contralateral choices. A neuron was identified as “choice-selective” if its AUC 102 
value was significantly different (p<0.05) from a constructed shuffled distribution (Figure S3A; 103 
Methods), indicating that the neural activity was significantly different for ipsi- vs. contralateral 104 
choices (Figure 2A, shaded areas mark choice-selective neurons).  105 

The fraction of choice-selective neurons (Figure 2B) and the magnitude of choice selectivity 106 
(Figure 2D) gradually increased during the course of the trial, peaking just after the animal 107 
reported its choice. Importantly, excitatory and inhibitory neurons were similar in terms of the 108 
fraction of choice-selective neurons (Figure 2B,C; Fig S3B,C), as well as the magnitude and time 109 

Figure 2. Single-cell and pairwise analyses argue for non-random connections between excitatory and 
inhibitory neurons.  
Ideal observer analysis reveals the ability of individual neurons to distinguish left vs. right choices. In all panels, 
blue and red indicate excitatory and inhibitory neurons, respectively. A, Distribution of AUC values (area under 
the curve) of an ROC analysis for distinguishing choice from the activity of single neurons in an example session. 
Data correspond to the 97 ms window preceding the choice for 285 excitatory and 29 inhibitory neurons. Values 
larger than 0.5 indicate neurons preferring the ipsi-lateral choice; values smaller than 0.5 indicate neurons 
preferring the contralateral choice. Shaded areas mark significant AUC values (compared to a shuffle 
distribution). Distributions were smoothed (moving average, span=5). For this example session, 5 inhibitory and 
24 excitatory neurons were significantly choice selective. B, ROC analysis performed on 97 ms non-overlapping 
time windows. Vertical axis: fraction of excitatory and inhibitory neurons with significant choice selectivity at 
the corresponding time on the horizontal axis; example mouse; mean+/-standard error across days (n = 45). C, 
Fraction of excitatory and inhibitory neurons that are significantly choice-selective at 0-97 ms before the choice 
is summarized for each mouse; mean+/-standard error across days (n = 45, 48, 7, 35 sessions per mouse). Star (*) 
indicates significant difference between excitatory and inhibitory neurons (t-test; p<0.05); see also Figure S3D. 
Fraction selective neurons at 0-97ms before choice (median across mice): excitatory: 13%; inhibitory: 16%, 
resulting in ~6 inhibitory and 43 excitatory neurons with significant choice selectivity per session. See also 
Figure S3C for a different quantification. D, ROC analysis performed on 97 ms non-overlapping time windows. 
Time course of normalized choice selectivity (defined as twice the absolute deviation of AUC from chance) 
shown for excitatory and inhibitory neurons in an example mouse; mean+/-standard error across days, n=45 
sessions. E, Average of normalized choice selectivity for excitatory and inhibitory neurons from 0-97 ms before 
the choice is summarized for each mouse; mean+/-standard error across days. “Shuffled” denotes AUC was 
computed using shuffled trial labels.  
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course (Figure 2D,E) of choice selectivity. These results were not due to differences in inferred 110 
spike rates of the two cell types (Figure 1G): when we restricted the ROC analysis to excitatory 111 
and inhibitory neurons with similar spiking activity, both cell types remained equally selective 112 
for the animal’s choice (Figure S3D).  113 

Next, we assessed whether neurons reflected the animal’s choice or the sensory stimulus, by 114 
comparing choice selectivity values resulting from ROC analysis performed on correct vs. error 115 
trials. For the majority of neurons, choice selectivity computed on correct trials was similar to 116 
that of error trials, resulting in a positive correlation of the two quantities across neurons (Figure 117 
S3E). Positive correlations indicate that most neurons reflect the impending choice more so than 118 
the sensory stimulus that informed it (Methods). Variability across mice in the strength of this 119 
correlation may indicate that the balance of sensory vs. choice signals within individual neurons 120 
varied across subjects (perhaps due to imaged subregions within the window, Figure S3E right). 121 
Importantly, however, within each subject, this correlation was very similar for excitatory vs. 122 
inhibitory neurons (Figure S3E), suggesting that within each animal, the tendency for neurons to 123 
be modulated by the choice vs. the stimulus was similar in excitatory and inhibitory neurons.  124 

The existence of task-modulated inhibitory neurons has been reported elsewhere (Maurer et al., 125 
2006; Ego-Stengel and Wilson, 2007; Lovett-Barron et al., 2014; Pinto and Dan, 2015; Allen et 126 
al., 2017; Kamigaki and Dan, 2017), but importantly, here choice selectivity was similarly strong 127 
in excitatory and inhibitory neurons, both in fraction and magnitude. This was at odds with the 128 
commonly accepted assumption of non-specific inhibition in theoretical studies (Deneve et al., 129 
1999; Wang, 2002; Mi et al., 2017), and surprising given the numerous empirical findings, which 130 
suggest broad tuning and weakly specific connectivity in inhibitory neurons (Sohya et al., 2007; 131 
Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010; Bock et al., 2011; Hofer et al., 2011; 132 
Isaacson and Scanziani, 2011; Packer and Yuste, 2011; Atallah et al., 2012; Chen et al., 2013). 133 
This observation was a first hint that specific functional subnetworks, preferring either ipsi- or 134 
contralateral choices, exist within the inhibitory population, just like the excitatory population 135 
(Yoshimura and Callaway, 2005; Znamenskiy et al., 2018).  136 

Choice can be decoded with equal accuracy from both excitatory and inhibitory 137 
populations 138 

While individual inhibitory neurons could distinguish the animal’s choice about as well as 139 
excitatory ones, the overall choice selectivity in single neurons was small (Figure 2E). To further 140 
evaluate the discrimination ability of inhibitory neurons, we leveraged our ability to measure 141 
hundreds of neurons simultaneously. Specifically, we examined the ability of a linear classifier 142 
(support vector machine, SVM; Hofmann et al., 2008) to predict the animal’s choice from the 143 
single-trial population activity (cross-validated; L2 penalty; see Methods).  144 

We first performed this analysis on all neurons imaged simultaneously in a single session (Figure 145 
3A, left), training the classifier separately for every moment in the trial (97 ms bins). 146 
Classification accuracy gradually grew after stimulus onset and peaked at the time of the choice 147 
(Figure 3B, black). Performance was at chance on a shuffle control in which trials were 148 
randomly assigned as left or right choice (Figure 3B, shuffled). The ability of the entire 149 
population of PPC neurons to predict the animal’s upcoming choice confirms previous 150 
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observations (Funamizu et al., 2016; Goard et al., 2016; Morcos and Harvey, 2016; Driscoll et 151 
al., 2017). Our overall classification accuracy was in the same range as these studies.    152 

153 

Figure 3. Linear classifiers can predict the animal’s choice with equally high accuracy from the activity of 
either excitatory or inhibitory populations. 
A, Schematic of decoding choice from the population activity of all neurons (left), only excitatory neurons 
(middle), subsampled to the same number as inhibitory neurons, and only inhibitory neurons (right). A linear SVM 
assigns weights of different magnitude (indicated by lines of different thickness) to each neuron in the population 
so that a weighted sum of population activity differs for trials preceding left vs. right choices.  B, Top: 
classification accuracy of decoders trained on all neurons (black), subsampled excitatory neurons (blue), and 
inhibitory neurons (red) (cross-validated; decoders trained on every 97ms time bin; example session; mean+/-
standard error across 50 cross-validated samples). Data are aligned to the animal’s choice (black dotted line). 
Classification accuracy is lower for inhibitory or subsampled excitatory populations (red, blue) relative to all 
neurons (black) because of the smaller population size. Classifier accuracy was similar for excitatory and 
inhibitory populations throughout the trial. Unsaturated lines show performance on shuffled trial labels. 
Bottom.trial 
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We then examined classifier accuracy for excitatory and inhibitory populations separately. For 154 
excitatory neurons, we subsampled the population so that the total number of neurons matched 155 
the number of inhibitory neurons in the same session (Figure 3A, middle). As expected, overall 156 
classification accuracy was reduced due to the smaller population size; although performance 157 
was still well above chance and the temporal dynamics were the same as when all neurons were 158 
included (Figure 3B, blue trace). Finally, we included all inhibitory neurons (Figure 3A, right). 159 
Surprisingly, the classification accuracy of inhibitory neurons was not only well above chance, 160 
but, moreover, was very similar to that of excitatory neurons (Figure 3B, red and blue traces 161 
overlap; Figure S4: additional example sessions). Similar classification accuracy for excitatory 162 
and inhibitory populations was observed in all subjects (Figure 3C). This result was not due to 163 
using inferred spikes: excitatory and inhibitory populations were equally choice selective even 164 
when the decoding analysis was performed on calcium traces (Figure S5).  165 

Our analysis may have obscured a difference between excitatory and inhibitory neurons because 166 
it evaluated their performance separately, rather than considering how these neurons are 167 
leveraged collectively in a classifier that can take advantage of both cell types. To test this, we 168 
examined the classifier that was trained on all neurons (Figure 3A left; Figure 3B black), and 169 
compared the classifier weights assigned to excitatory vs. inhibitory neurons. We found that the 170 
weight magnitudes of excitatory and inhibitory neurons were matched for the entire course of the 171 
trial (Figure 3D). Also the distributions of weights were overlapping (Figure 3E,F). The 172 
comparable classifier weights for excitatory and inhibitory neurons demonstrate that both cell 173 
types were similarly informative about the animal’s upcoming choice.  174 

We next tested whether excitatory and inhibitory populations can be decoded more accurately 175 
from a mixed population. This could occur, for example, if the excitatory-inhibitory correlations 176 
were weak relative to excitatory-excitatory and inhibitory-inhibitory correlations (Panzeri et al., 177 
1999; Averbeck et al., 2006; Moreno-Bote et al., 2014). To assess this, we trained the classifier 178 
on a population that included half excitatory and half inhibitory neurons (Figure 3G bottom), and 179 
compared its choice-prediction accuracy with the classifier that was trained on a population of 180 
the same size, but consisted only of excitatory neurons (Figure 3G top). We found similar 181 

Bottom: distribution of stimulus onset, stimulus offset, go tone, and reward occurrence for the example session 
shown on the top. C, Classification accuracy during 0-97 ms before the choice for 4 animals on real (saturated) 
and shuffled (unsaturated) data. Mean+/-standard error across days per mouse. D-F, When all neurons were 
included in the decoder (panel A, left), excitatory and inhibitory neurons were assigned weights of similar 
magnitude. D, Absolute value of weights for excitatory and inhibitory neurons in the decoders trained on all 
neurons, at every moment in the trial; example mouse; mean+/-standard error across days. E, Distribution of 
classifier weights (decoder training time: 0-97 ms before the choice) are similar for excitatory and inhibitory 
neurons. Neurons from all mice pooled (42,019 excitatory and 5,172 inhibitory neurons). Shading reflects the 
standard error in each bin of the distribution. F, Absolute value of weights in the classifier trained from 0-97 ms 
before the choice for excitatory vs. inhibitory neurons, for each mouse. Mean+/-standard error across days. Star 
indicates P<0.05, t-test. G, Schematic of decoding choice from a population of subsampled excitatory neurons 
(top) vs. a population of the same size but including half inhibitory and half excitatory neurons (bottom). H, 
Classifier accuracy of populations including only excitatory (blue) or half inhibitory, half excitatory neurons 
(magenta); example session. Classifier trained at each moment in the trial. Traces show mean+/-standard error 
across 50 cross-validated samples. I, Summary of each mouse (mean+/-standard error across days) for the 
decoders trained from 0-97 ms before the choice. 
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Figure 4. Classifiers, whether trained on excitatory or inhibitory neurons, show comparable stability during 
decision formation. 
Cross-temporal generalization of choice decoders. A, Classification accuracy of decoders for each pair of training 
and testing time points, using the population activity of all neurons (left), subsampled excitatory neurons (middle), 
or inhibitory neurons (right). Diagonal: same training, testing time (same as in Figure 3). Example mouse, mean 
across 45 sessions. B, Example classification accuracy traces showing how classifiers trained at 0-97 ms before 
choice generalize to other times in the trial. Excitatory and inhibitory neurons show the same time course of 
generalization. Same mouse as in (A), mean+/-standard error across days C, Decoders are stable in a short window 
outside their training time. Red indicates stability: classification accuracy of a decoder tested at a time different 
from its training time is within 2 standard deviations of the decoder tested at the same time as the training time. 
Example mouse; mean across days. D, Summary of stability duration for the decoder trained from 0-97 ms before 
the choice, using inhibitory neurons (red) or subsampled excitatory neurons (blue), for each mouse. Mean+/-
standard error across days, per mouse. 
 

classification accuracy for both decoders during the entire trial (Figure 3H,I), arguing that a 182 
mixed population offers no major advantage to decoding.  183 

We next trained new classifiers to evaluate whether population activity reflected additional task 184 
features. First, the population activity was somewhat informative about previous trial choice 185 
(Figure S6A), in agreement with previous studies (Morcos and Harvey, 2016; Hwang et al., 186 
2017; Akrami et al., 2018); but also see (Zhong et al., 2018). Excitatory and inhibitory 187 
populations were similarly selective for the animal’s previous choice (Figure S6A). Second, 188 
selectivity for the stimulus category (high rate vs. low rate) was low (Figure S6B), confirming 189 
our analysis of correct vs. incorrect trials (single neurons: Figure S3E; population: Figure 190 
S6D,E). Again, excitatory and inhibitory populations were similarly selective (Figure S6B). 191 
Finally, PPC population activity was strongly selective for the outcome of the trial (reward vs. 192 
lack of reward; Figure S6C). Excitatory and inhibitory neurons showed a small but consistent 193 
difference in the classifier accuracy (Figure S6C), indicating that once the reward is delivered, 194 
the network is operating in a different regime compared to during decision formation, perhaps 195 
due to distinct reward-related inputs to excitatory and inhibitory neurons (Pinto and Dan, 2015; 196 
Allen et al., 2017). This finding is broadly in keeping with previous studies which suggest that 197 
neural populations explore different dimensions over the course of a trial (Raposo et al., 2014; 198 
Elsayed et al., 2016).  199 
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Finally, we studied the temporal dynamics of the choice signal in PPC population during the 200 
course of the trial. If excitatory and inhibitory neurons are connected within subnetworks with 201 
frequent cross talk, the two populations should not only predict the animal’s choice with similar 202 
accuracy, as shown above, but the readout weights (the weights assigned by the classifier) should 203 
exhibit similar temporal dynamics. To assess this, we quantified each population’s stability: the 204 
extent to which a classifier trained at one moment could successfully classify neural activity as 205 
preceding left vs. right choice at different moments. If population-wide patterns of activity are 206 
similar over time (e.g., all neurons gradually increase their firing rates), classifiers trained at one 207 
moment will accurately classify neural activity at different moments. Excitatory and inhibitory 208 
populations might differ in this regard, with one population more stable than the other.   209 

As the gap between testing and training time increased, a gradual drop occurred in the classifier 210 
accuracy, as expected (Figure 4A,B). This drop in accuracy occurred at a very similar rate for 211 
excitatory and inhibitory populations (Figure 4B). To quantify this, we determined the time 212 
window over which the classifier accuracy remained within 2 standard deviations of the accuracy 213 
at the training window (Figure 4C). This was indistinguishable for excitatory and inhibitory 214 
neurons (Figure 4D; Figure S7A). An alternate method for assessing stability, computing the 215 
angle between the weights of pairs of classifiers trained at different time windows, likewise 216 
suggested that excitatory and inhibitory populations are similarly stable (Methods; Figure S7C).    217 

Modeling rules out decision circuits with non-selective inhibition 218 

These results would seem to rule out circuitry from traditional decision-making models, in which 219 
the inhibitory neurons are non-selective. This is because in non-selective circuits the average 220 
input to the inhibitory neurons is the same whether the evidence favors choice 1 or choice 2 (see 221 
Figure 5A, top). However, while the average input is the same, there are fluctuations in 222 
connection strength, which can lead to selectivity in some inhibitory neurons. For instance, 223 
suppose that, because of the inherent randomness in neural circuits, an inhibitory neuron 224 
received more connections from the excitatory neurons in population E1 than those in population 225 
E2. In that case, the firing rate of the inhibitory neuron would be slightly higher when evidence in 226 
favor of choice 1 is present. That difference in firing rate could potentially be exploited by a 227 
classifier to predict the choice of the animal. Hence, one may argue that even a decision circuit 228 
with non-selective inhibition (Figure 5A, top) can lead to similar decoding accuracy in inhibitory 229 
and excitatory neurons, questioning whether our experimental findings (Figures 2,3) can be 230 
leveraged to constrain decision-making models. 231 

To test this quantitatively, we modeled a non-selective circuit to evaluate the selectivity of 232 
inhibitory neurons in such a circuit architecture (Methods). Classification accuracy depended on 233 
the connection strengths between excitatory and inhibitory neurons (horizontal axis on Figure 234 
5A, bottom). This is expected, because large changes in connection strength values can have a 235 
large impact on how the network operates. The most biologically plausible regime is near 0, 236 
corresponding to the equal strengths for excitatory-to-inhibitory and inhibitory-to-excitatory 237 
connections (Thomson and Lamy, 2007; Jouhanneau et al., 2015; Jouhanneau et al., 2018; 238 
Znamenskiy et al., 2018) (Figure 5A, arrow). For this value (and indeed for all other values), 239 
inhibitory neurons had lower classification accuracy than excitatory neurons (Figure 5A, bottom; 240 
Figure S8, left), inconsistent with our experimental results (Figure 3B,C). Therefore, in the non-241 
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selective circuit, although some inhibitory neurons can become selective due to random biased 242 
inputs from the excitatory pools, the classification accuracy of inhibitory neurons will still be 243 
lower than excitatory neurons, regardless of the model parameters. This is because even modest 244 
amounts of noise in the system are sufficient to overcome any informative randomness in 245 
excitatory to inhibitory connections.   246 

Next, we modeled a signal-selective circuit; in which inhibitory neurons were connected 247 
preferentially to one excitatory pool over the other. As a result, selective pools of inhibitory 248 
neurons were generated, just like excitatory neurons (Figure 5B, top). In this circuit architecture, 249 

Figure 5. Modeling decision circuits with different architectures.  
A, Top: Non-selective decision-making model. E1 and E2 represent pools of excitatory neurons, each favoring a 
different choice. Both pools excite a single pool of non-selective inhibitory neurons (I), which, in turn, provides 
inhibition to both excitatory pools. Bottom: Classification accuracy of excitatory (blue) and inhibitory (red) 
neurons as a function of the relative strength of excitatory-to-inhibitory vs. inhibitory-to-excitatory connections. 
For all values of this parameter, excitatory neurons had higher classification accuracy than inhibitory ones. This 
was true for all parameters tested (Methods; Figure S8; angle brackets denote averages over weights). The arrow 
in this and subsequent panels indicates the parameter value that is in line with experimental data, which suggest 
similar connectivity strength for E-to-I and I-to-E connections. B, Top: Selective decision-making model. I1 and 
I2 represent pools of inhibitory neurons that connect more strongly to E1 and E2, respectively, than to E2 and E1, 
and all cross-pool connections are weaker than within-pool connections. Bottom: Decoding accuracy of 
inhibitory and excitatory neurons match at the biologically plausible regime (arrow). Cross-pool connectivity was 
25% smaller than within-pool connectivity. C, Top: Selective decision-making model, except now inhibitory 
neurons connect more strongly to excitatory neurons with high signal to noise ratios (i.e. high input selectivity). 
Bottom: Decoding accuracy of inhibitory and excitatory neurons could match near the biologically plausible 
regime (arrow). In all panels, decoding accuracy depends on the relative strength of excitatory to inhibitory 
versus inhibitory to excitatory connections. In (B) and (C), larger excitatory to inhibitory connections favor 
inhibitory neurons. For all plots we used 50 excitatory and 50 inhibitory neurons out of a population containing 
4000 excitatory and 1000 inhibitory neurons. 
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inhibitory and excitatory neurons had matched classification accuracy when the connection 250 
strength between excitatory and inhibitory neurons was in the biologically plausible regime 251 
(Figure 5B, bottom; Figure S8, middle).  252 

Interestingly, a third circuit configuration likewise gave rise to excitatory and inhibitory neurons 253 
with matched classification accuracy near the biologically plausible regime (Figure 5C, bottom; 254 
Figure S8, right). In this configuration, inhibitory neurons were non-selective with respect to the 255 
excitatory pools, but were connected to the more selective excitatory neurons, i.e. those with a 256 
high signal-to-noise ratio (Figure 5C, top). 257 

Our modeling results raise two questions. First, how can the inhibitory neurons have better 258 
decoding accuracy than the excitatory ones (Figure 5B,C, bottom; for part of the plot, red is 259 
above blue)? After all, in our model all information about the choice flows through the excitatory 260 
neurons. Second, why is the relative strength of the excitatory to inhibitory versus inhibitory to 261 
excitatory connections an important parameter (Figure 5, bottom; x-axis)? The answers are 262 
related. Increasing the strength of the excitatory to inhibitory connections increases the signal in 263 
the inhibitory neurons, and therefore effectively decreases the noise added to the inhibitory 264 
population (see Methods for details). This decrease in noise leads to improved decoding accuracy 265 
of both the excitatory and inhibitory populations, because the two populations are connected. 266 
However, the decrease in the noise added to the inhibitory neurons has a bigger effect on the 267 
inhibitory than the excitatory population; that’s because noise directly affects the inhibitory 268 
neurons, but only indirectly, through the inhibitory to excitatory connections, affects the 269 
excitatory neurons. Thus, in all panels of Figure 5, the classification accuracy increases faster for 270 
inhibitory neurons than excitatory ones as the excitatory to inhibitory connection strength 271 
increases.  272 

Overall, our modeling work rules out decision circuits with non-selective inhibition (Figure 5A), 273 
and instead demonstrates that excitatory and inhibitory neurons in decision circuits must be 274 
selectively connected, either based on the signal preference (Figure 5B) or the informativeness 275 
(Figure 5C) of excitatory neurons.  276 

Correlations are stronger between similarly tuned neurons  277 

We have demonstrated that inhibitory neurons are choice-selective (Figures 2,3). If choice 278 
selectivity in inhibitory neurons emerges because of functionally biased input from excitatory 279 
neurons, one prediction is that correlations will be stronger between excitatory and inhibitory 280 
neurons with the same choice selectivity compared to those with the opposite choice selectivity 281 
(Cossell et al., 2015; Francis et al., 2018). To test this hypothesis, we compared pairwise noise 282 
correlations in the activity of neurons with the same vs. opposite choice selectivity (Methods). 283 
Indeed, neurons with the same choice selectivity had stronger correlations (Figure 6A). This was 284 
evident in pairs consisting of one excitatory, one inhibitory, only excitatory, or only inhibitory 285 
neurons (Figure 6A, left to right), in keeping with previous observations in mouse V1 during 286 
passive viewing (Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015; Znamenskiy et al., 287 
2018), as well as the prefrontal cortex in behaving monkeys (Constantinidis and Goldman-Rakic, 288 
2002).  289 
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The higher noise correlations among similarly tuned excitatory-inhibitory neuron pairs is also 290 
consistent with the observation that in V1, excitatory and inhibitory neurons that belong to the 291 
same subnetwork are reciprocally connected (Yoshimura and Callaway, 2005). An alternative 292 
explanation, that the neurons with similar tuning share common inputs, is also possible. 293 
However, these shared inputs are likely not sensory inputs because we observed the same 294 
correlation effects in the pre-trial period in which there is no stimulus (Figure S9A). 295 

We next compared the strength of pairwise noise correlations within our excitatory and 296 
inhibitory populations. Inhibitory pairs had significantly higher noise correlations compared to 297 
excitatory pairs (Figure 6B,C: noise correlations; Figure S9C: spontaneous correlations). 298 
Importantly, we obtained the same results even when we restricted the analysis to those 299 
inhibitory and excitatory neurons that had the same inferred spiking activity (Figure S9D,E). 300 
This was done because the higher spiking activity of inhibitory neurons (Figure 1G-I) could 301 
potentially muddle the comparison of pairwise noise correlations between excitatory and 302 
inhibitory neurons. Finally, similar to previous reports (Hofer et al., 2011; Khan et al., 2018), we 303 
found intermediate correlations for pairs consisting of one inhibitory neuron and one excitatory 304 
neuron (Figure S9B,C). These findings align with previous studies in sensory areas that have 305 
demonstrated stronger correlations among inhibitory neurons (Hofer et al., 2011; Khan et al., 306 
2018). These correlations are likely driven at least in part by local connections, as evidenced by 307 
the dense connectivity of interneurons with each other (Galarreta and Hestrin, 1999; Packer and 308 
Yuste, 2011; Kwan and Dan, 2012). The difference we observed between excitatory and 309 
inhibitory neurons argues that this feature of early sensory circuits is shared by decision-making 310 
areas. Further, this clear difference between excitatory and inhibitory neurons, like the difference 311 
in inferred spiking (Figure 1G-I) and outcome selectivity (Figure S6C), confirms that we 312 
successfully measured two distinct populations. Overall our noise correlation analysis suggests 313 

Figure 6. Pairwise noise correlations are stronger between neurons with the same choice selectivity. 
A, Left: Noise correlations (Pearson’s coefficient) for pairs of excitatory-inhibitory neurons with the same choice 
selectivity (dark green) or opposite choice selectivity (light green, i.e. one neuron prefers ipsilateral, and the other 
neuron prefers contralateral choice). Middle, right: same as in the left panel, but for excitatory-excitatory, and 
inhibitory-inhibitory pairs, respectively. “Shuffled” denotes quantities were computed using shuffled trial labels. 
Mean+/-standard error across days; 0-97 ms before the choice. Same vs. opposite is significant in all cases, except 
for mouse 3 in EE and II pairs (t-test, p<0.05). B, Example mouse: distribution of noise correlations (Pearson’s 
correlation coefficients, 0-97 ms before the choice) for excitatory neurons (blue; n=11867) and inhibitory neurons 
(red; n=1583). Shaded areas indicate significant quantities compared to a shuffled control: trial orders were 
shuffled for each neuron to remove noise correlations. C, Summary of noise correlation coefficients for each 
mouse, indicating higher correlations among inhibitory neurons; mean+/-standard error across days.  
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that selective connectivity between excitatory and inhibitory neurons exist and depends on their 314 
functional properties.  315 

Noise correlations limit decoding accuracy  316 

Our results thus far demonstrate that neural activities in both excitatory and inhibitory 317 
populations reflect an animal’s impending choice (Figure 3B,C), and that there are significant 318 
noise correlations among neurons in PPC (Figure 6). However, the analyses so far do not 319 
demonstrate how this noise affects the ability to decode neural activity overall, or for excitatory 320 
and inhibitory populations separately. Examining the effect of noise is essential because noise 321 
correlations can limit or enhance the ability to decode population activity depending on their 322 
structure (Panzeri et al., 1999; Averbeck et al., 2006). Fortunately, our dataset includes 323 
simultaneous activity from hundreds of neurons and is therefore especially well-suited to assess 324 
noise correlations: correlations can have a large effect at the population level even when their 325 
effect at the level of neuron pairs is small (Averbeck et al., 2006; Moreno-Bote et al., 2014).  326 

To examine how noise correlations affected classification accuracy for choice, we sorted neurons 327 
based on their individual choice selectivity, added them one by one to the population (from 328 
highest to lowest choice selectivity defined as |AUC-0.5|), and measured classification accuracy 329 
as a function of population size. Classification accuracy improved initially as more neurons were 330 
included in the decoder, but quickly saturated (Figure 7A black; 0-97 ms before the choice).  331 

To understand why classification accuracy saturates, we tested the effect of noise correlations on 332 
classification accuracy. Specifically, we created “pseudo populations”, in which each neuron in 333 
the population was taken from a different trial (Figure 7A gray). This removed noise correlations 334 
because those are shared across neurons within a single trial. Higher classification accuracy in 335 
pseudo populations compared to real populations indicates the presence of noise that overlaps 336 
with signal, limiting information (Panzeri et al., 1999; Averbeck et al., 2006; Averbeck and Lee, 337 
2006; Moreno-Bote et al., 2014). This is what we observed (Figure 7A, gray trace above black 338 
trace). Across all mice, removing noise correlations resulted in a consistent increase in 339 
classification accuracy for the full population (Figure 7B; filled vs. open circles). This 340 
establishes that noise correlations limit population decoding in PPC.  341 

Selectivity increases in parallel in inhibitory and excitatory populations during learning 342 

Figure 7. Noise correlations reduce classification 
accuracy. 
A, Classification accuracy for an example session (at time 
window 0-97 ms before the choice) on neural ensembles of 
increasingly larger size, with the most choice-selective 
neurons added first. Mean+/-standard error across 50 cross-
validated samples. Gray: classification accuracy for pseudo-
populations, in which noise correlations were removed by 
shuffling. Black: real populations. Both cell types were 
included (“All neurons”). B, Summary for each mouse; 
points show mean+/-standard error across days. Values were 
computed for the largest neuronal ensemble (the max value 
on the horizontal axis in D). 
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Our observations thus far argue that excitatory and inhibitory neurons form selective 343 
subnetworks. To assess whether the emergence of these subnetworks is experience-dependent, 344 
and if it varies between inhibitory and excitatory populations, we measured neural activity as 345 
animals transitioned from novice to expert decision-makers (3 mice; 35-48 sessions; Figure S10). 346 
We trained a linear classifier for each training session, and for each moment in the trial. This 347 
allowed us to compare the dynamics of the choice signal in excitatory and inhibitory populations 348 
over the course of learning. 349 

Classification accuracy of the choice decoder increased consistently as animals became experts 350 
in decision-making (Figure 8A, left; Figure 8D, black), leading to a strong correlation between 351 
the classifier performance and the animal’s performance across training days (Figure 8B, left). 352 
The population representation of the choice signal also became more prompt: the choice signal 353 
appeared progressively earlier in the trial as the animals became experts. Initially, classification 354 
accuracy was high only after the choice (Figure 8A, black arrow). As the animals gained 355 
experience, high classification accuracy occurred progressively earlier in the trial, eventually 356 
long before the choice (Figure 8A, gray arrow). This resulted in a negative correlation between 357 
the animal’s performance and the onset of super-threshold decoding accuracy relative to the 358 
choice (Figure 8C, left; Figure 8E, black).   359 

Importantly, the dynamics of the choice decoder changed in parallel in both excitatory and 360 
inhibitory populations as a result of training: the choice signal emerged at the same time in both 361 
populations, and its magnitude and timing was matched for the two cell types throughout 362 
learning (Figure 8A-C, middle, right; Figure 8D-E, blue, red). This change was not due to the 363 
presence of more correct trials in later sessions: an improvement in classification accuracy was 364 
clear even when the number of correct trials was matched for each session (Figure S12C). These 365 
findings indicate that learning induces the simultaneous emergence of choice-specific 366 
subpopulations in excitatory and inhibitory cells in PPC.  367 

Notably, the animal’s licking or running behavior could not explain the learning-induced 368 
changes in the magnitude of classification accuracy (Figure S11). The center-spout licks that 369 
preceded the left vs. right choices were overall similar during the course of learning (Figure 370 
S11A), and did not differ in early vs. late training days (Figure S11B). The similarity in lick 371 
movements for early vs. late sessions stands in contrast to the changes in the classification 372 
accuracy for early vs. late sessions (Figure 8). We also assessed animals’ running behavior 373 
during the course of learning (Figure S11C,D). In some sessions, the running distance differed 374 
preceding left vs. right choices (Figure S11C). Nonetheless, when we restricted our analysis to 375 
days in which the running distance was indistinguishable for the two choices (0-97 ms before the 376 
choice, t-test, P>0.05), we were still able to accurately classify the animal’s choice using neural 377 
activity (Figure S11D). These observations provide reassurance that the population activity does 378 
not entirely reflect preparation of licking and running movements, and argue instead that the 379 
population activity reflects the animal’s stimulus-informed choice.  380 

 Finally, we studied how cofluctuations changed over the course of training. Pairwise 381 
correlations in neural activity were overall higher in early training days, when mice were 382 
novices, compared to late training days, as they approached expert behavior (Figure 8F, 383 
unsaturated colors above saturated colors). This effect was observed for all combinations of  384 
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neural pairs (Figure 8F, green: excitatory-inhibitory; blue: excitatory-excitatory; red: inhibitory-385 
inhibitory). These findings are in agreement with previous reports suggesting that learning 386 
results in reduced noise correlations (Gu et al., 2011; Jeanne et al., 2013; Khan et al., 2018; Ni et 387 

Figure 8. Learning leads to increased magnitude of the choice signal in the population, increased fraction 
of choice-selective neurons, and reduced noise correlations, in both excitatory and inhibitory populations. 
A, Decoder accuracy is shown for each training session, for all neurons (left), subsampled excitatory (middle), 
and inhibitory neurons (right). White vertical line: choice onset. Each row: average across cross-validation 
samples; example mouse. Colorbar of the inhibitory plot applies to the excitatory plot too. B, Scatter plot of 
classifier accuracy at 0-97 ms before the choice vs. behavioral performance (fraction correct on easy trials), 
including all training days. r is Pearson correlation coefficient (p<0.001 in all plots); same example mouse as in 
(A). Correlations for behavior vs. classification accuracy for all neurons, excitatory and inhibitory: 0.55, 0.35, 
0.32 in mouse 2; 0.57, 0.63, 0.32 in mouse 3. Correlations for behavior vs. choice-signal onset for all neurons, 
excitatory and inhibitory: -0.60, -0.34, -0.38, in mouse 2; -0.60, -0.27, -0.28 in mouse 3. All values: p<0.05 C, 
Same as (B), except showing the onset of choice signal, i.e. the first moment in the trial that classifier accuracy 
was above chance (ms, relative to choice onset) vs. behavioral performance. D, Summary of each mouse, 
showing classification accuracy averaged across early (dim colors) vs. late (dark colors) training days. E, Same as 
(D), but showing choice signal onset (ms). F, Same as (D), but showing pairwise noise correlation coefficients. 
G, Fraction of choice-selective neurons increases as a result of training; average across early (dim colors) and late 
(dark colors) training days; time points 0-97 ms before the choice. Early days were the first few training days in 
which the animal’s performance was lower than the 20th percentile of animal’s performance across all days. Late 
days included the last training days in which the animal’s behavioral performance was above the 80th percentile 
of performance across all days.  
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al., 2018), enhancing information that is encoded in neural populations. To test if the learning-388 
induced increase in classification accuracy (Figure 8A,B,D) was entirely a consequence of the 389 
reduction in noise correlations (Figure 8F), we studied how classification accuracy of pseudo 390 
populations, which lack noise correlations, changed with training. Interestingly, we still observed 391 
a significant increase in the classification accuracy of pseudo populations as a result of training 392 
(Figure S12A,B). Therefore, the reduction in noise correlations cannot alone account for the 393 
improved classification accuracy that occurs during learning. Instead, it suggests that choice 394 
selectivity of individual neurons also changes with learning. Indeed, the fraction of choice-395 
selective neurons increased threefold, in both excitatory and inhibitory cell types, as a result of 396 
training (Figure 8G), contributing to the improved classification accuracy at the ensemble level.  397 

Discussion  398 

Despite a wealth of studies assessing the selectivity of inhibitory neurons in response to sensory 399 
features, little is known about the selectivity of inhibitory neurons in decision-making. This 400 
represents a critical gap in our knowledge, and has left untested key features of decision-making 401 
models relying on inhibitory neurons. To close this gap, we simultaneously measured excitatory 402 
and inhibitory populations during perceptual decisions about multisensory stimuli.  403 

We demonstrated that excitatory and inhibitory neurons predict the animal’s impending choice 404 
with equal fidelity (Figure 2,3). This result, along with our modeling (Figure 5), constrains 405 
circuit models of decision-making, ruling out models in which inhibitory neurons receive 406 
completely nonspecific input from excitatory populations (Figure 5A). Instead, our findings 407 
suggest that specific functional subnetworks exist within inhibitory populations, just like 408 
excitatory populations (Figure 5B). This implies targeted connectivity between excitatory and 409 
inhibitory neurons (Yoshimura and Callaway, 2005; Znamenskiy et al., 2018), and supports 410 
circuit architectures with functionally specific subnetworks within excitatory and inhibitory 411 
populations that are reciprocally connected.  412 

The advantage of signal-selective architecture is that it offers improved stability (Znamenskiy et 413 
al., 2018) and robustness to perturbations (Lim and Goldman, 2013). In a recent study (Lim and 414 
Goldman, 2013), candidate circuit architectures were subjected to small perturbations that are 415 
likely to occur in real brains, such as changes in the network’s intrinsic gain, loss of 416 
excitatory/inhibitory neurons, changes in the strengths of excitatory/inhibitory synaptic 417 
transmission, and global shifts in background input. The intuition is that negative feedback from 418 
a specific pool can oppose drifts resulting from these changes, allowing the network to remain 419 
stable. In the absence of such correction, the network can easily become unstable even after a 420 
fairly minor perturbation (e.g., a 1% increase in intrinsic gain, Lim & Goldman, Fig 6, j-l). 421 
Another recent study (Znamenskiy et al., 2018) suggested that targeted connectivity between 422 
excitatory and inhibitory neurons allows for the existence of highly selective excitatory 423 
subnetworks, while keeping the network stable. In circuits with non-selective inhibition, by 424 
contrast, excitatory subnetworks had to be weakly selective in order to keep the network stable 425 
(Znamenskiy et al., 2018). The permissiveness to highly selective excitatory subnetworks in 426 
circuits with selective inhibition may be advantageous for situations that require precise 427 
encoding of sensory stimuli for discrimination.  428 
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The stability and robustness of specific inhibition models discussed above are appealing for 429 
decision-making. However, those studies (Lim and Goldman, 2013) did not aim to describe 430 
behavior and electrophysiological responses during decision-making in nearly the detail of 431 
previous studies that leveraged traditional, non-selective inhibition (Wang, 2002; Bogacz et al., 432 
2006; Wong and Wang, 2006). Those traditional models accurately captured numerous features 433 
of evidence integration, leaving it to the experimentalists to assess their implementation at the 434 
circuit level. However, the nonspecific inhibition in traditional implementations does not agree 435 
with the experimental data reported here and thus must be revisited. We propose an alternative 436 
circuit model that relies on specific connectivity between excitatory and inhibitory neurons, 437 
determined by signal preference (Figure 5B). Evaluating the performance of this revised model 438 
in predicting decision-making behavior and neural activity can help further constrain its 439 
implementation. Additionally, it will generate new predictions that can subsequently be 440 
evaluated at the circuit level. Examples include predictions about the strength of connections 441 
between neural populations, their dependence on signal and noise, tuning of the network to 442 
distinct task components, and network modifications during learning. 443 

The equal selectivity for choice that we observed in excitatory and inhibitory populations is 444 
surprising: the broad stimulus tuning curves observed in most V1 inhibitory neurons (Sohya et 445 
al., 2007; Niell and Stryker, 2008; Kerlin et al., 2010; Bock et al., 2011; Hofer et al., 2011; 446 
Znamenskiy et al., 2018) (but see Runyan et al., 2010) and the dense connectivity for inhibitory 447 
neurons (Hofer et al., 2011; Packer and Yuste, 2011; Znamenskiy et al., 2018) are often taken as 448 
evidence that inhibitory neurons are not strongly modulated by task parameters. Two differences 449 
between our study and previous ones may explain why we saw equal selectivity in excitatory and 450 
inhibitory populations.   451 

First, we measured neural activity in PPC where the proportion of interneuron subtypes differ 452 
from V1; in particular, early sensory areas are more enriched in PV interneurons relative to SOM 453 
and VIP neurons, whereas the opposite is true in association areas (Kim et al., 2017; Wang and 454 
Yang, 2018). Moreover, interneuron subtypes vary in their specificity of connections (Pfeffer et 455 
al., 2013); for instance, PV interneurons are suggested to have broader tuning than SOM and VIP 456 
cells (Wang et al., 2004; Ma et al., 2010). Therefore, the strong selectivity that we found in all 457 
GABAergic interneurons in PPC may not contradict the broad selectivity observed in studies 458 
largely performed on PV interneurons in V1. Future studies that measure the selectivity of 459 
distinct interneuron populations during decision-making in V1 vs. PPC will be helpful. Here, we 460 
measured all GABAergic interneurons instead of individual interneuron subtypes; this was 461 
because of the technical challenges in reliably identifying more than two cell types in a single 462 
animal, and because of the importance of simultaneously measuring the activity of excitatory and 463 
inhibitory neurons within the same subject. Had we lacked within-animal measurements, our 464 
ability to compare excitatory vs. inhibitory neurons would have been compromised by animal-to-465 
animal variability (e.g. note the matched selectivity of excitatory and inhibitory neurons within 466 
each subject in Figure 3C despite the overall variability in selectivity across subjects).  467 

Second, analyzing neural activity in the context of decision-making naturally led us to make 468 
different comparisons than those carried out in previous work. For example, we measured 469 
selectivity for a binary choice, while sensory tuning curves are measured in response to 470 
continuously varying stimuli (e.g., orientation). Further, we measured activity in response to an 471 
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abstract stimulus, the meaning of which was learned gradually by the animal. This may recruit 472 
circuits that differ from those supporting sensory processing in passively viewing mice. Finally, 473 
we used stochastically fluctuating multisensory stimuli, which have not been evaluated in mouse 474 
V1. Future studies that examine the tuning of V1 neurons to the sensory stimulus used here will 475 
determine if V1 inhibitory neurons will be as sharply tuned as excitatory neurons to the stimulus. 476 
This is a possibility: the tuning strength of interneurons can vary substantially for different 477 
stimulus features. For instance, PV neurons in V1 have particularly poor tuning to the orientation 478 
of visual stimuli, while their temporal-frequency tuning is considerably stronger (Znamenskiy et 479 
al., 2018).  480 

Our long-term monitoring of neural activity within the same subjects provides a critical new 481 
insight into decision-making circuitry by demonstrating how acquiring expertise modulates the 482 
activity of excitatory and inhibitory neurons in PPC. We observed that learning induced an 483 
increase in the number of choice-selective neurons and a decrease in noise correlations, 484 
indicating plasticity and reorganization of connections. As a result, population responses 485 
preceding the two choices became progressively more distinct with training. Importantly, these 486 
changes occurred in parallel in both excitatory and inhibitory cells. Our findings are partially in 487 
agreement with those in V1, in which learning improves tuning to sensory stimuli in excitatory 488 
(Schoups et al., 2001; Poort et al., 2015; Khan et al., 2018) and some inhibitory subtypes (Khan 489 
et al., 2018). However, in V1 excitatory neurons have stronger tuning to sensory stimuli early in 490 
training (Khan et al., 2018); in contrast, the magnitude of choice selectivity in PPC was the same 491 
for both cell types throughout training in our study (Figure 8). Primate studies have likewise 492 
observed that perceptual learning changes the selectivity of neurons (Freedman and Assad, 2006; 493 
Law and Gold, 2008; Viswanathan and Nieder, 2015) and reduces noise correlations (Gu et al., 494 
2011; Ni et al., 2018).  495 

Finally, we demonstrated that the learning-induced changes in PPC selectivity were closely 496 
associated with the changes in animal performance, in keeping with primate studies of decision-497 
making (Law and Gold, 2008). This, together with our finding that changes in population activity 498 
do not purely reflect movements (Figure S11), further corroborates the suggested role for PPC in 499 
mapping sensation to action (Law and Gold, 2008; Raposo et al., 2014; Pho et al., 2018). Future 500 
experiments using causal manipulations will reveal whether the increased choice selectivity we 501 
observed in PPC originates there or is inherited from elsewhere in the brain. 502 

By measuring cell-type-specific activity in parietal cortex during decision-making, we have 503 
provided evidence that excitatory and inhibitory populations are equally choice-selective, and 504 
that these ensembles emerge in parallel, as mice become skilled decision-makers. These results 505 
argue against models with non-specific connectivity between excitatory and inhibitory neurons, 506 
at least in decision circuits. In future modeling efforts, these features can be incorporated into 507 
decision-making models, and their impact on key model outputs, e.g. reaction time distributions 508 
and firing rates, can be evaluated. Such studies will shed light on how microcircuits of inhibitory 509 
and excitatory neurons may vary across areas in their selectivity and specificity of connections, 510 
and will reveal the circuit architectures that allow for equally selective inhibitory and excitatory 511 
neurons. 512 

513 
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Methods 514 

Imaging and behavioral dataset 515 

Our simultaneous imaging and decision-making dataset includes 135 sessions from 4 mice (45, 516 
48, 7, and 35 sessions per mouse). Median number of trials per session is 213, 253, 264, and 222, 517 
for each mouse. On average, 480 neurons were imaged per session, out of which ~40 neurons 518 
were inhibitory and ~330 were excitatory. Approximately 100 neurons per session were not 519 
classified as either excitatory or inhibitory since they did not meet our strict cell-type 520 
classification criteria (see below). In 3 of the mice, the same group of neurons was imaged 521 
throughout learning (35-48 training days).  522 

Mice and surgical procedure 523 

Gad2-IRES-CRE (Taniguchi et al., 2011) mice were crossed with Rosa-CAG-LSL-tdTomato-524 
WPRE (aka Ai14; Madisen et al., 2010) to create mice in which all GABAergic inhibitory 525 
neurons were labeled. Adult mice (~2-month old) were used in the experiments. Meloxicam 526 
(analgesic), dexamethasone (anti-inflammatory) and Baytril (enrofloxacin; anti-biotic) were 527 
injected 30min before surgery. Using a biopsy punch, a circular craniotomy (diameter: 3mm) 528 
was made over the left PPC (stereotaxic coordinates: 2 mm posterior, 1.7 mm lateral of bregma 529 
(Harvey et al., 2012) under isoflurane (~5%) anesthesia. Pipettes (10-20 um in diameter, cut at 530 
an angle to provide a beveled tip) were front-filled with AAV9-Synapsin-GCaMP6f (U Penn, 531 
Vector Core Facility) diluted 2X in PBS (Phosphae-buffered saline). The pipette was slowly 532 
advanced into the brain (Narishige MO-8 hydraulic micro-manipulator) to make ~3 injections of 533 
50nL, slowly over an interval of ~5-10 min, by applying air pressure using a syringe. Injections 534 
were made near the center of craniotomy at a depth of 250-350 µm below the dura. A glass plug 535 
consisting of a 5mm coverslip attached to a 3mm coverslip (using IR-curable optical bond, 536 
Norland) was used to cover the craniotomy window. Vetbond, followed by metabond, was used 537 
to seal the window. All surgical and behavioral procedures conformed to the guidelines 538 
established by the National Institutes of Health and were approved by the Institutional Animal 539 
Care and Use Committee of Cold Spring Harbor Laboratory. 540 

Imaging 541 

We used a 2-photon Moveable Objective Microscope with resonant scanning at approximately 542 
30 frames per second (Sutter Instruments, San Francisco, CA). A 16X, 0.8 NA Nikon objective 543 
lens was used to focus light on fields of view of size 512x512 pixels (~575 µm x ~575 µm). A 544 
Ti:sapphire laser (Coherent) delivered excitation light at 930nm (average power: 20-70 mW). 545 
Red (ET670/50m) and green (ET 525/50m) filters (Chroma Technologies) were used to collect 546 
red and green emission light. The microscope was controlled by Mscan (Sutter). In mice in 547 
which chronic imaging was performed during learning, the same plane was identified on 548 
consecutive days using both coarse alignment, based on superficial blood vessels, as well as fine 549 
alignment, using reference images of the red channel (tdTomato expression channel) at multiple 550 
magnification levels. For each trial, imaging was started 500ms before the trial-initiation tone, 551 
and continued 500ms after reward or time-out. We aimed to image in the center of the window 552 
for all mice, but in one animal (Mouse 4), some tissue regrowth obscured the signal in this region 553 
and so imaging was performed slightly further back.  554 
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Decision-making behavior 555 

Mice were gradually water restricted over the course of a week, and were weighed daily. Mice 556 
harvested at least 1 mL of water per behavioral/imaging session, and completed 100-500 trials 557 
per session. After approximately one week of habituation to the behavioral setup, 15-30 training 558 
days were required to achieve 75% correct choice. Animal training took place in a sound 559 
isolation chamber. The stimulus in all trials was multisensory, consisting of a series of 560 
simultaneous auditory clicks and visual flashes, occurring with Poisson statistics (Brunton et al., 561 
2013; Odoemene et al., 2017). Multisensory stimuli were selected because they increased the 562 
learning rate of the mice, a critical consideration since GCaMP6f expression can be unreliable 563 
over a long period of time. Stimulus duration was 1000 ms. Each pulse was 5 ms; minimum 564 
interval between pulses was 32 ms, and maximum interval was 250 ms. The pulse rate ranged 565 
from 5 to 27 Hz. The category boundary for marking high-rate and low-rate stimuli was 16 Hz, 566 
at which animals were rewarded randomly on either side. The highest stimulus rates used here 567 
are known to elicit reliable, steady state flicker responses in retinal ERG in mice (Krishna et al., 568 
2002; Tanimoto et al., 2015). 569 

Mice were on top of a cylindrical wheel and a rotary encoder was used to measure their running 570 
speed. Trials started with a 50 ms initiation tone (Figure S1A). Mice had 5 sec to initiate a trial 571 
by licking the center waterspout (Marbach and Zador, 2017), after which the multisensory 572 
stimulus was played for 1 second. If mice again licked the center waterspout, they received 0.5 573 
µL water on the center spout, and a 50ms go cue was immediately played. Animals had to report 574 
a choice by licking to the left or right waterspout within 2 sec. Mice were required to confirm 575 
their choice by licking the same waterspout one more time within 300 ms after the initial lick 576 
(Marbach and Zador, 2017). The “confirmation lick” helped dissociate the choice time (i.e. the 577 
time of first lick to the side waterspout), from the reward time (i.e. the time of second lick to the 578 
side waterspout); it also helped with reducing impulsive choices. If the choice was correct, mice 579 
received 2-4 µL water on the corresponding waterspout. An incorrect choice was punished with a 580 
2 sec time-out. The experimenter-imposed inter-trial intervals (ITI) were drawn from a truncated 581 
exponential distribution, with minimum, maximum, and lambda equal to 1 sec, 5 sec, and 0.3 582 
sec, respectively. However, the actual ITIs could be much longer depending on when the animal 583 
initiates the next trial. Bcontrol (Raposo et al., 2014) with a Matlab interface was used to deliver 584 
trial events (stimulus, reward, etc) and collect data. 585 

Logistic regression model of behavior 586 

A modified version of the logistic regression model in (Busse et al., 2011) was used to assess the 587 
extent to which the animal’s choice depends on the strength of sensory evidence, i.e. how far the 588 
stimulus rate is from the category boundary at 16Hz, the previous choice outcome (success or 589 
failure) and ITI, i.e. the time interval between the previous choice and the current stimulus onset 590 
(Figure S1B).  591 

𝑝 = !
!!!!!

           eq. 1 592 

𝑧 = β0 + (βr1 R1  + βr2 R2 + βr3 R3 + βr4 R4 + βr5 R5 + βr6 R6) + (βs1 S1  + βs2 S2) + (βf1 F1  + βf2 F2) 593 

where p is the probability of choosing the left choice, and z is the decision variable. R, S and F 594 
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are vectors of indicator variables; each element corresponds to 1 trial. Stimulus strength (R) was 595 
divided into 6 bins (R1 to R6). Previous success (S) was divided into 2 bins (S1 to S2): success 596 
after a long ITI (> 7sec) and success after a short ITI (< 7sec). Previous failure (F) was divided 597 
into 2 bins (F1 to F2): failure after a long and short ITI. For instance, if a trial had stimulus 598 
strength 3 Hz, and was preceded by a success choice with ITI 5 sec, then R2 and S1 would be set 599 
to 1 and all other R, S and F parameters to 0 (Figure S1B). 600 

For each session the scalar coefficients β0, βr1 to βr6, βs1, βs2, βf1, and βf2 were fitted using Matlab 601 
glmfit.m. Figure S1B left shows βr1 to βr6. Figure S1B middle shows βs1 and βs2, and Figure S1B 602 
right shows βf1 and βf2. 603 

ROI (region of interest) extraction and deconvolution 604 

The recorded movies from all trials were concatenated and corrected for motion artifacts by 605 
cross-correlation using DFT registration (Guizar-Sicairos et al., 2008). Subsequently, active 606 
ROIs (sources) were extracted using the CNMF algorithm (Pnevmatikakis et al., 2016) as 607 
implemented in the CaImAn package (Giovannucci et al., 2019) in MATLAB. The traces of the 608 
identified neurons were ∆F/F normalized and then deconvolved by adapting the FOOPSI 609 
deconvolution algorithm (Vogelstein et al., 2010; Pnevmatikakis et al., 2016) to a multi-trial 610 
setup. This was necessary because simply concatenating individual trials would lead to 611 
discontinuities in the traces, which could distort estimates of the time constants. Each value of 612 
Foopsi deconvolution represents spiking activity at each frame for a given neuron. We have 613 
referred to the deconvolved values as "inferred spiking activity" throughout the paper. The 614 
deconvolved values do not represent absolute firing rates, so they cannot be compared across 615 
neurons. However, for a particular neuron, higher inferred spiking activity means higher firing 616 
rate. We elected to base our analyses on inferred spikes rather than fluorescence activity because 617 
peak amplitudes and time constants of the fluorescence responses vary across neurons, affecting 618 
subsequent analyses (Machado et al., 2015; Helmchen and Tank, 2019).  619 

The adaptation of the FOOPSI for multi-trial setup involved the following steps. For each 620 
component, the activity trace over all the trials was used to determine the time constants of the 621 
calcium indicator dynamics as in (Pnevmatikakis et al., 2016). Then the neural activity during 622 
each trial was deconvolved separately using the estimated time constant and a zero baseline 623 
(since the traces were ∆F/F normalized). A difference of exponentials was used to simulate the 624 
rise and decay of the indicator.  625 

Neuropil Contamination removal 626 

The CNMF algorithm demixes the activity of overlapping neurons. It takes into account 627 
background neuropil activity by modeling it as a low rank spatiotemporal matrix (Pnevmatikakis 628 
et al., 2016). In this study a rank two matrix was used to capture the neuropil activity. To 629 
evaluate its efficacy we compared the traces obtained from CNMF to the traces from a “manual” 630 
method similar to (Chen et al., 2013) (Figure S13): the set of spatial footprints (shapes) extracted 631 
from CNMF were binarized by thresholding each component at the 0.2x its maximum value 632 
level. The binary masks were then used to average the raw data and obtain an activity trace that 633 
also included neuropil effects. To estimate the background signal, an annulus around the binary 634 
mask was constructed with minimum distance 3 pixels from the binary mask and width 7 pixels 635 
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(Figure S13A). The average of the raw data over the annulus defined the background trace, 636 
which was then subtracted from the activity trace. The resulting trace was then compared with 637 
the CNMF estimated temporal trace for this activity. The comparison showed a very high degree 638 
of similarity between the two traces (Figure S13; example component; r=0.96), with the 639 
differences between the components being attributed to noise and not neuropil related events. 640 
Note that this “manual” approach is only applicable in the case when the annulus does not 641 
overlap with any other detected sources. These results demonstrate the ability of the CNMF 642 
framework to properly capture neuropil contamination and remove it from the detected calcium 643 
traces.  644 

ROI inclusion criteria 645 

We excluded poor-quality ROIs identified by the CNMF algorithm based on a combination of 646 
criteria: 1) size of the spatial component, 2) decay time constant, 3) correlation of the spatial 647 
component with the raw ROI image built by averaging spiking frames, 4) correlation of the 648 
temporal component with the raw activity trace, and 5) the probability of fluorescence traces 649 
maintaining values above an estimated signal-to-noise level for the expected duration of a 650 
calcium transient(Giovannucci et al., 2018) (GCaMP6f, frame rate: 30Hz). A final manual 651 
inspection was performed on the selected ROIs to validate their shape and trace quality.  652 

Identification of inhibitory neurons 653 

We used a two-step method to identify inhibitory neurons. First, we corrected for bleed-through 654 
from green to red channel by considering the following regression model, 655 

𝒓!(𝑡) = 𝛽! + 𝑠𝒈!(𝑡) + 𝜖   eq. 2.  656 

where, 𝒓!(𝑡) and 𝒈! 𝑡  are vectors, indicating pixel intensity in red and green channel, 657 
respectively, with each component of the vector corresponding to one pixel in the ROI. i labels 658 
ROI (presumably each ROI is a neuron). βi is the offset, and s is the parameter that tells us how 659 
much of the green channel bleeds through to the red one. 1! ∈  ℝ! is a vector whose components 660 
are all 1.  661 

It is the parameter s that we are interested in. To find s, we define a cost function, C,  662 

𝑪 =  𝒓! − 𝛽!1! + 𝑠𝒈! 𝟐
𝟐

!   eq. 3 663 

and minimize it with respect to s and all the βi. The value of s at the minimum reflects the 664 
fraction of bleed-through from the green to the red channel. That value, denoted s*, is then used 665 
to compute the bleedthrough-corrected image of the red-channel, denoted I via the expression  666 

𝐼 = 𝑅 − 𝑠∗ 𝐺    eq. 4 667 

where R and G are the time-averaged images of the red and green channels, respectively. 668 

Once the bleedthrough-corrected image, I, was computed, we used it to identify inhibitory 669 
neurons using two measures: 670 

1) A measure of local contrast, by computing, on the red channel, the average pixel intensity 671 
inside each ROI mask relative to its immediate surrounding mask (width=3 pixels). Given the 672 
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distribution of contrast levels, we used two threshold levels, 𝑇!   and 𝑇!, defined, respectively, as 673 
the 80th and 90th percentiles of the local contrast measures of all ROIs. ROIs whose contrast 674 
measure fell above 𝑇! were identified as inhibitory neurons. ROIs whose contrast measure fell 675 
below 𝑇!were identified as excitatory neurons, and ROIs with the contrast measure in between 676 
𝑇! and 𝑇! were not classified as either group (“unsure” class).  677 

2) In addition to a measure of local contrast, we computed for each ROI the correlation between 678 
the spatial component (ROI image on the green channel) and the corresponding area on the red 679 
channel. High correlation values indicate that the ROI on the green channel has a high signal on 680 
the red channel too; hence the ROI is an inhibitory neuron. We used this correlation measure to 681 
further refine the neuron classes computed from the local contrast measure (i.e. measure 1 682 
above). ROIs that were identified as inhibitory based on their local contrast (measure 1) but had 683 
low red-green channel correlation (measure 2), were reset as “unsure” neurons. Similarly, ROIs 684 
that were classified as excitatory (based on their local contrast) but had high red-green channel 685 
correlation were reclassified as unsure. Unsure ROIs were included in the analysis of all-neuron 686 
populations (Figure 3A left); but were excluded from the analysis of excitatory only or inhibitory 687 
only populations (Figure 3A middle, right). Finally, we manually inspected the ROIs identified 688 
as inhibitory to confirm their validity. This method resulted in 11% inhibitory neurons, which is 689 
within the range of previous studies (10-20%: Rudy et al., 2011); (15%: Beaulieu, 1993); (16%: 690 
Gabbott et al., 1997); (<5%: de Lima and Voigt, 1997); (10-25%: de Lima et al., 2009).  691 

General analysis procedures 692 

All analyses were performed on inferred spiking activity. Traces were down-sampled, so each 693 
bin was the non-overlapping moving average of 3 frames (97.1 ms). Inferred spiking activity for 694 
each neuron was normalized so the max spiking activity for each neuron equaled 1. The trace of 695 
each trial was aligned to the time of the choice (i.e. the time of the 1st lick to either of the side 696 
waterspouts after the go tone). Two-tailed t-test was performed for testing statistical significance. 697 
Summary figures including all mice were performed on the time bin preceding the choice, i.e. 0-698 
97 ms before choice onset. All reported correlations are Pearson’s coefficients. Analyses were 699 
performed in Python and Matlab. 700 

ROC analysis 701 

The area under the ROC curve (AUC) was used to measure the choice preference of single 702 
neurons. Choice selectivity was defined as the absolute deviation of AUC from chance level 703 
(0.5). To identify significantly choice-selective neurons, for each neuron we performed ROC on 704 
shuffled trial labels (i.e. left and right choices were randomly assigned to each trial). This 705 
procedure was repeated 50 times to create a distribution of shuffled AUC values for each neuron 706 
(Figure S3A, “shuffled”). A neuron’s choice selectivity was considered to be significant if the 707 
probability of the actual AUC (Figure S3A, “real”) being drawn from the shuffled AUC 708 
distribution was less than 0.05. Time points from 0–97 ms before the decision	 were used to 709 
compute the fraction of choice-selective neurons (Figure 2B; Figure 8G). 710 

Decoding population activity 711 

A linear SVM (Python sklearn package) was trained on each bin of the population activity in 712 
each session (non-overlapping 97ms time bins). To break any dependencies on the sequence of 713 
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trials, we shuffled the order of trials for the entire population. To avoid bias in favor of one 714 
choice over the other, we matched the number of left- and right-choice trials used for classifier 715 
training. L2 regularization was used to avoid over-fitting. 10-fold cross validation was performed 716 
by leaving out a random 10% subset of trials to test the classifier performance, and using the 717 
remaining trials for training the classifier. This procedure was repeated 50 times. A range of 718 
regularization values was tested, and the one that gave the smallest error on the validation dataset 719 
was chosen as the optimal regularization parameter. Classifier accuracy was computed as the 720 
percentage of testing trials in which the animal’s choice was accurately predicted by the 721 
classifier, and summarized as the average across the 50 repetitions of trial subsampling. A 722 
minimum of 10 correct trials per choice was required in order to run the SVM on a session. 723 
Inferred spiking activity of each neuron was z-scored before running the SVM. 724 

When comparing classification accuracy for excitatory vs. inhibitory neurons, the excitatory 725 
population was randomly sub-sampled to match the population size of inhibitory neurons to 726 
enable a fair comparison (Figure 3, blue vs. red). To compare the distribution of weights in the 727 
all-neuron classifier (Figure 3 black), the weight vector for each session was normalized to unity 728 
length (Figure 3D-F).  729 

When decoding the stimulus category (Figure S6B), we used stimulus-aligned trials, and avoided 730 
any contamination by the choice signal by sub-selecting equal number of left and right choice 731 
trials for each stimulus category. When decoding trial outcome (Figure S6C), we used outcome-732 
aligned trials, and avoided contamination by the choice or stimulus signal by subselecting equal 733 
number of trials from left and right choice trials for each trial outcome. 734 

Stability 735 

To test the stability of the population code, decoders were trained and tested at different time 736 
bins (Kimmel et al., 2016) (Figure 4). To avoid the potential effects of auto-correlation, we 737 
performed cross validation not only across time bins, but also across trials. In other words, even 738 
though the procedure was cross validated by testing the classifier at a time different from the 739 
training time, we added another level of cross-validation by testing on a subset of trials that were 740 
not used for training. This strict method allowed our measure of stability duration to be free of 741 
auto-correlation effects. 742 

As an alternative measure of stability, the angle between pairs of classifiers that were trained at 743 
different moments in the trial was computed (Figure S9C). Small angles indicate alignment, 744 
hence stability, of the classifiers. Large angles indicate misalignment, i.e. instability of the 745 
classifiers.  746 

Noise correlations 747 

To estimate noise correlations at the population level, the order of trials was shuffled for each 748 
neuron independently. Shuffling was done within the trials of each choice, hence retaining the 749 
choice signal, while de-correlating the population activity to remove noise correlations. Then we 750 
classified population activity in advance of left vs. right choice (at time bin 0–97 ms before the 751 
choice) using the de-correlated population activity. This procedure was performed on neural 752 
ensembles of increasingly larger size, with the most selective neurons (|AUC-0.5|) added first 753 
(Figure 7A). To summarize how noise correlations affected classification accuracy in the 754 
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population (Figure 7B), we computed, for the largest neural ensemble (Figure 7A, max value on 755 
the horizontal axis), the change in classifier accuracy in the de-correlated data (“pseudo 756 
populations”) vs. the original data. This analysis was only performed for the entire population; 757 
the small number of inhibitory neurons in each session prevented a meaningful comparison of 758 
classification accuracy on real vs. pseudo populations.   759 

To measure pairwise noise correlations, we subtracted the trial-averaged response to a particular 760 
choice from the response of single trials of that choice. This allowed removing the effect of 761 
choice on neural responses. The remaining variability in trial-by-trial responses can be attributed 762 
to noise correlations, measured as the Pearson correlation coefficient for neuron pairs. We also 763 
measured noise correlations using the spontaneous activity defined as the neural responses in 0-764 
97 ms preceding the trial initiation tone (Figure S9A,C). We computed the pairwise correlation 765 
coefficient (Pearson) for a given neuron with each other neuron within an ensemble (e.g., 766 
excitatory neurons). The resulting coefficients were then averaged to generate a single 767 
correlation value for that neuron. This was repeated for all neurons within the ensemble (Figure 768 
6).  769 

To compute pairwise correlations on excitatory and inhibitory neurons with the same inferred 770 
spiking activity (Figure S9D,E), we computed the median inferred spiking activity across trials 771 
for individual excitatory and inhibitory neurons in a session. The medians were then divided into 772 
50 bins. The firing-rate bin that included the maximum number of inhibitory neurons was 773 
identified (“max bin”); inhibitory and excitatory neurons whose firing rate was within this “max 774 
bin” were used for the analysis. The firing rates were matched for these neurons because their 775 
median firing rate was within the same small bin of firing rates. Pairwise correlations were then 776 
computed as above. 777 

Learning analysis 778 

In 3 of the mice, the same field of view was imaged each session during learning. This was 779 
achieved in two ways. First, the vasculature allowed a coarse alignment of the imaging location 780 
from day to day. Second, the image from the red channel was used for a finer alignment. Overall, 781 
most neurons were stably present across sessions (Figure S10). This suggests that we likely 782 
measured activity from a very similar population each day. Importantly, however, our 783 
conclusions do not rely on this assumption: our measures and findings focus on learning-related 784 
changes in the PPC population overall, as opposed to tracking changes in single neurons. To 785 
assess how population activity changed over learning, we evaluated classification accuracy each 786 
day, training a new decoder for each session. This approach allowed us to compute the best 787 
decoding accuracy for each session. 788 

“Early days” (Figure 8; Figures S11,S12) included the initial training days in which the animal’s 789 
performance, defined as the fraction of correct choices on easy trials, was lower than the 20th 790 
percentile of performance across all days. “Late days” (Figure 8; Figures S11,S12) included the 791 
last training days in which the animal’s behavioral performance was above the 80th percentile of 792 
performance across all days.  793 

To measure the timing of decision-related activity (Figure 8C,E), we identified all sessions in 794 
which classifier accuracy was significantly different than the shuffle (t-test, p<0.05) over a 795 
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window of significance that was at least 500 ms long. We defined the “choice signal onset” 796 
(Figure 8C,E) as the trial time corresponding to the first moment of that window. Sessions in 797 
which the 500 ms window of significance was present are included in Figure 8C. The number of 798 
points (and hence the relationship between session number and color in Figure 8C) differs 799 
slightly across the three groups. This is because on some sessions, the window of significance 800 
was present in one group but not another. For example, in a session the population including all 801 
neurons might have a 500 ms window of significance, hence it will contribute a point to Figure 802 
7C left, while the population with only inhibitory neurons might be only transiently significant 803 
for <500ms, hence it will be absent from Figure 8C right.  804 

Modeling decision circuits 805 

We considered a linearized rate network of the form 806 

𝑑𝛎!
𝑑𝑡 = −𝛎! +𝐖!! ⋅ 𝛎! −𝐖!" ⋅ 𝛎! + 𝐡! + 𝛏!
𝑑𝛎!
𝑑𝑡

= −𝛎! +𝐖!" ⋅ 𝛎! −𝐖!! ⋅ 𝛎! + 𝛏!
 

where 𝐸 and 𝐼 refer to the excitatory and inhibitory populations, respectively, 𝛎! and 𝛎! are 807 
vectors of firing rates (𝛎! = 𝜈!!, 𝜈!!, …, and similarly for 𝛎!), 𝐖𝑬𝑬, 𝐖𝑬𝑰, 𝐖𝑰𝑬 and 𝐖𝑰𝑰 are the 808 
connectivity matrices (𝐖𝑬𝑰 indicates connection from inhibitory to excitatory neuron). 𝐡! is the 809 
input, with 𝑠 either 1 or 2 (corresponding to left and right licks), and 𝛏 is trial to trial noise, taken 810 
to be zero mean and Gaussian, with covariance matrices 811 

⟨𝛏!𝛏!⟩ = 𝚺!!
⟨𝛏!𝛏!⟩ = 𝚺!! .

 

 812 

For the input we’ll assume that about half the elements of h! are ℎ! for the rightward choice and 813 
−ℎ!for the leftward choice, and the rest are −ℎ! for the rightward choice and ℎ! for the leftward 814 
choice. We used ℎ! = 0.1 (see Table 1). The noise covariance is diagonal but non-identity, with 815 
diagonal elements distributed as 816 

𝛴!!,!! ∼ Unif 𝜎 −
𝛿
2 ,𝜎 +

𝛿
2

𝛴!!,!! ∼ Unif 𝜎 −
𝛿
2 ,𝜎 +

𝛿
2 .

 

 817 

The goal is to determine the value of 𝑠 (that is, determine whether 𝐡! or 𝐡! was present) given 818 
the activity of a subset of the neurons from either the excitatory or inhibitory populations. We’ll 819 
work in steady state, for which 820 

𝛎! =𝐖!! ⋅ 𝛎! −𝐖!" ⋅ 𝛎! + 𝐡! + 𝛏!
𝛎! =𝐖!" ⋅ 𝛎! −𝐖!! ⋅ 𝛎! + 𝛏!  .
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Solving for 𝛎! and 𝛎! yields 821 

𝛎! = 𝐉! ⋅ (𝐡! + 𝛏! −𝐖!" ⋅ 𝛏!)
𝛎! = 𝐉! ⋅ (𝛏! +𝐖!"(𝐡! + 𝛏!)

 

where 822 

𝐉! ≡ (𝐈−𝐖!! +𝐖!" ⋅𝐖!")!!

𝐉! ≡ (𝐈+𝐖!! +𝐖!" ⋅𝐖!")!! 
𝐖!" ≡𝐖!"(𝐈+𝐖!!)!!

𝐖!" ≡𝐖!"(𝐈−𝐖!!)!! ,

 

and 𝐈 is the identity matrix. We are interested in the decoding accuracy of a sub-population of 823 
neurons. For that we’ll use a matrix 𝐃! that picks out 𝑛 components of whatever it’s operating 824 
on. So, for instance, 𝐃! ⋅ 𝛎! is an 𝑛-dimensional vector with components equal to 𝑛 of the 825 
components of 𝛎!. 826 

For a linear and Gaussian model such as ours, in which the covariance is independent of 𝑠, we 827 
need two quantities to compute the performance of an optimal decoder: the difference in the 828 
means of the subsampled populations when 𝐡! versus 𝐡! are present, and covariance matrix of 829 
the subsampled populations. The difference in means are given by 830 

Δ⟨𝐃! ⋅ 𝛎!⟩ = 𝐃! ⋅ 𝐉! ⋅ Δ𝐡
Δ⟨𝐃! ⋅ 𝛎!⟩ = 𝐃! ⋅ 𝐉! ⋅𝐖!" ⋅ Δ𝐡

 

where Δ𝐡 is the difference between the two inputs,  831 

Δ𝐡 ≡ 𝐡! − 𝐡! . 

The covariances are given by 832 

Cov[𝐃! ⋅ 𝛎!] = 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!" ⋅ 𝚺!! ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!

Cov[𝐃! ⋅ 𝛎!] = 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!" ⋅ 𝚺!! ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!

 

where 𝑇 denotes transpose. Combining the mean and covariance gives us the signal to noise 833 
ratio, 834 

(𝑆/𝑁)! = Δ𝐡 ⋅ 𝐉!! ⋅ 𝐃!! ⋅ 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!" ⋅ 𝚺!! ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!

!! ⋅ 𝐃! ⋅ 𝐉! ⋅ Δ𝐡

(𝑆/𝑁)! = Δ𝐡 ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!! ⋅ 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!! ⋅ 𝚺!! ⋅𝐖!"

! ⋅ 𝐉!! ⋅ 𝐃!!
!! ⋅ 𝐃! ⋅ 𝐉! ⋅𝐖!" ⋅ Δ𝐡 .

 

The performance of an optimal decoder is then given by  835 

fraction  correct = 𝛷
𝑆/𝑁
2

	

where 𝛷 is the cumulative normal function. All of our analysis is based on this expression. 836 
Differences in fraction correct depend only on differences in the connectivity matrices, which we 837 
describe next. 838 
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Connectivity matrices 839 

We consider three connectivity structures: completely non-selective, signal-selective, and signal-840 
to-noise selective (corresponding to Figures 5A, 5B and 5C, respectively). In all cases the 841 
connectivity is sparse (the connection probability between any two neurons is 0.1). What differs 842 
is the connection strength when neurons are connected. We describe below how the connection 843 
strength is chosen for our three connectivity structures. 844 

Non-selective. The connectivity matrices have the especially simple form  845 

𝐖!",!"=
𝑤!"
𝑐𝑁

with probability 𝑐

0 otherwise
 

where 𝛼,  𝛽 ∈ {𝐸, 𝐼}, 𝑁(≡ 𝑁! + 𝑁!) is the total number of neurons, and 𝑤!" are parameters (see 846 
Table 1). 847 

Signal-selective. We divide the neurons into two sets of excitatory and inhibitory sub-848 
populations, as in Figure 5B. The connection strengths are still given by the above expression, 849 
but now 𝛼 and 𝛽 acquire subscripts that specify which population they are in: 850 
𝛼,  𝛽 ∈ {𝐸!,𝐸!, 𝐼!, 𝐼!}, with 𝐸! and 𝐼! referring to population 1 and  𝐸! and 𝐼! to population 2. The 851 
within-population connection strengths are the same as for the non-selective population 852 
(𝑤!!!! = 𝑤!" , 𝑖 = 1,2), but the across-population connection strengths are smaller by a factor of 853 
𝜌, 854 

𝑤!!,!!
𝑤!!,!!

= 𝜌 

for 𝑖 = 1 and 𝑗 = 2 or vice-versa. The value of 𝜌 determines how selective the sub-populations 855 
are: 𝜌 = 0 corresponds to completely selective sub-populations while 𝜌 = 1 corresponds to the 856 
completely non-selective case.  857 

SNR- selective.  We choose the connectivity as in the non-selective case, and then change 858 
synaptic strength so that the inhibitory neurons receive stronger connections from the excitatory 859 
neurons with high signal to noise ratios. To do that, we first rank excitatory units in order of 860 
ascending signal to noise ratio (by using 𝐃! in the expression for (𝑆/𝑁)! in the previous 861 
section). We then make the substitution 862 

𝑊!",!" →𝑊!",!"
𝑟!
𝑁!

!
 

where 𝑟! is the rank of excitatory 𝑗 in the order of ascending signal to noise ratio and, recall, 𝑁! 863 
is the number of excitatory neurons. This downweights projections from low signal to noise ratio 864 
excitatory neurons and upweights connections from high signal to noise ratio neurons. Finally, 865 
all elements are scaled to ensure that the average connection strength from the excitatory to the 866 
inhibitory network is the same as before the substitution. 867 

Simulation details 868 
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The simulation parameters are given in Table 1. In addition, there are a number of relevant 869 
details, the most important of which is related to the input, 𝐡!. As mentioned in the previous 870 
section, about half the elements of 𝐡! are ℎ! for the rightward choice and −ℎ! for the leftward 871 
choice, and the rest are ℎ! for the leftward choice −ℎ! for the rightward choice. This is strictly 872 
true for the completely non-selective and signal to noise selective connectivity; for the signal 873 
selective connectivity, we use 𝐡!,! =  ℎ! for the rightward choice and −ℎ! for the leftward 874 
choice when excitatory neuron 𝑖 is in population 1, and 𝐡!,! =  ℎ! for the leftward choice and 875 
−ℎ! for the rightward choice when excitatory neuron 𝑖 is in population 2. In either case, 876 
however, this introduces a stochastic element: for the completely non-selective and signal to 877 
noise selective connectivities, there is randomness in both the input and the circuit; for the signal 878 
selective connectivity, there is randomness in the circuit. In the former case, we can eliminate the 879 
randomness in the connectivity by averaging over the input, as follows. 880 

Because the components of Δ𝐡 are independent, we have  881 

⟨Δℎ!,!Δℎ!,!⟩ = 𝛿!"⟨Δℎ!,!! ⟩ 

where 𝛿!" is the Kronecker delta (𝛿!" = 1 if 𝑖 = 𝑗 and zero otherwise). Because Δℎ!,! is either 882 
+ℎ! or −ℎ!, we have  883 

⟨Δ𝐡Δ𝐡⟩ = 4ℎ!!𝐈 

where 𝐈 is the identity matrix. Thus, when we average the signal to noise ratios over Δ𝐡, the 884 
expressions simplify slightly, 885 

⟨(𝑆/𝑁)!⟩
4ℎ!!

= trace 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!" ⋅ 𝚺!! ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!

!! ⋅ 𝐃! ⋅ 𝐉! ⋅ 𝐉!! ⋅ 𝐃!!

⟨(𝑆/𝑁)!⟩
4ℎ!!

= trace 𝐃! ⋅ 𝐉! ⋅ 𝚺!! +𝐖!" ⋅ 𝚺!! ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!

!! ⋅ 𝐃! ⋅ 𝐉! ⋅𝐖!" ⋅𝐖!"
! ⋅ 𝐉!! ⋅ 𝐃!!   .

 

To avoid having to numerically average over input, we used these expressions when computing 886 
decoding accuracy for the completely non-selective and signal to noise selective connectivity. 887 
That left us with some randomness associated with the networks (as connectivity is chosen 888 
randomly), but that turned out to produce only small fluctuations, so each data point in Figures 889 
5A and 5C was from a single network. For the signal selective connectivity (Figure 5B), the 890 
network realization turned out to matter, so we averaged over 25 networks, and for each of them 891 
we did a further averaging over 100 random picks of the 50 neurons from which we decoded. 892 

In Figure 5, the x-axis is the ratio of the average connection strength from excitatory to 893 
inhibitory neurons to the average connection strength from inhibitory to excitatory neurons. This 894 
was chosen because it turned out to be the connectivity parameter with the largest effect on 895 
decoding accuracy. That in turn is because it turns out to be equivalent to the input noise to the 896 
inhibitory population. To see why, make the substitution 897 

𝐖!" → 𝛾𝐖!"
𝐖!" → 𝛾!!𝐖!" .
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By letting 𝛎! → 𝛾𝛎!, we see that this is formally equivalent to letting 𝛏! → 𝛾!!𝛏!, which in turn 898 
corresponds to letting 𝚺!! → 𝛾!!𝚺!!. Thus the x-axis in Figure 5 can be thought of as the axis of 899 
decreasing input noise to the inhibitory neurons. 900 

Table 1. Parameters used in simulations 901 

𝜎 1.25 noise level 

𝛿 0.75 breadth of noise level distribution 

𝑤!! 0.25 excitatory → excitatory coupling 

𝑤!! -2 inhibitory → inhibitory coupling 

𝑤!" 0.87 excitatory → inhibitory coupling 

𝑤!" -0.87 inhibitory → excitatory coupling 

𝑐 0.1 connection probability 

𝑁! 4000 number of excitatory neurons 

𝑁! 1000 number of inhibitory neurons 

𝑛 50 number of readout neurons 

ℎ! 0.1 input strength 

𝜌 0.75 selectivity index  

 902 

Data and code availability 903 

All the data used in the paper are publicly available on CSHL repository: 904 
http://repository.cshl.edu/36980/. Further, all the data is converted into the NWB format 905 
(Neurodata Without Boarders (Teeters et al., 2015; Ruebel et al., 2019), and is available on 906 
CSHL repository: https://dx.doi.org/10.14224/1.37693 907 

Code for data processing and analysis is publicly available on github: 908 
https://github.com/farznaj/imaging_decisionMaking_exc_inh 909 

Code for converting data to NWB format is also available on github: 910 

https://github.com/vathes/najafi-2018-nwb 911 
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Supplemental Figures 

 

Figure S1. Related to Figure 1. Perceptual decisions about stimulus rate reflect current evidence, previous 
trial’s outcome, and the time passed since the previous trial.  
A, Trial structure. In each trial, first a brief tone is presented to indicate to the animal to initiate the trial (“trial-
initiation tone”). Once the animal licks to the center waterspout (row 2: yellow circle), the stimulus is presented for 1 
sec. At the end of the stimulus, the animal is required to lick again in the center (row 3: yellow circle). This will result 
in: 1) a small water reward in the center, 2) a “go tone” that indicates to the animal to make its choice. If the animal 
licks to the correct side (row 4, 1st red circle), and confirms this lick (row 4, 2nd red circle), it will receive water as a 
reward. If the animal licks to the wrong side (last row, 1st green circle), and confirms this lick (last row, 2nd green 
circle), there will be a time-out, i.e. longer time before the next trial can start. B, A logistic regression model was used 
to assess the extent to which the animal’s choice depends on stimulus strength (how far the stimulus rate is from the 
category boundary at 16Hz), previous choice outcome, and the time interval since the previous choice. Stimulus 
strength was divided into 6 bins (left); previous success was divided into 2 bins: success after a long ITI and success 
after a short ITI (middle); previous failure was also divided into 2 bins: failure after a long ITI and failure after a short 
ITI (right). Plots in top row show 𝛽 averaged across animals (same 10 animals as in Figure 1B). Error bars: S.E.M 
across subjects. Top left: strength of the sensory evidence affects the animal’s choices: the stronger the evidence, the 
higher the impact. Top middle:  Success of a previous trial also affects animal’s decision; the effect is stronger when 
the previous success occurs after a short ITI (<7sec). Top Right: Same but for previous incorrect trials; the effect of 
ITI after a failure was not significant. Plots in bottom row show success (left) and failure (right) 𝛽 for individual mice. 
Error bars: S.E.M returned from glmfit.m in Matlab. C, Behavioral performance of the four mice in which we imaged 
excitatory and inhibitory activity during decision-making. In mice 1, 2, and 4, imaging was performed throughout 
learning by tracking the same group of neurons. Plots reflect data from all sessions. Errors bars: Wilson Binomial 
Confidence Interval.  
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Figure S2. Related to Figure 1. Excitatory and inhibitory neurons have similar temporal dynamics.  
For each session, the fraction of neurons with peak activity in each 100ms time window was computed. This 
quantity is an estimate of the temporal-epoch tuning of neurons. Curves show mean across sessions, for 
excitatory (blue) and inhibitory (red) neurons, for each mouse. Similar to Figure 1E, traces were aligned for each 
trial event (start tone, stimulus, choice, reward), and then concatenated (see Figure 1E, legend).  
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Figure S3. Related to Figure 2. Single neuron measures reveal similar choice selectivity in excitatory and 
inhibitory neurons. 
A, Example neurons to illustrate the method for assessing significant choice selectivity in individual neurons. In 
both panels, the solid line shows the distribution of values for the area under the ROC curve (AUC) generated by 
50 different trial shuffles in which trials were randomly assigned to a left vs. right choice. Star indicates the 
actual AUC value of the neuron. Significance was assessed from the probability of occurrence of the actual AUC 
value in the shuffle distribution. When probabilities were <0.05, neurons were considered choice selective. Only 
the neuron on the left has significant choice selectivity. B, Fraction (left) and magnitude (right) of choice 
selectivity are shown for the unsure neurons (i.e. neurons classified as neither excitatory nor inhibitory; green), 
as well as excitatory (blue) and inhibitory (red) neurons. Data for each mouse show mean +/- standard error 
across sessions. C, Fraction of choice-selective neurons based on ROC analysis on [-200 300]ms relative to the 
choice. Fraction selective neurons at this time window (median across mice): excitatory: 21%; inhibitory: 27%, 
resulting in approximately 11 inhibitory and 69 excitatory neurons with significant choice selectivity per 
session. There is a considerable increase in the fraction of selective neurons when using this time window rather 
than 0-97ms window (see Figure 2C for comparison). D, ROC analysis restricted to those excitatory and 
inhibitory neurons that had the same spiking activity. Choice selectivity is still similar between the two cell 
types. Note that the significant difference observed for mouse 4 in Figure 2C is absent after controlling for the 
difference in spiking activity of inhibitory and excitatory neurons. Mean +/- standard error across sessions. E, 
left: Choice selectivity was computed on correct trials (vertical axis) as well as error trials (horizontal axis), and 
was correlated between the two conditions. Data is from a single session, each point shows an individual neuron 
whose cell type is indicated by its color. The positive correlation indicates that choice selectivity was overall 
similar on correct and error trials (Pearsons’ correlation coefficient, excitatory neurons: r=0.58; p<0.001; 
inhibitory neurons: r=0.55, p=0.007). The small number of points in quadrants 2 and 4 indicate less frequent 
neurons that showed opposite selectivity on correct vs. error trials. Right, Summary of correlation coefficient of 
AUC on correct trials vs. AUC on incorrect trials, mean across sessions for each animal. Error bars: S.E.M. 
across sessions. The weaker correlation in mouse 4 indicates that this animal had a mixture of cells selective for 
the stimulus and cells selective for the choice. Note that although the center of the imaging window was 
identical in all animals, the imaging location within the window of this animal was slightly posterior to the 
others. The enrichment of cells selective for the stimulus, in this mouse compared to other mice, may reflect that 
the region we imaged in mouse 4 was closer to primary visual cortex. 
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Figure S4. Related to Figure 3. Population activity is highly selective for the animal’s choice; excitatory and 
inhibitory neurons are similarly selective. 
Classification accuracy of the choice decoder at each moment in the trial for 9 additional example sessions. Dashed 
lines: choice onset. Black: all neurons included in the decoder; blue: subsampled excitatory neurons; red: inhibitory 
neurons; dim colors: shuffled control. In most sessions, inhibitory and subsampled excitatory populations have 
comparable classification accuracy. 
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Figure S5. Related to Figure 3. Classification accuracy is similar for excitatory and inhibitory populations, 
whether the choice decoder is trained/tested on fluorescence traces or on inferred spikes.  
SVM classifiers were trained to decode choice from the population activity of all neurons (black), inhibitory 
neurons (red), or subsampled excitatory neurons (blue). In (A) fluorescence traces (Figure 1D middle) were used, 
and in (B) inferred spikes (Figure 1D right) were used. In both cases, decoder accuracy is similarly high for 
excitatory and inhibitory neurons. 
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Figure S6. Related to Figure 3. Population activity is strongly selective for the trial outcome, and to a lesser 
degree to the stimulus category and previous choice.  
A, SVM classifier trained to decode previous choice from the activity of all neurons (black), inhibitory neurons 
(red), or subsampled excitatory (blue) neurons. “shfl” indicates classifier accuracy trained using shuffled trial 
labels. Previous choice is reflected, though weakly, in the population activity of the current trial. B, SVM classifier 
trained to decode the stimulus category, i.e. whether the stimulus is high rate (above 16Hz) or low rate (below 
16Hz). Except for mouse 4, in which the imaging location was slightly more posterior (see Figure S3E, legend), 
stimulus category is weakly reflected in the population activity. C, SVM classifier trained to decode the trial 
outcome (i.e. correct vs. incorrect). Classification accuracy gradually increases and reaches 80% (median across 
mice) approximately 400ms after the animal confirms his choice (Figure S1A). Inhibitory neurons showed slightly 
higher selectivity for the outcome. Unsaturated lines in B and C: performance on shuffled trials. D, SVM classifier 
trained on correct trials to decode choice and tested on correct as well as incorrect trials. Data from an example 
animal (48 sessions). Top: Classification accuracy of decoders trained on all neurons (left), subsampled excitatory 
neurons (right, blue trace), and inhibitory neurons (right, red trace). In all cases, classifiers were trained on correct 
trials; however they were tested either on correct (dark lines: “Correct”) or incorrect (dim lines: “Incorrect”) trials. 
Classification accuracy on incorrect trials was high; indicating that population activity primarily reflects the 
animal’s choice, yet it differs at least slightly for correct and incorrect trials. This reduction was similar for 
excitatory and inhibitory neurons (blue are red traces are overlapping in the right panel). Bottom: Across-trial 
distribution of go tones and reward delivery (See Fig. 3B bottom). Left and right panels are the same plots and are 
duplicated to facilitate alignment to each corresponding plot above. E, Summary across all mice for all neurons 
(left) and excitatory and inhibitory neurons separately (right). Classifier performance on correct (dark colors) and 
incorrect (dim colors) trials is shown. Mouse 4 had the largest difference in classification accuracy for correct vs. 
error trials. As with the single-neuron analysis (Figure S3E) and decoding of stimulus category (Figure S6B), this 
difference likely reflects that the imaging region was slightly posterior within the window for this animal. 
Importantly, for all mice, the change in classification accuracy was quite similar for excitatory and inhibitory 
neurons (right), indicating that both populations reflect choice vs. stimulus to a comparable degree.  
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Figure S7. Related to Figure 4. Additional analyses provide more evidence for similar temporal stability of 
the choice decoder in excitatory and inhibitory populations.  
A, In an example mouse, population activity that predicts the animal’s choice is similarly stable for excitatory 
and inhibitory neurons during the course of a trial. The vertical axis shows the stability duration for decoders 
trained at different times during the trial. Stability duration is defined as the width of the testing window over 
which decoder accuracy does not statistically differ from that within the training window (red regions of Figure 
4C) from that obtained by using the same training and testing times (diagonal of Figure 4A). Error bars: S.E.M. 
across sessions. Summary data for all mice at training time 0-97 ms before choice (dashed line) are shown in 
Figure 4D. B, Stability duration of the all-neuron decoder (black in panel A) is compared for decoders trained 
350ms before the choice (black), and 350ms after the choice (green). Population stability was lower after the 
choice than before the choice. This may be due to additional events, e.g. reward delivery and repeated licking, 
which follow the choice. C, Another measurement of stability likewise suggests similar temporal stability for 
excitatory and inhibitory populations. Stability was assessed by measuring the angle between pairs of decoders 
trained at different time points in the trial. If a similar pattern of population activity represents choice from 
moment t1 to moment t2, the choice classifiers trained at these times will be aligned, i.e. the angle between the 
two classifiers will be small. The colors indicate the angle between pairs of decoders trained at different 
moments in the trial. Small angles (hot colors) indicate alignment of choice decoders; hence stable activity 
patterns, related to choice, across neurons. Left: all neurons; middle: excitatory neurons (subsampled to match 
the number of inhibitory neurons); right: inhibitory neurons. As with our other method (Figure 4), the time 
course of stability was similar for excitatory and inhibitory neurons. 
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Figure S8. Related to Figure 5. Selective connectivity between excitatory and inhibitory neurons allows for 
matched classification accuracy in the two populations.  
Decoding accuracy versus three parameters. A, Differential correlations. 𝚺!! → 𝚺!! + 𝜖𝛥𝐡𝛥𝐡. Dark to light hues: 
𝜖 = 0, 17.78, 56.23. B, Excitatory to excitatory connections. Dark to light hues: 𝑤!! = 0.35,  0.3,  0.25 (default). 
C, Inhibitory to inhibitory connections. Dark to light hues: 𝑤!! = -2.4,  -2.0 (default), and -1.6. 
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Figure S9. Related to Figure 6. Higher noise correlations between neurons with similar choice selectivity. 
Also, inhibitory neurons are more strongly correlated.  
A, Noise correlations between neurons with the same choice selectivity (dark colors) vs. those with opposite 
choice selectivity (dim colors), for pairs of excitatory neurons (left), pairs of inhibitory neurons (middle) or 
excitatory-inhibitory pairs (right). Signal correlations were not present because correlations were computed 0-97 
ms before the trial initiation tone, when the stimulus is not present, and the activity is spontaneous. B, Noise 
correlations were much stronger for inhibitory-inhibitory pairs (red) than excitatory-excitatory pairs (black), and 
had intermediate values for excitatory-inhibitory pairs (green). Correlations are computed on 0-97ms before the 
choice after subtracting off the mean choice activity, hence removing the signal correlations. C, Same as B but 
for the time period 0-97 ms before the trial initiation tone (i.e. the spontaneous activity). D,E, same as in B,C, 
except correlations were computed only on those excitatory and inhibitory neurons with the same median spiking 
activity (Methods).  
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Figure S10. Related to Figure 8. The same field of view was imaged during learning. 
A, Field of view from three example sessions of a mouse: 1st days of imaging (left), a middle imaging session 
(middle), and last day of imaging (right). Left to right panels span 60 days, out of which 35 days were 
experimental days. Black circles mark example areas that can be easily matched among the sessions. Each panel 
is an average image of all the frames imaged in the session. Green and red (bleedthrough corrected) images 
were merged. 
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 Figure S11. Related to Figure 8. Further analysis of learning-induced changes in the population 
activity: changes in licking and running movements are unlikely to account for improved classifier 
accuracy during learning. 
A, Licking was similar in advance of high rate vs. low rate choices, both early and late in training. Licks that 
occur before the choice (vertical line at 0) are to the center waterspout, and licks that occur after the choice are 
to the side waterspouts; example mouse. B, Each plot shows the Pearson’s correlation coefficient between 
licking patterns, to the center waterspout, preceding left and right choices, calculated 250ms before the choice. 
These correlations were typically similar for early vs. late training days, indicating that animal’s licking 
pattern preceding left vs. right choices did not change drastically over the course of learning. C, Distance that 
the animal travelled during the decision (as measured by the rotary encoder on the running wheel) was similar 
in advance of left vs. right choices; example mouse; each line represents a session (cold colors: early sessions; 
hot colors: late sessions). D, Classifier accuracy (0-97 ms before the choice) of the full population was high 
even when the analysis was restricted to sessions in which the distance travelled was not significantly 
different (t-test, P>0.05; time 0-97 ms before the choice) for left vs. right choices. This analysis was necessary 
because for some mice in some sessions, there were idiosyncratic differences between the distances travelled 
in advance of left vs. right choices. In (B) and (D), median (red horizontal line), inter-quartile range (blue 
box), and the entire range of data (dashed black lines) are shown. There is a single red ‘+’ at the bottom of 
mouse 3. What is the story there? 
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Figure S12. Related to Figure 8. Further analysis of learning-induced changes in the population activity: 
the reduction in noise correlations is insufficient to account for the improved classification accuracy 
during learning. Instead, the improvement can be explained by an increase in the fraction of significantly 
choice-selective neurons. A, Classification accuracy for each training session (average of cross-validation 
samples), for all neurons (left), subsampled excitatory (middle), and inhibitory neurons (right); example mouse. 
White vertical line: choice onset. This format is the same as Figure 8A, but here the noise correlations are 
removed by making pseudo populations (similar procedure as in Figure 7). B, Summary of each mouse, showing 
classification accuracy averaged across early (unsaturated colors) vs. late (saturated colors) training days, at 0-
97ms before the choice. As in (A), data are based on pseudo-populations in which the noise correlations are 
removed. The learning-induced improvement in the classifier accuracy in pseudo populations indicates that 
reduced noise correlations (Figure 8F) cannot solely account for the enhanced classifier accuracy in the 
population during learning (Figure 8A). C, Equal trial numbers were used to train the choice classifier in every 
session to control for any effects of trial numbers on classifier accuracy. An increase in classifier accuracy is still 
observed as a result of learning. Classifiers were trained only on correct trials. 
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Figure S13. Related to Methods section “Neuropil Contamination removal”. Removing neuropil 
contamination with CNMF or manually using an annulus leads to the same results. 
A, An example spatial component in the FOV and its surrounding annulus (yellow). B, ∆F/F trace for the same 
component obtained by manually subtracting the neuropil activity averaged over the annulus region (blue trace) 
or by using the output of the CNMF processing pipeline (red trace). The two traces look nearly identical as also 
demonstrated by their high correlation coefficient (r = 0.96; the traces are not denoised). These results 
demonstrate the ability of the CNMF framework to properly capture neuropil contamination and remove it from 
the detected calcium traces. 
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