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Summary 

Context guides perception by influencing the saliency of sensory stimuli. Accordingly, in visual cortex, 
responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. 
Responses are suppressed when stimulus and surround are similar but not when they differ. The 
mechanisms that remove suppression when stimulus and surround differ remain unclear. Here we use 
optical recordings, manipulations, and computational modelling to show that a disinhibitory circuit 
consisting of vasoactive-intestinal-peptide-expressing (VIP) and somatostatin-expressing (SOM) 
inhibitory neurons modulates responses in mouse visual cortex depending on the similarity between 
stimulus and surround. When the stimulus and the surround are similar, VIP neurons are inactive and 
SOM neurons suppress excitatory neurons. However, when the stimulus and the surround differ, VIP 
neurons are active, thereby inhibiting SOM neurons and relieving excitatory neurons from 
suppression. We have identified a canonical cortical disinhibitory circuit which contributes to 
contextual modulation and may regulate perceptual saliency. 
 

INTRODUCTION 

The perception of a sensory stimulus is markedly 
influenced by the context in which the stimulus is 
embedded. In the visual system, the context is the 
visual scene surrounding the stimulus. Through the 
influence of its surround, the same visual stimulus may 
be perceived as more or less salient, allowing it to pop 
out or merge with the rest of the visual scene (Figure 
1A; Bergen and Julesz, 1983; Lamme, 1995; Treisman 
and Garry Gelade, 1980). This aspect of sensory 
processing represents a fundamental computation to 
extract meaning from visual scenes. 
Consistent with perceptual phenomena, neuronal 
responses to a visual stimulus are modulated by the 
visual scene surrounding the stimulus. This surround 

modulation occurs at several stages of the visual 
system including the retina (Alitto and Usrey, 2008; 
Chiao and Masland, 2003; Huang et al., 2019; McIlwain, 
1964; Ölveczky et al., 2003; Solomon, 2006), the 
thalamus (Alitto and Usrey, 2008; Jones et al., 2012, 
2015; Levick et al., 1972), and the visual cortex 
(Alexander and Van Leeuwen, 2010; Angelucci et al., 
2017; Fitzpatrick, 2000; Kapadia et al., 2000; Knierim 
and van Essen, 1992; Rossi et al., 2001; Schnabel et al., 
2018; Sillito et al., 1995), progressively increasing the 
complexity of the spatial features that are 
contextualized. 
The classical feedforward receptive field (ffRF) of a 
neuron in primary visual cortex (V1) is the region in 
space in which a visual stimulus evokes a response 
(Hubel and Wiesel, 1962). The magnitude of this 
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response can be modulated by stimulating the regions 
surrounding the ffRF. When a stimulus is large enough 
to cover both the ffRF and its surround, for example, 
the neuron’s responses are generally suppressed. This 
phenomenon, called surround suppression, is a well-
established example of surround modulation 
(Blakemore and Tobin, 1972; Hubel and Wiesel, 1965; 
Kapadia et al., 1999; Knierim and van Essen, 1992; 
Nelson and Frost, 1978). It has been shown that 
anatomical substrates for surround suppression 
include feedback connections (Angelucci et al., 2017; 
Keller et al., 2020; Nurminen et al., 2018; 
Vangeneugden et al., 2019), interlaminar connections 
(Bolz and Gilbert, 1986) and specific subtypes of 
inhibitory neurons (Adesnik et al., 2012; Haider et al., 
2010). The tuning properties of SOM inhibitory neurons 
(Adesnik et al., 2012; Dipoppa et al., 2018; Keller et al., 
2020) and the fact that they connect to nearly all 
nearby excitatory neurons (Fino et al., 2013) make 
them ideal to contribute to surround suppression. 
Indeed, functional elimination of SOM neurons 
partially relieves excitatory neurons from surround 
suppression (Adesnik et al., 2012). 
However, not all combinations of stimuli in the ffRF and 
surround generate suppression. Surround suppression 
occurs when the stimulus in the ffRF and in the 
surround share similar features. For example, the 
response of a neuron to a grating stimulus of a given 
orientation in its ffRF is suppressed when stimulating 
the surround with a grating of similar orientation. 
When the orientation of the grating in the surround 
differs from that in the ffRF, the response of the neuron 
is much less or no longer suppressed (Self et al., 2014; 
Sillito et al., 1995; Walker et al., 1999). Thus, the 
magnitude of surround suppression depends on the 
visual scene surrounding the stimulus in the ffRF. The 
mechanism that regulates surround suppression 
depending on the similarity between the stimulus in 
the ffRF and that in the surround remains elusive. We 
refer to this phenomenon as “contextual modulation”. 
To investigate the mechanisms of contextual 
modulation, we presented visual stimuli with different 
surrounds to awake mice while imaging calcium 
responses in excitatory and inhibitory neurons of V1. 
We focused on the three major classes of inhibitory 
neurons, parvalbumin-expressing (PV), SOM and VIP 

neurons (Lee et al., 2010; Pfeffer et al., 2013). PV and 
SOM neurons are the two principal sources of 
inhibition of cortical excitatory neurons in mouse V1. In 
contrast, VIP neurons primarily provide inhibition to 
SOM neurons, thus representing a key component of 
cortical disinhibitory circuits (Karnani et al., 2016; 
Pfeffer et al., 2013; Pi et al., 2013). We show that the 
responses of VIP and PV neurons were only suppressed 
by surrounds that shared similar features to the 
stimulus presented in the ffRF but not when they 
differed, as observed in excitatory neurons. Strikingly, 
the responses of SOM neurons were modulated in a 
manner opposite to all other neuron types, being 
specifically suppressed by surrounding stimuli that 
differ from those in the ffRF. To determine whether the 
interaction between VIP and SOM neurons could 
account for the contextual modulation observed in 
excitatory neurons, we developed a circuit model 
respecting biological constraints, which we trained to 
reproduce our measurements. Our model predicted 
that silencing VIP neurons would reduce contextual 
modulation in excitatory neurons. Consistent with this 
model, when VIP neurons were silenced 
optogenetically in V1, surround suppression in 
excitatory neurons became less sensitive to the 
stimulus features in the surround, thereby reducing 
contextual modulation. Thus, we show that a canonical 
cortical disinhibitory circuit critically contributes to the 
contextual modulation of excitatory neurons in V1. 

RESULTS 

Contextual modulation in excitatory neurons 

To assess contextual modulation in V1, we recorded 
from layer 2/3 (L2/3) excitatory neurons in awake 
head-fixed mice with two-photon calcium imaging. 
Contextual modulation was assessed by comparing the 
responses of individual neurons to small patches of 
oriented gratings (20° in diameter) presented alone 
(“center stimulus”), or together with two different 
surrounds: An iso-oriented surround (“iso stimulus”; 
i.e. a grating in the surround whose orientation 
matches that of the grating in the center), or a cross-
oriented surround (“cross stimulus”; i.e. a grating in the 
surround whose orientation is orthogonal relative to 
that of the grating in the center; Figure 1B, top). The
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Figure 1. Contextual modulation in 
excitatory neurons 

(A) The small grating patches in the 
centers had the same contrast but 
due to the distinct surround, they 
were perceived as more or less 
salient, allowing them to pop out 
(right) or merge with the rest of the 
visual scene (left). 
(B) Visual stimuli were presented to 
awake mice while imaging calcium 
responses in layer 2/3 (L2/3) 
excitatory neurons of primary visual 
cortex (V1) expressing GCaMP6f or 
GCaMP7f. Top: Schematic of a small 
grating patch (20° in diameter) 
presented alone (center), with an iso-

oriented surround (iso), or with a cross-oriented surround (cross). Bottom left: Trial-averaged calcium responses of an 
example L2/3 excitatory neuron to center, iso, and cross stimuli. Bottom right: Same but for an example layer 4 (L4) excitatory 
neuron. Here and in all other figures shaded areas are periods of stimulus presentation. 
(C) Surround suppression was computed for both L2/3 and L4 neurons as the difference in responses to center stimuli and 
the responses to iso (or cross) stimuli, normalized by the responses to center stimuli. Single-distribution two-sided Wilcoxon 
sign-rank test; iso L2/3, ***: p < 10-10; cross L2/3, ***: p < 10-10; 665 neurons in 9 mice; iso L4, ***: p < 10-7; cross L4, ***: p = 
1.9 × 10-4; 40 neurons in 5 mice. Yellow symbols represent the example neurons shown in (B). Here and in all figures horizontal 
black lines indicate the median of the distribution.  
(D) Scatter plot of L2/3 responses to iso and cross. Paired two-sided Wilcoxon sign-rank test; p < 10-10 (727 neurons in 9 mice). 
Yellow symbol represents the example neuron shown in (B). 
(E) Contextual modulation index (CMI) was computed as the difference divided by the sum of the responses to cross and iso 
stimuli. Here and in all figures triangles above histograms indicate median. Single-distribution two-sided Wilcoxon sign-rank 
test; p < 10-10; same neurons as in (D). 

location of the center stimulus was centered on the 
ffRFs of the neurons (see Methods). The magnitude of 
the response of L2/3 excitatory neurons to center 
stimuli alone was larger than that to iso stimuli, 
consistent with iso stimuli generating surround 
suppression (Figure 1B, left). In contrast, the response 
to cross stimuli was similar to the response to center 
stimuli alone, consistent with the fact that cross stimuli 
generate less or no surround suppression than iso-
stimuli, as previously described (Self et al., 2014; Sillito 
et al., 1995; Walker et al., 1999). We computed the 
magnitude of surround suppression as the difference in 
response to center stimuli and response to iso or cross 
stimuli, normalized by the response to center stimuli. 
Accordingly, surround suppression in L2/3 excitatory 
neurons was larger for iso stimuli than for cross stimuli 
(Figure 1C, D). To compare the modulation by the iso 
surround to that of the cross surround, we defined a 
contextual modulation index (CMI) for each neuron 

(Figure 1E; see Methods). The distribution of CMIs of 
excitatory neurons was skewed to positive values, 
indicating that their responses were stronger to the 
cross than to the iso stimulus. Since the distribution of 
CMIs was similar irrespective of whether or not the 
orientation of the center stimulus matched the 
neuron’s orientation preference (Figure S1), our 
analysis includes neurons independently of their 
orientation preference. Overall, excitatory neurons in 
L2/3 were strongly modulated by context, i.e. the 
strength of their responses depended on the features 
of the surround relative to those in the center.  
To what extent is the contextual modulation of 
excitatory L2/3 neurons inherited from earlier stages of 
cortical processing? To answer this question, we 
measured the responses of excitatory neurons in layer 
4 (L4), the main thalamic input layer, to center, iso and 
cross stimuli (Figure 1B, right). While L2/3 neurons, on
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Figure 2. Contextual modulation in inhibitory 
neurons 

(A) Top: Schematic of visual stimuli. Bottom: 
Trial-averaged calcium responses of an 
example somatostatin-expressing (SOM) 
inhibitory neuron expressing GCaMP6f to 
center, iso, and cross stimuli. 
(B) Scatter plot of the responses to iso and 
cross stimuli. Paired two-sided Wilcoxon sign-
rank test; p < 10-6; 279 neurons in 13 mice. 
Yellow symbol represents the example neuron 
shown in (A). 
(C) CMI distribution of SOM neurons. Single-
distribution two-sided Wilcoxon sign-rank test; 
*: p = 0.0081; same neurons as in (B). Gray 
shading: CMI distribution of L2/3 excitatory 
neurons (Figure 1E). 
(D-F) As above, but for parvalbumin-expressing 
(PV) inhibitory neurons. 
(E) Paired two-sided Wilcoxon sign-rank test; p 
< 10-10; 87 neurons in 9 mice. 
(F) Single-distribution two-sided Wilcoxon 
sign-rank test; ***: p < 10-10; same neurons as 
in (E). 
(G-I) As above, but for vasoactive-intestinal-
peptide-expressing (VIP) inhibitory neurons. 
(H) Paired two-sided Wilcoxon sign-rank test; p 
< 10-6; 49 neurons in 6 mice. 
(I) Single-distribution two-sided Wilcoxon sign-
rank test; **: p = 0.0012; same neurons as in 
(H). 
(J) Proposed mechanism of contextual 
modulation of excitatory neurons through the 

interaction between VIP and SOM neurons. Left: In response to an iso stimulus, SOM neurons are strongly driven and inhibit 
both VIP and excitatory neurons. Right: In response to the cross stimulus, VIP neurons are strongly driven and inhibit SOM 
neurons. Suppression of SOM neurons in turn disinhibits excitatory neurons 

 
average, were only suppressed by the iso stimulus, L4 
neurons showed suppression in response to both iso 
and cross stimuli (Figure 1C). Thus, contextual 
modulation of L2/3 neurons is unlikely to be entirely 
inherited from L4 and may rely on local circuitry. 

Complementary contextual modulation in SOM and 
VIP neurons  

What relieves L2/3 excitatory neurons from surround 
suppression when the stimulus in the surround differs 
from the stimulus in the center? Since surround 
suppression of L2/3 excitatory neurons relies, at least 
in part, on the activation of SOM inhibitory neurons 
(Adesnik et al., 2012), we compared the response of 

SOM neurons to iso and cross stimuli. We thus 
repeated the visual stimulation protocol used above 
while recording in SOM neurons (Figure 2A-C). 
Strikingly, the responses of SOM neurons to iso and 
cross stimuli were opposite to what we observed in 
excitatory neurons. While iso stimuli elicited strong 
responses in SOM neurons, as previously observed 
(Adesnik et al., 2012; Dipoppa et al., 2018; Keller et al., 
2020), cross stimuli elicited smaller responses (Figure 
2B). Accordingly, the distribution of their CMIs was 
shifted towards negative values (Figure 2C). The 
smaller response of SOM neurons to cross than to iso 
stimuli was not a general characteristic of inhibitory 
neurons. PV neurons, the other large class of inhibitory 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2020. . https://doi.org/10.1101/2020.01.31.929166doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929166


5 
 

neurons that targets excitatory neurons in mouse V1 
(Pfeffer et al., 2013), showed larger responses to cross 
than to iso stimuli (Figure 2D, E). Therefore, the 
distribution of their CMIs was shifted towards positive 
values (Figure 2F), similar to excitatory neurons and 
opposite to SOM neurons. Thus, SOM neurons are 
unique in the way they respond to cross and iso stimuli. 
What prevents SOM neurons from responding to cross 
as much as to iso stimuli? SOM neurons receive 
excitatory input from L2/3 neurons. Given that L2/3 
neurons strongly respond to cross stimuli, it is unlikely 
that the excitatory input to SOM neurons is reduced in 
response to cross stimuli. We thus reasoned that cross 
stimuli may generate inhibition onto SOM neurons. VIP 
inhibitory neurons are a class of cortical neurons that 
preferentially inhibits other inhibitory neurons, 
including SOM neurons (Pfeffer et al., 2013). If VIP 
neurons prevent SOM neurons from responding to 
cross but not to iso stimuli, they should be more excited 
by cross than by iso stimuli. To test this hypothesis, we 
repeated the visual stimulation protocol used above 
while recording in VIP neurons. Consistent with our 
prediction, VIP neurons responded more strongly to 
cross than to iso stimuli, as shown by their positively 
shifted CMI (Figure 2G-I). 
Taken together, these results are consistent with a 
mechanism in which the response modulation by the 
visual stimulus surrounding the ffRF of excitatory 
neurons is controlled by a disinhibitory circuit. The 
strong activation of SOM neurons by iso stimuli inhibits 
excitatory neurons thereby contributing to surround 
suppression (Figure 2J, left). In contrast, the strong 
activation of VIP neurons by cross stimuli inhibits SOM 
neurons, leading to the disinhibition of excitatory 
neurons (Figure 2J, right). A central prediction of this 
mechanism is that removing inhibition onto SOM 
neurons by functionally eliminating VIP neurons should 
lead to the suppression of excitatory neurons not only 
in response to iso stimuli but also in response to cross 
stimuli. In other words, functionally eliminating VIP 
neurons should reduce the response of excitatory 
neurons to cross stimuli more than that to iso stimuli. 

A circuit model predicts a role of VIP in contextual 
modulation 

To test our intuition that the VIP-SOM disinhibitory 
circuit contributes to contextual modulation in L2/3 
excitatory neurons, we developed a circuit model in 

which the model ‘units’ had supralinear input-output 
functions, consistent with experimental results 
(Adesnik, 2017; Priebe and Ferster, 2008; Priebe et al., 
2004). Each unit of the circuit represented the average 
activity of a given neuron type (i.e. L2/3 excitatory, VIP, 
SOM, and PV neurons and L4 excitatory neurons), 
integrated in a ‘subnetwork’ with the other unit types 
(Figure 3A). Four such subnetworks were each assigned 
to one of two spatial locations (each considered the 
‘surround’ of the other) and one of two preferred 
orientations (that were orthogonal to each other; 
Figure 3B). For the units sharing the same spatial 
location (both within and across subnetworks), we 
allowed all connections except those known to be weak 
(Adesnik et al., 2012; Karnani et al., 2016; Pfeffer et al., 
2013). Subnetworks across spatial locations were 
connected only through L2/3 excitatory projections. 
We optimized the synaptic strengths between model 
units to match their responses to those observed 
experimentally. To determine the optimal synaptic 
strengths, we used a two-step procedure. We first 
generated many candidate solutions by performing 
non-negative regression (non-negative least squares), 
similarly to a previous study (Dipoppa et al., 2018), but 
on many sets of pseudo data obtained by randomly 
perturbing the experimental data. We then used the 
best solutions as initial conditions for a gradient-based 
optimization in a recurrent neural network (RNN; 
backpropagation through time with convolutional 
connections; Spoerer et al., 2017; see Methods). The 
top 15 models with the closest fits to the experimental 
data were used for further analysis (Figures 3C, S2A). 
These models had strong recurrent excitatory 
connections within a subnetwork (Figures 3D, S2B), 
consistent with previous studies (Cossell et al., 2015; 
Hofer et al., 2011; Ko et al., 2011; Peron et al., 2020). 
These strong recurrent connections led the circuit to 
become an inhibition-stabilized network for almost all 
top solutions, as has been found to underlie surround 
suppression (Adesnik, 2017; Ozeki et al., 2009). The 
combination of the supralinear input-output function 
and the inhibition stabilization mean that the circuit is 
a supralinear stabilized network (Ahmadian et al., 
2013; Rubin et al., 2015). 
To determine the role of VIP units in the contextual 
modulation of excitatory units, we set the activity of 
VIP units to zero (Figure 3E). Silencing VIP units caused 
a larger absolute decrease in responses of excitatory  
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Figure 3. A computational model trained to fit experimental data predicts a role of VIP neurons in contextual 
modulation. 

(A) ‘Subnetwork’ of the model. Five unit types, L2/3 and L4 excitatory, VIP, SOM, and PV inhibitory units form a subnetwork. 
Unit types were connected according to biological constraints. 
(B) Four subnetworks were assigned to one of two spatial locations of the ffRF and one of two preferred orientations, 
connected with the weight matrices W(1), W(2), W(3), and W(4). 
(C) Responses of the different unit types from the top 15 models when the center, iso, and cross stimuli were centered on 
their spatial location and presented at their preferred orientation (see Figure S2A for the responses of all 4 subnetworks). 
Each dot represents the response of a unit from a single model. Red symbols represent experimental data (mean ± SEM; 317 
excitatory neurons in 9 mice, 48 PV neurons in 9 mice, 200 SOM neurons in 13 mice, 30 VIP neurons in 6 mice, 22 L4 excitatory 
neurons in 5 mice). 
(D) Median connection strengths of the best 15 models. Excitatory connections are represented in red, inhibitory connections 
in blue. The 4 matrices correspond to W(1), W(2), W(3), and W(4) in (B). Note that this is not a working solution per se but the 
median connection strengths of the top 15 solutions. For an example solution see Figure S2B. 
(E) VIP units were silenced by effectively removing them from the circuit. 
(F) Top: Changes in response to iso and cross stimuli upon VIP silencing of L2/3 excitatory, PV and SOM unit types for the best 
15 models. Bottom: CMI under control conditions compared to CMI during VIP silencing for the same unit types. 

 
units to cross than to iso stimuli (Figures 3F, top, S3A). 
While PV units were affected similarly to excitatory 
units, SOM units showed the opposite changes. In 
principle, a stronger absolute reduction in responses of 
excitatory neurons to cross than to iso stimuli is 
consistent with two possibilities. VIP units could simply 
regulate the overall gain in the network, that is, having 
the same relative impact on the responses of excitatory 
neurons to cross and iso stimuli. Alternatively, they 
could differentially regulate the responses of excitatory 
neurons depending on the stimulus. To distinguish 
between these two possibilities, we compared the 
CMIs of the different units under control conditions 
with the CMIs during VIP silencing. Consistent with VIP 
units differentially regulating the responses to iso and 
cross stimuli, their silencing decreased the CMI of 
excitatory units. This indicates that cross responses 

decreased proportionately more than iso responses. 
While PV units showed a decrease similar to excitatory 
units, the CMI of SOM units increased (Figure 3F, 
bottom). 
The reduction of CMI in excitatory units upon VIP 
silencing was a prominent feature of the top 15 
solutions but not of the next 85. While the majority of 
those 85 solutions showed a greater absolute reduction 
in responses of excitatory units to cross than to iso 
stimuli (Figure S3A), most of them did not show a 
decrease in CMI, but instead showed an increase 
(Figure S3B). By definition, those 85 solutions had a 
larger error in fitting the neuronal responses to visual 
stimuli than the top 15 solutions (Figure S3C). Thus, an 
important test of the models that best fit the data is 
whether silencing of VIP neurons in mouse V1 
decreases the CMI of excitatory neurons. 
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Figure 4. VIP and SOM neurons cooperatively contribute to contextual modulation in excitatory neurons 

(A) Experimental setup. We conditionally expressed an inhibitory opsin, ArchT or eNpHR, in VIP neurons and unconditionally 
expressed a calcium indicator, GCaMP7f. 
(B) Trial-averaged calcium responses of a putative L2/3 excitatory neuron with and without silencing VIP neurons. Here, 
stimuli were presented at 50% contrast (similar responses to 100% stimuli, Figure S4E-G). 
(C) Iso and cross response differences between silencing VIP neurons and control conditions for putative excitatory neurons. 
Paired two-sided Wilcoxon sign-rank test; ***: p < 10-10; 672 neurons in 6 mice. Yellow symbol represents the example neuron 
shown in (B). 
(D) Cumulative sum of CMI in putative excitatory neurons. Same neurons as in (C). 
(E) Upon silencing VIP neurons, putative L2/3 excitatory neurons with a negative CMI increased their CMI and those with 
positive CMI decreased their CMI (gray shading). Paired two-sided Wilcoxon sign-rank; CMI<0 and CMI≥0, ***: p < 10-10; 104 
and 568 neurons, respectively, in 6 mice. Yellow symbol represents the example neuron shown in (B). 
(F) Experimental setup. We conditionally expressed an inhibitory opsin, Jaws, in VIP neurons, conditionally expressed a red 
fluorescent reporter, tdTomato, in SOM neurons, and unconditionally expressed a calcium indicator, GCaMP6f; or we 
conditionally expressed an inhibitory opsin, ArchT, in VIP and conditionally expressed a calcium indicator, GCaMP6s, in SOM 
neurons. 
(G-J) Same as (B-D), but for SOM neurons. 
(H) Paired two-sided Wilcoxon sign-rank test; *: p = 0.027; 82 neurons in 8 mice. Yellow symbol represents the example 
neuron shown in (G). 
(J) Paired two-sided Wilcoxon sign-rank test; CMI<0, **: p = 0.0016; 36 neurons in 6 mice; CMI≥0, ns: p = 0.27; 46 neurons in 
8 mice. Yellow symbol represents the example neuron shown in (G). 

 
By computing the sparse regression of these 
differences in CMI in excitatory units across these top 
100 solutions against their synaptic strengths, we 
found that the changes in CMI could be well predicted 
by the values of a specific set of connection weights 
(Figure S3D, E). A reduction in CMI in excitatory units 
was correlated, for example, with a strengthening of 
VIP to SOM connections (Figure S3E). Indeed, such 
strengthening reduced CMI across these top 100 
models (Figure S3F), indicating the importance of the 
VIP-SOM disinhibitory circuit in contextual modulation.  

Taken together, these results predict that silencing of 
VIP neurons in mouse V1 reduce contextual 
modulation of excitatory neurons. 

Inhibition of SOM neurons by VIP neurons contributes 
to contextual modulation 

Does the functional elimination of VIP neurons 
preferentially decrease the response of excitatory 
neurons to cross stimuli compared to iso stimuli as 
predicted by the model? Since excitatory neurons are 
already almost maximally suppressed by iso stimuli, we 
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reduced the contrast of all stimuli to 50%. This reduced 
the suppression of excitatory neurons by iso stimuli 
(suppression with iso stimuli; 100% contrast: 0.85 ± 
0.02; 50% contrast: 0.58 ± 0.08; mean ± SEM; paired 
two-sided Wilcoxon sign-rank; p < 10-10; 641 neurons in 
6 mice), consistent with previous observations 
(Kapadia et al., 1999), and allowed us to better 
compare the impact of silencing VIP neurons on the 
response to iso and cross stimuli. We optogenetically 
suppressed VIP neurons while recording their activity 
and the activity of putative excitatory neurons (Figure 
4A). To determine the efficiency of optogenetic 
silencing of VIP neurons, we recorded their responses 
to center, iso and cross stimuli with and without photo-
activation of the inhibitory opsin (see Methods). Photo-
activation reduced both baseline activity as well as 
stimulus evoked responses of VIP neurons (Figure S4A-
D). Furthermore, consistent with a previous study 
(Attinger et al., 2017), silencing VIP neurons had a 
suppressive effect on the baseline activity of putative 
excitatory neurons, confirming the disinhibitory impact 
of VIP neurons (Figure S4E, H). Strikingly, and 
consistent with the predictions of our model, silencing 
VIP neurons reduced the responses of putative 
excitatory neurons to cross stimuli significantly more 
than those to iso stimuli (Figure 4B, C). Importantly, as 
in our model, silencing VIP neurons also reduced the 
CMI of excitatory neurons, indicating that VIP neurons 
regulate the network in a context dependent manner 
(Figure 4D, E; also true for 100% contrast, Figure S4E-
G). During this manipulation, excitatory neurons 
shifted their CMI towards zero (Figure 4E), implying 
that their responses were less dependent on the 
specific features of the surround.  
To determine whether the perturbation of VIP activity 
affects the activity of SOM neurons, we repeated our 
silencing protocol, however, this time, while recording 
from SOM neurons (Figure 4F). Upon VIP silencing, 
SOM neurons were significantly less suppressed by 
cross stimuli than by iso stimuli (Figure 4G, H). 
Moreover, SOM neurons with a negative CMI, which 
dominated the overall sample of SOM neurons (Figure 
2C), shifted their CMI towards zero, while the ones with 
positive CMIs did not change on average (Figure 4I, J). 
Thus, the preferential suppression of SOM neurons by 
cross stimuli relies, at least in part, on the preferential 
activation of VIP neurons by these stimuli. 

Taken together, based on optogenetic perturbations 
and computational modelling, these results 
demonstrate that the VIP-SOM disinhibitory circuit 
contributes to contextual modulation in excitatory 
neurons. 

DISCUSSION 

This study provides a mechanism for contextual 
modulation in V1 and reveals a disinhibitory circuit as a 
key mediator. Using imaging, optogenetic 
manipulations, and computational modeling, we find 
that the relationship between VIP and SOM inhibitory 
neurons contributes to the response profiles of L2/3 
excitatory neurons in V1. When a uniform full-field 
stimulus is presented, VIP neurons are silent, while 
SOM neurons dominate the network and inhibit 
excitatory neurons. With a discontinuity in orientation 
between center and surround, VIP neurons are excited, 
inhibiting SOM neurons and effectively relieving 
excitatory neurons from SOM inhibition.  

Local circuits 

The connectivity motifs between inhibitory neurons 
has been previously described (Jiang et al., 2015; 
Pfeffer et al., 2013; Pi et al., 2013) and are consistent 
with our findings. SOM neurons inhibit all other classes 
of neurons in L2/3 while VIP neurons preferentially 
inhibit SOM neurons. In addition, SOM neurons receive 
excitatory input from L2/3 neurons distributed over a 
relatively large retinotopic space (Adesnik et al., 2012). 
Our study indicates that when SOM neurons prevail 
over VIP neurons, excitatory neurons are inhibited, i.e. 
surround suppressed. Conversely, when VIP neurons 
prevail over SOM neurons, excitatory neurons are 
relieved from suppression.  
What tips the balance in favor of VIP rather than SOM 
neurons in response to cross stimuli? Excitatory 
neurons in L4 are suppressed by cross stimuli, whereas 
L2/3 excitatory neurons are most active during cross 
compared to the other stimuli. In our model, excitatory 
drive to L2/3 excitatory neurons originating from L4 
and from different spatial locations is modestly larger 
for cross than for iso stimuli. Moreover, the strongest 
connection in the average connectivity matrix is from 
excitatory neurons onto VIP neurons within the same 
subnetwork (Figure 3D). Therefore, modest increases 
in excitatory drive lead to an increase in VIP activity, 
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causing a decrease in SOM activity, which in turn 
reduces the inhibition onto excitatory neurons. Thus, 
excitatory drive is amplified by both recurrent 
excitation and by the VIP-SOM circuit. 

Feedback drive 

In addition to feedforward and local recurrent inputs, 
feedback inputs may also contribute to contextual 
modulation. In particular, we have recently shown that 
excitatory neurons in L2/3, but not L4, have a second 
receptive field surrounding the ffRF, mediated by 
feedback excitatory projections from higher visual 
areas (i.e. feedback receptive field, fbRF; Keller et al., 
2020). These feedback projections might provide a 
source of excitation driving L2/3 excitatory neurons in 
response to both cross and iso stimuli. VIP but not SOM 
neurons also appear to have a fbRF (Keller et al., 2020). 
Since VIP neurons show virtually no responses to iso 
stimuli (Figure 2G, H), it is unlikely that VIP neurons 
receive strong feedback projections for such stimuli. 
We hypothesize that the orientation tuning of the 
feedback projections targeting VIP neurons may be 
biased towards the cross orientation, helping VIP to 
dominate the VIP-SOM circuit for cross stimuli. Further 
experiments will be necessary to determine the 
relation of the receptive field properties of the two 
receptive fields in VIP neurons. 

Conclusions 

Contextual modulation represents a fundamental 
computation to extract meaning from visual scenes. It 
could support many perceptual phenomena, such as 
pop-out effects, figure-ground segregation, detection 
of borders, and object detection (Angelucci et al., 2017; 
Bergen and Julesz, 1983; Jones et al., 2001; Kapadia et 
al., 2000; Knierim and van Essen, 1992; Lamme, 1995; 
Rossi et al., 2001; Schnabel et al., 2018; Seriès et al., 
2003; Treisman and Garry Gelade, 1980). Furthermore, 
the dichotomy between surround suppression and 
cross-orientation facilitation is consistent with a 
predictive processing framework (Bastos et al., 2012; 
Keller and Mrsic-Flogel, 2018), that is, a framework in 
which the features of a stimulus at a given location can 
be used to estimate the features of a stimulus at an 
adjacent location (Rao and Ballard, 1999). Based on 
natural statistics of the visual environment, the spatial 
features in a small patch of visual world are likely to be 
similar to the spatial features in the adjacent patches. 

If the stimuli in the surround provide a correct estimate 
of the stimulus in the center, the response of the 
neuron can be suppressed, i.e. surround suppression, 
as there is no need to transmit a signal that is 
accurately predicted. On the other hand, when the 
center and the surround differ, the stimuli in the 
surround provide an incorrect estimate of the stimulus 
in the center and the signal of the neuron will not be 
suppressed but passed along, i.e. cross-orientation 
facilitation. In conclusion, predictive processing is a 
strong framework for contextual modulation of visual 
responses in cortical circuits. 
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METHODS 

Animals. All experimental procedures were conducted in accordance with the regulation of the Institutional 
Animal Care and Use Committee of the University of California, San Francisco. The mice were housed on a reverse 
light cycle (light/dark cycle: 12/12 hrs). At the start of the experiments, all mice were older than 2 months. Mice 
were of either sex and were of the following genotype: 

Gad2-IRES-cre (GAD2tm2(cre)Zjh ; JAX:010802) × Ai14 (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; JAX:007914) for imaging of 
layer 2/3 (L2/3) excitatory neurons (9 mice; Figures 1, 3, S1, S2); Scnn1a-Tg3-cre (Tg(Scnn1a-cre)3Aibs/J; 
JAX:009613) and Scnn1a-Tg3-cre (Tg(Scnn1a-cre)3Aibs/J; JAX:009613) × Ai148 (Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze; 
JAX:030328) for imaging layer 4 (L4) excitatory neurons (4 mice and 1 mouse, respectively; Figures 1, 3, S2); Sst-
IRES-cre (Ssttm2.1(cre)Zjh; JAX:028864) × Ai14 (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; JAX:007914) for imaging of L2/3 
somatostatin-expressing neurons (SOM; 13 mice; Figures 2, 3, S2); PV-cre (Pvalbtm1(cre)Arbr; JAX:017320) × Ai14 
(Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; JAX:007914) for imaging of L2/3 parvalbumin-expressing inhibitory neurons (PV; 
10 mice; Figures 2, 3, S2); VIP-IRES-cre (Viptm1(cre)Zjh; JAX:010908) × Ai14 (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; 
JAX:007914) for imaging of L2/3 vasoactive-intestinal-peptide-expressing inhibitory neurons (VIP; 7 mice; Figures 
2, 3, S2); VIP-IRES-cre (Viptm1(cre)Zjh; JAX:010908) for optogenetic manipulation of VIP neurons and imaging putative 
excitatory and VIP neurons (8 mice; Figures 4, S4); and VIP-IRES-cre (Viptm1(cre)Zjh; JAX:010908) × Sst-IRES-Flp 
(Ssttm3.1(flpo)Zjh; JAX:028579) for optogenetic manipulation of VIP neurons and imaging SOM neurons (8 mice; Figure 
4). 

Viruses. Viruses were typically diluted to use titers of approximately 5 × 1012 genome copies/ml and 50 nl were 

injected at each injection site (3 to 5 sites per mouse) and each depth (2 from 350 to 200 m below the pial 
surface). We injected the following viruses: 

AAV2/1.ef1a.GCaMP6f.WPRE (FMI Vector Core Facility), AAV2/1.ef1a.DIO.GCaMP6f.WPRE (FMI Vector Core 
Facility), AAV2/1.CAG.CGaMP6f (Janelia Vector Core), AAV2/9.syn.GCaMP7f (Addgene), 
AAV2/1.ef1a.fDIO.GCaMP6s (Janelia Vector Core), AAV2/5.CBA.Flex.ArchT-tdTomato.WPRE.SV40 (University of 
Pennsylvania Vector Core), AAV2/1.CAG.Flex.rc[Jaws-KGC-GFP-ER2] (Janelia Vector Core), 
AAV2/9.CAG.Dio.eNpHre3.0.mRuby3.WPRE.SV40 (H. Adesnik), and AAV2/9.ef1a.F-Flex.tdTomato (Xue et al., 
2014). 

Surgery. Mice were anesthetized with 2% isoflurane or with a mixture of Fentanyl (West-Ward Pharmaceuticals, 
0.05 mg/kg), Midazolam (Akorn, 5.0 mg/kg) and Dexmedetomidine (Zoetis, 0.5 mg/kg), injected subcutaneously. 
Mice’s body temperature was monitored and kept constant. To prevent the eyes from drying, a layer of lubricant 
ointment (Rugby) was applied. The skin above the skull was disinfected with povidone iodine. A craniotomy was 
made over the right visual cortex (3 to 4.5 mm in diameter) and viruses were injected with a micropump (UMP-3, 
World Precision Instruments) at a rate of 2 nl/s. The craniotomy was then sealed with a glass coverslip using 
cyanoacrylate glue and a headplate was attached. To reverse the anesthesia induced by the Fentanyl-Midazolam-
Dexmedetomidine mixture, a mixture of Naloxone (Hospira, 1.2 mg/kg), Flumazenil (West-Ward Pharmaceuticals, 
0.5 mg/kg), and Atipamezol (Zoetis, 2.5 mg/kg) was injected subcutaneously after the surgical procedures. 

Visual stimulation. Visual stimuli were generated using the open-source Psychophysics Toolbox based on Matlab 
(MathWorks). Stimuli were presented at 15 cm to the left eye on a gamma-corrected LED-backlit LCD monitor 
(DELL) with a mean luminance of 20 cd/m2. For experiments using a resonant scanner, the power source of the 
monitor’s LED backlight was synchronized to the resonant scanner turnaround points (when data were not 
acquired) to minimize light leak from the monitor (Leinweber et al., 2014). We presented drifting sinusoidal 
gratings (2 Hz, 0.04 cycles/°, 100% contrast) unless stated otherwise. The trial structure of all stimulus sessions 
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(receptive field mapping, orientation tuning, et cetera) was block randomized (the block size was given by the 
total number of parameter combinations). 

Receptive field mapping: Stimuli consisted of a circular grating patch on a gray background (typically set to 20° in 
diameter). Stimuli were presented for 1 s at a single direction or for 2 s at the 4 cardinal directions (0.5 s each). 
Stimulation periods were interleaved by 2 s of gray screen. We recorded 5 to 10 trials per stimulus condition. 

Orientation tuning: We presented gratings of at least 10° diameter drifting in 8 directions (5 to 10 trials). Stimulus 
time was 2 s interleaved with 4 s of gray screen. 

Size tuning: Patches of gratings were displayed at up to 9 different sizes, linearly spaced from 5° up to 85° in 
diameter (10 trials per size) centered on the classical feedforward receptive field (ffRF). Stimulation time was 2 s 
interleaved by 4 s of gray screen. Stimuli were either presented at a single direction or at the 4 cardinal directions 
(0.5 s each). 

Contextual modulation: We presented patches of gratings (10° to 30° in diameter) on a gray background (center 
stimulus), full-field gratings (iso stimulus), and patches of gratings (10° to 30° in diameter) on cross-oriented full-
field gratings (cross stimulus). Stimulation time was 2 s interleaved by 4 s of gray screen. Trials with optogenetic 
stimulation had an additional 1 s pre-stimulus and post-stimulus gray screen during which the optogenetic light 
source was turned on and the total number of trials was doubled (Optogenetics below). 

Behavioral monitoring. All mice were habituated (3 to 5 days) to the experimental setup before starting 
experiments. During all experiments, we recorded the positions of the left eye using a CMOS camera 
(DMK23UM021, Imaging Source) with a 50 mm lens (M5018-MP, Moritex), tracked the running speed of the 
mouse, and monitored its general behavior using a webcam (LifeCam Cinema 720p HD, Microsoft). 

Two-photon calcium imaging. Imaging was performed using either a galvanometric-scanner based MOM (Sutter) 
or a resonant-scanner based (8 kHz) Bergamo II two-photon microscope (Thorlabs), both controlled by ScanImage 
(Vidrio). Using the MOM system, we acquired images of 128 × 128 pixels at a single depth at 5.92 Hz frame rate. 
With the Bergamo II, we acquired images of 380 × 512 pixels at 1 or 4 depths at 40 Hz or 8 Hz frame rate, 
respectively. We obtained similar results with both systems, so all data were pooled. The illumination light source 
was a Ti:sapphire laser (Chameleon Ultra II, Coherent) used at an excitation wavelength of 910 nm. The laser 
power under the objective (16×, Nikon) was typically set to 30 mW and never exceeded 50 mW (laser pulse width 
140 fs at a repetition rate of 80 MHz). 

Optogenetics. To silence VIP neurons, we used a 594 nm laser (OBIS 594 LS 100 mW, Coherent). We modified the 
Bergamo II microscope (Thorlabs) to combine optogenetic manipulation with two-photon calcium imaging. A lens 
(LA1805-B, Thorlabs) was placed in the optogenetic stimulation light path to defocus the light at the imaging plane. 
We used a dichroic mirror (DMBP740B, Thorlabs) to combine two-photon laser and optogenetic stimulation light. 
Moreover, we used a second dichroic mirror (FF555-Di03-25×36, Semrock) to split the green fluorescent protein 
(GFP) emission from both the two-photon and optogenetic light sources. The laser for optogenetic stimulation 
was synchronized to the resonant scanner turnaround points (when data were not acquired) to minimize light 
leak from the monitor (Attinger et al., 2017; see Visual Stimulation for timing within a trial). The 594 nm laser 
power under the objective did not exceed 18 mW. 

Data analysis. All data were analyzed using custom-written code in Matlab (MathWorks). 

Two-photon calcium imaging: We analyzed two-photon calcium imaging data as described previously (Keller et 
al., 2020). Briefly, data were full-frame registered using custom-written software 
(https://sourceforge.net/projects/iris-scanning/). We selected the neurons semi manually, based on mean and 
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maximum projection images. We calculated the raw fluorescence traces as the average fluorescence of all pixels 
within a selected region of interest for each frame. Fluorescence changes (∆F/F) were calculated as described 
elsewhere (Dombeck et al., 2007). All stimulus evoked responses were baseline subtracted (1 s pre-stimulus 
interval). 

Response amplitude: The response amplitude to a stimulus was computed as the average response over the 
duration of the stimulus presentation (excluding the first 0.5 s of each trial due to the delay and slow rise of 
calcium indicators). We defined significant responses as responses that exceeded a z-score of 3.29 (corresponding 
to p < 10-3) or 5.33 (corresponding to p < 10-7; for experiments in L4). 

Receptive field mapping: To estimate the center of the receptive field, we fitted the responses to patches of 
gratings with a two-dimensional Gaussian. We excluded neurons if they failed to have at least one significant trial-
averaged response within 10° of their estimated ffRF centers. Additionally, except for the ‘surround group’ (see 
Computational model), we excluded neurons if their estimated ffRF centers were not within 10° of the stimulus 
centers of the stimuli used for estimating size tuning, orientation tuning, et cetera. Neurons of the ‘surround 
group’ had estimated receptive field centers that were at least 15° away from the centers of the stimuli. 

Size tuning: We fitted the integral over a difference of Gaussians. This fit was used to estimate the neurons’ 
preferred sizes. We approximated the ffRF size by the size of the patch of gratings evoking the largest response 
(size tuning fits were bound to the interval 0.1 to 90.1°). 

Orientation tuning: We fitted a circular sum of Gaussians with a peak offset of 180° and equal tuning width (full 
width at half maximum of the Gaussian fit). When the preferred orientations of neurons were relevant, we 
excluded neurons with an R2 goodness-of-fit of 0.3 or below. 

Contextual modulation: To estimate the contextual modulation of excitatory, VIP, SOM, and PV neurons, we used 
a center patch diameter of 20°. We calculated a contextual modulation index defined as the difference between 
the activity to cross and iso stimuli divided by the sum of the two. To estimate the effect of silencing VIP neurons 
on the contextual modulation of putative excitatory neurons, neurons were only considered if their preferred size 
was within 10° of the center-patch diameter. Note that for these experiments, the center-patch diameter was set 
to a size between 10° and 30°. Population-averaged responses to center, iso and cross stimuli were calculated 
based on normalized responses (Figures 3C, S2A). To this end, trial-averaged responses of every neuron were 
normalized by the maximum responses to center, iso, cross, and receptive field mapping stimuli. 

Surround suppression: Surround suppression was computed as one minus the responses to iso (or cross) divided 
by the responses to center stimuli. Neurons with a negative response to center were excluded from this analysis. 

Baseline: We estimated the baseline activity as the difference between the average fluorescence change during 
baseline periods (averaged over all 1 s pre-stimulus intervals) and the lower quartile of the overall trace of 
fluorescence changes. To compute the population-averaged baseline activity, we excluded neurons with an 
estimated baseline activity of more than 3 standard deviations above the median. 

Computational model. We developed a model reproducing the responses of the 5 different neuronal types from 
which we recorded (L2/3 excitatory, VIP, SOM, and PV inhibitory neurons and L4 excitatory neurons). Each unit of 
the circuit represented the average activity of a given neuron type, integrated in a ‘subnetwork’ with the other 
unit types. Four such subnetworks were each assigned to one of two spatial locations (each considered the 
‘surround’ of the other) and one of two preferred orientations (orthogonal to each other). We consequently 
obtained a total of 20 units, 5 unit types in 4 subnetworks. We optimized the synaptic strengths between these 
model units to match their responses to those observed experimentally. We obtained many solutions by using 
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many sets of pseudo data (obtained by perturbing the experimental data by random noise with standard deviation 
proportional to the measured error).  

Experimental data: To model the average activity of our 20 units split across the 4 subnetworks, we divided our 
experimental data set into 4 subgroups: ‘Centered and preferred orientation’, ‘centered and orthogonal 
orientation’, ‘surround and preferred orientation’, and ‘surround and orthogonal orientation’ (for details, see Data 
analysis). The population-averaged responses of the 5 neuron types within each subgroup were the targets of the 
corresponding 5 units within the 4 subnetworks of our model. Centered neurons were those with ffRFs aligned 
with the location of the center stimulus, i.e. ffRFs no more than 10° from the stimulus center. Surround neurons 
were those with ffRF offset from the location of the center stimulus, i.e. ffRF centers were at least 15° from the 
stimulus center. ‘Preferred orientation’ neurons were those with preferred orientation within 45° of the center 
stimulus orientation. ‘Orthogonal orientation’ neurons were those with preferred orientation more than 45° from 
the center stimulus orientation. Population-averaged responses of the neurons of each of the 5 types within each 
of the 4 subgroups were obtained for each of 4 stimulus conditions (spontaneous activity or presentation of the 
center, iso, or cross stimuli). Hence, the goal of the model was to fit model responses to the matrix of these 

experimentally observed mean responses, �̃� whose elements �̃�𝑖𝑠, where 𝑖 corresponded to one of the 20 units 
and 𝑠 corresponded to one of the 4 stimulus conditions (Figure S2A). 

Model parameters: Connections between L4 excitatory units and the other model units were unidirectional, as L4 
was considered as an input to the subnetwork. The L4 unit of a given subnetwork was restricted to project only to 
excitatory (Exc) and PV units of the same spatial location, but of either preferred orientation (Adesnik et al., 2012; 
Karnani et al., 2016). Within a subnetwork, there were 16 possible recurrent connections between L2/3 excitatory 
and inhibitory units, of which we disallowed 5 that were deemed negligible based on electrophysiological 
measurements (Pfeffer et al., 2013). We disallowed the following connections: VIP → Exc, VIP → PV, VIP → VIP, 
SOM → SOM, and PV → SOM. Thus, each subnetwork received 11 recurrent connections and two L4 connections 

from within its own subnetwork, a total of 13 connections per subnetwork (𝑊(1) in Figure 3D). The same set of 

connections was also allowed from the opposite orientation at the same location (𝑊(2) in Figure 3D), making 26 
connections to a given subnetwork from its own spatial location. Projections across spatial locations were only 
allowed from L2/3 excitatory units to all four L2/3 unit types, adding 8 additional connections received by each 

subnetwork (𝑊(3) and 𝑊(4) in Figure 3D; the connections from inhibitory and L4 neurons were all set to zero and 
therefore not displayed in Figure 3D). In total, we thus allowed 34 non-zero connections per subnetwork.  

The overall 16 × 20 weight matrix was composed of the 4 × 5 submatrices 𝑊(𝑖) in the following convolutional 
structure 

𝑊 = (

𝑊(1) 𝑊(2) 𝑊(3) 𝑊(4)

𝑊(2) 𝑊(1) 𝑊(4) 𝑊(3)

𝑊(3) 𝑊(4) 𝑊(1) 𝑊(2)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

) 

This structure meant that each subnetwork can be considered as the surround of the other and each orientation 
as the orthogonal of the other. This symmetry across domains allowed us to keep the total number of parameters 
at 34. 

The above matrix W was defined in a basis in which the 20 rates were arranged as (Exc, PV, SOM, VIP, L4) of 
network 1, then network 2, then 3, then 4. We rearranged these weights and rates, letting A be the 16 × 16 matrix 
of recurrent weights between the sixteen L2/3 units, found from W by keeping only the first 4 columns of each of 

the 𝑊(𝑖); and B be the 16 × 4 matrix of projections from L4 units to the sixteen L2/3 units, found from W by 

keeping only the last column of each of the 𝑊(𝑖). Then, in this rearranged basis, W became (A, B), and acted on a 
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rate vector (
𝒓
𝒉

) whose first 16 elements r were the rates of the L2/3 units and whose last 4 elements h were the 

rates of the L4 units (we use bold font to indicate vectors, and capital letters to indicate matrices). 

Rate equations: The rate equations for the units in the network for a particular stimulus 𝑠 were 

 
𝜏

𝑑𝒓𝑠

𝑑𝑡
= −𝒓𝑠 + (𝐴𝒓𝑠 + 𝐵𝒉𝑠).𝑛 (1) 

where the element-wise operation (𝑥𝑖).𝑛 ≡ (⌊𝑥𝑖⌋+)𝑛 corresponded to the input-output function, a rectified 
power law with exponent 𝑛 = 2 (Ahmadian et al., 2013). The 16-vector 𝒓𝑠 specified the activities of the L2/3 units 
to stimulus 𝑠, while the 4-vector 𝒉𝑠 specified the activities of the L4 units to that stimulus. The time constant was 

set to 𝜏 = 10 𝑚𝑠. We denoted the combination of L2/3 and L4 units by 𝒙𝑠 = (
𝒓𝑠

𝒉𝑠
) while, again, the combination 

of recurrent and feed-forward weights is 𝑊 = (𝐴, 𝐵). We used 𝑋, 𝑅, and 𝐻 to refer to the matrices whose 
columns are the vectors 𝒙𝑠, 𝒓𝑠, or 𝒉𝑠, respectively, across all stimuli s. 

Cost function: For each stimulus s, we denoted the experimentally measured mean responses as �̃�𝑠 for L4 and �̃�𝑠 

for L2/3. Our model found inputs (L4 responses) �̂�𝑠 and synaptic weights that produced a steady-state response 
denoted by lim

𝑡→∞
𝒓𝑠(𝑡) ≡ �̂�𝑠. The cost function of the model demanded that the inputs and responses should have 

minimal summed-weighted-squared error relative to the experimental measurements, subject to certain 
regularization terms: 

𝐸0(�̂�, 𝑊) = ∑ 𝑀𝑖𝑠
2 (�̂�𝑖𝑠 − �̃�𝑖𝑠)

2

𝑖,𝑠

+ 𝐿(�̂�, 𝑊) 

Here, 𝑀𝑖𝑠 was a weight matrix that represented our uncertainty over the responses. More specifically 𝑀𝑖𝑠 =

𝜎0𝛽𝑖 𝜎𝑖𝑠⁄ , where 𝜎𝑖𝑠 was the standard error of the responses �̃�𝑖𝑠 measured experimentally, 𝛽 was a multiplicative 
factor to weight errors in certain unit types more than others, and 𝜎0 = 〈𝜎𝑖𝑠 𝛽𝑖⁄ 〉𝑖𝑠 was a normalization factor, 
where 〈𝑧𝑖𝑠〉𝑖𝑠  indicated an average of 𝑧𝑖𝑠 over i and s. We chose 𝛽𝑖 = 1 for L2/3 excitatory, PV and VIP neurons, 
𝛽𝑖 = 2.5 for SOM and 𝛽𝑖 = 5 for L4 excitatory neurons. We used larger 𝛽𝑖 for units that we found harder to fit. 
Intuitively, this fitting difficulty might arise from the fact that L4 and SOM neurons had the most distinct response 
patterns compared to other neuron types. 𝐿 represented the sum of all regularization terms, defined as: 

𝐿(�̂�, 𝑊) = 𝛼1 ∑⌊𝜀𝑥 − �̂�𝑖𝑠⌋+ + 𝛼2 ∑ 𝑀𝑖𝑗
(1)

(−log|𝑊𝑖𝑗|)

{𝑖,𝑗}∈𝑁

+ 𝛼3 ∑ 𝑀𝑖𝑗
(2)

𝑊𝑖𝑗
2

{𝑖,𝑗}∈𝑁𝑖,𝑠

 

The first regularization factor, using 𝛼1 = 0.02, nudged the responses �̂�𝑖𝑠 above a minimal threshold 𝜀𝑥 = 0.01, 

since �̃� corresponded to estimated firing rates and were thus non-negative. The second and third factors were 
applied only to the 34 weights that were allowed to be nonzero, as specified above; this set of weights was 

designated by 𝑁. The second factor, using 𝛼2 = 0.05, nudged weights with a corresponding positive value of 𝑀𝑖𝑗
(1)

 

to prevent them from being too close to zero. The elements 𝑀𝑖𝑗
(1)

∈ {0,1} were non-zero for almost all allowed 

connections between units sharing orientation preference: all of those from the same spatial location of the ffRF 

(𝑊(1)), and those from the surround to excitatory units and to SOM units (two of the 4 non-zero elements of 

𝑊(3); among the potential targets of projections across spatial locations, we only pushed L2/3 excitatory and SOM 
units away from zero because those have well-established evidence for substantial projections across spatial 
locations; Adesnik et al., 2012). The third factor, starting with 𝛼3 = 0.01, nudged weights with a corresponding 

positive value of 𝑀𝑖𝑗
(2)

 towards zero. The elements 𝑀𝑖𝑗
(2)

∈ {0,1} were non-zero for all allowed connections 
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between units having different preferred orientations (𝑊(2) and 𝑊(4)). In other words, we wanted to discourage 

strong cross-orientation connections and encourage strong connections among those allowed in 𝑊(1) and 𝑊(3). 

Training a recurrent neural network with custom weight initialization: We noted that equation (1) corresponded 
to a recurrent neural network (RNN). This allowed us to train the RNN to find the best solutions, i.e. the weights 
𝑊𝑖𝑗  and the inputs 𝐻𝑖𝑗, using backpropagation through time (BPTT; Pascanu et al., 2013; Rumelhart et al., 1986). 

The training of a neural network was highly sensitive to its initial weights (He et al., 2015) and in general we 
observed that starting from random initial conditions would often lead to unstable solutions. This might stem 
from the fact that RNN training was prone to gradient vanishing and gradient explosion (Bengio et al., 1994), 
especially for a large number of time steps. As a first step, we therefore found stable solutions which would 
approximately match the data using non-negative least square (NNLS) regression, which we used as initial 
conditions of the BPTT. In a previous study (Dipoppa et al., 2018), we used a NNLS to infer the optimal synaptic 
strengths of a model evolving a dynamical equation similar to equation (1) such that the model would match the 
experimental data. Here we similarly inferred optimal strengths for matching the model to pseudo data 𝑋′𝑖𝑗 =

𝛾𝑖𝑗�̃�𝑖𝑗,  randomly generated using the random matrix 𝛾𝑖𝑗~Gamma(𝜑−1𝜎𝑖𝑗
−2, 𝜑𝜎𝑖𝑗

2 ) with 𝜑 = 5, such that ⟨𝑋′𝑖𝑗⟩ =

�̃�𝑖𝑗  and Var(𝑋′𝑖𝑗) = 𝜑𝜎𝑖𝑗
2 . We solved the convex problem of minimizing the following cost function, 𝐸1, which 

made 𝑋′ as close as possible to a fixed point of equation 1 subject to regularization, as an approximation of 
minimizing 𝐸0(X′, 𝑊): 

𝐸1(𝑋′, 𝑊) = ∑ 𝑀𝑖𝑠
2 [(𝑅′𝑖𝑠)1 𝑛⁄ − ∑ 𝑊𝑖𝑘𝑋′𝑘𝑗

𝑖,𝑘

]

2

𝑖,𝑠

+ 𝐿(𝑊𝑋′, 𝑊) 

Here 𝑅′ was the 𝑅 component of 𝑋′ = (𝑅′
𝐻′

). We generated 𝑁𝑁𝑁𝐿𝑆 = 2,500,000 different sets of pseudo data {𝑋′}. 

We then used the trust region reflective algorithm to solve the problem min
𝑊

𝐸1(𝑋′, 𝑊) starting from initial 

conditions 𝑊𝑖𝑗~Gamma(1,1) and with boundaries 0 < |𝑊𝑖𝑗| < 10. After obtaining a set of optimal parameters 

{𝑊𝑁𝑁𝐿𝑆} for each set of pseudo data, we let the system evolve following equation (1) and obtained the fixed 
points (if they existed), discarding all solutions that had at least one of the 20 rates > 10 or < 𝜀𝑥. This produced 

the set of fixed points {�̂�𝑁𝑁𝐿𝑆}. Note that the �̂�𝑁𝑁𝐿𝑆 portion of �̂�𝑁𝑁𝐿𝑆 was unchanged from its original perturbed 

value H’ (�̂� ≡ 𝐻′). We then recomputed the error {𝐸0(�̂�𝑁𝑁𝐿𝑆, 𝑊𝑁𝑁𝐿𝑆)} ≡ {𝐸0
𝑁𝑁𝐿𝑆}. 

We selected the 50,000 best solutions {�̂�𝑁𝑁𝐿𝑆, 𝑊𝑁𝑁𝐿𝑆} sorted by {𝐸0
𝑁𝑁𝐿𝑆} as starting parameters for the BPTT. 

We defined the following cost function for the BPTT: 

𝐸2(𝑋(𝑡), 𝑊) = ∑ 𝑀𝑖𝑠
2 ⟨𝑋𝑖𝑠(𝑡) − �̃�𝑖𝑠⟩

𝑡

2

𝑖,𝑠

+ 𝛼5 ∑⟨𝑋𝑖𝑠(𝑡 + 1) − 𝑋𝑖𝑠(𝑡)⟩𝑡
2

𝑖,𝑠

+ 𝐿(⟨𝑋(𝑡)⟩𝑡 , 𝑊) 

where 𝑋𝑖𝑠(𝑡) corresponded to the dynamics of the system at each time step 𝑡 and where the average over 𝑡, ⟨∙⟩𝑡 , 
was computed over the last 𝑇 = 200 time steps of the dynamics. The factor with 𝛼5 = 1 punished large values of 
the derivative of 𝑋 to ensure that the system reached a fixed point. Independently of the stimulus condition, for 

each run of the dynamics (termed an ‘epoch’), the starting point was 𝑋𝑖𝑠(0) = �̃�𝑖0 + 𝛿𝑥𝑖𝑠, where 𝑠 = 0 
corresponded to the spontaneous activity and 𝛿𝑥𝑖𝑠~𝒩(0,0.01) was the random perturbation following a 
Gaussian distribution. We used time steps of ∆𝑡 = 2 ms. An epoch consisted of evolving equation (1) using the 
Euler scheme:  

 
𝒓𝑠(𝑡 + 1) = 𝒓𝑠(𝑡) + [−𝒓𝑠(𝑡) + (𝐴𝒓𝑠(𝑡) + 𝐵𝒉𝑠).𝑛]

∆𝑡

𝜏
 (2) 
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for 500 time-steps. To compute the gradient of the loss equation 𝐸2(𝑋(𝑡), 𝑊) over 𝑊 and the 𝐻 portion of 𝑋 of 
the discretized system given by equation (2) over the last 𝑇 = 200 time steps of the dynamics, we used automatic 
differentiation methods provided by the pytorch library in Python. Optimization was carried out by the ADAM 
optimizer (Kingma and Ba, 2017). To improve convergence to a solution, we employed a triangular learning rate 
policy (Smith, 2017) at a base learning rate of 3 × 10-4, a maximum learning rate of 3 × 10-3, 100 training epochs 
for the increasing part of the cycle, 200 training epochs for the decreasing part of the cycle. We also used a 
patience parameter of 1000 epochs. If the error did not improve over this length of time, the training procedure 
of the BPTT would stop. If not interrupted, the model was trained for 10,000 epochs. After running the BPTT for 

the best 50,000 starting conditions of the NNLS {�̂�𝑁𝑁𝐿𝑆, 𝑊𝑁𝑁𝐿𝑆}, we obtained a new set of inferred weights and 

rates {�̂�𝑅𝑁𝑁, 𝑊𝑅𝑁𝑁}. Note that in contrast to the NNLS, the �̂�𝑅𝑁𝑁 portion of �̂�𝑅𝑁𝑁 was learned. Of these, we 

selected the top 15 or top 100 solutions sorted by the smallest error {𝐸0(�̂�𝑅𝑁𝑁, 𝑊𝑅𝑁𝑁)} for further analysis. 

Analysis of the computational model 

Comparison with the data: The model was trained to reproduce the estimated firing rate of the units 𝑋 (Figure 
S2A). For better comparison to the experimental data, we showed the baseline subtracted neuronal responses 
∆𝑋𝑖𝑠 = 𝑋𝑖𝑠 − 𝑋𝑖0, i.e. with the spontaneous activity 𝑠 = 0 subtracted (Figure 3C). Similarly, we used ∆𝑋𝑖𝑠 to 
compute CMIs and the difference between control and optogenetic conditions (Figure 3F, Figure S3). Using ∆𝑋𝑖𝑠 
instead of the neuronal activity 𝑋𝑖𝑠 did not appreciably change the results. 

Model of surround modulation index: We observed a large variability of ∆𝐶𝑀𝐼 (the change in contextual 
modulation index upon VIP silencing) of L2/3 excitatory units across the top 𝑁𝑠 = 100 solutions, with the majority 
of the top 15 solutions having a positive value of ∆𝐶𝑀𝐼 (Figure S3B, C). We asked whether we could predict this 
variability from the difference in connection weights across these solutions. We defined 𝒒𝑝 as the vectorized form 

of the unique (not repeated by the convolution) and non-zero connection weights ({𝑖, 𝑗} ∈ 𝑁, see Computational 

model) of the 𝑝𝑡ℎ solution 𝑊𝑝
𝑅𝑁𝑁, and ∆𝐶𝑀𝐼𝑝 as the change in contextual modulation index of centered and 

preferred L2/3 excitatory units for the 𝑝𝑡ℎ solution. We then ran 𝑁𝑟 = 100 lasso (least absolute shrinkage and 
selection operator) regressions with 10-fold cross validation (i.e. 𝐿1-regularized linear regression), each one with 
a different random seed, relating the predictors in 𝒒𝑝 to the responses in ∆𝐶𝑀𝐼𝑝. Across the 𝑁𝑟  regressions 

∆𝑪𝑴𝑰 = 𝛽0 + 𝛽1𝑄, where ∆𝑪𝑴𝑰 = (∆𝐶𝑀𝐼1, ⋯ , ∆𝐶𝑀𝐼𝑁𝑠) and 𝑄 = (𝒒1, ⋯ , 𝒒𝑁𝑠), we selected the 
sparsest solution, i.e. the one with the lowest number of non-zero coefficients 𝛽1 (Figure S3E). 

Statistics. We used two-sided Wilcoxon rank-sum tests for independent group comparisons, and two-sided 
Wilcoxon signed-rank tests for paired tests and single group analysis. No statistical methods were used to pre-
determine experimental sample sizes.  
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Figure S1. Contextual modulation in L2/3 excitatory neurons separated by orientation preference. Related to 
Figure 1. 
Iso stimuli and the center of cross-surround stimuli were both presented at the same orientation. Neurons were 
split in two groups based on their orientation tuning, one group with neurons having a preferred orientation 
similar to that of the presented orientation and another group with neurons having a preferred orientation 
orthogonal to that of the presented orientation (see Methods). Contextual modulation index distributions for 
preferred orientation (black) and for orthogonal orientation (gray). Triangles above histograms indicate median. 
Single-distribution two-sided Wilcoxon sign-rank test; preferred orientation: p < 10-10; orthogonal orientation: p < 
10-10; 317 and 265 neurons in 9 mice, respectively.   
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Figure S2. Model response fits and example model. Related to Figure 3. 
(A) Spontaneous activity, and responses to center, iso, and cross stimuli of the 5 unit-types for the top 15 models 
(not baseline subtracted; see Methods). Units were fit to experimental data considering two spatial locations and 
two preferred orientations (columns). ‘Centered’: Neuron ffRFs aligned with the stimulus location. ‘Surround’: 
Neuron ffRFs offset from the stimulus location. ‘Preferred orientation’: Neurons with preferred orientation 
matching the stimulus orientation. ‘Orthogonal orientation’: Neurons with preferred orientation orthogonal to 
the stimulus orientation. Yellow symbols represent example model in (B). Each dot represents the activity of a 
unit from a single model. Red symbols represent experimental data (mean ± SEM; 911, 317, 265, 180, and 172 
L2/3 excitatory neurons in 9 mice for baseline and the 4 functional groups (columns), respectively; 80, 48, 21, 7, 
and 8 PV neurons in 10 mice; 303, 200, 60, 24, and 22 SOM neurons in 13 mice; 74, 30, 10, 20, and 16 VIP neurons 
in 7 mice; 96, 22, 13, 29, and 34 L4 excitatory neurons in 5 mice). 
(B) Connection strengths of the best model. Excitatory connections are represented in red, inhibitory connection 
in blue. The 4 matrices correspond to W(1), W(2), W(3), and W(4) in Figure 3B. 
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Figure S3. Analysis of top 15 and next 85 recurrent neural network models. Related to Figure 3. 
(A-D) Responses of excitatory units to stimuli centered on the spatial location of their ffRF and presented at their 
preferred orientation for the top 15 models (red) and the next 85 models (black). 
(A) Changes in responses to iso and cross stimuli in excitatory units upon VIP silencing. Paired two-sided Wilcoxon 
sign-rank test; top 15 models, p = 1.2 × 10-4; next 85 models, p < 10-6. 
(B) Changes in CMI in excitatory units upon VIP silencing. Paired two-sided Wilcoxon sign-rank test; top 15 models, 
p = 0.030; next 85 models, p < 10-4. 
(C) Change in CMI upon VIP silencing (∆CMI) plotted against error in fitting (see Methods). 
(D) Lasso (least absolute shrinkage and selection operator) regression model prediction of ∆CMI. The prediction 
of ∆CMI for each recurrent neural network (RNN) model solution is given by the sum of the lasso regression model 
coefficients, represented in (E), times the deviation of the RNN model from the average connection strength of 
the top 100 RNN models. 
(E) Lasso regression model coefficients. 
(F) Median ∆CMI of the top 100 RNN models increases if the VIP to SOM connection in W(1) is strengthened (same 
spatial location and same preferred orientation).  
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Figure S4. Silencing VIP neurons and its effect on excitatory neuron responses to 100% contrast stimuli. Related 
to Figure 4. 
(A) Experimental setup. We conditionally expressed an inhibitory opsin, ArchT or eNpHR, in VIP neurons and 
unconditionally expressed a calcium indicator, GCaMP7f. 
(B) Population-averaged calcium responses of VIP neurons with and without silencing VIP neurons (37 neurons in 
6 mice). Here, stimuli were presented at 50% contrast. 
(C) Scatter plot of stimulus-averaged responses (center, iso and cross at 50% contrast) in VIP neurons with and 
without silencing VIP neurons. Paired two-sided Wilcoxon sign-rank test; p < 10-6; same neurons as in (B). 
(D) Baseline shift in VIP neurons upon silencing VIP neurons. Single-distribution two-sided Wilcoxon sign-rank test; 
***: p < 10-9; 80 neurons in 8 mice. 
(E) Same experimental setup as in (A). 
(F) Cumulative sum of CMIs in putative L2/3 excitatory neurons (1568 neurons in 8 mice). Here, stimuli were 
presented at 100% contrast. 
(G) Upon silencing VIP neurons, putative L2/3 excitatory neurons with a negative CMI increased their CMI and 
those with a positive CMI decreased their CMI (gray shading). Paired two-sided Wilcoxon sign-rank; CMI < 0 and 
CMI ≥ 0, ***: p < 10-10; 121 and 1447 neurons, respectively, in 8 mice. 
(H) Baseline shift in putative L2/3 excitatory neurons upon silencing VIP neurons. Single-distribution two-sided 
Wilcoxon sign-rank test; ***: p < 10-10; same neurons as in (F). 
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