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Summary 

 

Identifying the features of population responses that are relevant to the amount of 

information encoded by neuronal populations is a crucial step toward understanding 

the neural code. Statistical features such as tuning properties, individual and shared 

response variability, and global activity modulations could all affect the amount of 

information encoded and modulate behavioral performance. We show that two features 

in particular affect information: the modulation of population responses across 

conditions and the projection of the inverse population variability along the modulation 

axis. We demonstrate that fluctuations of these two quantities are correlated with 

fluctuations of behavioral performance in various tasks and brain regions. In contrast, 

fluctuations in mean correlations among neurons and global activity have negligible or 

inconsistent effects on the amount of information encoded and behavioral performance. 

Our results are consistent with predictions of a model that optimally decodes population 

responses, which suggests that in our behavioral tasks the readout of information is 

near-optimal.  

 

Keywords: neural coding, decision-making, middle temporal cortex, lateral prefrontal cortex, 

coarse discrimination, fine discrimination, attention, noise correlations, global modulations  

 

Introduction  

Identifying the statistical features of neuronal population responses that affect the amount of 

encoded information and behavioral performance is critical for understanding neuronal 

population coding (Arandia-Romero et al. 2017; Panzeri et al. 2017). The modulation in 

mean firing rate of individual neurons with respect to a stimulus parameter is a statistical 

feature that has been typically taken as evidence for encoding information about that stimulus 

(Hubel and Wiesel 1959; Mountcastle et al. 1967). In addition, changes in network states 

such as global modulations of activity (Gutnisky et al. 2017; Harris and Thiele 2011; Luczak, 

Bartho, and Harris 2013), as well as changes in correlated noise among neurons, have been 

shown to constrain the amount of information encoded by neuronal populations (Ecker et al. 

2014; Lin et al. 2015; Schölvinck et al. 2015; Zohary, Shadlen, and Newsome 1994). Indeed, 
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it has been suggested that changes in neuronal tuning, global activity modulations, and noise 

correlations affect behavioral performance in certain conditions (Cohen and Maunsell 2009; 

Gu et al. 2011; Mitchell, Sundberg, and Reynolds 2009; Ni et al. 2018). However, the aspects 

of neuronal responses that most directly affect the amount of encoded information are not 

clear, since experimental designs often do not allow control over other statistical features that 

could potentially be involved. Furthermore, it is unknown whether the same features of 

population responses that affect the amount of encoded information also impact behavioral 

performance (Arandia-Romero et al. 2017; Panzeri et al. 2017).  

 In a population of N neurons, it is possible to define N mean firing rates, N(N+1)/2 

independent covariances, as well as features based on combinations of these quantities. What 

statistical features matter the most for encoding information? Do these same features also 

affect behavioral performance? To address these questions, we characterized the amount of 

encoded information and behavioral performance in three different tasks based on responses 

of multiple neurons recorded simultaneously in macaque monkeys. We examined neurons 

recorded in two different brain areas: the middle temporal area (MT), and area 8A in the 

lateral prefrontal cortex (lPFC).  We develop a conditioned bootstrapping approach that 

allows us to determine the features of neuronal population responses that influence the 

amount of information encoded and behavioral performance by generating fluctuations of one 

feature while keeping the other features constant. Using this approach, we found that the 

amount of information encoded in neuronal ensembles was primarily determined by two 

features: 1) the length of the vector joining the mean population responses in different 

experimental conditions (referred here as population signal, PS), and 2) the inverse trial-by-

trial variability of the neuronal responses projected onto the direction of the PS vector 

(projected precision, PP).  Contrary to previous suggestions (Ecker et al. 2016; Gutnisky et al. 

2017; Kanitscheider, Coen-Cagli, and Pouget 2015; Lin et al. 2015; Zohary et al. 1994), other 

statistical features, such as mean pairwise correlations (MPC) among neurons and global 

activity (GA) modulations, did not affect the amount of information encoded when PS and PP 

were kept constant. Strikingly, we also found that PS and PP are predictive of behavioral 

performance even though some non-linear processing layers are expected to lie between the 

information encoding stage and the final stage that generates behavioral choices, whereas 

MPC and mean GA are not consistently predictive of behavioral performance. 

Our results call for a reinterpretation of previous studies that suggested that changes 

in MPC (Ecker et al. 2010; Gu et al. 2011; Mitchell et al. 2009; Ni et al. 2018; Renart et al. 

2010; Zohary et al. 1994) or GA (Ecker et al. 2016; Gutnisky et al. 2017; Kanitscheider et al. 
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2015; Lin et al. 2015) modulate the amount of information encoded and behavioral 

performance. Our approach provides a common framework under which all of these results 

can be reinterpreted by showing that, if PS and PP are held constant, changes in MPC and GA 

have little effect. Finally, because the same statistical features that modulate encoded 

information in neuronal populations are the stronger predictors of behavioral performance, 

our results suggest that the decoding process that drives behavior is optimal or close to 

optimal.  

 

Results 

We start by showing that fluctuations of MPC and GA influence the amount of information 

encoded in population activity, consistent with previous studies. We then demonstrate that 

these effects of MPC and GA are largely eliminated when PS and PP are controlled for, 

whereas isolated fluctuations of PS and PP strongly predict the amount of information 

encoded in the population. Finally, we demonstrate that fluctuations of PS and PP are 

correlated with behavioral performance, and we compare this finding with predictions of an 

optimal decoding model. 

 

Mean pairwise correlations and global activity correlate with the amount of encoded 

information 

MPC and GA have been thought to modulate the amount of information encoded in neuronal 

populations (Ecker et al. 2011, 2016; Gutnisky et al. 2017; Kanitscheider et al. 2015; Lin et 

al. 2015; Renart et al. 2010; Zohary et al. 1994). We tested the correlation between these 

statistical features and the amount of information in three different datasets consisting of 

simultaneously recorded units (2 to �50 single-units or multiunits) in four monkeys, two 

brain areas, and three tasks: i) pairs of middle temporal (MT) neurons recorded while the 

animal performed a coarse motion discrimination task (Zohary et al. 1994) (monkey 1, Fig. 

1A), ii) lateral prefrontal cortex (LPFC, area 8a) neurons recorded with a Utah array while 

two animals performed an attentional task (Tremblay et al. 2015) (monkeys 2 and 3, Fig 1B), 

and iii) MT neurons recorded with a 24-channel linear array while the animal performed a 

fine motion discrimination task (monkey 4, Fig. 1C). Behavioral performance in these tasks 

was defined as the percentage of correctly reported directions of motion (monkeys 1 and 4) or 
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as the mean reaction time when correctly detecting a change in orientation of the attended 

Gabor patch (monkeys 2 and 3). The amount of encoded information for each dataset was 

quantified as the cross-validated decoding performance (DPcv) of a linear classifier that reads 

out the activity of the recorded neuronal population to predict i) which of two opposite 

directions of motion was presented in the coarse motion task (monkey 1), ii) which Gabor 

patch was cued in the attention task (monkeys 2 and 3), or iii) whether the stimulus motion 

was right or left of vertical in the fine direction discrimination task (monkey 4). In each case, 

the classifier was trained on the activity of neuronal ensembles recorded in area MT for the 

motion tasks or LPFC (area 8a) for the attention task (see STAR Methods for details).    

To evaluate whether the amount of encoded information (DPcv) was modulated by 

MPC and GA, we used a non-parametric method to produce fluctuations of MPC and GA 

generated by bootstrapping trials from each neural recording dataset (Fig. 2A,B). We then 

examined how fluctuations of MPC and GA affected DPcv (Fig 3; see STAR Methods). We 

found that an increase in MPC tended to produce a decrease in DPcv, therefore reducing the 

amount of encoded information. This was consistent across all tasks and animals as well as 

neuronal ensemble sizes.  For instance, for monkey 1 (Fig. 3A), an increase of MPC 

significantly reduced the amount of encoded information by -0.05% (Wilcoxon signed-rank 

test, � � 2.6  10��; see STAR Methods). Qualitatively similar results were found for 

monkeys 2-4 (Fig. 3B-D).  

In contrast, positive bootstrap fluctuations of GA tended to increase the amount of 

encoded information for some animals, particularly those from which we made PFC 

recordings. For monkey 2 (Fig. 3B), bootstrap fluctuations of GA produced significant 

positive changes in DPcv by 0.91% (ensemble size 2, Wilcoxon signed-rank test, � � 6.9  10���; see STAR Methods). For monkey 3 (Fig. 3C), results were qualitatively similar to 

those obtained for monkey 2, but for monkeys 1 and 4 no significant effect was observed. 

Although these results are generally consistent with those from previous experimental 

and theoretical studies (Ecker et al. 2011, 2016; Gutnisky et al. 2017; Kanitscheider et al. 

2015; Lin et al. 2015; Renart et al. 2010; Zohary et al. 1994), the effects are rather small and 

somewhat inconsistent. As shown below, MPC and GA are confounded with PP and PS and 

do not exhibit significant correlations with DPcv once PP and PS are held constant. 
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Population signal and projected precision determine the amount of information encoded 

in neuronal population responses 

In this section, we identify the statistical features of population tuning and trial-by-trial 

variability that affect the amount of encoded information (as measured by DPcv), and we test 

our predictions on the neural data described above.  

Under some common assumptions (see STAR Methods), an analytical expression for 

the theoretical decoding performance (DPth) of a linear classifier can be derived (Averbeck 

and Lee 2006) DP�� �  Ф���/2�, where Ф��� is the cumulative normal function and �� �√Δ��Σ��Δ� is the signal-to-noise ratio generalized for a population of neurons (Averbeck and 

Lee 2006; Chen, Geisler, and Seidemann 2006; Gutnisky et al. 2017). The term Δ� is the 

vector joining the means of the population responses in the two stimulus conditions and Σ is 

the stimulus-invariant noise covariance matrix of the neuronal population. To understand the 

roles of population tuning and trial-by-trial variability in determining the amount of encoded 

information, it is useful to re-write this equation by rotating the original N-dimensional neural 

response space along the eigenvectors of the covariance matrix as follows, 

DP�� � Ф ��	 |Δ�|�∑ 
��� 
����
�
�

���� �                                                         (1) 

where ��� represents the angle between the i-th eigenvector of the covariance matrix and the 

unitary direction defined by the stimulus vector Δ�, and ���	 denotes the i-th eigenvalue of the 

covariance matrix (see Fig. S1). Equation (1) reveals that the amount of information encoded 

by a neural population can be divided into two independent components: the first order 

contribution from the population tuning (|Δ�|; population signal, PS) and the second order 

contribution from the trial-by-trial variability (�∑ 
��� 
� ���
�
�

���� ; projected precision, PP). It is 

important to remark that �� is often expressed as the signal to noise ratio of the linear 

classifier   �� � ����� !, where under optimality, the signal is given by "μ� � Δ��Σ��Δ�, and 

the noise is given by �� � √Δ��Σ��Δ�. While this �� formulation aims to differentiate signal 

from noise with respect to the classifier’s decision variable (see Fig. S1; (Averbeck and Lee 

2006)), it does not separate the contributions of firing rate modulation (PS) and trial-by-trial 

variability (PP) of the population to the amount of encoded information, since "μ�  and ��  

both contain terms associated with PS and PP.  
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 We find that Eq. (1) provides a very good approximation to the empirical measure of 

the amount of encoded information, as it accounts for more than 96% of the variance in the 

cross-validated decoding performance of a linear classifier (DPcv) for all datasets (Fig. S2). In 

addition, Eq. (1) is a better approximation to DPcv than analytical expressions that simplify 

the covariance structure by removing the off-diagonal terms (Averbeck, Latham, and Pouget 

2006; Averbeck and Lee 2006; Pitkow et al. 2015) (see STAR  Methods; Fig. S3). Finally, 

linear discriminant analysis (LDA) produced better matches to DPcv across different 

ensemble sizes and monkeys than logistic regression (LR) and quadratic discriminant 

analysis (QDA) did, justifying our use of LDA to evaluate the amount of information 

encoded by neural populations (DPcv; Fig. S4).  

Having identified analytically the two features of population tuning and trial-by-trial 

variability that should determine the amount of encoded information (i.e., PS and PP), we 

now test the central prediction that information depends exclusively on PS and PP and does 

not depend on other statistical features, such as MPC and GA, unless those features are 

correlated with PS and PP. Indeed, we found that bootstrap fluctuations of MPC, GA, PS and 

PP showed substantial correlations among them (Fig. 4; see STAR Methods). The 

correlations between fluctuations of PS and GA, PP and MPC, and PP and GA were all highly 

significant (ensemble size 2, $��,�� � 0.073, � � 1.2 ' 10����; $��,��� � (0.061, � � 2.4 ' 10���; $��,�� � (0.097, � � 1.9 ' 10����), whereas the correlation between 

fluctuations of PS and MPC was not statistically significant (ensemble size 2, $��,��� �(0.002, Wilcoxon signed-rank test, � � 0.77; see STAR Methods).  Therefore, we suspected 

that the relationships (Fig. 3) between MPC (and GA) and the amount of encoded 

information would be reduced, if not eliminated, once the modulations in MPC (and GA) 

were made independent of PS and PP by selecting bootstrap samples with constant PS and PP 

values. 

We tested these predictions by using a conditioned bootstrapping method to evaluate 

the effect of fluctuations in one feature on the amount of encoded information while the 

values of other features are kept constant (Fig. 2C; STAR Methods). For example, to 

determine the effects of MPC on DPcv independent of PS and PP, we generated bootstrap 

samples from the original dataset and selected those bootstrap iterations that produced PS and 

PP values within a narrow range around their medians. Then, for the selected data, we 

evaluated the % change in DPcv introduced by the bootstrap fluctuations in MPC. Any 

dependence of DPcv on MPC, then, cannot be explained by the dependencies of DPcv on PS 
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and PP. This conditioning approach can also be understood as a method for de-correlating 

different features of the neural activity by keeping only those bootstrap realizations that 

produced uncorrelated instances of the features to be studied. This method can be used to test 

the effects of any statistical feature on the amount of encoded information by fixing other 

features to their representative values, thus isolating the individual effects.  

There are other possible approaches to isolating the effects of different statistical 

features on the amount of encoded information (DPcv), such as a model-dependent analysis 

based on generalized linear models (GLMs). However, due to the linearity assumptions 

underlying GLMs and the potential collinearity between several statistical features, it is 

preferable to use a model-independent approach based on conditioned bootstrapping (STAR 

Methods).  

Applying this conditioned bootstrapping approach to our datasets, we found that 

bootstrap fluctuations of PS and PP greatly affected the amount of encoded information, 

whereas fluctuations of MPC and GA produced negligible changes in DPcv across different 

tasks, animals, and neuronal ensemble sizes (Fig. 5). As anticipated, when fluctuations of 

MPC and GA were conditioned on PS and PP, the effects reported in Fig. 3 largely vanished 

(Fig. 5, right column). For monkey 1 (Fig. 5A), fluctuations of PS and PP produced 

significant positive changes in the amount of encoded information by 5.83% (Wilcoxon 

signed-rank test, � � 4.2  10�� ; see STAR Methods) and 3.21% �� � 3.2  10��!�, 

respectively. In contrast, fluctuations of MPC and GA had no significant effects on DPcv 

(� � 0.38 and � � 0.13, respectively). For monkeys 2-4 (Fig. 5B-D), results were 

qualitatively similar to those obtained for monkey 1 (see Table S1). We also compared the 

difference in % change in DPcv for all pairs of statistical features, and found again that PS and 

PP had the most significant effects on the amount of encoded information (Table S2). The 

observed dependency of DPcv on PP is generally weaker than that on PS. This could be 

explained at least partially by the fact that PP is a second order statistic and therefore is 

expected to be noisier than the first order statistic, PS, when estimated from limited 

experimental data.  

 

Population signal and projected precision are also the strongest predictors of behavioral 

performance 
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We have shown that PS and PP are the major statistical features of population activity that 

affect the amount of encoded information in neuronal populations. But do these features also 

have an impact on behavioral performance? We reasoned that if downstream neurons that 

contribute to behavioral choices can extract most of the information encoded by a neuronal 

population, then behavioral performance should depend on PS and PP while it is largely 

independent of MPC and GA.  However, since there could be many layers of non-linear 

computations between the information encoding stage and the final behavioral choice, finding 

such a relationship is not guaranteed a priori. 

Behavioral performance was measured as the percentage of correctly reported 

directions of motion (monkeys 1 and 4) or as the mean reaction time (monkeys 2 and 3) (Fig. 

S5). We first confirmed that modulations in the amount of encoded information (DPcv) over 

different bootstrap samples were significantly correlated with the corresponding changes in 

behavioral performance (Fig. 6). Although the reported correlations are weak, they are 

nevertheless consistent with the predictions of a model that reads out neuronal population 

activity optimally to produce behavioral choices (see next section). We then performed the 

conditioned bootstrap analysis on behavioral performance separately for each stimulus 

strength or task difficulty in order to control for trivial dependencies (see STAR Methods). 

We found that bootstrap fluctuations of PS and PP predicted significant modulations of 

behavioral performance across different datasets and ensemble sizes, whereas changes in 

behavioral performance produced by fluctuations in MPC and GA were either weak or 

inconsistent across different animals and ensemble sizes (Fig. 7). For example, bootstrap 

fluctuations of PS or PP, while keeping all other statistical features fixed, predicted 

significant changes in behavioral performance for monkey 1 (Fig. 7A; behavioral change 

predicted by PS alone:1.41%, Wilcoxon signed-rank test, � � 3.3  10��	; PP alone: 0.56%, � � 2.1  10���. However, the average change in behavioral performance predicted by 

bootstrap fluctuations of either MPC or GA alone were very small and not statistically 

significant for this animal (MPC:  0.07%, Wilcoxon signed-rank test, � � 0.52; GA: -0.04%, � � 0.66). We obtained qualitatively similar results for other monkeys and tasks (Fig. 7B-D; 

see Table S3), except that bootstrap fluctuations of GA produced significant fluctuations in 

behavioral performance for monkey 2, but not monkey 3, in the attentional task. We also 

analyzed the data using Pearson’s correlation coefficient in place of % change in DPcv and 

obtained qualitatively similar results (Fig. S6). These results were also robust across different 
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conditioning thresholds (Fig. S6; see STAR Methods) and for all pairs of statistical features 

(Table S4). 

In summary, we find that PS and PP are the primary statistical features of neural 

activity that exhibit modulatory effects on behavioral performance, while MPC and GA show 

little or no consistent effects. These results are in line with those described earlier for the 

amount of encoded information (Fig. 5). As shown below, the weaker relationship between 

PS/PP and behavior, as compared to that between PS/PP and the amount of encoded 

information, is most likely a consequence of behavior being produced as a read-out of the 

encoding network.  

 

An experimentally-constrained model accounts for the findings  

Although PS and PP are the most consistent and prominent features that correlate with 

behavioral performance, the observed magnitude of those correlations is quite weak (Fig. 7). 

One possible explanation for this this weak dependence is that responses are decoded 

suboptimally, thus producing weak coupling between PS/PP and behavior. Alternatively, the 

data might be consistent with an optimal readout if behavior is based on much larger neuronal 

populations than the typical ensemble sizes that we have analyzed. In this latter scenario, PS 

and PP computed from the entire population of relevant neurons would strongly predict 

behavior, but PS and PP of small sub-ensembles recorded experimentally would have much 

weaker correlations with behavior. Indeed, previous work has consistently shown that 

correlations between neuronal activity of individual neurons and behavioral performance is 

weak, presumably due in part to the fact that behavior is driven by much larger populations 

(Britten et al. 1996; Haefner et al. 2013; Nienborg and Cumming 2009; Uka and DeAngelis 

2004).  

To test whether our experimental findings (Fig. 7) are consistent with an optimal 

readout of a neuronal population much larger than the observed ensembles, we developed an 

experimentally-constrained model that could capture the basic statistical properties of the 

neural responses that we observed (Fig. 8A, Fig. S7A and STAR Methods). The model 

simulates a number of trials (M trials in total) in which a stimulus (, � -.1, (10) drives a 

large population consisting of N = 1000 neurons. Each neuron has a linear tuning curve with 

a slope (m1) drawn from a normal distribution. Neuronal correlations combined limited-range 

dependencies (Kanitscheider et al. 2015; Kohn et al. 2016), differential correlations(Moreno-
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Bote et al. 2014) and multiplicative and additive gains (Arandia-Romero et al. 2016). These 

correlations were generated though a sequence of steps as follows. For each trial 1, a vector 23"  (size N = 1000 neurons), was drawn from a multivariate Gaussian with mean 4 and 

covariance matrix Σ#$%. The response vector 23"  was then corrupted with sensory noise, 5," , 

which introduces differential correlations and limits the amount of information encoded in 

large populations of neurons (Moreno-Bote et al. 2014). Multiplicative and additive gains 

were then applied (Arandia-Romero et al. 2016) (6") and a final Poisson step converted each 

response rate into an observed spike count 7" (Kanitscheider et al. 2015) (see STAR 

Methods). Fano factors (FF) that roughly matched typical values found experimentally were 

used (Arandia-Romero et al. 2016; Nogueira, Lawrie, and Moreno-Bote 2018; Shadlen and 

Newsome 1998). Finally, based on the neuronal activity generated by the network, we 

generated surrogate choices (8") by optimally decoding the whole population of 1000 

simulated neurons (8" � sign�=&'(� 7" . >)�) on a trial-by-trial basis. The presence of 

differential correlations ensures that the amount of encoded information could not scale 

indefinitely with the number of neurons. 

To compare to our experimental data, we then randomly selected small ensembles (up 

to 10 units) out of the full population of 1000 model neurons to test how fluctuations in PS 

and PP of the small ensembles correlate with encoded information and simulated behavior of 

the full network (Fig. S7), repeating the analyses performed on the experimental data (Figs. 5 

and 7). Consistent with the experimental data, PS and PP computed from these small 

ensembles of model neurons are the only features that correlated significantly with DPcv and 

surrogate behavioral performance, while MPC and GA did not (Fig. 8B,C). We also found 

that changes in the model’s simulated behavioral performance associated with bootstrap 

fluctuations of PS and PP were quite small (Fig. 8C; ensemble size 10; surrogate behavioral 

change predicted by PS alone: 0.63%, Wilcoxon signed-rank test, � � 1.73  10��; PP alone: 

0.065%, � � 0.028) and roughly similar in magnitude to the experimental results (Fig. 7). As 

expected, when neuronal ensembles of up to 100 neurons were used instead, fluctuations of 

PS and PP had a larger effect on surrogate behavioral performance (ensemble size 100; 

surrogate behavioral change predicted by PS alone: 0.90%, Wilcoxon signed-rank test, � � 1.73  10��; PP alone: 0.21%, � � 4.38  10��). Finally, correlations between 

fluctuations of DPcv and simulated behavioral performance were weak (Fig. S7G) and 

comparable to those observed in the experimental data (Fig. 6). Therefore, the weak 
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correlations that we observed experimentally between PS/PP and behavioral performance are 

broadly consistent with a scenario in which behavior is generated by an optimal read out of a 

much larger neuronal population of neurons.  

 

Discussion  

Identifying the statistical features of neural population responses that determine the amount 

of encoded information and predict behavioral performance is essential for understanding the 

link between neuronal activity and behavior. Based on data collected from two brain areas 

and three behavioral tasks, we identified two critical features: the length of the vector joining 

the mean responses of the population of neurons across two conditions to be distinguished 

(population signal, PS), and the projection of the inverse covariance matrix onto the direction 

of that vector (projected precision, PP). We found that changes in PS and PP are significantly 

correlated with the amount of encoded information and behavioral performance, but MPC 

and GA are not, once their correlations with PS and PP are eliminated. Our experimental 

results are consistent with predictions of a neuronal population model with realistic neuronal 

tuning, variability, and correlations that is read-out optimally to generate behavioral choices.   

Although previous studies have examined how input signals are represented in the 

average activity of neurons (Hubel and Wiesel 1959; Mountcastle et al. 1967; Renart and van 

Rossum 2012) and have described the types of neuronal correlations that can benefit or harm 

encoded information (Abbott and Dayan 1999; Averbeck et al. 2006; Ecker et al. 2011; 

Moreno-Bote et al. 2014; Zohary et al. 1994), they have not clearly identified the primary 

features of neuronal population activity that constrain the amount of encoded information and 

affect behavioral performance. As shown above, a traditional interpretation of d’ considers the 

signal and noise components of the classifier’s decision variable. However, it does not 

separate the contributions of population tuning (first order statistic) and trial-by-trial 

variability (second order statistic) of the neuronal responses to the amount of encoded 

information. Thus, one important contribution of our study is identifying PS and PP as the 

critical features of neuronal activity that modulate the amount of encoded information and 

predict behavioral performance. Another contribution of this study involves demonstrating 

that other features of neuronal activity, namely MPC and GA, have little or no impact on the 

amount of encoded information and behavioral performance once PS and PP are controlled 

for, even though they have previously been considered important factors (Arandia-Romero et 
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al. 2016; Ecker et al. 2016; Gutnisky et al. 2017; Kanitscheider et al. 2015; Lin et al. 2015; 

McAdams and Maunsell 1999; Shadlen and Newsome 1998; Zohary et al. 1994). We 

developed a novel approach for studying correlations among multiple variables while 

eliminating the effects of other variables (conditioned bootstrapping method). This method 

uses bootstrapping to generate continuous distributions of multiple statistical features so that 

fluctuations of some features can be computed for a subset of bootstrap samples that yielded 

no fluctuations in other features. This method allowed us to isolate the effects of a particular 

feature on both the amount of encoded information and behavioral performance. Thus, our 

approach clearly differs from the traditional trial shuffling method that destroys all 

dependencies in the data to examine the effects of correlations (Kohn and Smith 2005; 

Leavitt et al. 2017; Romo et al. 2003; Tremblay et al. 2015). It also differs from maximum 

entropy models that generate surrogate data while fixing the first and second moments of the 

generated distribution to desired values (Elsayed and Cunningham 2017).   

Previous studies have suggested that MPC and GA affect behavioral performance 

(Cohen and Maunsell 2009; Gu et al. 2011; Mitchell et al. 2009; Ni et al. 2018). On the 

surface, these studies appear to be at odds with our main finding that only PS and PP should 

affect the amount of encoded information or behavioral performance. Indeed, we find that 

bootstrap fluctuations of MPC and GA have little effect on the amount of encoded 

information or behavioral performance when PS and PP are kept constant. Our results suggest 

that the previous studies found effects of MPC and GA on behavioral performance because 

these variables are themselves correlated with PS and PP (see Fig. 4). In fact, there may be 

many other statistical features of neuronal responses that seemingly influence the amount of 

encoded information and behavioral performance, but such relationships could be explained 

as a byproduct of correlations of these statistical features with PS and PP. 

Although theoretical research has proposed that fluctuations of GA can modulate the 

amount of encoded information (Ecker et al. 2016; Kanitscheider et al. 2015; Lin et al. 2015), 

a recent study based on large neuronal populations in monkey primary visual cortex found 

that the amount of information does not vary with large fluctuations in GA (Arandia-Romero 

et al. 2016). Another recent study found a modest, but significant, increase in decoding 

performance when population activity decreased (Gutnisky et al. 2017), which appears to be 

inconsistent with our theoretical prediction. Again, however, some of the previous reports of 

positive effects of GA may have arisen from correlations between fluctuations in GA and PS. 

Indeed, we have found a highly significant correlation between PS and GA. Therefore, an 
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important question is whether there is a residual effect of GA on the amount of encoded 

information in the previous studies after the contributions of PS and PP are eliminated. Our 

theory predicts that there should not be, and the conditioned bootstrapping approach that we 

have developed would be useful for teasing apart the statistical features (such as PS and PP) 

that fundamentally affect the amount of encoded information and behavioral performance 

from heuristic parameters such as GA that may have only secondary effects on information or 

behavior.   

In conclusion, based on information metrics that are readily applicable to neuronal 

data, we developed a theoretically-driven analysis that has identified the statistical features of 

neural population responses that modulate the amount of information encoded by cortical 

neuronal populations. We found an excellent agreement between the theory and the 

experimental results, which indicates that the assumptions of our approach are reasonable. A 

critical finding is that PS and PP are the primary features that correlate with behavioral 

performance and that one must be careful when interpreting effects of other statistical 

features that may co-vary with PS or PP. Finally, the fact that the same features affect both the 

amount of encoded information and behavioral performance suggests that the decoding 

process that drives the animal’s behavior is optimal or close to optimal. Indeed, if the 

decoding process were strongly sub-optimal, the most relevant statistical features for 

encoding information would not match those affecting behavior; rather, the relevant statistical 

features would take different forms depending on the exact set of read-out weights used by 

downstream areas to produce behavior.   
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STAR Methods 

 

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ramon Nogueira (rn2446@columbia.edu) 

 

Experimental model and subject details 

See next section 

 

Methods details 

1. Theoretical expression for the amount of encoded information 

1.1. Theoretical decoding performance for an arbitrary linear classifier 

If we assume that the activity of a neuronal population r follows a multivariate Gaussian 

distribution, the covariance matrix for r is stimulus-independent, the probability of presenting 

condition 1 is same as presenting condition 2 (?�@�� � ?�@	� � 0.5�, and the classification is 

based on a linear projection of r into a scalar variable z = ωTr + ω0 (linear classifier) (see 

(Fisher 1936)), then the performance of the linear classifier can be expressed as 

A� � Ф ��	 *�+,-*�. *�,                                                       (2) 

where Δ� B 4� ( 4	, μ1 = E[ r | @�], μ2 = E[ r | @	], Σ = E[ (r – μ1)(r – μ1)
T | @�] = E[ (r – 

μ2)(r – μ2)
T | @	],  Ф�·� is the cumulative Gaussian function, and A� is the decoding 

performance.  This expression gives the percentage of correct classifications (i.e. A�) that 
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would be achieved by a linear classifier that reads out from a neuronal ensemble using an 

arbitrary set of weights, =.  

 

1.2. Theoretical DP for the optimal linear classifier 

By optimizing Eq. (2) with respect to =, we find that =&'( D Σ��Δ�, which corresponds to 

the solution for the Linear Discriminant Analysis  (LDA)(Fisher 1936). We can substitute ω 

for =&'( in Eq. (2) to find the DP for the optimal classifier 

A� � Ф  �	 √Δ��Σ��Δ�!.                                               (3) 

The term inside Ф�·� is known as �� � √Δ��Σ��Δ� (Averbeck and Lee 2006; Chen et 

al. 2006). It is a scalar quantity and therefore it remains invariant under unitary rotations of 

the reference frame. By rotating the original neuron-based orthogonal basis so that Σ (and 

thus Σ��) becomes diagonal, we can express Eq. (3) as 

A� � Ф E�	 |Δ�|�∑ 
���0����
�
�

�1�� F .                                          (4) 

(see (Moreno-Bote et al. 2014) for a similar derivation in the case of linear Fisher 

information).  The first term, |Δ�| which we will refer to as Population Signal (PS), is the 

norm of the stimulus tuning vector Δ�. It measures the overall modulation of the activity of 

the neuronal population as a function of the stimulus conditions.  The second term, 

�∑ 
���0����
�
�

�1��  which we will call Projected Precision (PP), is a function of G�� , the angle 

between the i-th eigenvector of the covariance matrix Σ and the direction of the stimulus 

tuning vector Δ�, and ���	, the i-th eigenvalue of the covariance matrix. Thus, Projected 

Precision is the square root of the sum of squares of the precision of the population activity 

along each of the ellipsoid’s N axes (N = the number of neurons) projected on to the axis of 

the normalized stimulus tuning vector H+, B  +,|+,|. This rotation allows us to dissect the 

independent contributions of population tuning (first-order statistics) and trial-by-trial 

variability (second-order statistics) to the amount of information encoded by a neural 

population, which is not possible with the standard factorization of d’ into signal and noise 

components (see main text).  

 

1.3. Theoretical DP for shuffled neuronal recording data 

Trial shuffling is a commonly used technique to destroy the trial-by-trial shared fluctuations 

among neurons while preserving their mean firing rate to different experimental conditions. 
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To understand the effects of noise correlations on DP, it is useful to derive theoretical 

expressions of DP for shuffled data. Shuffling the activity of single neurons across trials for a 

fixed stimulus condition transforms the covariance matrix Σ into Σ34  (Averbeck et al. 2006), 

which is only approximately diagonal due to finite data size effects. The theoretical 

expression of DP for the shuffled data is given by 

A� � Ф ��	 *�+,-*�.�� *�.                                                 (5) 

The optimal classifier is therefore =&'( D Σ34��Δ�, and Eq. (4) becomes 

 

A� � Ф ��	 |Δ�|�∑ 
���0��
�
�

�1�� �.                                            (6) 

In this expression, PS remains the same as in Eq. (4) while the PP for the shuffled 

data becomes �∑ 
���0��
�
�

�1�� , where ��	 is the variance of the response of each neuron and G� is 

the angle between the stimulus tuning axis H+,  and each vector of the neuron-based 

orthogonal basis defining the original N-dimensional space of the neuronal activity. The 

above equation can also be expressed as 

A� � Ф ��	 �∑ 5+6�7��
�
�

�1�� �,                                                (7) 

where �∑ 5+6�7��
�
�

�1��  can be understood as the square root of the sum of the signal-to-noise ratio 

(SNR) of all neurons in the ensemble (Seung and Sompolinsky 1993).  

 

1.4. Theoretical DP under suboptimal read-outs 

Here, we derive theoretical expressions of DP for two sub-optimal classifiers: one blind to 

response variability and another blind to pairwise correlations (Pitkow et al. 2015). 

The variability-blind classifier takes into account the neuronal tuning but it is blind to 

any elements of the covariance matrix (considers the covariance matrix to be the identity 

matrix). Thus, the readout weights for this classifier are given by = D Δ�. Introducing this 

expression into Eq. (2), we find 

A� � Ф I�	 |+,|
8∑ ��

�
�
���0���

�	


J ,                                                (8) 

where ���	 and G�� are as defined before.  
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The correlation-blind classifier (Pitkow et al. 2015) only takes into account the signal-

to-noise ratio of each neuron, and ignores pairwise correlations among the neuronal ensemble 

(off-diagonal terms in the covariance matrix). The set of weights for this classifier, then, is 

given by >� D +6���
�
� , which can also be written as = D Σ34��Δ�. By substituting this expression 

into Eq. (2), we obtain 

A� � Ф
K
LM�	 |Δ�| ∑ �
����

�
�
�

�
�	


:∑ �
�����

��
�
�

�
�	
 N

OP ,                                                  (9) 

where ��	  and G�  are as defined earlier and �Q�	 and GR�  correspond to the i-th eigenvalue and 

the angle between H+, and the i-th eigenvector of the matrix Σ34��ΣΣ34��, respectively. The 

correlation blind classifier, though suboptimal for correlation-intact data, is optimal for 

shuffled data from which pairwise correlations have been removed. 

 

1.5 Theoretical expression for DP and differential correlations  

The task of our binary classifier is to assign one of two possible labels to a multi-dimensional 

pattern of activity. In most experimental situations, the two discrete labels are just particular 

instances of a continuous variable. For example, the direction of motion is a continuous 

variable, but the subject may be asked to discriminate between two particular directions (e.g., 

left vs right) in a motion discrimination task. Although we may measure neuronal activity 

only for particular values of a stimulus variable s (e.g. s1 and s2; ", B �,� ( ,	�), the 

population tuning curve, �, is a continuously varying function of s, ��,�. This mapping from 

the one-dimensional stimulus space s to the N-dimensional neuronal tuning space ��,� is 

assumed to be continuous and differentiable, and therefore 
;,537;3 � �3�,� exists. We can 

assume that  

���,� � +,+3 ,                                                       (10) 

which is always true if s1 – s2 is small enough. In this case, the amount of encoded 

information (DP) can be obtained by substituting  Σ�� � Σ)�� ( <�=<,��.��
,� Σ)������>Σ)��,                                   (11) 

 into �� � √Δ��Σ��Δ� 

                                 �� � �Δ�>  Σ)�� ( <�=<,��.��
,� Σ)������>Σ)��! Δ�  
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� S ;����= �

���
;���  .                                                               (12)  

where �)� � TΔ�>Σ)��Δ�.  

Introducing Eq. (12) back into Eq. (3) gives us 

A� �  Ф I�	 S ;����= �

���
;���J.                                                        (13) 

Therefore, when differential correlations are introduced into the system, the original �)�	 is  reduced by a factor 1 . <+�� �)�	. When the neuronal ensemble (N) is very large, this 

expression becomes 

A� �  Ф  �	 +�√<!,                                                         (14) 

as �)�  grows monotonically with N. In the presence of noise at the input stage, the decoding 

performance of a linear classifier will be constrained by the upper bound Ф  �	 +�√<!, even when 

optimally reading-out the activity of many neurons simultaneously. The further the stimuli 

are apart, the higher the upper bound will be, and the larger the sensory noise is, the lower the 

upper bound becomes. 

 

2. Comparison between theoretical and cross-validated decoding performance on 

experimental data. 

We evaluated how well decoding performance of the theoretical expression (DPth) agrees 

with that of the classifiers trained and tested on experimental data (DPcv). We plotted DPth 

against DPcv and performed type-II regression (orthogonal linear regression) on the data. We 

assessed the similarity between the two measures of decoding performance by computing the 

percentage of the variance in DPcv that can be explained by DPth as U�/�U� . U	�  100, where U� and U	 correspond to the variance captured by the first and second principal components 

of the DPth vs DPcv plot, respectively (Fig. S2). In order to account for possible idiosyncrasies 

from choosing a LDA when evaluating DPcv and possible over-fitting on DPcv due to the 

limited number of trials in our datasets, we also computed DPcv using Logistic Regression 

(LR) on both the test and the training sets (Fig. S2).  In addition to the percentage of 

explained variance as the goodness-of-fit metric for the linear fit (% explained variance or 

E.V.), we also considered the slope and intercept parameters as complementary goodness-of-

fit metrics (Fig. S2) and obtained very similar overall results. 
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We compared how well the optimal expression (Eq. 4) approximated DPcv with 

respect to the suboptimal expressions for DPth (Eqs. 8 and 9) by plotting the ratio between the 

percentages of explained variance (Fig. S3A). We performed the same analysis after shuffling 

across trials the activity of each individual neuron for a given stimulus condition (Fig. S3B). 

Finally, we compared a linear discriminant analysis (LDA), a quadratic discriminant analysis 

(QDA) and a logistic regression (LR). Since LDA performed the best among the three (Fig. 

S4), we chose LDA for computing DPcv in all analyses presented here. For a detailed 

description of how these fits were performed for each dataset, see section 5.  

  

3. Conditioned bootstrapping method 

We performed an analysis based on bootstrapping to test the effects of fluctuations in PS, PP 

and other statistical quantities of neuronal responses on the amount of encoded information 

(DPcv) and behavioral performance. The conditioned bootstrapping method involves two 

steps: (1) generating fluctuations in statistical quantities through bootstrapping, and (2) 

conditioning by selecting bootstrap samples that produce fluctuations in certain statistical 

features but not in the conditioned ones. 

For a particular set of trials (sub-dataset, see below), bootstrap samples were 

generated by randomly selecting M trials (M being the total number of trials for this particular 

sub-dataset) with replacement. For each bootstrap sample we calculated the following 

quantities: 

 

• Behavioral performance of the animal, denoted as B (see below for the definition of 

behavioral performance in each task). 

• Theoretical decoding performance, DPth (Eq. 4). 

• Decoding performance of a cross-validated linear classifier (LDA), DPcv. 

• Population Signal, PS, and projected precision, PP. 

• Mean pairwise correlation, MPC, defined as the average of all pairwise correlations 

for a fixed stimulus condition. 

• Global activity of the neuronal population, GA, defined as the mean neuronal activity 

across all neurons and trials. 

 

We generated 104 bootstrap samples (103 when analyzing DPcv, as fitting the classifier 

is computationally expensive) and obtained a distribution of each quantity listed above. We 
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will denote the obtained value of the statistical feature i for the bootstrap iteration j as ��", and 

the fluctuation of ��" with respect to the median value of the distribution across bootstrap 

iterations as 5��" � ��" ( �Q�, where �Q�  denotes the median of the distribution. We used the 

median rather than the mean so that the method works just as robustly for skewed 

distributions as for symmetrical distributions, although strongly skewed distributions were 

typically not observed (Fig. 2). It is important to note that bootstrap samples could include 

non-unique trials. When evaluating statistical features like the covariance matrix, if the 

number of unique trials is small, singular matrices could be generated. Nevertheless, the 

number of unique trials in all datasets is typically 10 times larger than the number of neurons 

used in the analysis (see next section). Therefore, the rank of the bootstrapped covariance 

matrix is always bound by the number of neurons rather than by the number of unique trials 

subsampled for each bootstrap iteration. In other words, the probability of generating 

covariance matrices of full rank (number of neurons) in 104 bootstrap iterations is effectively 

one.   

 In order to assess what statistical features affect the amount of encoded information 

and behavioral performance the most, we evaluated the dependency of 5A�@A and 5V on 5�� , 
where, as above, �� represents a particular statistical feature of the neuronal responses. Here, 

dependency refers to various possible measurements, such as correlation. A dependency 

across bootstrap iterations between 5A�@A and 5��  (referred here as ?�5A�@A , 5���), and 

between 5V and 5��  (?�5V, 5���) could result from dependencies mediated by a third 

quantity 5�B.  For instance, Eq. (4) predicts that DPcv depends exclusively on PS and PP, but 

since PP decreases as the ensemble's noise (both individual and pairwise) increases, an 

inverse relationship between 5MPC and 5PP is expected. Therefore, we may find a 

correlation between 5A�@A and 5W�@ as a result of their dependencies on 5PP. To estimate 

the strengths of the dependencies ?�5A�@A , 5��� and ?�5V, 5��� that are not confounded by 

other variables, we developed a method for minimizing the correlation due to dependencies 

of 5A�@A (or 5V) and 5�� on a third variable 5�B. Among all generated bootstrap samples, we 

selected those that yielded 5�B X 0, i.e., �B values within the ± 10th percentile of its median 

value. Based on the selected samples, we computed ?�5A�@A , 5��|5�B X 0� (or ?�5V, 5��|5�B X 0�), i.e. the dependency between 5A�@A (or 5V) and 5��  conditioned on 5�B. This method can easily be extended to multiple conditioning variables as long as there 

are enough numbers of bootstrap samples for the analysis that satisfy the conditions. Using 

this technique, we computed the following conditional dependencies: 
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• ?�5A�@A , 5�Y|5�� X 0, 5W�@ X 0� and ?�5V, 5�Y|5�� X 0, 5W�@ X 0� 

• ?�5A�@A , 5��|5�Y X 0, 5W�@ X 0� and ?�5V, 5��|5�Y X 0, 5W�@ X 0� 

• ?�5A�@A , 5W�@|5�Y X 0, 5�� X 0� and ?�5V, 5W�@|5�Y X 0, 5�� X 0� 

• ?�5A�@A , 5Z[|5�Y X 0, 5�� X 0� and ?�5V, 5Z[|5�Y X 0, 5�� X 0� 

 

To evaluate ?�5A�@A , 5��|5�B X 0, 5�C X 0� (Figs. 5, 8B and Fig. S8A) and ?�5V, 5��|5�B X 0, 5�C X 0� (Figs. 7, 8C and Figs. S6, S8B), we used 103 and 104 bootstrap 

iterations, respectively. With the conditioning criterion of ±10th percentile around the median, 

about 4% of the total number of bootstrap iterations (40 for dependencies on DPcv and 400 

for B) satisfied the conditioning on both �B and �C from which to compute dependencies. 

The dependencies ?�5A�@A , 5��|5�B X 0, 5�C X 0� and ?�5V, 5��|5�B X 0, 5�C X 0� 

were evaluated by using two metrics: (1) the Pearson correlation coefficient (Figs. S6B, S7G) 

and (2) the percent change (Figs. 5, 7, 8B,C, and Figs. S6A, S8). Percent change in A�@A with 

respect to 5��  (% change A�@A� ) was defined as 

% change A�@A� � DE�
��

��
�
�F�DE�

��

��
�
�F

DE�
��

��
�
�F   ,                                 (15) 

where a A�@AGH�� b and a A�@AGH�� b represent the mean DPcv values for the bootstrap 

iterations that produced 5�� above (5��=) and below (5���) its median value �Q� , respectively. 

Similarly, percent change in V with respect to 5��  (% change V�) was defined as 

% change V� � DI��
�
�F�DI��

�
�F

DI��
�
�F  .                                  (16) 

where a VGH�� b and a VGH�� b represent the mean V values for the bootstrap iterations that 

produced 5��  above (5��=) and below (5���) its median value �Q�, respectively. Because 

behavior (V) was quantified as the mean reaction time in the attentional task, the sign of ?�5V, 5��|5�B X 0, 5�C X 0� was inverted so that negative fluctuations in V correspond to 

positive fluctuations in performance (Figs. 6 and 7B,C and Figs. S6A,B and S8B) for 

monkeys 2 and 3 (attentional task with recordings in LPFC 8a). 

To confirm that our results still hold even if we impose a stricter conditioning 

criterion, we also computed % change V using bootstrap iterations that produced the 

conditioning variables �B and �C within ± 5th percentile of their respective median values (100 

bootstrap iterations fulfilled this conditioning criterion; see Fig. S6). We observed no 

substantial differences between the results from the two conditioning criteria. 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/577379doi: bioRxiv preprint first posted online Mar. 14, 2019; 

http://dx.doi.org/10.1101/577379


23 

 

The conditioning method employed here is an effective way of minimizing the portion 

of the dependency that is due to a third variable. One disadvantage of our approach is that, as 

the number of conditioning variables increases, the number of required bootstrap iterations 

increases exponentially. This is because, for a given iteration size, the number of bootstrap 

iterations that satisfy the simultaneous condition decreases. Because conditioning 

simultaneously on all features was computationally unfeasible due to the large number of 

bootstrap samples required, we also evaluated the conditioned dependencies described above 

but using GA instead of MPC as the conditioning variable when assessing the dependency 

between DPcv and B on PS and PP. Specifically, we computed ?�5A�@A , 5�Y|5�� X0, 5Z[ X 0�, ?�5V, 5�Y|5�� X 0, 5Z[ X 0�, ?�5A�@A , 5��|5�Y X 0, 5Z[ X 0� and ?�5V, 5��|5�Y X 0, 5Z[ X 0� and obtained qualitatively similar results to those depicted in 

Figs. 5, 7 (Supplementary Fig. S8). 

For Fig. 3, the dependencies ?�5A�@A , 5W�@� and ?�5A�@A , 5Z[� were evaluated 

using % change A�@A�  (Eq. 15) without conditioning on the rest of statistical features of the 

neuronal responses. For each monkey and ensemble size, the reported dependencies 

corresponded to the median value across independent sub-datasets (see detailed description of 

each experimental dataset in section 5). Statistical significance was calculated with a two-

sided Wilcoxon signed-rank test, with which we tested whether the median of the distribution 

of independently obtained values was significantly greater or less than zero. Likewise, for 

Fig. 4, the dependencies ?�5�Y, 5W�@�, ?�5�Y, 5W�@�, ?�5�Y, 5W�@� and ?�5�Y, 5W�@� 

were evaluated with the Pearson correlation between the bootstrap fluctuations of these 

statistical features. For each ensemble size, the reported dependencies corresponded to the 

median values across independent sub-datasets and monkeys and statistical significance was 

calculated with a two-sided Wilcoxon signed-rank test as before. For Fig. 6 and S7G, the 

dependency  ?�5V, 5A�@A�  was evaluated by computing the Pearson correlation coefficient 

between 5A�@A and 5V. For each monkey and ensemble size, the median value across 

independent sub-datasets was reported and statistical significance was calculated with a two-

sided Wilcoxon signed-rank test as for Figs. 3 and 4. Error bars correspond to the 25th -75th 

percentile of a distribution of medians obtained by the sampling with replacement from the 

distribution of independent values (bootstrap error bars; 1000 iterations).  

 

 

4. Neural population model 
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We built a neural population model that captures the basic statistical properties of the neural 

responses that we observed experimentally. The model includes limited-range correlations, 

differential correlations, and realistic values for tuning sensitivity, firing rates and Fano 

factors. The model also generated choices based on optimal read out of information. We 

evaluated the simulation results by repeating all of the analyses described in the previous 

sections. 

4.1. Generative model  

4.1.1 Population activity model 

Our neural population model consisted of N = 1000 neurons. Each neuron's firing rate was 

modeled as a function of stimulus parameter , (such as motion direction) and stimulus 

strength,  c (representing, for instance, motion coherence, which controls task difficulty). We 

considered two stimuli ,� � .1 and ,	 � (1 (analogous to the two directions of motion 

around the discrimination boundary) at three stimulus strength levels, c � -0.16,0.32,0.480. 

We defined mean firing rate d of neuron k as a linear function of stimulus parameters (i.e., 

tuning curve) as dB�,, c� � e�B  , c . e)B  ,                                               (17) 

where e�B and e)B are the slope (sensitivity) and the baseline (spontaneous) firing rate of 

neuron k, respectively. The slope parameters e�B were drawn randomly from a normal 

distribution centered at the origin with a standard deviation of �J

� 1.3 and e)B was drawn 

from a gamma distribution with shape and scale parameters set at 20 and 1, respectively. The 

parameters of the distributions were chosen to approximate empirical distributions. In what 

follows, we will use dB�,, ν� and gB�,, ν� (defined earlier in Section 1) synonymously. We 

will use the terms spike count, firing rate and neuronal activity during a stimulus presentation 

interchangeably as the stimulus duration was set to 1 sec in our simulations.  

Responses of neurons to identical stimuli vary from trial to trial, and the trial-by-trial 

variabilities are partially shared among neurons (noise correlation) (Cohen and Kohn 2011; 

Kohn et al. 2016). We incorporated noise correlations into our model in the form of limited-

range pairwise correlations between neurons k and l (Kanitscheider et al. 2015; Kohn et al. 

2016) as 

$BC#$% �  [exp  ( |K
��K
�|L ! . @! �1 ( 5BC� . 5BC ,                             (18) 

where 5BC is the Kronecker delta (A = 0.1, C = 0 and τ = 1 are used in our model).  

Then, we defined a generative covariance matrix as   
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ΣBC#$%�,, ν� � �B�,, ν��C�,, ν�$BC#$% ,                                                     (19) 

where �B	�,, ν� represents the trial-by-trial variance of neuron k. We used �B	�,, ν� �jdB�,, ν� �j � 0.5) so that Fano Factors of the model neurons are within the rage of values 

typically found in experiments (Arandia-Romero et al. 2016; Nogueira et al. 2018; Shadlen 

and Newsome 1998). Note that ΣBC#$%�,, ν� is not yet the full model’s covariance matrix,  ΣBC�,, ν�, which includes differential correlations and other components as derived in the next 

section.  

Based on 4�,, ν� and Σ#$%�,, ν�, we generated neuronal activity as follows. First, we 

chose s and c pseudo-randomly for each trial of 1 sec duration such that there were 100 trials 

per stimulus condition (600 trials in total per simulated recording session). Then, we 

generated a preliminary response vector k"� for each trial j as 

k"� �  4l," , c"m . Mo" . 435,",                                          (20) 

where ΣBC#$% � WW>, o" represents an N-dimensional vector whose elements are drawn from 

a zero-mean, unit-variance Gaussian distribution, 43 denotes the derivative of the population 

tuning curve (�), which equals  p� in our model, and 5," indicates a common sensory noise 

term drawn from a Gaussian distribution with zero mean and variance �G3	 � q. The last term 435," introduces differential correlations to the population activity (Kanitscheider et al. 2015; 

Moreno-Bote et al. 2014). The generated population activity pattern 7" was calculated by 

applying multiplicative and additive global modulations to the vector k"� before putting it 

through a Poisson process that generated spike counts for each model neuron, i.e. 7"~�st,,su l6"k"� . 6"m.                                               (21) 

Here, 6" is the global modulation factor drawn from a gamma distribution with scale 

and shape parameter G# � 10�� and v# � 10� respectively (such that a 6" b� 1 and �#	 � 10��). The global modulation incorporates the short and long timescale fluctuations in 

population activity often seen in vivo recordings (Arandia-Romero et al. 2016; Ecker et al. 

2014; Goris, Movshon, and Simoncelli 2014; Lin et al. 2015). We generated a total of 10 

simulated recording sessions that reproduced experimentally-realistic distributions of Fano 

factors and pairwise correlations (Figs. S7C,D). 

 

4.1.2 Behavioral decision model 

We also modeled trial-by-trial behavioral choices using an optimal linear classifier that reads 

out the activity of the simulated population. For modelling behavior, the optimal classifier 
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was derived from an analytical expression (Eqs. 22 and 23 below) rather than from data 

fitting since the simulated data had a limited number of trials (200 trials per stimulus 

intensity) and may result in overfitting. By introducing Eq. (17) into the analytical expression 

for the optimal linear classifier derived in Section 1, we obtain =&'( � 2Σ��cp�,                                                        (22) 

where Σ is the covariance matrix for our population model, which is given by  ΣBC � l�#	 . 1mlΣBC#$% . q dB� dM�m . �#	l�dB . 1��dC . 1�m . �dB . 1�5BC.     (23) 

For each trial j, a decision variable was chosen as  �" � =&'(� 7" . ω),                                                       (24) 

where ω) � (2νp��Σ��p). The behavioral choice c for trial j is, then, given by the sign of 

the decision variable d, i.e. 8" � signl�"m.  Behavioral performance was evaluated by the 

number of correct classifications over the total number of trials. 

 

4.2. Information encoded by the model 

In this section, we derive a theoretical expression for decoding performance (DPth) of our 

model. In our model, �� � +,+3, and therefore �� is given by Eq. (12). When x y ∞ 

�� � 	N√< ,                                                           (25) 

and therefore  

A� � Ф  N√<! .                                                       (26) 

Equation (26) suggests that, when the input signal is noisy on a trial-by-trial basis, DP 

(the amount of information that can be extracted) of a very large neural ensemble does not 

saturate at 1.0. Instead, it will approach an asymptote determined by the signal to noise ratio 

of the input signal  
N√<  (see Figure S7F).  

 

4.3. Analysis of model simulation data 

We performed the analyses described in Sections 2 and 3 on our simulated neuronal and 

behavioral data. First, we examined how well our theoretical decoding performance (DPth) 

approximated the cross-validated decoding performance (DPcv) of a linear classifier (LDA) 

evaluated on the simulated data, in the same way as we did for the in vivo recordings. For a 

particular ensemble size, we randomly selected a neuronal ensemble from a recording session 

and stimulus intensity and computed DPth and DPcv. For each ensemble size, stimulus 

intensity and simulated recording session, we repeated this process 20 times. We then fitted a 
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line to the relationship between DPth and DPcv, and computed the percentage of variance in 

DPcv that was explained by DPth, as described in Section 2 (Fig. S7E).  

We also conducted the conditioned bootstrapping analyses on the simulated data 

using the method described in Section 3. We examined the effects of bootstrap fluctuations in 

statistical features of the population activity on the amount of encoded information and 

behavioral performance. For each bootstrap iteration, we selected an ensemble of a given size 

(2, 4, 6, 8 and 10 units) and calculated the following quantities: theoretical decoding 

performance (DPth), cross-validated decoding performance of a linear classifier (DPcv), 

population signal (PS), projected precision (PP), mean pairwise correlations (MPC), global 

activity (GA), and behavioral performance (B). Both DPth and DPcv were evaluated for 

inferring the stimulus (either ,� or ,	) from the activity pattern of the population model. This 

process was repeated 20 times for each of the recording sessions and stimulus intensities. The 

dependencies of DPcv and B on different features of the neural activity were quantified by % 

change in DPcv and B as defined in Eqs. (15) and (16), as well as by Pearson correlation 

coefficients. The results were averaged over repetitions. For each ensemble size, we thus 

obtained 30 independent samples (10 surrogate recording sessions � 3 stimulus intensities) 

and the median was reported. Statistical significance for the dependency between the 

variables A�@A (or V) and 5�� through the calculation of   ?�5A�@A , 5��|5�B X 0, 5�C X 0� 

(or ?�5V, 5��|5�B X 0, 5�C X 0�) for each ensemble size was calculated with a two-sided 

Wilcoxon signed-rank test, with which we tested whether the median of the distribution of 30 

independently obtained values was significantly greater or less than zero. It is important to 

note that, when evaluating ?�5V, 5��|5�B X 0, 5�C X 0� as % change of surrogate behavior 

(Fig. 8C; Eq. (16)), small values can be obtained for relatively large surrogate ensemble sizes 

(N ~ 100) even when ?�5V, 5��|5�B X 0, 5�C X 0� is strong as evaluated by Pearson 

correlation. In our analysis, however, we prefer using % change of behavior because of its 

interpretability and robustness to outliers in the distribution of bootstrap fluctuations. The 

same bias could potentially arise when evaluating ?�5A�@A , 5��|5�B X 0, 5�C X 0� as % 

change of DPcv. Nevertheless, in this case, this effect is typically masked by the strong 

dependency between encoded information and PS/PP, a consequence of using the same 

neuronal population to compute all the relevant quantities.      

 

 

5. Experimental Methods 
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Our theory was tested on three different datasets obtained from four monkeys, each of which 

involved simultaneously recorded units (from 2 to ~50 units). One dataset involved pairs of 

middle temporal (MT) neurons from a monkey (monkey 1) performing a coarse direction 

discrimination task (Zohary et al. 1994). The second dataset involved lateral prefrontal cortex 

(LPFC, area 8a) neurons recorded from two monkeys (monkeys 2 and 3) that were trained to 

perform an attentional task (Tremblay et al. 2015). The final dataset involved recordings from 

groups of MT neurons in a monkey (monkey 4) trained to perform a fine direction 

discrimination task. The details for each experiment are described below. 

 

5.1 Coarse direction discrimination task with recordings in area MT 

This dataset has been previously described (Zohary et al. 1994), and is freely available at the 

Neural Signal Archive (http://www.neuralsignal.org, nsa2004.2)). Here we provide a brief 

summary. 

 

5.1.1. Subjects and recordings 

Data from one adult macaque monkey (Macacca mulatta) are included in this dataset. The 

animal was trained to perform a coarse direction discrimination task (Britten et al. 1992), as 

described further below. Pairs of single neurons were recorded in area MT during this 

experiment. The animals were maintained in accordance with guidelines set by the U.S. 

Department of Health and Human Services (NIH) Guide for the Care and Use of Laboratory 

Animals. Electrophysiological recordings were made with tungsten microelectrodes (Micro 

Probe, Potomac, MD). Action potentials from single neurons were discriminated using an on-

line spike sorting system. In total, 82 well-isolated neurons were recorded (41 pairs of single 

units).  

 

5.1.2 Experimental task 

The monkey performed a coarse direction discrimination task, in which a noisy random-dot 

motion stimulus moved in one of two opposite directions. In each trial, a stimulus was 

presented for 2 seconds and covered the receptive fields of both neurons in a pair. Two 

motion directions were defined: preferred and null. the presented direction of motion was 

either the preferred or null direction of the recorded neurons. If the preferred directions of the 

two neurons differed substantially, the axis of discrimination was set to the preferred-null 

axis of the best-responding. The null direction was defined as the direction opposite to the 
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preferred direction. The strength of the motion signal was manipulated by controlling the 

fraction of dots that moved coherently from one frame to the next (motion coherence), while 

the remaining ‘noise’ dots were randomly replotted on each video update. When motion 

coherence was 0%, all dots moved randomly, and there was no coherent direction in the net 

motion. When motion coherence was 100%, all dots moved coherently in either the preferred 

or null direction for the pair of neurons. A range of coherences between 0 and 100% was used 

to adjust task difficulty and measure neural and behavioral sensitivity. In each trial, the 

monkey was presented randomly with either the preferred or null direction of motion at a 

particular coherence. The monkey's task was to report the direction of the net motion by 

making a saccade to one of two choice targets. The psychometric function averaged across 

sessions is shown in Fig. S6A. 

Each trial started with the appearance of a fixation point. After the monkey held its 

gaze on the fixation target for 300 ms, the random-dot motion stimulus was presented. The 

animal was required to maintain fixation during stimulus presentation so that stimulus was 

presented over the receptive fields of the recorded neurons. After 2 seconds of stimulus 

presentation, the random dot pattern and the fixation point disappeared, and two choice 

targets appeared on the screen, corresponding to the two possible directions of motions 

(preferred or null) (see Figure 1A). The monkey made a saccadic eye movement to one of the 

targets to report its perceived direction of motion, and was provided a fluid reward for the 

correct choice, except for 0% coherence trials for which the monkey was rewarded randomly 

on 50% of trials.  

 

5.1.3 Neuronal data analysis 

Data from this experiment (Zohary et al. 1994) consisted of 41 recording sessions in which 

pairs of single-units were simultaneously recorded in area MT. Note that only sessions with 

random-dot motion stimuli generated from a variable seed were used.  

Since stimulus strength was controlled by the motion coherence parameter, we 

subdivided each recording session according to the coherence presented in each trial. Trials 

belonging to the 0% coherence condition were discarded because stimulus identity and 

correct behavioral performance were not defined for this condition. In order to evaluate how 

accurate our analytical approximation was for the amount of information encoded by the 

neural population, we plotted DPth against DPcv for each recorded pair of neurons and 

coherence condition and fitted the data points with a type-II linear regression. The percentage 
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of variance explained by the first principal component of the data represented the goodness-

of-fit (see section 2).    

For the analysis involving behavior, we also discarded trials with coherences that 

elicited a mean behavioral performance greater than 98% correct to avoid ceiling effects 

(25.6%, 51.2% and 99.9% coherence were eliminated by this criterion). This was done 

because the bootstrap distributions for behavioral performance (B) would have very low 

variability for these high coherences, and therefore calculating ?�5V, 5��|5�B X 0, 5�C X 0� 

may be highly biased or even undefined. The criterion for discarding easy trials (98% percent 

correct) corresponds to eliminating conditions that are more than two standard deviations 

away from the mean of a cumulative Gaussian fit, since Ф�2�� X 0.98. After splitting 

recording sessions by coherence and discarding 0% and high coherences as described above, 

we obtained 187 independent sub-datasets, each of which corresponded to a set of trials for a 

particular coherence level and recording session. The mean number of trials per sub-dataset 

was 75, ranging from 30 to 231 trials. For the analysis, we used a trial-by-trial population 

activity vector whose entries corresponded to the spike count from the entire 2 second 

stimulus duration for each neuron.  

From each sub-dataset, we generated bootstrap distributions for the following 

quantities: theoretical decoding performance (DPth), cross-validated (trained and tested on 

different sets of trials) decoding performance of a linear classifier (DPcv), population signal 

(PS), projected precision (PP), mean pairwise correlation (MPC), global activity (GA), and 

behavioral performance (B). Behavioral performance was defined as the fraction of correct 

choices of the monkey on each sub-dataset. Both DPth and DPcv were calculated by inferring 

the motion direction (preferred or null) presented to the monkey on a trial-by-trial basis from 

the simultaneously recorded activity of a neuronal pair. 

Significance for the dependency ?�5A�@A , 5��|5�B X 0, 5�C X 0� (or ?�5V, 5��|5�B X 0, 5�C X 0�) for the whole experiment (187 independent sub-datasets) was 

calculated with a two-sided Wilcoxon signed-rank test, with which we tested whether the 

median of the distribution of 187 independently obtained values was significantly greater or 

less than zero.  

 

5.2. Attentional task with recordings in LPFC (area 8a) 

This dataset is described in detail in (Tremblay et al. 2015). Here we provide a brief 

summary. 
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5.2.1. Subjects and recordings 

Two male monkeys (Macaca fascicularis), both 6 years old (Monkey “F”, 5.8 Kg; Monkey 

“JL”, 7.5 Kg), contributed to this dataset. In each monkey, a 96-channel “Utah” 

multielectrode array (Blackrock Microsystems, Utah, USA) was chronically implanted in the 

left caudal lateral prefrontal cortex. The multielectrode array was inserted on the prearcuate 

convexity posterior to the caudal end of the principal sulcus and anterior to the arcuate sulcus, 

a region cytoarchitectonically known as area 8a. The extracted spikes and associated 

waveforms were sorted offline using both manual and semi-automatic techniques (Offline 

sorter, Plexon Inc., TX, USA). All procedures were in accordance with the Canadian Council 

of Animal Care guidelines and were preapproved by the McGill University Animal Care 

Committee. Neither animal was sacrificed for the purpose of this study.  

 

5.2.2. Experimental task 

The monkeys were trained to covertly sustain attention to one of four Gabor stimuli (target) 

presented on a screen while ignoring the other three Gabor stimuli (distractors) (Figure 1B). 

At the beginning of each trial, a cue indicated which of the four Gabor stimuli was the target 

(cue period, 363 ms). After the cue period, all four Gabor stimuli appeared on the screen, 

which marked the start of the attentional period. The attentional period ended after a variable 

delay (585-1755 ms) when one or two Gabor stimuli changed orientation by 90º. Three 

different trial types were randomly interleaved. In “Target” trials, the target Gabor changed 

orientation, prompting the monkey to make a saccade towards the target within 400 

milliseconds to get a reward (fruit juice). In “Distractor” trials, the orientation change 

occurred in the Gabor location diagonally opposite to the cued location. Monkeys had to 

withhold saccades to the distractor and maintain fixation for the trial to be correct. In “Target 

+ Distractor” trials, the orientation of the target and the distractor diagonally opposite to the 

target changed simultaneously. In this case, the monkey had to make a saccade towards the 

target, not to the distractor, to get a reward. On average, monkeys completed ~1000 trials per 

session (Fig S5B,C). Only correct “Target” trials were used in the analysis reported here. The 

other trial types were necessary for keeping the performance of the animals unbiased. 

 

5.2.3. Neuronal data analysis 

The mean number of correct “Target” trials per recording session was 207 (range: 172 to 

224) for monkey “JL” and 221 trials (range: 198 to 246) for monkey “F”. The mean number 
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of simultaneously recorded units was 56 (range: 53 to 61) for monkey “JL” and 54 (range: 44 

to 66) for monkey “F”. Neuronal recordings included both single and multiunits. The mean 

percentage of single units over the total number of simultaneously recorded units was 44% 

and 40% for monkeys “JL” and “F”, respectively. Because units with very low firing rates 

precluded reliable statistical analysis, we excluded units with firing rates below 1 Hz for all 

subsequent analyses. After this exclusion, the mean number of simultaneously recorded units 

was 51 (range: 50 to 53) for monkey “JL” and 50 (range: 42 to 59) for monkey “F”. The 

shortest attentional period used was 585 ms; therefore, we defined a fixed attentional time 

window of 585 ms starting at the end of the cue period. In this way, the firing rate of all units 

was calculated over the same time window. 

To maximize the statistical power of our analysis, we created a larger number of 

independent sub-datasets as follows. For each recording session, we randomly selected 21, 

10, 7, 5, and 4 non-overlapping ensembles of size 2, 4, 6, 8, and 10, respectively, and 

repeated this process 5 times. Since the smallest number of simultaneously recorded units for 

both monkeys was 42 units, we chose values that maximized the number of non-overlapping 

ensembles for each size.  

In order to evaluate how accurate our analytical approximation was for the amount of 

information encoded by the neural population for a particular ensemble size, we plotted DPth 

against DPcv for each sub-dataset and fitted the data points with a type-II linear regression. 

The percentage of variance explained by the first principal component of the data represented 

the goodness-of-fit of our approximation (see section 2).   

  For each sub-dataset and bootstrap iteration, we calculated the following quantities: 

theoretical decoding performance (DPth), cross-validated decoding performance of a linear 

classifier (DPcv), population signal (PS), projected precision (PP), mean pairwise correlation 

(MPC), global activity (GA), and behavioral performance (B). Behavioral performance (B) 

was quantified as the mean reaction time (RT) across trials (either the original sub-dataset or 

a bootstrap iteration) (see Figure S5B,C for RT distributions from monkeys 2 and 3, 

respectively). Both DPth and DPcv were calculated by inferring the monkey's location of 

attention on a trial-by-trial basis from the simultaneously recorded activity of an ensemble. 

For decoding purposes, we considered two binary classification tasks. In the first task, the 

decoder classified the locus of attention as being on the right or the left side of the screen. In 

the second task, the decoder classified the locus of attention as being on the upper half or the 

lower half of the screen. The reported DPcv (and DPth) values are averages over the two 

decoding tasks.  
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For a given sub-dataset, the reported dependency relationship ?�5A�@A , 5��|5�B X0, 5�C X 0� (or ?�5V, 5��|5�B X 0, 5�C X 0�) was evaluated as the mean across the 5 

iterations and the two classification tasks (vertical and horizontal). For each ensemble size 

and monkey, the reported dependency ?�5A�@A , 5��|5�B X 0, 5�C X 0� (or ?�5V, 5��|5�B X0, 5�C X 0�) was the median across recording sessions and non-overlapping ensembles of 

units (independent sub-datasets). We obtained 84, 40, 28, 20 and 16 (the number of non-

overlapping ensembles � 4 recording sessions per monkey) independent values for ensemble 

sizes of 2, 4, 6, 8, and 10 units, respectively, and assessed the median and tested significance. 

Significance was calculated with a two-sided Wilcoxon signed-rank test of whether the 

median of the distribution of independently obtained values for each ensemble size and 

monkey was significantly above or below zero. 

 

5.3. Fine direction discrimination task with recordings in MT 

This dataset was obtained specifically for this analysis, as part of a larger series of ongoing 

studies of how MT neurons represent local motion in the presence of background optic flow. 

  

5.3.1. Subjects and recordings 

One adult macaque monkey (Macaca mulatta) was used in this experiment. The animal was 

surgically implanted with a circular head holding device, a scleral coil for measuring eye 

movements, and a recording grid (Gu et al. 2006; Gu, Angelaki, and DeAngelis 2008). The 

animal was trained to perform a fine direction discrimination task (described below) with 

water as a reward for correct performance. Eye movements were measured and controlled at 

all times. Neuronal activity in MT/V5 was recorded with 24-channel linear electrode arrays 

(V-probes, Plexon Inc). Spike waveforms were acquired by a Blackrock Cerebus system. All 

experimental procedures conformed to National Institutes of Health guidelines and were 

approved by the University Committee on Animal Resources at the University of Rochester. 

In each recording session, a V-probe was inserted into MT/V5 and was allowed to 

settle for ~30 minutes. We then performed standard tests (DeAngelis and Uka 2003) to map 

receptive fields and to measure the direction tuning of the recorded units. These 

measurements were used to determine the location and the size of the stimulus aperture such 

that it was larger than the receptive fields of the units under study. Note, however, that 

stimulus motion was not tailored to the preferred directions and speeds of the recorded 

neurons; a fixed set of stimulus velocities was used across sessions for the fine discrimination 
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task. A total of 75 units were recorded across 3 sessions. The mean number of simultaneously 

recorded units was 25, ranging from 24 to 27. Most recordings included multi-unit activity as 

well as 2-4 well-isolated single units. Because units with very low firing rates precluded 

reliable statistical analysis, we excluded units with firing rates below 1 Hz for all subsequent 

analyses. Despite the exclusion, the mean number of simultaneously recorded units remained 

at 25 (ranging from 24 to 27). 

 

5.3.2. Experimental task 

The monkey was trained to perform a fine direction discrimination task. A pattern of random 

dots, presented within a circular aperture, moved upward in the visual field with either a 

rightward or leftward component. The animal’s task was to report whether the perceived 

motion was up-right or up-left by making a saccade to one of two choice targets. The motion 

stimulus was presented at 100% coherence in one visual hemi-field, and was localized and 

sized according to the receptive fields of the recorded units. Stimulus motion within the 

aperture followed a Gaussian velocity profile with a standard deviation of 333 ms and a 

duration of 2 s. Once the monkey fixated for 200 ms, the motion stimulus appeared and began 

to move. The stimulus was presented stereoscopically at zero disparity, such that motion 

appeared in the plane of the display. The experimental protocol involved 7 directions of 

motion relative to vertical: -12º, -6º, -3º, 0º, 3º, 6º and 12º, where negative and positive values 

correspond to leftward and rightward motion, respectively. After stimulus presentation was 

completed, two saccade targets appeared, 5 deg. to the right and left of the fixation target, and 

the monkey reported his perceived direction of motion by making a saccade to one of the 

targets (Fig. 1C). Because stimuli were presented at 100% coherence, task difficulty was 

controlled by the direction of motion with respect to vertical (see Figure S6D). The mean 

number of trials per session was 742 (range: 735 to 756). In each recording session, the same 

number of trials were presented for each direction of motion. 

 

5.3.3. Neuronal data analysis 

Since direction of motion controlled the difficulty of the task, this parameter was considered 

to be the stimulus strength. To control for stimulus strength, we divided data from each 

recording session according to motion direction. The task of our decoder is to correctly 

classify each trial as having rightward or leftward motion direction; therefore, trials from 

each recording session were split into 4 independent sub-datasets (±12º, ±6º, ±3º and 0º 

stimulus directions relative to vertical). As described above for the coarse discrimination task, 
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we subsequently discarded stimulus conditions that were either ambiguous (0º motion 

direction; correct behavioral performance is not defined) or too easy (±12º directions; mean 

behavioral performance ≥ 0.98). The analysis was thus performed on 6 independent sub-

datasets (3 recording sessions � 2 absolute motion directions). To quantify neuronal activity, 

we computed firing rates in a time window that included ±1standard deviation around the 

peak of the Gaussian velocity profile of the stimulus (666 ms window width).  

To increase statistical power, we created a larger number of independent sub-datasets 

by sampling randomly non-overlapping ensembles of particular sizes. Namely, we considered 

ensemble sizes of 2, 4, 6, 8, and 10, which yielded 12, 6, 4, 3, and 2 non-overlapping 

ensembles of units, respectively. We repeated this sampling procedure 20 times. Since the 

smallest number of simultaneously recorded units was 24, we chose values that maximized 

the number of non-overlapping ensembles for each size.  

We evaluated how accurate DPth was with respect to DPcv by following the same 

procedure as for monkeys 2 and 3 (see previous section). For each sub-dataset and bootstrap 

iteration, we calculated the following quantities: theoretical decoding performance (DPth), 

cross-validated decoding performance of a trained and tested linear classifier (DPcv), 

population signal (PS), projected precision (PP), mean pairwise correlation (MPC), global 

activity (GA), and behavioral performance (B). For this task, behavioral performance was 

defined as the fraction of correct choices for that particular sub-dataset. Both DPth and DPcv 

were calculated by inferring whether motion direction was leftward or rightward of vertical 

for each trial based on the neuronal activity pattern. For a particular randomly constructed 

ensemble, the reported dependency relationship ?�5A�@A , 5��|5�B X 0, 5�C X 0� (or ?�5V, 5��|5�B X 0, 5�C X 0�)  was evaluated as the mean across the 20 iterations. For each 

ensemble size, the reported dependency ?�5A�@A , 5��|5�B X 0, 5�C X 0� (or ?�5V, 5��|5�B X 0, 5�C X 0�) was the median across recording sessions, stimulus strengths, 

and non-overlapping ensembles of units. We used 72, 36, 24, 18 and 12 (the number of non-

overlapping ensembles � 3 independent recording sessions � 2 stimulus strengths) 

independent values to assess the median and test its significance for ensemble sizes of 2, 4, 6, 

8, and 10 units, respectively. Significance was calculated with a two-sided Wilcoxon signed-

rank test for whether the median of the distribution of independent values for each ensemble 

size was significantly greater or less than zero. 

 

Quantification and statistical analysis 
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See previous section. 

 

Data and software availability 

The datasets generated in this study and the code used for their analysis are available from the 

corresponding author upon reasonable request. 
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Figure Legends 

Figure 1. Three behavioral tasks used to test theoretical predictions in macaque 

monkeys 

(A) One monkey performed a coarse direction discrimination task (monkey 1) while pairs of 

units were recorded in the middle temporal (MT) area (Britten et al. 1992). After stimulus 

presentation (random dots moving toward the preferred or null direction of the neurons under 

study), the monkey reported the direction of motion by making a saccade to one of two 

targets. Difficulty was controlled by varying the percentage of coherently moving dots in the 

stimulus. (B) Two monkeys performed an attentional task (monkeys 2 and 3) while ~50 units 

were recorded simultaneously from the lateral prefrontal cortex (LPFC, area 8a) (Tremblay et 

al. 2015). Four Gabor patterns were presented on the screen and the task was to make a 

saccade to the attended location after a change in orientation of the cued Gabor. (C) One 

monkey performed a fine direction discrimination task (monkey 4) while ~25 units were 

recorded simultaneously from area MT. After presentation of a fully coherent random dot 

stimulus, the monkey had to report whether dots moved leftward or rightward of vertical by 

making a saccade to one of two targets. Difficulty was controlled by making the left/right 

component of motion very small. See STAR Methods for details. 

 

Figure 2. Dependencies between encoded information and statistical features of 

neuronal responses can be evaluated by the conditioned bootstrapping method  

 (A, B) By subsampling trials with replacement (bootstrap) from the original dataset, 

distributions of the values of encoded information (DPcv) (A) and statistical features of the 

neuronal activity (B) are generated. Example distributions of the values of population signal 

(PS), projected precision (PP), and mean pairwise correlations (MPC) for monkey 4 

(ensemble size = 10 units). (C) A conditioning analysis is performed to determine the impact 

of fluctuations of each feature of the neuronal response on information by selecting subsets of 

bootstraps in which the other features are held close to their distributional medians. For 

instance, to study the effect of MPCs on information, bootstraps are selected such that PS and 

PP are fixed near their median values (dark regions in the distributions). If bootstrap 

fluctuations in MPC (while fixing PS and PP) do not modulate DPcv, we can conclude that 

MPC do not play a role in the amount of information encoded by a neural network. This 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/577379doi: bioRxiv preprint first posted online Mar. 14, 2019; 

http://dx.doi.org/10.1101/577379


38 

 

approach is also used to study the effects of bootstrap fluctuations of neuronal activity on 

behavioral performance. 

 

Figure 3. Mean pairwise correlations and global activity correlate with encoded 

information  

(A) Percentage change in the amount of encoded information (DPcv) related to fluctuations of 

mean pairwise correlations (MPC; blue) and global activity (GA; orange). Fluctuations of 

MPC and GA are produced through a bootstrap process in which virtual instances of the same 

experiment are generated by sampling trials with replacement from a particular dataset (see 

Fig. 2 and STAR Methods). Smaller values of MPC produce significantly larger values of 

DPcv. Data are shown from pairs of neurons recorded in MT during a coarse direction 

discrimination task (monkey 1; Figure 1A). (B, C) Percentage change in DPcv, as a function 

of ensemble size (2, 4, 6, 8 and 10 units), for recordings from LPFC 8a during an attentional 

task (monkeys 2 and 3; see Figure 1B and STAR Methods). GA has a strong modulatory 

effect on encoded information on both monkeys. (D) Analogous results for MT ensembles 

recorded during a fine direction discrimination task (monkey 4; see Figure 1C and STAR 

Methods). MPC has a consistent negative effect on encoded information. In all panels, error 

bars correspond to the 25th -75th percentile of the distribution of bootstrap medians and 

significant deviations from zero are indicated by colored bars (Wilcoxon signed rank test, P < 

0.05). 

 

Figure 4. Bootstrap fluctuations in population signal, projected precision, mean 

pairwise correlations, and global activity are correlated 

(A) Examples of how bootstrap fluctuations in GA are correlated with bootstrap fluctuations 

in PS (left panel), and fluctuations of MPC are correlated with PP (right panel) for pairs of 

neurons recorded in MT during a coarse direction discrimination task (monkey 1; Figure 1A). 

(B) Median Pearson correlation between fluctuations in PS and MPC (red), PS and GA 

(green), PP and MPC (blue) and PP and GA (orange) across all monkeys for each ensemble 

size (see STAR Methods). Error bars correspond to the 25th -75th percentile of the distribution 

of bootstrap medians and significant deviations from zero are indicated by colored bars 

(Wilcoxon signed rank test, P < 0.05). Correlations between these different statistical features 
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of the neuronal activity are likely to explain reported dependencies of encoded information 

on MPC and GA. 

 

Figure 5. Encoded information depends mainly on population signal and projected 

precision once other variables are controlled 

(A) Percentage change in the amount of encoded information (DPcv) when changes in one 

statistical feature of neuronal responses are isolated by the conditioned bootstrapping method 

(population signal (PS): red; projected precision (PP): green; mean pairwise correlation 

(MPC): blue; global activity (GA): orange). Only PS and PP produce significant changes in 

DPcv when other features are keep constant. Data are shown from pairs of neurons recorded 

in MT during a coarse direction discrimination task (monkey 1; see Figure 1A and STAR 

Methods). (B, C) Percentage change in DPcv, as a function of ensemble size (2, 4, 6, 8 and 10 

units), for recordings from LPFC 8a during an attentional task (monkeys 2 and 3; see Figure 

1B and STAR Methods). (D) Analogous results for MT ensembles recorded during a fine 

direction discrimination task (monkey 4; see Figure 1C and STAR Methods). In all panels, 

error bars correspond to the 25th -75th percentile of the distribution of bootstrap medians and 

significant deviations from zero are indicated by colored bars (Wilcoxon signed rank test, P < 

0.05). See also Fig. S8A. 

 

Figure 6. Amount of encoded information correlates with behavioral performance   

Pearson correlation between fluctuations in encoded information (DPcv) and fluctuations in 

monkeys’ performance (see STAR Methods). Across all datasets and ensembles sizes, trials 

associated with larger encoded information are also significantly associated with better task 

performance. Error bars correspond to the 25th -75th percentile of the distribution of bootstrap 

medians and significant deviations from zero (colored bars) are calculated by a Wilcoxon 

signed rank test (not significant if P > 0.05).  

 

Figure 7. Population signal and projected precision best predict behavioral performance 

Percentage change in behavioral performance, as a function of ensemble size, is shown for 

each behavioral task when the conditioned bootstrapping approach is used to isolate 
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fluctuations in PS (red), PP (green), MPC (blue), and GA (orange). See also Fig. S6 and Fig. 

S8B. 

 

Figure 8. An experimentally-constrained neural population model accounts for the 

empirical findings  

(A) Generative model for the simulated neuronal responses. A population of N model neurons 

was characterized by linear tuning curves with slope {�. An intermediate activity pattern (2"�) 
was obtained by drawing an N-dimensional sample from a multivariate Gaussian distribution 

(mean 4 and covariance |#$%) and then corrupting it with sensory noise (5,") on every trial j 

(2") (M trials in total). A homogeneous response gain modulation (6") and a Poisson step were 

applied to produce the final population spike count �7"�. The choice of the virtual agent �8"� 

was obtained by an optimal read-out of the population activity pattern on each trial (STAR 

Methods). (B) Percentage change in the amount of information encoded by the model (DPcv), 

as a function of the ensemble size, when bootstrap fluctuations of different features of the 

neural activity are isolated. Only isolated bootstrap fluctuations in PS and PP influence the 

amount of information encoded by the population, consistent with the experimental 

observations (Fig. 5). (C) Percentage change in behavioral performance predicted by 

fluctuations in different statistical features of model population activity. PS and PP are the 

most important factors influencing behavioral performance. The magnitude of changes in 

behavioral performance is similar to that observed experimentally (Figs. 6 and 7). See also 

Fig. S7. 
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