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Abstract

Identifying the regime in which the cortical microcircuit operates is a prerequisite to determine the mechanisms that mediate
its response to stimulus. Classic modeling work has started to characterize this regime through the study of perturbations,
but an encompassing perspective that links the full ensemble of the network’s response to appropriate descriptors of the
cortical operating regime is still lacking. Here we develop a class of mathematically tractable models that exactly describe the
modulation of the distribution of cell-type-specific calcium-imaging activity with the contrast of a visual stimulus. The model’s
fit recovers signatures of the connectivity structure found in mouse visual cortex. Analysis of this structure subsequently reveal
parameter-independent relations between the responses of different cell types to perturbations and each interneuron’s role in
circuit-stabilization. Leveraging recent theoretical approaches, we derive explicit expressions for the distribution of responses
to partial perturbations which reveal a novel, counter-intuitive effect in the sign of response functions.
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Introduction

The presentation of a stimulus to a network of neurons elicits responses that qualitatively depend on the operating regime of the
circuit1,2. Identifying it, is a prerequisite to predict neuronal activity levels in response to novel stimuli. Converging evidence
from experimental and theoretical studies suggests that a defining feature of the operating regime of cortex is strong recurrent
excitation that is stabilized and loosely balanced by recurrent inhibition1,3–7. This understanding was achieved through the
discovery of a fundamental link between inhibition stabilization and response to perturbations established by classic models of
recurrent networks with a single inhibitory type1,2. In these models, an increase in the input drive to the inhibitory population
would elicit a simultaneous decrease of the excitatory and, paradoxically, of the inhibitory steady-state activity, if and only
if the circuit was inhibition stabilized. This link was probed and verified in multiple experiments1,3–5, demonstrating that the
response of the circuit to controlled perturbations is a successful descriptor of the cortical operating regime.

Those earlier theoretical approaches suffer from three fundamental limitations that prevent linking the diversity of the
network’s response to the circuit’s operating regime i) inhibition is not monolithic and is instead subdivided in multiple cell
classes; how inhibition stabilization is implemented at the cell-class level is not understood; ii) cortical networks are rich in
parameter heterogeneity; an understanding of the role of same-cell-type diversity in model predictions is currently lacking; iii)
new models, if they hope to account for this emerging complexity, will be rife with parameter degeneracy; yet, a data-driven
framework designed to subselect from the universe of such models has not been established.

The range and influence of the first issue has recently been quantified. The inhibitory sub-circuit is composed of multiple
elements with three types – parvalbumin-(PV), somatostatin- (SOM), and vasoactive-intestinal-peptide (VIP) expressing cells
that constitute 80% of GABAergic interneurons in the mouse primary visual cortex (V1)8. These inhibitory cell types do not
act in unison, but differentially contribute to response tuning9–12 and to contextual13–17 and behavioral-state modulations18–21.
In particular, two of these types, SOM and VIP, engage in competitive dynamics whose outcome directly regulates pyramidal
cell activity via inhibition or disinhibition. It is currently debated how the stabilization of strong recurrent excitation is
implemented by these interneurons, and whether increasing the input to a particular inhibitory type would lead to a paradoxical
decrease of its activity as it is observed when the entire inhibitory sub-circuit (i.e. all GABAergic types) is perturbed.
Importantly, these interneurons form a microcircuit characterized by a specific connectivity pattern22–24, but the relation
between the connectivity pattern and the circuit’s response to perturbations has not yet been established.

The diversity of same-type cells responses is ubiquitous in neuronal activity14,17 yet a theoretical framework elucidating
how this broad distribution of responses could aid the identification of the circuit’s operating point is lacking. Previous
work on inhibition stabilization has assumed homogeneous populations2,25, in which all same-type cells are identical and
identically connected, fundamentally limiting the capacity of these models to be mapped to actual cortical circuits. Different
theoretical approaches26,27 have explicitly derived descriptors for the mean activity of heterogeneous populations, accounting
for same-type cell diversity, and have provided a connection between those two levels of description, namely homogeneous
or low-dimensional vs heterogeneous or high-dimensional description. Yet a framework that predicts the responses of
heterogeneous circuits to perturbations, and relates these responses to the homogeneous case, is lacking. Furthermore, current
optogenetic perturbations themselves are far from homogeneous. In most animal species the accessible toolbox for opsin
expression is via local viral injection, infecting only a fraction of the cells in the relevant local circuit. The inconclusive
outcome of partial optogenetic perturbations in vivo5,28 is at odds with the expected paradoxical response of inhibitory
neurons in ISN circuits, demonstrating that low-dimensional descriptions are insufficient to account for the response to
concrete optogenetic manipulations, in which cell, cell-type, and perturbation diversity play an important role.

Finally, a fundamental trade-off prevents bridging concept-building theoretical constructs to the biologically realistic modeling
necessary to identify a cortical operating regime. As biological realism increases, making parameter-independent predictions
or even locating the parameters that situate a biologically insightful model in the correct network state becomes exponentially
difficult. Current approaches range from detailed heterogeneous network models29,30 which lack mathematical tractability, to
simpler and insightful homogeneous models whose parameters are either chosen according to currently available connectivity
data31–34 or to account for stimulus-evoked responses17,20, but that neglect within-cell-type diversity and are therefore limited
in their predictive power.

The increasing versatility in the perturbation patterns introduced by holographic and cell-type-specific optogenetic techniques
indicates that time is ripe to develop novel descriptors for the circuit’s operating point suitable to characterize heterogeneous
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circuits with multiple cell types and data-compatible models in which to evaluate them. We have charted out a three-stage
program to broaden the predictive power of cortical circuit models. Firstly, we used calcium-imaging recordings of the
activity of each interneuronal type in response to stimuli of increasing contrast, to single out a family of low-dimensional
system models that fit the data. We report that our fitting method, remarkably, provides sets of parameters endowed with
key aspects of the structure of the connectivity matrix found in the mouse visual system22,23. By studying mathematically
the implications of this structure for the response to cell-type-specific perturbations, we predict a parameter-independent
symmetry between the responses induced by perturbation of VIP or of SOM, two interneuron types involved in a disinhibitory
micro-circuit whose competition directly regulates pyramidal cell activity. We find that this hidden symmetry principle is
respected with remarkable reliability in the models that fit the data. Furthermore, we establish a mathematical link between
cell-type-specific response to perturbation and sub-circuit stability. By implementing those insights in these data-compatible
models we provide new evidence, aligned with convergent experimental15 and theoretical33 arguments, that PV interneurons
play a major role in circuit stabilization. Subsequently, we build upon the link between low-dimensional and high-dimensional
models provided by mean-field theory26,35, and are able to construct a family of high-dimensional rate models that fit the
experimentally observed distribution of activity of each cell-type and its dependence on contrast. Finally, using recent results
in random matrix theory36, we obtain explicit expressions for the mean and variance of the distributions of responses to
patterned optogenetic perturbations. We find, surprisingly, that even if the distribution of activity is spread out, the distribution
of responses to optogenetic perturbations need not be. Furthermore, we find that when effecting cell-type-specific partial
perturbations, the fraction of cells that respond paradoxically has a non-monotonic dependence on the fraction of stimulated
cells. There is a range in which increasing the number of stimulated cells actually decreases the fraction of paradoxically
responding cells, yielding a fractional paradoxical effect that can be linked to the loss of circuit stability in the context of
partial perturbations, and which opens a new avenue for experimental inquiry.

Results

Classic models revealed that the response to controlled perturbations could be interpreted to characterize the operating regime
of cortex. Because these models are low-dimensional (hereafter "low-D"), i.e. they have as many units as populations,
and because they include one excitatory and only one inhibitory type, the circuit’s response to perturbations is linked
to the stabilization of the circuit (see Eq. (S11)). When recurrent excitation is strong and stabilized by inhibition (an
inhibition-stabilized network or ISN, Fig. 1a), an increase in the external input drive to the inhibitory population results in a
paradoxical decrease of its steady-state activity (Fig. 1b). The paradoxical response is then a signature of the ISN condition,
occurring if and only if the network is an ISN (Fig. 1c). In circuits with multiple inhibitory types, the condition for inhibition
stabilization (Fig. 1d) is identically defined as in the single-type inhibitory case, but it is linked to the paradoxical response of
the total inhibitory input current to the excitatory population37,38 and not to the response of any particular cell-type. In fact, the
paradoxical response of a given cell-type is not a predictor of the ISN condition and its implications for circuit stabilization are
not understood (Fig. 1e,f)32. Whether there is a link between the responses to perturbations of different inhibitory sub-types
also remains unresolved. Low-D models neglect within-cell-type diversity, and therefore fail to predict the range of cellular
responses found in the cortical circuit. Multiple configurations of high-dimensional (high-D) models, in which there are as
many units as neurons in the network, are compatible with the L system response. Identifiers of high-D network structure
need to be identified (Fig. 1g).

Thus, new descriptors, beyond the paradoxical response of the inhibitory sub-circuit, are needed to identify the operating
regime from multi-cell-type, high-D activity. Finding those requires a data-driven approach that describes the typical behavior
of models when constrained to reproduce the statistics of recorded neuronal activity. Here, by establishing a framework for the
study of low- and high-D data-compatible models and their responses to perturbations, we determine three novel descriptors:
i) we establish the link between paradoxical response and circuit stabilization, which fails in general scenarios, and identify
which cell-types are responsible for stabilization; ii) we establish parameter-independent relationships between the response
to two interneurons involved in disinhibitory control, and observe that fitted models fall in one and not the other category;
iii) we link theoretically the responses of low-D and high-D systems to discover a novel type of paradoxical effect in the
models that fit the data, which we link to the stability of the circuit in the context of partial perturbation. More generally, We
demonstrate how the statistical structure of the high-D circuit can be determined from the statistics of neuronal responses.
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Figure 1 Locating the operating point of the cortex requires novel descriptors. a) Classic models are low-D models with only two
units: one excitatory (E) and one inhibitory (I), EI circuits for short. We refer to fixed points of activity which mean a set of steady-state
network firing rates in response to a fixed input to the network. The circuit is an inhibition-stabilized network (ISN) at a given fixed
point when freezing the inhibitory rate at its fixed-point level renders the excitatory subnetwork unstable. b) The steady-state firing rate
of the inhibitory population in an ISN paradoxically decreases in response to an increase in its input drive. c) Response of the inhibitory
population to an input increase as a function of network parameters. The network is an ISN (area enclosed by green lines) precisely when
the response of I to an increase in its input is paradoxical; in these classic models, there is a one-to-one link between paradoxical response
and inhibition stabilization. d) In the circuit with multiple inhibitory types the definition of inhibition stabilization is a generalization of
that in a): if all inhibitory input to the excitatory population is frozen at its fixed-point level, then the excitatory activity will be unstable.
It has been shown 37,38 that an increase in the external drive to the inhibitory sub-circuit (i.e.to any or all GABAergic cell-types) will
result in a paradoxical response of the steady-state inhibitory input to the excitatory population, i.e.either a decrease in excitatory activity
accompanied by a paradoxical decrease of the total inhibitory input to the excitatory population, or a simultaneous increase of the excitatory
activity and the inhibitory input to the excitatory population. Nevertheless, whether there are further relationships between stability of
network sub-circuits and paradoxical responses in this case is not understood. e) Is there a condition on network stability that predicts
paradoxical response of an individual population (here, the PV population), in response to an increase in its input drive? f) Response of
the PV population to an input increase as a function of network parameters of the E-PV-SOM-VIP network. Non-paradoxical responses
of the PV population are not restricted to a single region of parameter space (blue shaded area). Although regimes in which the network
is inhibition stabilized (the area enclosed by green lines) and regimes in which PV has a paradoxical (red shading, black lines are contour
lines separating paradoxical from non paradoxical response) response overlap, they are not predictive of one another. g) The response of
the low-D systems described in panel e) corresponds to the mean population response in networks in which all neurons of a given cell type
have the same properties and inputs (a homogeneous network). In systems in which inputs and connections are heterogeneous, the fraction
of cells which respond paradoxically can vary depending on the operating point, even if its the response is not paradoxical on average.

Fit of a low-dimensional model recovers mouse V1 connectivity structure

We study the response to contrast manipulations in neurons of layer 2/3 of primary visual cortex (V1) of awake, head-fixed
mice. Specifically, we study the responses of Pyramidal (E) neurons and of Parvalbumin (PV), Somatostatin (SOM) and
Vasoactive Intestinal Polypeptide (VIP) -expressing interneurons while the animal is shown circular patches of drifting grating
stimuli of a small size (5 degrees) at varying contrast. Contrary to what has been previously reported in E/I networks, both
experimentally10 and theoretically37,39, the activity of inhibitory neurons can decrease with contrast. In particular, VIP activity
has a non-monotonic dependence on contrast.

We begin by modeling the data as a low-D circuit with four units, each representing the mean activity of one cell-type
population. Each unit has a supra-linear input-output function39. All four cell-types receive a baseline input to account for
the spontaneous activity observed, while feed-forward inputs only target either E and PV or E, PV and VIP. These inputs are
taken to be either a linear function of contrast (Fig. 2, S1) or proportional to the measured activity of L4 pyramidal cells
(Fig. S1). To simultaneously find the synaptic connectivity parameters, the value of the baseline inputs, and the values of
the stimulus-related inputs, we construct surrogate contrast-response curves for each cell-type by sampling from a Gaussian
distribution with mean and standard deviation equal to the data mean and its standard error. We fit each model by finding
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Figure 2 Unconstrained fit to contrast response data recovers mouse V1 connectivity structure. a) Low-D model with multiple
inhibitory types. This circuit describes the mean activity of the E, PV, SOM and VIP populations in layer 2/3 of mouse V1. Inputs to each
cell-type are composed of a spontaneous activity baseline hb, and a stimulus related current, hc, to E and PV, modeling the feedforward inputs
from layer 4. In this example, the stimulus-related inputs are linear functions of the stimulus contrast, but similar results are obtained when
the input is taken to be proportional to the measured layer 4 pyramidal cell activity instead (see Fig. S1 for different input configurations). b)
Mean activity of the pyramidal-cell (E, black), PV (turquoise), SOM (orange) and VIP (pink) populations as a function of stimulus contrast,
as measured with two photon calcium imagining (thick line, ± s.e.m.). After performing non-negative least squares (see text) to find the 22
parameters of the model (16 weights, 4 baseline inputs and 2 stimulus-related inputs) we find a family of possible models (thin lines, mean
and s.e.m. over models, here we show the 300 models) that qualitatively reproduce the mean activity. Note that the activity of SOM and
VIP as a function of contrast are mirrored. c) The logarithm of the mean connectivity over all possible models is shown (see Fig. S2 for the
distributions). Notice that, as in experiments (see Fig. S2), the models lack recurrent SOM and VIP connections, and the connections from
VIP to E and PV are small on average.

the non-negative least squares (NNLS)16,40 solution to each surrogate data set, and select from these, several data-compatible
model parameters for which the network steady-states provide the best fit. This optimization takes as sole input the response
data and uses no prior information on the synaptic structure, hence it is not obvious that any meaningful synaptic structure
should be recoverable from such a procedure. We report that, surprisingly, the structure of the inferred connectivity matrices
has a striking resemblance to that reported experimentally (Fig. S2b). The family of models fitting the data are endowed with
a broad distribution of possible weights that exhibit consistent features: recurrent connections within the SOM population
and the VIP population were absent in most models, as observed in mouse V122,23 (Fig. S2). Furthermore, whenever inputs
were chosen to target only E and PV, VIP interneurons have weak or absent connections to all other cell-types except SOM
interneurons, also as reported in mouse V122.

We next asked whether the models that fit the data are inhibition stabilized networks. Inhibition stabilization is understood
here as one fundamental descriptor of the operating regime1. We find that in the absence of stimulus, only few models
are compatible with non inhibition-stabilized circuits, a fraction that becomes vanishingly small at full contrast as is
consistent with experimental findings1,5. This conclusion is independent of the choice of inputs and holds for the four
input configurations we analyzed (see Fig. S3). In a multi-cell-type circuit, the ISN condition implies that an increase in
the input drive to any or all of the inhibitory populations results, in the new steady state, in either a simultaneous decrease or a
simultaneous increase of both the inhibitory input to the excitatory population and of the excitatory activity.37,38. Therefore, if
a perturbation to the entire inhibitory sub-circuit elicits a paradoxical decrease in activity in all GABAergic cells that project
to excitatory cells and in the excitatory activity, then the circuit will be an ISN. The converse, that the ISN condition implies
a paradoxical response of the inhibitory activity, is only true in an E/I circuit: in the multi-cell-type case, there are multiple
ways in which the total inhibitory input current to the E population can decrease, so no specific cell-type needs to respond
paradoxically. In our models, which are almost all ISNs, perturbing all GABAergic cells systematically implies a decrease in
PV activity, but whether it causes an increase or decrease in the responses of SOM or VIP depend on the specific choices of
stimulus-related input (Fig. S4).

Paradoxical effects in circuits with multiple cell types and link to sub-circuit stabilization

To systematically investigate the response to cell-type-specific stimulation. We focus on the linear response matrix, whose
elements χαβ give the change in steady-state response of cell-type α per change in input to cell-type β , for small changes (see
Eq. S10). The diagonal elements of this matrix, Jαα , can be written as a function of the Jacobian J of the entire circuit and
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the Jacobian Jα of the sub-circuit without cell-type α:

χαα ∝
−1

detJ
detJα α = {E,P,S,V} (1)

If the response of cell-type α at a given fixed point is paradoxical (χαα < 0) and the fixed point is stable (implying detJ > 0),
then the sub-circuit without that cell-type, linearized about the fixed point, will be unstable (detJα > 0, see Eq. (S10) and Fig.
3a). This insight is a simple generalization of the two-population ISN network, in which the I unit shows a paradoxical
response at a given stable fixed point when the circuit without it, i.e. the E unit, is unstable. It links cell-type-specific
paradoxical response to sub-circuit stability in a more general setting.
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Figure 3 Paradoxical response and circuit stabilization in data compatible models. a) Graphic summary of the relation between
stability and paradoxical responses. The response of a cell-type α , which is the change in activity normalized by the size of the perturbation,
is shown as a function of contrast. When the response of the cell-type which is being perturbed is negative, the response is paradoxical.
Mathematically, that means that the circuit without it is unstable. In the special case in which VIP projects only to SOM, SOM being
paradoxical means that the E-PV circuit is unstable. b) Fraction of models that fit the data which exhibit paradoxical responses in each of
the 4 cell-types, as a function of contrast. c) Linear response matrix χαβ quantifying the change in activity that a population α undergoes
when extra current is injected in the population β , as a function of contrasts for the models fitted in Fig. 2. Note the paradoxical response
of PV at all contrasts and the non-paradoxical response of SOM in most cases. In the multiple cell-type circuit and unlike in the EI system,
excitatory activity can in principle also respond paradoxically. Nevertheless, none of the data-compatible models obtained had an excitatory
paradoxical response.

We next compute the linear response matrix χαβ as a function of stimulus contrast for the family of data-compatible models.
We find that a perturbation to the PV population elicits a paradoxical response in almost all models consistent with recent
findings of optogenetic perturbations to the full PV population in mice5 (Fig. 3b,c, see also Eq.S46 for a relation between
the calcium activity used here and firing rate). When the projections from VIP to E, PV and VIP are very small, the response
of SOM to its own perturbation is directly linked to the stability of the sub-circuit E-PV: a paradoxical response in the SOM
population indicates that the E-PV sub-circuit is unstable (see Eq. S12).

Consistent with previous work showing that strong perturbations to PV destabilize the dynamics in V115, we find that in most
models that fit the data i) SOM does not respond paradoxically, consistent with the E-PV circuit being stable, and ii) PV
responds paradoxically, meaning that the circuit without it is unstable (Fig. 3b,c). We conclude that a first novel descriptor
of the operating regime of circuits with multiple cell-types, is PV-stabilization, meaning that potential circuit instability is
stabilized by PV cells and not by SOM cells (see also33). This describes most of our models that are consistent with the
data, but about 20% show paradoxical SOM response at higher contrasts (in addition to paradoxical PV response) and so are
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stabilized by the combination of PV and SOM and not by either alone. In our models, its role is robust and supported by the
paradoxical response of PV and the non-paradoxical response of SOM.

Symmetry principles of optogenetic response

We find consistent symmetries in the response matrix. The first set of symmetries involve responses of, or to, E vs. PV: i) the
responses elicited in E and in PV are similar when perturbing any cell-type (first two rows of 3c, see also Fig. S6a); and ii)
perturbing E and PV elicits a mirror change in activity in all cell-types (first two columns of 3c, see Fig. S6b). We hypothesize
that these symmetries result from the similarity between the activity of E and PV. To test this, we repeat the fitting procedure
in a simplified configuration in which PV activity is proportional to E (see Fig. S7a). We find that in that case, the connectivity
matrix has linear dependencies: weights from a given cell type to E are a linear (affine) function of that cell-type’s weight to
PV, and similarly for weights from E vs. those from PV (see Fig. S7e). This allows a mathematical understanding of these
symmetries: the change in activity in E and PV to perturbations are different linear combinations of the same elements, so
that the change in activity elicited by a perturbation to E will be proportional to the one elicited by a perturbation to PV, with
an offset and slope that are contrast-dependent (see Eq. S33).

A second set of symmetries involve responses to perturbation of SOM vs. perturbation of VIP. Based on our recovery of the
structure of the connectivity matrix found in mouse V1 (Fig. 2), we examined the linear response matrix for a connectivity that
obeys the condition that VIP projects only to SOM, and is otherwise arbitrary. We found that in this case, the linear response
matrix has a symmetry between the response of E, PV and SOM to a VIP perturbation vs. to a SOM perturbation: for each
cell type, the two responses will be negatively proportional to one another, with a common proportionality constant across
the three cell types (Fig. 4a)). Specifically, if f ′V is the gain of VIP at a particular steady-state configuration and ωSV is the
synaptic weight from VIP to SOM then

χαV =− f ′V ωSV χαS α = {E,P,S} (2)
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projecting only to SOM. a) Illustration of the response of cell-type α to VIP perturbation vs the response to a SOM perturbation multiplied
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magnitude of the response to SOM, so that possible values lie on a line, as shown. Two regimes can be identified: One in which VIP
disinhibits while SOM inhibits the cell-type α (lower right quadrant) and another one in which the opposite is true (upper left quadrant).
b) HRS for E for the top 0.01% of models. Given that the data-compatible connectivities have only small values of connections weights
from VIP to E, PV and SOM, this symmetry is evident in the models that fit the data. c) Same as b) for PV and SOM. Inset shows the joint
probability distribution over models for the SOM case, for visual clarity. Together these results show that the best fit models support a clear
disinhibitory motif in which a perturbation to VIP decreases SOM activity and increases both E and PV, and a perturbation to SOM does the
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We call these equalities "Hidden Response Symmetries" (HRS). Even though we fit the models unconstrainedly, allowing all
possible connections, we find that the data-compatible models have only weak connections from VIP to other interneurons
besides SOM, as in experiments22,23. Therefore, and as quantified in Figure 3b, this symmetry in the response is revealed in
this family of models. We emphasize that this result is general in this type of low-D systems and formalizes a clear intuition:
Because VIP only projects to SOM, a weak perturbation to VIP can only affect the rest of the circuit through SOM, relaying
that perturbation with an opposite sign. The HRS defines two regimes: one in which an increase in the input to VIP increases
the activity of a given population, and another one in which it decreases it, with SOM causing an opposite response in each
case. Specifying this regime provides another good descriptor of the cortical operating point. Our data-compatible models
almost all are in agreement as to this regime: in almost all, activation of VIP has a disinhibitory effect on E (see Fig. S5 for
a detailed analysis of the effects of VIP on E), as in experiments17,21,41,42, and disinhibits PV while inhibiting SOM. These
effects of small VIP perturbations on PV and SOM, and the opposing, proportional effects on E, PV and SOM of small VIP
vs. SOM perturbations, with the same proportionality constant for all, constitute predictions of our analysis. We note that the
analysis also predicts that activation of PV suppresses all other cell types (Fig. 3c).

High-dimensional models recapitulate the dependence on contrast of the distribution of responses of all cell types

Understanding heterogeneity both in the cortical circuit and in the perturbation protocol, and analyzing partial perturbations
from modern holographic optogenetic stimulation, require models capable of fitting and explaining the diversity of neuronal
response. To describe contrast modulations observed within each cell-type population, we build high-D models with different
numbers of cells in each population as measured experimentally8 (Fig. 5a). Each neuron has a power-law input-output
function37,39 and receives a specific baseline input and a cell-type-specific stimulus-related input. The connectivity is
heterogeneous with a mean and a variance dependent on both the pre- and post-synaptic cell-type. We emphasize that,
due to the nonlinear transfer function, heterogeneity in the values of the synaptic connectivity will change the mean activity
compared to the homogeneous case, in which all the neurons are the same. Consequently, the parameters needed to fit the data
in the homogeneous case, which is mathematically identical to the low-D model, will be different than the ones needed to fit
the high-D system.
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Figure 5 Fitting the distribution of responses to multiple contrasts with a mean-field model. a) Diagram of the high-D
model. Weights and inputs are heterogeneous. As in the low-D case, inputs are composed of a baseline and a stimulus related signal, chosen
to be linear in the stimulus contrast as in Fig. 2. b) Fitting pipeline: The distribution of activity generated by a model with a power-law
non-linearity and recurrent and feed-forward inputs that are Gaussian distributed has an explicit mathematical form 35 (Eq. (S62)). We used
it to fit that form to each of the distributions of activity for a given cell-type at a particular value of the stimulus contrast. A mean field
model, with the appropriate parameters should be able to recapitulate the distributions of activity of all cell-types at all values of contrast. To
find them, we generate high-D models by sampling from prior distributions of parameters, and compare them to the fitted data distributions
using an error function, given by the sum of the Kullback-Leibler divergences of the distributions given by the model (Pα

mf) and the data
(Pα

c ) for all cell-types and contrast values, which can be found explicitly. By only accepting models with error less than a threshold of 0.45
(top 0.005%), we build a family of suitable models. c) Example of a parameter configuration within the threshold. Data (histogram, colored
bars) and data fits (solid colored line) are in good agreement with the mean-field theory distributions (dashed gray line) and the simulations
of the full high-D model (gray bar histogram). d) Distribution of KL divergences, indicating the 0.45 threshold. We used models below this
threshold for the analysis in the remaining text (see Methods for details, and Fig. S5).
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In order to fit the entire distribution of responses and its dependence to stimulus contrast, we build on two facts. First,
given power-law input-output functions, there is a closed-form expression35 (see also Eq. S62) that links the distributions of
responses of a given cell type (α) to the distribution of inputs that population receives. Given that this expression is explicit,
it allows inference from the data of the input distributions for each cell-type and each stimulus (contrast c).

Second, for a given high-D circuit model (for a fixed set of parameters), these distributions of inputs and activity can be
computed self-consistently through mean-field theory26,27 (see Eq. S58). To find high-D models that fit the observed data
distributions, we build an error function (Fig. 5b) that measures the divergence (see Eq. S65) between the distributions fit to
data, Pα

data(r), and the distributions produced by the mean field equations, Pα
mf(r). This error has an explicit expression. To

generate candidate models, we sample from prior distributions on the parameters (the means and variances of the weights w
and the external inputs h). We keep the solutions that have a sufficiently small error, to define a family of high-D models (Fig.
5c,d, see also Fig. S8). This family of models (see Fig. S8) recapitulates the dependence of the distribution of responses of
all types on contrast, and captures both the spreading out of the distributions with increasing contrast and the heavy tails of
the distributions seen in the calcium data.

Analytical approach to full and partial perturbations

To assess the predictive power of this new family of models that fit the data, we compute the distribution of responses of the
network to perturbations, e.g. optogenetic activation or suppression of sets of cells. We assume that all neurons in a given
population have the same firing rate at the network’s fixed point, what we refer to as homogeneous fixed point (hereinafter
HFP) approximation, see Eq. S72). This makes our system fit the assumptions needed to build on recent work on random
matrix theory36 to compute these response distributions. We thus obtain explicit analytical expressions for the behavior of
the mean and the variance of the distributions of optogenetic responses to either full or partial, and either homogeneous or
disordered, perturbations. In the following, we will distinguish analytics using the HFP approximation, from simulations of
the fully nonlinear system, in which different cells of a given cell-type can have different firing rates at the network’s fixed
point.

First, we investigate which aspects of the distribution of responses to perturbations in the high-D system are linked to the
low-D case. Importantly we find that under the HFP approximation, neurons belonging to a specific cell-type’s population
of the high-D heterogeneous system, have a mean response to cell-type-specific perturbations given by the response of the
system without heterogeneity (see Eq. S138), allowing us to directly link the response of the low-D and high-D models.
Figure 6a shows the distribution of responses to cell-type-specific perturbations of the network in Figure 5 in the absence of
visual stimulation (see also Figs. S9 and S10 ). The distributions obtained under the approximation are in good agreement
with the results of simulations of the fully non-linear system.
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Figure 6 Distributions of responses to full-population perturbations in high-D systems: Here we consider perturbations to all cells
of a given cell type ("full-population perturbations") in the high-D model shown in Fig. 5. a) Distribution of responses to full-population
perturbations in the absence of visual stimulation (see Fig. S11 for the entire family of models). Gray histograms are the result of the
simulation of a fully high-D nonlinear system, while colored histograms are simulations of the network within the HFP approximation.
Orange lines are the analytical result, only possible with that same approximation. The responses of E, SOM and VIP cells are not
paradoxical, while all cells in the PV population respond paradoxically to PV stimulation. b) Cumulative distribution of responses (analytics)
to full-population perturbation in the presence of a visual stimulus for varying stimulus contrast. Increases in contrast modulate the variance
of the responses in anti-intuitive ways. In some cases, contrast increases widen both the distribution of stimulus-driven activity and the
distribution of responses to full-population perturbations spread out (SOM). Other cases either have a non-monotonic variance with contrast
(PV) or become narrower with contrast, opposite to what was found for the stimulus-driven activity (compare Fig. 5, see also Fig. S11 for
analysis on the variance) C) Hidden response symmetries in high-D systems: Opposite and proportional responses to perturbations of SOM
and VIP. Left: Distribution of E, PV, and SOM responses to SOM and VIP perturbations. Right: responses of single cells of type E (black),
PV (turquoise) and SOM (orange) cells to a VIP perturbation, vs the responses of those same cells to a SOM perturbation multiplied by
the factor: f ′V ωSV (see Eq. 2). The response symmetries that we had derived for the low-D system hold at the single cell level in the fully
nonlinear high-D system. In experiments, it may be necessary to compare the response of one cell to a SOM perturbation and a different
cell to a VIP perturbation. The contour lines show the distribution of such responses across pairs of cells, with VIP perturbed for one and
SOM perturbed for the other. In this case, the response to VIP and to SOM perturbations are not correlated.

It is conceivable that, given broadening of the distribution of activity as a function of contrast (Fig. 5), an optogenetic
perturbation would result in increasingly broad distributions. Counter-intuitively, we find that the spread of the distribution
of activity to visual stimuli is rarely predictive of the spread of responses to stimulation. The responses to perturbation can
become narrower with increasing contrast, even if the activity itself broadens (Fig. 6b, see also Figs. S9, S10 and Fig. S11 for
a quantification). In all the models analyzed, the entire distribution of PV responses to a full PV perturbation was paradoxical
whereas SOM has a non-zero fraction of paradoxically responding cells only at higher contrasts. We can relate these findings
back to the stability of the network sub-circuit. The mean of the response distribution can be shown to be the response of
an equivalent low-D system (under the HFP approximation), and therefore a paradoxical mean response of a give cell-type is
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Figure 7 Framework to describe the response to patterned perturbations. a) Partial homogeneous perturbation to the E population:
perturbation of a fraction of E cells with uniform strength. Bi-modality of the response distribution is only noticeable if the fraction of
perturbed cells is small enough. b) Response to partial heterogeneous type perturbation: perturbation of a fraction of E cells with varying
strengths. Top left: perturbation strength is distributed as a Gaussian, with mean 1 and normalized to integrate to 1, with varying standard
deviations equal to 0 (a partial homogeneous perturbation), 0.05, 0.1, 0.2, 0.3. For each strength distribution, either 20%, 50%, or 90% of
E cells are perturbed. The responses of cells that do not receive the perturbation are sensitive to the number of cells perturbed but not to
the variance of the "opsin expression" distribution shown in the top-left panel (they are sensitive to its mean, not shown, see Eq. S136). c)
Dependence of the mean and variance of the distribution of responses as functions of the fraction of stimulated E cells. As only the E cells
are stimulated, they are the only population exhibiting a distribution of responses that is a mixture of two Gaussians. Top row: the means
of all Gaussians contributing to the mixture (color-dashed for perturbed cells and black-dashed for non-perturbed cells). Bottom row: the
variance of each Gaussian (dashed lines) and, for E, of the mixture of the two (full lines).

indicative of the instability of the circuit without that cell-type (see Fig. S12).

Finally we quantify to which extent the mathematical understandings offered by the Hidden Response Symmetries hold at the
single cell level. Remarkably we find that although the distribution of responses to SOM and VIP are broad, the response of
a single cell to a SOM and VIP perturbation is perfectly anti-correlated in the fully nonlinear system (Fig. 6c), and respect
the relationships defined in the low-D case (Eq. 2). Our models suggest that this symmetry in the responses to VIP and SOM
stimulation is a good descriptor of the circuit’s regime both at the population and the single cell level.

Having found a model that reproduces the dependence of the distribution of activity on contrast, and established an analytical
framework to study the distribution of responses to arbitrary perturbations, we now investigate the response to perturbations
that do not affect all same-type cells equally. We studied two types of heterogeneous perturbations. In one, which we
call partial homogeneous in which a perturbation affects only a fraction of cells, but those cells are stimulated identically.
The second type of perturbation differs, in that those cells that are perturbed are not perturbed identically but instead in
a heterogeneous way (akin to heterogeneity of opsin expression in optogenetic experiments). We name this last type partial
heterogeneous. We find mathematically, that the distribution of responses of the population that is stimulated is bimodal, given
by a mixture of Gaussians (one gaussian corresponds to the perturbed population and the other one to the unperturbed one; see
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Figure 8 Fractional paradoxical effect. a) Top left: scheme of a mouse brain in which three different fractions of a cell populations
of the local cortical microcircuit are stimulated. Top right: Partial perturbations result in a bimodal distribution of responses. The rightmost
peak (red envelope) corresponds to the stimulated cells, while the leftmost peak (magenta envelope) corresponds to the non-stimulated cells.
When stimulating a small number of cells, the bulk of the distribution of responses (cyan shading) is negative. Increasing the fraction of
perturbed cells (middle and bottom right panels) first decreases, then increases the number of paradoxically responding cell. Bottom left:
Fraction of negative responses as a function of the fraction of stimulated cells shows a non-monotonic dependence, which we name the
fractional paradoxical effect. b) The fraction of negative responses of the PV, SOM and VIP populations as a function of the fraction of
stimulated PV cells, for three different values of the contrast. PV shows a fractional paradoxical effect in all fitted models (see Fig. S13). c)
For a given fraction of perturbed PV cells (x axis), the curves show the fraction of negative responses in each of the Gaussian distributions
composing the mixture of PV cell responses (perturbed cells, dark red; unperturbed cells, magenta), and in the full PV distribution (turquoise)
(see Eq. S111). Bottom left: The means of the same distributions, using the same colors. Note that the mean of the perturbed population
crosses zero when its fraction of negative responses crosses 50% (arrow). Top right: The mean response of the perturbed population can be
mapped to the response of a PV sub-population in a low-D system with two PV populations, a perturbed one (red) and an unperturbed one
(magenta) see, Eq. (S123). Whenever the mean of the perturbed cell population becomes negative, so does the response of the perturbed
cell type in the 5-D system, indicating that the fractional paradoxical effect is linked to a transition to instability of the non-stimulated
4-D sub-circuit of the 5-D system. Bottom right: The response of the perturbed population of the 5-D equivalent system (blue) and the
mean response of the perturbed sub circuit in the high-D system under the HFP approximation (orange) and for the full nonlinear system
(black) are shown as a function of the maximum eigenvalues of the non-perturbed sub-circuit in each case. The mean responses become
negative when the maximum eigenvalue crosses zero, indicating instability of the 4-D non-perturbed sub-circuit. d Perturbation showing
the response of all cells when stimulating 90% of all interneurons in the absence of visual stimulus, as computed analytically (line) the HFP
approximation simulations (histogram in colors) or the fully nonlinear simulations (histogram in gray) e) Same as (b) but while stimulating
simultaneously all GABAergic cells. The arrow to the gray region around fraction 0.9 links the distributions in d) with this panel. We note
that when doing this manipulation the non-monotonic dependence on this fraction is a prominent feature, which is recovered in all analyzed
models (see also Fig. S13).

Eq. S111 for partial homogeneous perturbation and Eq. S136 for partial heterogeneous perturbation). An example of a partial
homogeneous perturbation can be found in Figure 7a, and an example of a partial heterogeneous perturbation in 7b. The mean
of each of the Gaussians forming the response distributions is linear in the number of perturbed cells (Fig. 7c top row). The
different contributions of the fraction of cells perturbed and the heterogeneity of the perturbation can be understood from the
expression for the variance of each of the Gaussians in the mixture (Eq. S130 and S129). The variance (Fig. 7c bottom row)
is nonlinear (and potentially non-monotonic) in the number of perturbed cells. Note that the behavior of non-stimulated cells
strongly depends on the mean perturbation strength but not on its variance in the homegeneous-fixed-point approximation

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.11.378729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378729


used to derive these equations (but does depend on the variance in the fully nonlinear system).

Fractional paradoxical effect

When analyzing responses to a perturbation of a fraction of cells of a given population, we find a surprising effect: with
increasing fraction of cells perturbed, the fraction of cells of that type responding negatively (paradoxically) can show
non-monotonic behavior. Over some range, increasing the number of stimulated cells decreases the probability that we will
measure a cell showing paradoxical behavior. We name this the fractional paradoxical effect (Fig. 8a). This result extends
the concept of critical fraction developed in Ref.25 to the full rank case with multiple cell-types and heterogeneity.

Figure 8b shows the dependence of the fraction of negative responses of each inhibitory population on the fraction of perturbed
PV cells. Intriguingly, in the models that fit the data, PV has a fractional paradoxical response. When stimulating about 50%
of cells, about 50% show negative responses. This is consistent with what is observed experimentally in Ref.5, where an
optogenetic perturbation of PV interneurons with transgenic opsin expression (expressed in essentially all PV cells) elicits a
paradoxical effect in most cells, whereas if the expression is viral (expressed in only a fraction of PV cells), only about 50%
of cells show negative responses. The critical number of PV cells that are needed for the fraction of paradoxically responding
cells to increase with the fraction of perturbed cells (i.e. the minimum of the turquoise curve in Fig. 8b) can be expressed, but
only found numerically (the variance depends non-linearly on the fraction of stimulated cells).

The fractional paradoxical effect in a population is linked to the stability of the unperturbed sub-circuit (Fig. 8c). The mean
response of the perturbed cells in the HFP approximation can be mathematically linked to the response of a low-D system
with two PV populations, a perturbed one (red) and an unperturbed one (magenta), representing the perturbed an unperturbed
population in the high-D system respectively. We show that whenever the mean response of the perturbed population becomes
negative in the high-D system, the sub-system composed by all of the non-perturbed populations in the associated low-D
system will lose stability, corresponding to a paradoxical response of the perturbed PV sub-network. The eigenvalues of the
Jacobian of the non-perturbed sub-system, both in the high- and the low-D systems, become positive (indicating instability)
at the same fraction of perturbed cells as the change in sign of the response of the perturbed cells. This understanding links
stability of the non perturbed circuit to the fractional paradoxical effect: whenever the system exhibits a fractional paradoxical
effect, the unperturbed neurons will form a stable circuit, which will lose stability only after a critical fraction of cells are
stimulated. Finally, when increasing the fraction of perturbed cells in the entire inhibitory sub-circuit (Fig. 8c-d) we see that
at high contrast the fractional paradoxical effect will be observed in all cells.

Discussion

We leveraged methods of nonlinear regression, mean-field theory, and random matrix theory to find low and high-D models
of cell-type-specific response to contrast modulations, and to derive closed expressions for the mean and variance of the
distributions of responses to heterogeneous and partial optogenetic perturbations. This framework, allowed us to identify
and propose three useful descriptors of the circuit’s operating point, suitable for multi-cell-type high-D circuits: i) cell-type
response to an input increase and its link to sub-circuit stabilization, ii) the regimes of response to SOM and VIP manipulations
identified via the hidden response symmetries, and iii) the existence of a fractional paradoxical effect, linked to the stability
of the non perturbed network.

By fitting the mean activity of each interneuron type in response to contrast manipulations, we uncovered the underlying
structure of the synaptic connectivity observed in mouse V122,23 (Figs. 2, S1 and compare Fig. S2). Some of those features,
like the lack of recurrence within the VIP and SOM populations are independent of fitting choices, suggesting that there are
certain features of the dynamics that implicitly carry information about the connectivity, and that those can be revealed by
choosing a suitable model. We focused on small stimulus sizes in order to avoid the involvement of longer-range circuits
evoked by larger stimulus sizes6,14,15, which would presumably involve models with spatial structure43. Such models could
offer further constraints to the synaptic structure found here.

Our mathematical analysis resulted in a number of insights on the response to weak, cell-type-specific perturbations. In our
models, a strong similarity in the responses of PV and pyramidal cells to optogenetic perturbation (Figs. 3,S6,S7) stems from
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the similarity between the contrast tuning curves of E and PV in this dataset. We found indeed that forcing the activity of
PV and E to be proportional, models that fit the data have parameters which are linearly dependent, leading to similarities
in the optogenetic responses (Fig. S9). We expect these symmetries to hold only for certain stimulus configurations, but not
generally. In contrast, in low-D circuits in which VIP only projects to SOM, the response of all cell-types to small perturbations
to SOM or VIP are perfectly anti-correlated, independently of stimulus configuration or parameter choice. Responses of E, PV,
or SOM cells to perturbation of SOM are proportional, with the same negative proportionality constant, to their responses to
perturbation of VIP (Eqs. 2,S13). This mathematical prediction, the Hidden Response Symmetries held in most low-D models
that fit the data (Fig. 3), we found it to further hold at the single cell level in high-D models (Fig. 6c) and would expect it to be
found in in vivo optogenetic experiments. This prediction, showing with great generality that the independent manipulation of
the activity of these interneurons elicits opposite effects on the network state, is in close accord with observations of SOM-VIP
competition as has been observed in responses to multiple stimuli, or to behavioral or artificial manipulations17,41,44.

Inhibition stabilization is well-defined in multiple interneuronal circuits37,38, but how each interneuron contributes to circuit
stabilization, and the link of stabilization with response to perturbations32, has not been entirely understood (see also33). In
this work, we offer a perspective that links responses of a unit to stability of the subcircuit without that unit: If the subcircuit
is stable, then the unit will not respond paradoxically to a perturbation. Conversely, if the unit’s response is paradoxical, the
sub-circuit without it is unstable. Instability of a subcircuit lacking one unit does not guarantee the paradoxical response of
that unit, just as the non-paradoxical response will not guarantee the stability of the sub-circuit. This is because the sub-circuit
could lose stability by failing to satisfy other stability conditions than the determinant having the correct sign (see Eq. 1).
In our family of models we find evidence in support of PV being the main circuit stabilizer (Figs. 3,6,S11), given that it
shows paradoxical response (as in experiments,5,32) which guarantees that the circuit without it is unstable. This instability
is consistent with experimental observations15 and theoretical considerations33. The majority of models we analyzed did
not show a SOM paradoxical response, consistent with the E-PV subcircuit being stable (Eq. S12). Nevertheless, we don’t
necessarily expect this insight to hold for all experimental configurations: in situations in which lateral recurrence through
somatostatin interneurons plays a major role6,14,15, it remains to be investigated how stabilization is performed throughout
space.

To our knowledge this is the first time that a dynamical system model has accounted for the entire distribution of responses to
stimuli of multiple cell types. Our high-D models belong to a family of recurrent rate networks26,27,45 for which mean-field
equations link the mean and variance of the inputs to the mean and variance of the activity (Eqs. S56, S58). These models
have an explicit expression for the distribution of rates35 that depends only on the mean and variance of the distribution
of inputs (Eq. S62). Our approach to fit the distributions does not depend on the choice of non-linearity, but on the
distribution of activity having an explicit form. With suitable simplifications, analogous methods could be used to fit models
of multi-cell-type spiking networks, and extend it to account for other prominent cell-type-specific biological features, such as
cell-type-specific gap-junctions or dynamic synapses as found in the mouse cortex23. Furthermore, current advanced machine
learning methods46,47 built to find the joint distribution of parameters that account for certain features of the data, could be
combined with mean-field theoretical approaches to find specific manifolds in parameter space generating data-compatible
models. In fact, the parameters that we found to be suitable for the high-D model revealed a comparatively small variance
of the distribution of weights compared to its mean (see Fig. S2), unlike what is found experimentally (e.g., Ref.48). It is
conceivable that models with larger variances would be revealed by other methods, or by further incorporating biological
detail in the model.

In this work we built on recent results in random matrix theory36 to compute the mean and variance of the distribution of
responses to partial and heterogeneous perturbations under a suitable approximation. In this case, the mean of the response
matrix is the response of the linearized non-heterogeneous system (Eq. S138), offering a recipe to link the responses of
high- and low-D systems. It is interesting to observe that, because the variance of the distribution of responses depends
nonlinearly in a very intricate way on products of cell-type gain and the variance of the weights (Eq. S128), the spreading of
the distribution of activity with contrast and the spreading of the responses to optogenetic perturbations are not predictive of
one another (compare Fig. 5 and Fig. S9). This fact is not an artifact of the HFP approximation, given that via simulations we
verify that it holds for the fully nonlinear system.

We find that partial perturbations of the network give rise to a bimodal distribution of responses described by a mixture of
Gaussians (Fig. 8, Eq. S111). Increasing the number of stimulated cells leads to a non-monotonic dependence of the fraction
of cells that respond paradoxically on the fraction of stimulated cells, an effect that we name the fractional paradoxical effect.
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This does not depends on the HFP approximation, given that fully nonlinear disordered models show similar behavior (Fig.
8b), and does not depend on the specifics of the model, given that it is evident in the many thousand high-D models that fit
the data (Fig. S10), and therefore is robust to strong parameter degeneracy. By mapping the mean response of the perturbed
population to the response of a PV sub-population of an associated low-D system, we find an argument to link the fractional
paradoxical effect to the stability of the non-perturbed sub-network, which is verified numerically in the full system.

One weakness of our current approach is that heterogeneity in the opsin expression and the heterogeneity in responses that
contributes to heterogeneity of the linearized weights are not distinguished (Eq. S136), precluding an understanding of their
interaction. In our system, because the variance of the response to perturbations is linear in the variance of the heterogeneity
(Eq. S128), increased heterogeneity in the expression will tend to smear out the distribution of responses in this system.
Future experiments that are able to control the number of perturbed cells, possibly through holographic manipulations of local
circuits, will be able to determine the validity of this prediction.

Finally, all the work presented here is concerned with steady-state responses and perturbations. It is conceivable that
temporal driving of the models developed here will have particular spectral signatures and stimulus dependencies on stimulus
presentation49, and that similar methods to the ones utilized here can be used to explore temporal fluctuations around the fixed
points. Whether contrast modulations of the population’s spectral signatures found in the monkey50 and the mouse51 visual
cortex can be reproduced here, and the predictions for cell-type-specific temporal and spectral responses, are left for future
work.
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Figure S1 Lack of SOM and VIP recurrence are independent of model choices. a) Same as Figure 2, reproduced here for comparison.
The inputs are linear in the contrast and target only the E and PV populations with constant factor hα

c which are fitted together with the
weights. b) Same as a) when the inputs are taken as the recorded L4 pyramidal cell activity. In this case the weights from the L4 population
to E and PV populations are also fitted together with the rest of the weights and baseline inputs. The model fits the data less accurately,
specially at the highest activity points of VIP at 25% contrast and of SOM at 100% contrast. c) The inputs are linear in the contrast with
constant factor hα

c which are fitted together with the weights, this time targeting also VIP interneurons. We see that in this case the solution
that the NNLS finds, VIP projects to E and PV although the recurrence within VIP and SOM stays absent.d) Last case in which the inputs
are taken as the recorded L4 pyramidal cell activity and target E, PV and VIP populations. Identically as before the VIP-VIP and SOM-SOM
connections stay absent.
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the top 0.1 percent of models that fit the data. b) Mean of the distributions of weights shown in a) normalized by the synaptic weight from PV
to E, for comparison with the available experimental data. c) Left: Synaptic weight connectivity as obained in 22. Right: Publicly available
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Figure S3 Inhibition stabilization is an input-independent property of models that fit the data. a) Case in which contrast inputs are
linear in the contrast and project only E and PV. Top: ISN coefficient for different values of the contrast. When this coefficient is greater
than 1 the network is inhibition stabilized. Although for low contrast, in which the excitatory activity is low, there are models compatible
with a non ISN network, there distribution of weights shifts to values higher than one for larger contrast. Bottom: E-I ratio computed as
the excitatory input current (i.e. ωαE · rE ) over the total recurrent input, for the E, PV, SOM and VIP population. b) Idem a) for the case in
which the inputs are taken to directly by the mean pyramidal cell activity recorded in layer 4. c) Idem a) when feed-forward inputs target
E,PV and VIP. d) Idem c) when feed-forward inputs target E,PV and VIP.
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Figure S4 Paradoxical response to a cell-type perturbation and and not to a inhibitory-subcircuit perturbation is robust against
model input choices. a) Top: Linear response matrix as a function of contrast for the network configuration receiving contrast inputs linear
in the contrast targeting only the E and PV populations, same as Figure 3, reproduced here for comparison. Bottom: Response of E, PV,
SOM and VIP populations to perturbation of all interneurons. All interneurons at sufficiently high contrast response with a decrease in their
activity with this manipulation. b) Top: same as a) but when the contrast inputs target only E and PV and are taken to be proportional to
recorded L4 E activity. Differently from panel a), VIP and SOM always have an inhibitory effect on each other, and PV has an always
inhibitory effect on VIP. Bottom: idem as before, response of E, PV, SOM and VIP populations to perturbation of all interneurons. c) Top:
same as a) but when the contrast inputs target E, PV and VIP instead of only E and PV, and are taken to be linear in the contrast. Bottom:
The response of a perturbation to all interneurons is remarkably different from that observed in a), and VIP being excited by the stimulation
of all interneurons d) Top: same as a) but when the contrast inputs target E, PV and VIP instead of only E and PV, and are taken to be
proportional to recorded L4 E activity. Generally we find that there are similarities in the responses of the models that fit the data under
these different input configurations. The response of SOM and VIP to a PV perturbation seems to be the only inconsistent response across
these examples, and the response that ultimately defines whether that cell-type will respond paradoxically to a full sub-circuit perturbation.
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Figure S5 VIP->E connection does not disrupt disinhibition in these models. To investigate whether the fraction of models which
VIP has an effectively inhibitory effect to E is due to a direct inhibitory connection from VIP to E as suspected in frontal cortex 52, we
analyzed the term χEV in more detail. a) Decomposition of the term χEV into the three terms defined in Eq. (S28). The top panel is the
component of χEV that is due to the existence of a ωEV connection (negative) or to the existence of a ωPV connection (positive). The color
code indicates the value of ωEV . The middle top panel is the sum of those two terms. Imperfect cancellation results in negative values for
those models that have large ωEV (dark read), while are close to zero for those with small ωEV (yellow). Middle bottom: component of χEV
proportional to ωSV . We notice that for the dark read models, associated with large ωEV this term is large and positive, and often results
in a positive cancellation as can be seen in the lower panel. In summary, models with large values of ωEV do not necessarily result on VIP
having an inhibitory effect on E, but rather depends on whether the the net effect of the term χEV

i ii, proportional to ωSV , which quantifies
the contribution of the path SOM->E is positive or negative. b) Linear response matrix as in Fig. 3 color-coded by the absolute value of
ωEV . Given that there are many more models with small ωEV , only a few with large ωEV can be appreciated. We notice that the models
with vanishing ωEV , span all the range of responses.
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Figure S6 E-PV symmetries in the response matrix. a) Relationship between the first two rows to the linear response matrix of Fig.
3, highlighting the similarity between the response to perturbation between E and PV. b) Relationship between the first two columns to the
linear response matrix of Fig. 3. The response of all cell-types to a perturbation to E and to PV have opposite signs and a linear relationship.
In the simplified case of figure S7, it is possible to compute the contrast dependent offset and slope of these relations.
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Figure S7 E-PV symmetries in the response matrix are a consequence of parameter correlation in simplified models in which
PV is proportional to E a) Simplified scenario for the study of the E-PV related symmetries in the linear response matrix. Instead of
fitting the measured mean activity, we fit models to data in which PV activity is directly proportional to E (PV= 1.2 E) and keep all other
activity untouched. b) Model fits for the artifical dataset. c) We find that this family of models has even more accentuated structure than
that presented in Figs. 3,S1. Fitting models in which projections from VIP to E,PV,VIP were clamped to zero made virtually no difference
(not shown).d) The linear response matrix in this case is almost identical to that obtained for the original dataset (compare Fig. 3).e) In this
simplified case, the connections to E and PV and from E and PV have linear dependencies. f) When these dependencies are incorporated in
the response matrix, it is possible to calculate how each of these quantities are related (see section Matrix symmetries in simplified circuits
and Eq. (S33)).
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Figure S8 Family of high-D models. a) High-dimensional system. The proportion of neurons in each population is as in Fig. 5. b)
Distribution of KL divergences as defined in Eq. (S64).From the almost 2 million parameter configurations sampled from the prior, we
choose a threshold of 0.46 to keep around 100 models.c) First hundred models with smallest error. The distributions of VIP are bimodal
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Figure S9 High-D linear response analysis. a) The high-dimensional model used in this figure correspond to the top 5% of models
that fit the data as described above. b) Numerical example of the response of E, PV, SOM and VIP to a small perturbation. At time zero the
network evolves towards its fixed point, and it receives a homogeneous perturbation in the PV population at time 200 ms, reaching a new
steady state. The normalized difference between these steady states, divided by the size of the perturbation, gives the normalized change
in activity (the linear response distributions). c) Distributions of linear responses for a single example network in the absence of visual
stimulation. Each column is the response of the network, divided in populations, to a homogeneous stimulation of a population indicated
at the top. Gray histograms are the result of the simulation of a fully high-dimensional nonlinear system, while colored histograms are
simulations of the network with the HFP approximation (in which the system is linearized around the fixed point of the network without
disorder). Full orange lines are the analytics result, only possible with that same approximation. d) Cumulative distributions of the responses
in (d) for different values of the contrast. We observe that the models keep the overall behavior that the low-dimensional system has. Other
model examples in Fig. S5
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Figure S10 Contrast modulation of response distributions to full population perturbations in high-D models. Distribution of
linear responses to homogeneous full-population perturbations for different values of the contrast for all those models chosen in Fig. S8. As
described in the methods, the seeds for the priors, obtained from the low-D models, were chosen among those in which PV is paradoxical at
low contrast. We see that that condition guarantees in this family of models a disinhibitory effect in the activity of E when perturbing VIP.
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Figure S11 Uncorrelated variability of the distribution of optogenetic responses and the distributions of activity. Standard
deviation of the responses of each cell type to perturbations to each cell type as a function of the standard deviation of the activity. We see
that neither under the analytical approximation (black E, turquoise PV, orange SOM and pink VIP), or for the fully nonlinear system, there
is a clear correlation between the spread of these distributions. The spread of the distribution of activity is therefore not a good predictor of
the distribution of responses
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Figure S12 Linking stability and response to perturbations in high-D models. a) Eigenvalues of the Jacobian of the sub-circuit
without E (JE ) as a function of contrast. The response of pyramidal cells is never paradoxical and the sub-circuit without it its always stable,
for the system using the HFP approximation (orange), the non-disordered system (the low-dimensional system), and the fully-non linear
system without approximations, for the same simulation shown in Figs. 6 and S11. b) Idem a) for the sub-circuit without PV (JP). The
sub-system without PV is always unstable. c) Idem a) for the sub-circuit without SOM (JS), although this sub-circuit approaches instability
for large contrast in this particular example it remains non-paradoxical. d) Idem a) for the sub-circuit without VIP (JP).
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Figure S13 Fractional paradoxical effect in the family of high-D models. Dependence of the fraction of negative responses of the
PV, SOM and VIP populations as a function of the fraction of stimulated PV (top), SOM (middle) and VIP (bottom) cells, as in Fig. 8. b)
Same as a) but while stimulating simultaneously all GABAergic cells. We again emphasize the non-monotonic dependence on this fraction
is a prominent feature, which is recovered in all analyzed models. In this case the shaded color indicates fitness. The different models have
qualitatively similar behavior but some features seem to be quite sensitive to the parameters of the model. We generally find that the overall
behavior described in Fig. 8 holds for this family of models. The fraction of PV cells that respond paradoxically is a nonlinear function of
the perturbed cells.
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Figure S14 Outline of this paper. a-b) Low-D circuit: Multi cell-type circuit describing the population activity of E, PV, SOM, and
VIP cells when presented with stimuli of different contrasts. By using non-negative least squares (NNLS) we find the parameters to describe
the circuit’s contrast response. Results in Fig. 2. c) Assuming that VIP only projects to SOM and SOM does not project to itself, we
find relations between stability and responses to optogenetic perturbations and find hidden structure in the response matrix. These findings
are applied to the models that fit the data. Results in Fig. 3 d-e) High-dimensional model: When all the cells of one population connect
to the cells of the other population with the same strength (no disorder), the high-dimensional circuit describes the same dynamics as the
circuit described in (a) given that the parameters are chosen appropriately. Inclusion of disorder changes that mean activity. f) We use
approximate bayesian inference (ABC) to fit the high-dimensional system. Firstly, given that the models we use have an analytical form for
the distribution of activity, we use it to separately fit the distribution of activity of each cell-type and each stimulus condition. Secondly,
we build MF models with parameters sampled from a distributions with priors obtained from the NNLS analysis. By minimizing the
Kullback-Leibler divergence 53 between these two sets of distributions (the one obtained from the data and the one obtained from the MF
family), we find the models that best approximate the distribution of all cell-types at all contrasts with a single parameter set. g-h) Analytical
expressions for the distribution of responses to optogenetic perturbations are available for linear systems. Through an approximation, we
linearize the high-dimensional system around the HFP and use existing mathematical expressions to compute the entire distribution of
responses to an arbitrary pattern of optogenetic stimulation.

We develop a three-stage program for the prediction of responses to weak optogenetic perturbations of circuits with multiple
inhibitory types (Fig. S14). In a first stage, we use non-negative least squares (NNLS)20,54 (see Eq. S5)to fit a low-dimensional
(low-D) dynamical system to the mean responses observed experimentally in all four cell types (excitatory(E), PV, SOM,
VIP) in mouse layer 2/3 to stimulation by a small (5 degree diameter) visual stimulus of varying contrast. These fits make
predictions about the mean connection strengths between neurons of any two given cell types, (Fig. S14b), which allows a
mathematical understanding of the response to perturbations to different cell-types (Fig. S14c). In a second stage, we build a
family of high-D models, with different numbers of cells per population. For that, we work with a high-D rate model26 (Fig.
S14d-e, see Eq.S58). In this model, the distribution of activity has a tractable analytical form35 (see Eq. S62) that depends
on the mean and variance of the input currents to each population. We can obtain that mean and variance for each by fitting
that distribution to the data via maximum likelihood, but that is not sufficient to build a model: we need a way to find model
parameters (e.g., means and variances of connection strengths) that will generate the mean and variance of the input currents
and the firing rates self-consistently for all stimulus conditions and all cell-types. Working from the other direction, given a
high-D model and its parameters, we can use MF theory26 to self-consistently find the activity distributions that result for a
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given stimulus. Finally, in order to find the parameters of high-D models that fit the experimental data, we use a the distance
between the fit to the data distribution and the distribution obtained by the MF solutions of a given model (Fig. S14f, and see
Eq. S64). By choosing a suitable threshold on this distance (0.45)55, we find high-D models whose distribution of activity
and dependence on stimulus contrast reproduce those observed experimentally. In the final stage, we use theoretical results
on random matrices36 which allow us to analytically compute the distribution of neuronal responses to patterned optogenetic
perturbations under a suitable approximation (Fig. S14h) and determine its relation to the predictions in the low-D circuit
(Fig. S14g).

2 Data Collection and Analysis

All the data presented here was collected by Daniel Mossing and forms the subject of another publication. Details on the data
collection will be provided elsewhere.

3 Low-dimensional circuit models

We consider a network of 4 units, each describing the activity rα of a particular cell-type population α , with α =
{E, PV, SOM, VIP} in layer 2/3 of the visual cortex of the mouse. The network integrates input currents zα in the following
way

τ
α ṙα =−rα + f (zα) zα =

(
n

∑
β

ω
αβ rβ +hα(c)

)
(S3)

where τα is the relaxation time scale, ωαβ is the connectivity matrix, and f (z) = []
ξ

+ is the activation function with ξ = 2
unless otherwise specified. The inputs hα(c) are composed of a baseline input hb, a sensory-related input hs(c). This last
input can be either chosen to be proportional to the contrast c, for which hs(c) = hcc, with hc a contrast independent variable
to be fitted or it can be chosen as proportional to measured layer 4 pyramidal-cell activity data: hs(c) = hL4rL4(c), with hL4
an activity independent variable to be fitted.

hα(c) = hα
b +hα

c c or hα(c) = hα
b +hα

L4rL4(c) (S4)

3.1 Data fitting

To simultaneously fit the rates of all four interneurons at all contrast values (six in total c= {0,6,12,25,50,100} ), we consider
the steady-state equations corresponding to (S3). Since the recorded firing rates are positive and non-vanishing, the inverse
is well defined f−1(z) =

√
r and the nonlinear steady-state equation corresponding to (S3) becomes a linear equation with

respect to the connectivity parameters:

√
rα =

n

∑
β

ω
αβ rβ +hα(c) (S5)

Eq. (S5) represents a system of linear equations Ax = y, where x is an unknown vector containing the flattened connectivity
matrix entries ωαβ and the input constants hα

b , hα
c , and hα

L4. The entries of the matrix A and the vector y are the functions
of the recorded firing rates at six contrast values. The matrix A has 24 rows: for each of the six contrast values a set of four
rows corresponds to the steady-state equations in (S5). The number of columns of the matrix A is equal to the number of
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unknown connectivity and input constants. In the most general case, when each four populations receive background and
sensory related input, there are 24 unknowns and the matrix A has 24 columns. This case in which the number of equations
(rows of A) and the number of parameters (all chosen weights and inputs) are equal, the system Ax = y can be solved exactly.
To be concrete, taking as an example the case presented in the main text in which sensory inputs are linear in c and target only
E and PV cells, we will have:

To the solve the system in this case, values of parameters that approximately solve the Eq. (S5) be found by computing the
non-negative least squares (NNLS)56 solution. In Figure S1, we explored four configurations, modeling the inputs either
via a linear function of the contrast (fiting hα

c ) or a linear function of layer 4 data (fitting hα
L4) for either α = {E,PV}

or α = {E,PV,SOM}. The NNLS solution of Eq. (S5) constructed from mean firing rates, gives one set of connectivity
and input parameters x. To obtain distributions of connectivity and input parameters instead, we created surrogate contrast
responses sets by sampling from a multivariate Gaussian distribution with mean rα

ci
and standard error of the mean sα

ci
. For each

input configuration, we sampled 2500000 seeds to create these surrogate contrast response curves. For each sample contrast
response k, NNLS gave one connectivity and input parameter set. Using each parameter set and the steady-state equations in
(S5) we computed the fit r̂α(k) of the kth sample contrast response. Keeping the stable solutions (negative eigenvalues, all
time constants were chosen to be equal to 1), the likelihood of that parameter set k

Lk = ∏
ci,α

1√
2πsα

ci

exp

{
−
(r̂α

ci
(k)− rα

ci
)2

2sα
ci

2

}
(S6)

defined a hierarchy for the contrast response samples. For Figs. 2,3,S1,S3,S4,S5 and S6, the top 0.1% parameter sets were used
to plot fits of the firing rates. In this way we obtained approximately 2350 parameter sets for each of four input configurations.

3.2 Linear response and paradoxical effects

The linear response matrix is defined as the steady state change in rate of a population α given by a change in the input current
h to population β

χαβ =
drα

dhβ

= (f′−1−ω)−1
αβ

f′ = δαβ f ′α (S7)

Where f ′α is the gain of population α at the considered steady state, f′ is the n = 4 diagonal matrix with elements f ′α , δαβ is
a Kroenecker delta which is 1 only if α = β . Defining the diagonal matrix of time constants Tα β = δαβ τα , Eq. (S7) can be
written as a function of the the Jacobian J = T−1(−I + f′ω)

χf′−1T =−J−1 →
τβ

f ′
β

χαβ =
−1

detJ
(−1)α+β Mαβ (S8)

where Mαβ is the corresponding minor of the Jacobian. In particular, the diagonal entries of χ are

τα

f ′α
χαα =

−1
detJ

Mαα (S9)

Given that Mαα corresponds to the determinant of the Jacobian of the sub-circuit without the cell-type α , which we call Jα ,
we find that:
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τα

f ′α
χαα =

−1
detJ

detJα (S10)

For a system with n populations, stability of the full system requires that sign(detJ) = (−1)n. Stability of the sub-circuit
without α requires that sign(detJα) = (−1)n−1 . Given that the gain f ′α is always positive, if both the entire circuit and
the subcircuit are stable, then χαα > 0. Alternatively, if χαα < 0, and the cell-type α has a paradoxical response, then the
sub-circuit without it will be unstable. This does not depend on the dimension of the system.

3.3 EI netwotks

Evaluating Eq. (S10) in the EI case we obtain the result from2

χII ∝ 1− f ′EωEE (S11)

which makes the parameter independent prediction that when recurrent excitation strong, the response of inhibition is
paradoxical, χII < 0 .

3.4 E-PV stability and SOM paradoxical response when VIP projects only to SOM

In the particular case in which VIP projects only to SOM, the Eq. S10 reduces to

τS

f ′S
χSS =

1
detJ

detJEP (S12)

Given that in a 2D system, the conditions for stability are the trace to be positive and the determinant to be positive, and that
the trace can be generally made positive by choosing a suitable large excitatory time constant, we say not only that measuring
the paradoxical response of SOM translates in E-PV being unstable, but that observing a non-paradoxical response of SOM
means that E-PV is stable given a suitable time constant.

3.5 Hidden response symmetries (VIP projects only to SOM)

The values χαβ for the particular case in which the connections from the VIP population to the rest is exactly zero can be
found to satisfy the following relations, Hidden response symmetries.

χEV =− f ′Vω
SV

χES (S13)
χPV =− f ′Vω

SV
χPS (S14)

χSV =− f ′Vω
SV

χSS (S15)
χVV = f ′V− f ′Vω

SV ∗χVS (S16)
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χVS = f ′V(ω
VE

χES−ω
VP

χPS−ω
VS

χSS) (S17)

(S18)

This can be easily seen by explicitly writing the response matrix as

χαβ =
1
D

kαβ 1
D

=
det
(
T−1

)
det(−J)

(S19)

Where det(−J) is the determinant of the negative Jacobian of the full system, defined above Eq. (S8). Given that the
eigenvalues of J have to be negative for linear stability, det(−J) is always positive, and the above relations can be instead
written as a function of kαβ with

kES =− f ′E f ′S(ω
ES(1+ f ′Pω

PP)− f ′Pω
EP

ω
PS) (S20)

kEV = f ′E f ′S f ′Vω
SV(ωES(1+ f ′Pω

PP)− f ′Pω
EP

ω
PS) (S21)

kPS =− f ′P f ′S(ω
PS(1− f ′Eω

EE)+ f ′Eω
ES

ω
PE) (S22)

kPV = f ′P f ′S f ′Vω
SV(ωPS(1− f ′Eω

EE)+ f ′Eω
ES

ω
PE) (S23)

kSS = f ′S((1− f ′Eω
EE)(1+ f ′Pω

PP)+ f ′E f ′Pω
EP

ω
PE) (S24)

kSV =−ω
SV f ′V f ′S((1− f ′Eω

EE)(1+ f ′Pω
PP)+ f ′E f ′Pω

EP
ω

PE) (S25)

kVS =− f ′S f ′V

(
f ′E

(
ω

ES
ω

VE−
f ′P
∣∣ω0
∣∣

ωSV

)
+ω

VS(1− f ′Eω
EE)+ f ′P(ω

PP
ω

VS−ω
PS

ω
VP)

)
(S26)

kVV = f ′V( f ′E f ′P f ′Sω
SE(ωES

ω
PP−ω

EP
ω

PS)+(1− f ′Eω
EE)(1+ f ′Pω

PP)+ f ′E f ′Pω
EP

ω
PE + f ′E f ′Sω

ES
ω

SE) (S27)

3.6 Disinhibition in the fully connected circuit

If we instead assume that ωVV = ωSS = 0 but all other connections exist, the response of pyramidal cells to a perturbation to
VIP will have two extra terms:

χ
EV = χ

EV
i +χ

EV
ii +χ

EV
iii =

1
D
(kEV

i + kEV
ii + kEV

iii ) (S28)

kEV
i = ω

EV(−1−ω
PP f ′P +ω

PS
ω

SP f ′P f ′S f ′E f ′V (S29)
kEV

ii = ω
PV f ′P(ω

EP−ω
ES

ω
SP f ′S) f ′E f ′V (S30)

kEV
iiii = ω

SV(ωES(1+ω
PP f ′P)−ω

EP
ω

PS f ′P) f ′S f ′E f ′V (S31)

3.7 Matrix symmetries in simplified circuit

In Figure 3 and Figure S6 we find that beyond the Hidden response symmetries there are further symmetries in the linear
response matrix. First, the response of E and PV to perturbations is highly correlated. Second, the response of all cell-types
in response to an E perturbation are mirror imaged to those elicited by a PV perturbation. In summary, the first two rows and
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the first two columns of the response matrix χαβ appear highly correlated. To investigate the origin of this correlations, we
study a simplified system, in which E and PV are not only similary but multiple of one another. We replace the measured PV
data by rPV = srE with s = 1.2, and repeat the fitting procedure. In those cases, and as shown in Figure S7c, the connectivity
matrix has the following structure:


ωEE = a1 + sωEP ωEP = 1+ωPP ωES = ωPS ωEV = ωPV ≈ 0
ωPE = a2 + sωPP ωPP ωPS ωPV ≈ 0
ωSE = a3 + sωSP ωSP 0 ωSV

ωVE = sωVP ωVP ωVS 0

 (S32)

Using the definition in Eq. (S19), this boils down to understanding the relationship between kEα and kPα on the one hand and
the relationship between kαE and kα P on the other.

If we further take a1 = a2 = 1 = a3 = 1 (from the fits these are a1 = 0.85, a2 = 0.9 and a3 = 1 ), we find that

kPE = f ′E f ′P +ω
PPs f ′E f ′P−ω

PS f ′E f ′P f ′S−ω
PS

ω
SPs f ′E f ′P f ′S+ (S33)(

−ω
SV

ω
VS +ω

PS
ω

SV
ω

VPs−ω
PP

ω
SV

ω
VSs
)

f ′E f ′P f ′S f ′V
kPP =− f ′E f ′P−ω

PPs f ′E f ′P +ω
PS f ′E f ′P f ′S +ω

PS
ω

SPs f ′E f ′P f ′S− (1− s f ′E)(ω
SV

ω
VS f ′S f ′V −1) f ′P−(

−ω
SV

ω
VS +ω

PS
ω

SV
ω

VPs−ω
PP

ω
SV

ω
VSs
)

f ′E f ′P f ′S f ′V (S34)

kEE = f ′E(1+ω
PP f ′P)−ω

PS
ω

SP f ′E f ′P f ′S +
(
ω

PS
ω

SV
ω

VP−ω
PP

ω
SV

ω
VS
)

f ′E f ′P f ′S f ′V −ω
SV

ω
VS f ′E f ′S f ′V (S35)

kEP =− f ′E(1+ω
PP) f ′P +ω

PS
ω

SP f ′E f ′P f ′S−
(
ω

PS
ω

SV
ω

VP +ω
PP

ω
SV

ω
VS
)

f ′E f ′P f ′S f ′V +ω
SV

ω
VS f ′E f ′P f ′S f ′V (S36)

kES = ω
PS f ′E f ′S(−1+ f ′P) (S37)

kPS = ω
PS f ′P f ′S(−1+ s f ′E) (S38)

kEV = ω
PS

ω
SV f ′E f ′S f ′V (1− f ′P) (S39)

kPV = ω
PS

ω
SV f ′P f ′S f ′V (1− s f ′E) (S40)

(S41)

kSE = (1+ω
SPs) f ′E f ′S +ω

PP f ′E f ′P f ′S−ω
SP f ′E f ′P f ′S +( f ′P− s)ωSV

ω
VP f ′E f ′S f ′V (S42)

kSP =−( f ′E +ω
SP) f ′P f ′S−ω

PP f ′E f ′P f ′S +ω
SP f ′E f ′P f ′S− ( f ′E −1)ωSV

ω
VP f ′P f ′S f ′V (S43)

kV E = ω
VPs f ′E f ′V −ω

VP f ′E f ′P f ′V −ω
VS f ′E f ′S f ′V −ω

SP
ω

VSs f ′E f ′S f ′V +
(
ω

PS
ω

VP−ω
PP

ω
VS +ω

SP
ω

VS
)

f ′E f ′P f ′S f ′V (S44)

kV P =−ω
VP f ′P f ′V +ω

VP f ′E f ′P f ′V +ω
VS f ′E f ′P f ′S f ′V +ω

SP
ω

VS f ′P f ′S f ′V −
(
ω

PS
ω

VP−ω
PP

ω
VS +ω

SP
ω

VS
)

f ′E f ′P f ′S f ′V (S45)

These expressions are not identical, but considering that f ′P = 2
√

rP ≈ 2
√

srE =
√

s f ′E , and that
√

s =
√

1.2 is close to one,
most of these equations will be numerically similar.
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3.8 Transformation to firing rate effect on the linear response.

To understand how the conclusions derived here would be modified by considering firing rates instead of deconvolved calcium
imaging data we follow57, where it is reported that calcium activity ∆F

F and firing rates can be related via a linear relationship.

In general, given a power law input-output function f (z) = []
ξ

+, we can define a class of equivalent models by redefining
activity together with weights and inputs

rnew =Aξ r (S46)

W new =AWA−ξ (S47)
hnew =Ah (S48)

Where A is the diagonal transformation matrix from calcium activity r to firing rates rtextnew. The Jacobian and the linear
response matrix of this new system are related by:

Jnew = Aξ JA−ξ Rnew = Aξ RA−1 (S49)

In particular given that the new and old Jacobian are related by a similarity transformation, this change of variables (or the
equivalence class) will not change the stability. The the linear response can have re-scaled values but will preserve sign, and
the Hidden response symmetries equations will be re-scaled.

4 High-dimensional circuit models

In this section we describe the high-dimensional models. These are rate networks with power-law non-linearity f (z) = []
ξ

+ as
before with ξ = 2. The network has n = 4 populations with have different number of neurons Nα for α = {E,PV,S,V}, which
we take to be a fraction q = [0.8,0.1,0.05,0.05] of the total number of cells N. The activity of the unit i in the population α ,
rα

i in the steady state will be given by:

rα
i = f (zα

i ) zα
i =

(
n

∑
β

Nβ

∑
j

wαβ

i j rβ

j +hα
i

)
(S50)

Where the connectivity elements wαβ

i j are Gaussian distributed with mean and variance defined by:

〈wαβ

i j 〉= wαβ/N 〈(wαβ

i j )2〉−〈wαβ

i j 〉
2 = σ

αβ 2
/N (S51)

The inputs to each unit hα
i are also Gaussian distributed with mean 〈hα

i 〉 = hα
0 and variance 〈hα

i
2〉− 〈hα

i 〉2 = (λ α)2. The
function f is a chosen nonlinearity and τα

i is the unit’s time constant. The steady state solution of Eq. (S50) can be re written
as

zα
i =

n

∑
β

Nβ

∑
j

wαβ

i j f (zα
i )+hα

i rα
i = f (zα

i ) (S52)
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4.1 Set-up and mean field equations

In order to compute, for each set of parameters, the mean and variance of the activity in each population self-consistently, we
follow the approach in Kadmon and Sompolinsky 26 . The input to a cell zα

i = can be described as fluctuations around a mean:
zα

i = uα +δ zα
i . Defining

mα = 〈 f (zα
i )〉 (S53)

vα = 〈 f (zα
i )

2〉 (S54)
qα = Nα/N (S55)

By taking the mean and the variance of Eq. (S50) and incorporating the definitions above, we re-obtain the self-consistent
equations for the mean and the variance of z, given by uα and ∆α

uα = ∑
β

wαβ qβ mβ +hα (S56)

∆
α = ∑

β

(σαβ )2qβ vβ +(λ α)2 (S57)

where

mα =
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)e−z2/2dz (S58)

vα =
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)2e−z2/2dz (S59)

We observe that if there is no disorder, Eqs. (S56) and (S58) reduce to the low-dimensional model from Eq. (S3) with
ωαβ = wαβ qβ and mα = rα .

4.2 Mean field perturbation

If we imagine an homogeneous perturbation to the entire population α , the change in response of each cell when perturbed by
the laser will be given by

drα
i

dL
= f ′(uα +

√
∆α zi)

(
duα

dL
+

1
2
√

∆α

d∆α

dL
zi

)
(S60)

Taking the average and using Eq. (S58), we find that the mean of the response distribution to laser perturbation is given by the
change in the mean activity of the population:
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〈
drα

i
dL
〉= 1√

2π

∫
∞

−∞

f ′(uα +
√

∆α z)
(

duα

dL
+

1
2
√

∆α

d∆α

dL
z
)

e−z2/2dz (S61)

=
d

dL

(
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)e−z2/2dz
)

=
dmα

dL

This equation relates how the mean of the distribution of responses to perturbation relates to the response to the mean activity.

4.3 Data Fitting

To fit the system defined by Eqs. (S56,S58), we used that the distribution of activity of a population α with input output
function of the form r = [z]ξ+ can be written, when assuming the inputs are Gaussian, as a function of the mean input uα and
its variance ∆α 35:

Pα(r) =
1√

2πr1−1/ξ ξ ∆
e−

(r1/ξ−uα )2

2∆α Θ(r)+
1
2
(1− erf

( uα

√
2∆α

)
)δ (r) (S62)

Pα(r) = P+(r)Θ(r)+P0
δ (r) (S63)

In order to find the parameters that better approximate the real distribution of the data we proceed as follows (Fig. 5a): For
each cell-type α and each contrast value c we fit, via maximum likelihood, the analytical form described above (i.e. Eq. S62)
with a fixed value ξ = 2, to the distribution of activity r obtained in the experiments (we call this Pα

d (r,µα
d (c),∆

α
d (c))). These

are the full lines in Fig. 5d. That gives us an estimate of the mean (µα
d (c)) and variance (∆α

d (c)) of the input distributions that
come from the data for each cell-type and each value of the contrast. To find which parameters wαβ , σαβ , hα and λ α ( and
assuming that the inputs depend linearly on the contrast hα = hα

b +hα
c c) best fit the data we proceed as follows: we do ABC

search from prior distributions for the mean and variance of the weights and inputs to this network to build multiple instances of
Pα

mf(r,µ
α
mf(c),∆

α
mf(c)). The priors for wαβ and hα were Gaussian distributions with around the low-dimensional system values

(with a 5% std) and a normal prior for σαβ and λ α . We define an error that depends uniquely on µα
d (c),∆

α
d (c),µ

α
mf(c),∆

α
mf(c).

Specifically, we define the total error as the sum of the squared norm of the matrix of the Kullback-Leibler divergences
between these two distributions:

E = ∑
c

∑
α

D(Pα
d (c)||Pα

mf(c))
2 (S64)

where, and dropping termporarily the dependence on the contrast for ease of notation we have:

D(Pα
d ||Pα

mf) =
∫

∞

−∞

Pα
d (r) log

Pα
d (r)

Pα
mf(r)

dr = P0,α
d log

P0,α
d

P0,α
mf

+
∫

∞

0+
P+,α

d (r) log
P+,α

d (r)

P+,α
mf (r)

dr = Iα
A + Iα

B (S65)

with
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Iα
A =

1
2

erf
( µα

d√
2∆α

d

)
log

( erf
(

µα
d√

2∆α
d

)
erf
(

µα
mf√

2∆α
mf

)) (S66)

Iα
B =

1
2

(
1+ erf

(
µα

d√
2∆α

d

))
log

√
∆α

mf√
∆α

d
+

1
4∆α

mf

((
∆

α
d −∆

α
mf +

(
µ

α
d −µ

α
mf
)2
)(

1+ erf
( µα

d√
2∆α

d

))
+ (S67)√

2
π∆α

d
e
−

µα
d

2

2∆α
d

(
∆

α
d (µ

α
d −2µ

α
mf)+∆

α
mfµ

α
d

))
(S68)

Instead of following the gradient to find an optimal solution we keep the solutions that have a sufficiently small error from the
random sampling. This defines a family of high-dimensional models (Fig. 5b,c, see also Fig. S8) with skewed distributions
that are in good agreement with the calcium activity, and capture not only the nonlinear dependence of the mean the activity
but also spreading out with increasing contrast.

5 Analytical approach to linear response of disordered networks

5.1 Set up

We call the steady state solution of Eq. (S50) ∗rα
i and the steady state input ∗zα

i . The time evolution of the response to a
perturbation δhα

i , can be described by the dynamics of δ rα
i :

τ
α
i δ ṙα

i =−δ rα
i + f ′αi ·

(
n

∑
β

Nβ

∑
j

wαβ

i j δ rβ

j +δhα
i

)
f ′αi = f ′α(∗zα

i ) = f ′
(

n

∑
β

Nβ

∑
j

wαβ

i j
∗rβ

j +hα
i

)
(S69)

Switching form now onwards to matrix notation, we define: Fαβ

i j = δi jδαβ f ′αi , the diagonal matrix of derivatives, where δ

is the Kroenecker delta, and f ′αi is the gain of neuron i in population α . The connectivity matrix W has elements wαβ

i j . The
steady state response to an arbitrary increase in the input given by δh will be:

δ~r = (F−1−W )−1 ~δh ~δ r = R~δh (S70)

Which defines the high-dimensional linear response matrix R = (F−1−W )−1. If we constrain the cell-type-specific variance
to be low rank, meaning that the block-wise variance of W (defined in Eq. (S51)) is written as (σαβ )2/N = να κβ/N, we
can write W as the sum of a homogeneous component W0, with W0

αβ

i j = wαβ and a random component ΠLJΠR, where J is a
matrix with Gaussian distributed random numbers with zero mean and unit variance , and ΠL and ΠR are non-random diagonal
matrices:

W =W0−ΠLJΠR with ΠL = δi j
√

κα j ΠR = δi j
√

να j (S71)
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5.2 Linearization around the homogeneous fixed point

The mathematical treatment we are going to outline later is only possible in linear system in which the disorder does not affect
the gain of each neuron. All the linear response calculations of the following sections will assume that the linearized system
can be written as

τ
α
i δ ṙα

i =−δ rα
i + f ′α ·

(
n

∑
β

Nβ

∑
j

wαβ

i j δ rβ

j +δhα
i

)
f ′αi = f ′α = f ′

(
n

∑
β

Nβ

∑
j

wαβ ∗rβ +hα

)
(S72)

What this means, is that, we solve the non-disordered system to compute f ′α and look at a linear disordered system around
the HFP.

5.3 General framework established in Ahmadian et al. 36

Using results from36 we find that in the special case of f ′αi = f ′α described above, the mean linear response matrix over
different instantiations of the disorder is the linear response of the non- disordered case:

〈(F−1−W )−1〉J = 〈(F−1−W0 +ΠLJΠR)
−1〉J = (F−1−W0)

−1 = R0 (S73)

This fundamental relation links the mean of the distribution of responses to the response of the non-disordered system, its
general in linear networks and works as a good insightful approximation in this case of study. Generally, in experiments, we
will have a perturbation pattern δh describing the proportion of stimulation each neurons receive, and a measuring vector δb,
describing which are the neurons contributing (linearly) to the signal that we are going to be monitoring s = ~δ r

ᵀ
δb. We are

interested in computing the mean and variance of that signal across different instantiations of the disorder. By defining:

the measuring matrix B = δbδbᵀ (S74)
the optogenetic perturbation matrix Σ = δhδhᵀ (S75)

we can write the second moment of that measured signal s36:

〈s2〉= 〈(~δ r
ᵀ
δb)2〉= 〈~δ r

ᵀ
B~δ r〉= F +∆F (S76)

where

F = Tr(BR0
ΣR0ᵀ) ∆F =

1
N

Tr
(
BR0

ΠLΠLR0ᵀ)Tr
(
ΠRΠRR0

ΣR0ᵀ)
1− 1

N Tr
(
ΠRΠRR0ΠLΠLR0ᵀ

) (S77)

Where we used the definitions in Eq. (S71). We observe that in the absence of disorder, in which W =W0, then ∆F = 0 and
the signal we measure will be given only by s = δbR0δhᵀ

In the case in which we are interested in looking at single neuron statistics, then we have δb = ei with ei = {0, ...,1, ...,0}
〈δ ri〉J = eiR0 ~δh where ei = {0, ...,1, ...,0} (S78)

Meaning that for each neuron, the distribution of linear responses over different instantiations of the connectivity will have a
mean given by the linear response in the absence of disorder (due to Eq. S73) and the variance Λi
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Λ
2
i = 〈δ r2

i 〉J−〈δ ri〉2J = 〈δ r2
i 〉J−F = ∆F (S79)

Equations (S73), (S76) and (S77) are general formulas of how to compute the mean and the variance of the linear response
distributions as a function of the optogenetic perturbation Σ and the observation matrix B. In the following sections we
will explicitly compute the mean response matrix R0 for both full and low rank connectivity and the variance in different
optogenetic perturbation configurations.

5.4 Computation of the response R0 matrix without disorder

For computing R0 (given by Eq. (S73)) we write the block-structured matrix W0 as a function of the low-dimensional system
connectivity ωαβ = wαβ qβ . We choose the matrices U and V with columns given by vectors uα = 1

Nα
δi∈α and vα = δi∈α ,

meaning that u(k) = 1
Nk
(0, . . . ,0︸ ︷︷ ︸

∑
k−1
l=1 Nl

,1, . . . ,1︸ ︷︷ ︸
Nk

, 0, . . . ,0︸ ︷︷ ︸
N−∑

k
l=1 Nl

) and similarly for v.

W0 =V ωUᵀ (S80)

Where wαβ and qα were introduced in Eqs (S51) and (S55) respectively. To obtain R0 defined in Eq. S73 we are going to
exploit the fact that this is a low rank matrix. Depending on whether ω is also low rank or not, we will need to consider
different strategies

1) case of invertible ω

If ω is invertible, we can use the Woodsbury lemma to find a succinct expression for R0:

R0 =
(
F−1−W0

)−1
=
(
F−1−V ωUᵀ)−1

= F−FV
(
f′−ω

−1)−1
UᵀF (S81)

Introducing the notation αi as the population to which the neuron i belongs to, the entries of the response function can be
written as

R0
i j = δi j f ′αi

−
f ′αi

f ′α j

Nα j

[(
f′−ω

−1)−1
]

αiα j
(S82)

Where f′ was defined in Eq. (S7). We note that for this expression to be valid, ω needs to be invertible and in particular full
rank. We also note that this expression is given by two terms: the first one, private to each neuron, is only non-zero if we are
observing the same neuron that we are stimulating, while the second term, which depends on which population the stimulated
neuron belongs to and which population the observed neuron belongs to, but is independent on whether the perturbed neuron
is the observed one.

We define Sαiα j , the sum of the linear response of a single neuron in population αi to a homogeneous input to the neurons in
population α j

Sαiα j = δαiα j f ′α j
− f ′αi

f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S83)
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Replacing into Eq. (S83) into (S82), we obtain an expression for the linear response which will be useful in later sections:

R0
i j = δi j f ′αi

+
Sαiα j

Nα j

−
δαiα j f ′α j

Nα j

(S84)

We point out that the Eq. (S83) is independent of N, and is finite in the limit of large N.

2) case of rank-one ω

In the case in which ω is rank-one, the operation in Eq. (S81) cannot be performed. Instead we can write:

W0 =
vuᵀ

N
v ={1, ...,1, ...,1} (S85)

u ={w1, · · · ,w1︸ ︷︷ ︸
N1

,w2, · · · ,w2︸ ︷︷ ︸
N2

, · · · ,wn, · · · ,wn︸ ︷︷ ︸
Nn

} (S86)

By means of the Sherman–Morrison formula we find that

R0 = (F−1−W0)
−1 = F +

1
N

FvuT F

1− uT Fv
N

(S87)

Where the denominator is always positive given that D =
(

1− uT Fv
N

)
= det

(
F−1− vuT

N

)
det(F) = det(I−FW0).

R0
i j = δi j f ′α j

+
1
N

f ′αi
f ′α j

wα j

1−∑αk
qαk f ′αk

wαk

= δi j f ′α j
+

f ′αi
f ′α j

wα j

ND
(S88)

Again defining Sαiα j as the sum of the linear response of a single neuron in population αi to a homogeneous input to the
neurons in population α j

Sαiα j = δαiα j f ′α j
+Nα j

f ′αi
f ′α j

wα j

ND
(S89)

Were we point out that the above expression is also finite in the large N limit. We can write the linear response identically as
in Eq. (S84) also in this case.

5.5 Response distribution to partial (homogeneous) perturbations: Mean term

We want the sum of the linear response of a single neuron in population αi to a perturbation to a fraction γ j to the neurons in
population α j, for arbitrary populations α j. Within each perturbed population, We call the set of perturbed neurons Pα j . If
we perturb γα j neurons in population α j then we find that the response of the neurons in population in population α j that were
stimulated have a mean response that depends on whether they were directly stimulated or not.
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1) case of invertible ω

In the case in which ω is full rank (Ri j is given by (S82)), if we perturb γη neurons in population η , for an arbitrary amount
of populations, the total perturbation vector will then be δh = {δh1,δh2, · · · ,δhn}, where hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸

γη Nη

,0, · · · ,0},

then we find that the response of the neurons is given by

µi = ∑
j

Ri jδh j = f ′αi
δi∈Pαi

− f ′αi ∑
α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S90)

which simply amounts to two different means for the perturbed and non perturbed cells. One for neurons that were stimulated
given by

µ
IN
i∈Pαi

= f ′αi
− f ′αi ∑

α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S91)

whereas the neurons in α j that were not stimulated and the neurons from other populations follow the equation:

µ
OUT
i6∈Pαi

=− f ′αi ∑
α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S92)

We note that in this statements about the critical fraction depend critically on the sign of
(
f′−ω−1

)−1. We can define a matrix

χ
γγγ =f′δp− f′

(
f′−ω

−1)−1 f′γγγ (S93)

=f′δp + f′ω
(

f′−1−ω

)−1
γγγ (S94)

=f′δp + f′ωχγγγ (S95)

where δp = 0 if we are describing the mean of the non-perturbed population and δp = 1 otherwise, that summarized the above.

In the case in which we want to study the paradoxical response, meaning that we are stimulating and measuring only one and
the same population we find that using that ∑α j(f

′−1−ω)αiα j χα jαi = 1 (matrix times its inverse is the identity) we have that

[ωχ]
αiαi

=
χαiαi

f ′αi
−1 We can write (S90) as

µi = f ′αi
δi∈Pαi

+ f ′αi
γαi [ωχ]

αiαi
= f ′αi

δi∈Pαi
+ γαi(χαiαi − f ′αi

) (S96)

If the response is paradoxical in the low-dimensional system (χαiαi < 0), the distribution of responses of non stimulated
neurons will have a negative mean, and will become increasingly negative the more neurons are perturbed. Those neurons that
are being stimulated, for an arbitrarily small fraction of perturbed cells, the above term is positive and therefore there will be
a critical fraction of perturbed cells for the mean to change sign. This will be

0 <
f ′αi

f ′αi
−χαiαi

< γ
C
αi
< 1 (S97)
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In Fig. 8, the fractional paradoxical effect occurs while the perturbed cells are not responding paradoxically. Nevertheless,
before the mean of the distribution of perturbed cells changes sign, the distribution itself shifts left and therefore this critical
fraction is different from the critical fraction for which the system is exhibiting a fractional paradoxical effect.

2) case of rank-one ω

Ri j = δi j f ′α j
− 1

N

f ′αi
f ′α j

wα j

1−∑αk
qαk f ′αk

wαk

= δi j f ′α j
+

f ′αi
f ′α j

wα j

ND
(S98)

Identically as above, neurons that are directly stimulated will have a response given by

µ
IN
i = f ′αi

+ f ′αi ∑
α j

γα j qα j

f ′α j
wα j

1−∑αk
qαk f ′αk

wαk

(S99)

whereas the neurons in α j that were not stimulated and the neurons from other populations follow the equation:

µ
OUT
i = f ′αi ∑

α j

γα j qα j

f ′α j
wα j

1−∑αk
qαk f ′αk

wαk

(S100)

Critical fraction

In the case in which we only have and EI circuit, and we stimulate only the inhibitory population, we can see that for inhibitory
neurons in which w j is negative, the response of the neurons that were not stimulated is always paradoxical (meaning that Eq.
(S100) is always negative), but the response of those neurons that were stimulated will only be paradoxical when µ IN

i < 0

1−∑
αk

qαk f ′αk
wαk

qα j f ′α j
|wα j |

< γ
C
α j

(S101)

First lets consider the case in which we have a fixed amount of neurons but we have an increasing amount of populations n.
Given that N = ∑αk

Nαk if we take Nαk = N/n then qαk = Nαk/N = 1/n. We find that the critical fraction in (S101) is now

n−∑
αk

f ′αk
wαk

f ′α j
|wα j |

< γ
C
α j

(S102)

We find that given a fixed sum of wi and fixed N, the fraction of stimulated neurons γk needs to increase linearly in n to have
a paradoxical response.

Comparison with Sadeh et al. 25

If now we would normalize the weights in Eq. (S85) as in25, meaning that w j/N→ w j/(N/n) (See Eq. 2 of their paper), the
above equation would be
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1−∑
αk

f ′αk
wαk

f ′α j
|wα j |

< γ
C
α j

(S103)

Taking f ′αk
= 1 (linear network) we recover their result below Eq. 12 of their paper.

5.6 Response distribution to partial (homogeneous) perturbations: Variance term

From Eq. (S77) we know that the variance of the response is going to depend on the response of the system without disorder
R0. The goal of this section is writing R0 in the form expressed in (S84). We will first find the general expression and then
evaluate for particular cases: For that we write (S77) as

Λ
2 =

1
N

Tr
(
BR0

ΠLΠLR0ᵀ)Tr
(
ΠRΠRR0

ΣR0ᵀ)
1− 1

N Tr
(
ΠRΠRR0ΠLΠLR0ᵀ

) =
M.O
1−D

(S104)

Where the optogenetic targeting matrix Σ = δhδhᵀ. If we write δh = {δh1,δh2, · · · ,δhn}, where δhη is the perturbation
vector for the population η , then for each δhη we can write hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸

γη Nη

,0, · · · ,0}, meaning that given n

populations, there will be a vector with entries γη that tells us which is the fraction of neurons of each population that we
are stimulating. Each element of the optogenetic targeting matrix will then be:

Σ jk = ∑
η

∑
η ′

δα jη δαkη ′δk∈Pαk
δ j∈Pα j

(S105)

Observation: The optogenetic targeting matrix has entries in the off diagonal terms.

We write down here the final expression for the variance of the response of a single neuron in population αl while perturbing
a fraction γη of the population η (qη = Nη/N):

Λ
2
αl
=

(
f ′2αl

καl +
1
N

(
∑
η

κη

qη

S2
αlη
−

f ′2αl
καl

qαl

))∑
η

νη f ′η
2
γη(1− γη)qη +∑

η ′
νη ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−∑

η

νη

(
qη f ′2η κη +

1
N

(
qη ∑

η ′

κη ′

qη ′
S2

ηη ′ − f ′2η κη

)) (S106)

We observe that in the large N limit the expression reduces to:

Λ
2
αl
=

f ′2αl
καl

∑
η

νη f ′η
2
γη(1− γη)qη +∑

η ′
νη ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−∑

η

νη qη f ′2η κη

(S107)

Which is independent of N iff γη is a finite fraction of the population. In the case in which a finite amount of neurons k are
stimulated , γη = k/Nη and the variance will vanish in the large N limt.
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An interesting prediction is a nonlinear dependence of the variance of the populations with increasing fraction of stimulated
neurons. The expression Eq. (S107) has a nonlinear term in the fraction of stimulated neurons in each population. When more
than a single population is stimulated, there is also a term that nonlinearly mixes the fraction of interacting neurons. This
results in non trivial dependences of the variance with the fraction of stimulated cells. Depending of the fraction of stimulated
cells, the effect of increasing fraction of one-cell-type stimulation can be to narrow down the distributions or to broaden them.
We name this a second-order paradoxical effect.

* Simplification: Non-structured variance

In the particular case in which the degree of disorder on the connectivity does not depend on the pre and the postsynaptic
cell-type, i.e. when κα = να = σ we obtain a simpler expression for the variance of the populations:

Λ
2
αl
= σ

2

(
f ′2αl

+∑
η

S2
αη

Nη

−
f ′2αl

Nαl

)∑
η

f ′η
2
γη(1− γη)qη +∑

η ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−σ2 ∑η

(
qη f ′η 2 +qη ∑η ′ S2

η ,η ′
1

N
η ′
− 1

N f ′η 2
) (S108)

5.7 Response distribution to partial (homogeneous) perturbations: Full Distribution

So far we computed the mean and the variance of the distribution of neurons to partial stimulation, and found that in the case
in which γ is neither zero or one, i.e. in the case of partial stimulation, we will have a total distribution that is a mixture of
Gaussians with means

ρ
IN
αi

=
1√

2πΛαi

exp

{
−
(x−µ

IN
αi
)2

2Λ2
αi

}
(S109)

ρ
OUT
αi

=
1√

2πΛαi

exp

{
−
(x−µ

OUT
αi

)2

2Λ2
αi

}
(S110)

So the total distribution of responses is

ραi = γαiρ
IN
αi

+(1− γαi)ρ
OUT
αi

(S111)

Where µ IN = RIN
j∈Pα j

and µOUT = ROUT
j∈Pα j

given by Eqs (S99, S100) for low rank ω or by (S91,S92) for invertible ω , and a

variance given by Eq. (S106)

5.8 Simple description of the fractional paradoxical effect

The fractional paradoxical effect can be intuitively understood in the system without disorder (the EI, low-rank case of the
non-disordered case was studied by25). In this case, the distribution of responses will be bimodal, with two delta functions at
the values given by Eq. (S96). The density then will be given by the limit of vanishing variance of . (S111)

ραi(x) = (1− γαi)δ (x− γαi(χαiαi − f ′αi
))+ γαiδ (x− f ′αi

− γαi(χαiαi − f ′αi
)) (S112)
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If the unit αi is paradoxical in the low-dimensional system, then χαiαi < 0. The left peak will always be negative, and for
sufficiently small γαi the peak of the perturbed cells will be positive. As computed in Eq. (S97), for values of γαi smaller than
γC

αi
, the mean of the perturbed population will remain positive. In this range, increasing the fraction of perturbed cells, will

result in a decrease of the mass of negative responses 0
−∞ραi(x)dx like (1−δ ). In the non-disordered case, as soon as γαi > γC

αi
,

the mass of negative responses is unity. Given that when working with the homogeneous approximation, the response of the
non -disordered system is the mean of the response of the disordered system, the intuitions here apply to the mean of the
disordered case.

5.9 Fractional paradoxical effect and link to a 5D low-dimensional system.

Here we show that the mean response of the perturbed population can be mapped to the response of a system with 5
dimensions, in which the αi population, that here for simplicity we take to be PV, is split in a perturbed and non-perturbed
population. We know that mapping a high-dimensional non-disordered network to a low D system can be done by rescaling
the weights according to the fraction of cells in that population. That manipulation will not change the activity of either
cell-type given that they receive the exact same input currents. The linear response of that system in consideration is , χ5 is
given by

χ
5 = [ f ′5

−1−ω5]
−1 =−I


ωEE−1/ f ′E ωEPγP ωEP(1− γP) ωES ωEV

ωPE ωPPγP−1/ f ′P ωPP(1− γP) ωPS ωPV

ωPE ωPPγP ωPP(1− γP)−1/ f ′P ωPS ωPV

ωSE ωSPγP ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVE ωVPγP ωVP(1− γP) ωVS ωVV−1/ f ′V


−1

(S113)

χ
5
pp = [ f ′5

−1−ω5]
−1
pp =

1
det
[
f′5−1−ω5

] det


ωEE−1/ f ′E ωEP(1− γP) ωES ωEV

ωPE ωPP(1− γP)−1/ f ′P ωPS ωPV

ωSE ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVE ωVP(1− γP) ωVS ωVV−1/ f ′V

 (S114)

χ
5
PP =

1
det
[
f′5−1−ω5

] ( −ω
PE det

 ωEP(1− γP) ωES ωEV

ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVP(1− γP) ωVS ωVV−1/ f ′V

 (S115)

+(ωPP(1− γP)−1/ f ′P)det

 ωEE−1/ f ′E ωES ωEV

ωSE ωSS−1/ f ′s ωSV

ωVE ωVS ωVV−1/ f ′V

 (S116)

−ω
PS det

 ωEE−1/ f ′E ωEP(1− γP) ωEV

ωSE ωSP(1− γP) ωSV

ωVE ωVP(1− γP) ωVV−1/ f ′V

 (S117)

+ω
PV det

 ωEE−1/ f ′E ωEP(1− γP) ωES

ωSE ωSP(1− γP) ωSS−1/ f ′s
ωVE ωVP(1− γP) ωVS

 dotted(S118)

Each 3D determinant is minus the minor of the original 4D matrix (f′−1−ω). Using that

χ
5
PP =

1
det
[
f′5−1−ω5

] (ωPEMPE(1− γP)− (ωPP(1− γP)−1/ f ′P)MPP +ω
PSMPS(1− γP)−ω

PVMPV (1− γP)
)

(S119)
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Where Mαβ are the minors of the original 4D matrix (f′−1−ω). Using that χαβ = 1
det(f′−1−ω)

(−1)αβ Mβα

χ
5
PP =−

det
(

f′−1−ω

)
det
[
f′5−1−ω5

](ωPE
χEP(1− γP)+(ωPP(1− γP)−1/ f ′P)χPP +ω

PS
χSP(1− γP)+ω

PV
χV P(1− γP)

)
(S120)

−
det
(

f′−1−ω

)
det
[
f′5−1−ω5

]([ωχ]PP(1− γP)−1/ f ′PχPP
)

(S121)

Using again the trick that [ωχ]
αiαi

=
χαiαi

f ′αi
−1

χ
5
PP =

det
(

f′−1−ω

)
det
[
f′5−1−ω5

](γP[ωχ]PP +1
)

(S122)

Given that the mean response of the perturbed population in a high-dimensional system, given by Eq. (S90) (and also Eq.
S143) is χ

γγγ

PP = f ′P(γP[ωχ]PP +1
)
, we obtain that

f ′Pχ
5
PP =

det
(

f′−1−ω

)
det
[
f′5−1−ω5

]χ
γγγ

PP (S123)

And as both determinants are positive because of linear stability, this two things have the same sign. This calculation, together
with Eq. (1), tells us that whenever the mean of the perturbed population is positive, then the sub-circuit without them will be
unstable.

5.10 Response distribution to partial and non-homogeneous perturbations.

We now consider the case in which each population can not only received a perturbation that is partial, but this perturbation is
different for each neuron mimicking disorder in the ChR2 expression. More specifically we need to recompute the expressions
in equations (S76 , S77) for the case in which we have a perturbation vector δh= {δh1,δh2, · · · ,δhn} instead of having entries
like hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸

γη Nη

,0, · · · ,0}, has entries given by hη = {0, · · · ,0,Dη

1 , · · · ,D
η

γη Nη︸ ︷︷ ︸
γη Nη

,0, · · · ,0}, where Dη

i ∼N (dη ,g2
η).

The optogenetic targeting matrix Σ, instead of being given by Eq. (S105), will be in this case:

Σ jk = ∑
η

∑
η ′

δα jη δαkη ′δk∈Pαk
δ j∈Pα j

(Dαi
i )(D

α j
j ) (S124)

The expression for the perturbation to cell i will then be written as a mean given by the response that the network would have
in the absence of disorder in the connectivity and a variance computed via Eqs (S76 , S77). Specifically:
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δ ri = ∑
j

R0
i jδh j +Λαiξi (S125)

= f ′αi
Di− f ′αi ∑

η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη +Λαiξi (S126)

(S127)

where ξi ∼N (0,1) and Λαi is the generalization of Eq. (S106) to disordered perturbations, obtained by replacing Eq. (S124)
into (S104) ( we note that the only term that needs to be re-computed is the term M).

Λ
2
αi
=

(
f ′2αi

καi +
1
N

(
∑
η

κη

qη

S2
αiη
−

f ′2αi
καi

qαi

))∑
η

νη f ′η
2
γη

(
(1− γη)d2

η +g2
η

)
qη +∑

η ′
νη ′

(
∑
η

Sη ′,η dη γη

)2

qη ′


1−∑

η

νη

(
qη f ′2η κη +

1
N

(
qη ∑

η ′

κη ′

qη ′
S2

ηη ′ − f ′2η κη

))
(S128)

In the large N limit, this equation reduces to

Λ
2
αi
=

f ′2αi
καi

∑
η

νη f ′η
2
γη

(
(1− γη)d2

η +g2
η

)
qη +∑

η ′
νη ′

(
∑
η

Sη ′,η dη γη

)2

qη ′


1−∑

η

νη qη f ′2η κη

(S129)

Which in the end means that the response of a neuron that belongs to the population αi will respond to the optogenetic
perturbation with a mean and a variance given by

µ
IN
αi

= f ′αi
dαi − f ′αi ∑

η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη (S130)

µ
OUT
αi

=− f ′αi ∑
η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη (S131)

Λ
2,IN
αi = f ′αi

2g2
αi
+Λ

2
αi

(S132)

Λ
2,OUT
αi = Λ

2
αi

(S133)

Analogously as before, we obtain a distribution of responses for the perturbed cells given by

ρ
IN
αi

=
1√

2πΛINaαi

exp

{
−
(x−µ

IN
αi
)2

2ΛIN
αi

2

}
(S134)

ρ
OUT
αi

=
1√

2πΛOUT
αi

exp

{
−
(x−µ

OUT
αi

)2

2ΛOUT
αi

2

}
(S135)

So the total distribution of responses is
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ραi = γαiρ
IN
αi

+(1− γαi)ρ
OUT
αi

(S136)

5.11 Link to the low-dimensional system linear response

The activity of the low-dimensional system is equivalent to the mean of the non-disordered high-dimensional system.
Perturbing all the neurons in a population α j and then measuring the mean activity in the population αi should be equivalent
to computing the linear response in the low-dimensional system. To show this, we need to show that i) the measuring vector
δb = 1

Nα i
δi∈αi and δh is the optogenetic perturbation to all neurons in a given population, then

χαi,α j =
1

Nαi
∑
i∈αi

(
∑
j∈α j

R0
i j
)
=Uᵀ

αiR
0Vα j (S137)

Inserting (S81) into the above expression we obtain:

χ =UᵀRV =Uᵀ(F−FV
(
f′−ω

−1)−1
UᵀF)V (S138)

=f′− f′
(
f′−ω

−1)−1 f′ (S139)

=
(

f′−1−ω

)−1
(S140)

Which is the definition of χ as in Eq. (S7). We also need to show that the variance vanishes for large N. Writing Bi j =
1

N2
η ′

δαiα j δαiη ′ , and inserting it and Eq. (S98) into Eq. (S77) we find that :

Ληη ′ =
σ

2

N

(
∑
αi

S2
αiη ′

Nαi

)(
∑
αi

S2
αiη ′

Nαi

)

1− σ
2

N

(
∑αi Nαi f ′αi

2 +∑αi,α j S2
αi,α j

Nαi
Nα j
−∑αi f ′αi

2

) (S141)

This variance vanishes for large N, making the usage of the small circuit as a limit of the average behavior of the large one
rigorous for linear networks.

Low-dimensional representation of the linear response when perturbing a fraction gamma

If we now do the average but instead of perturbing all cells in α j, we compute the mean response over those that are perturbed,
meaning γα j ∗Nα j .

We choose the matrices Ũ (like U above but instead of all ones for a population only has γαk ) and Ṽ with columns given by
vectors ũα = 1

Nα
δi∈Pα

and ṽα = δi∈Pα
, meaning that ũ(k) = 1

Nk
(0, . . . ,0︸ ︷︷ ︸

∑
k−1
l=1 Nl

,1, . . . ,1︸ ︷︷ ︸
αkNk

, 0, . . . ,0︸ ︷︷ ︸
N−∑

k
l=1 Nl

) and similarly for ṽ.

χ
γγγ

αi,α j =
1

γαiNαi
∑

i∈Pαi

(
∑

j∈Pα j

R0
i j
)
=

Ũᵀ
αi

γαi

R0Ṽα j = Ũᵀ
αiR

0Ṽα j (S142)
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Before we had UᵀFV = f′. Now, we define γγγ which is a diagonal matrix with entries γαk we have ŨᵀFṼ = f′. Its worth noting
that ŨᵀFV = f′ but UᵀFṼ = γγγf′. Using that

χ
γγγ = ŨᵀRṼ =Ũᵀ(F−FV

(
f′−ω

−1)−1
UᵀF)Ṽ (S143)

=f′− f′
(
f′−ω

−1)−1 f′γγγ (S144)

=f′+ f′ω
(

f′−1−ω

)−1
γγγ (S145)

=f′+ f′ωχγγγ (S146)
(S147)

We notice that the PP element of this is

χ
γγγ

αiαi = f ′αi
+ f ′αi

[ωχ]αiαiγαi (S148)

= f ′αi
+ f ′αi

(
χαiαi

f ′αi

−1)γαi (S149)

= f ′αi
+ γαi χαiαi − f ′αi

γαi (S150)

(S151)

where we again used that [ωχ]
αiαi

=
χαiαi

f ′αi
−1 this is the exact same expression that Eq. (S91) as we wanted but I cannot bring

this to any form that relates to what is below

50

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.11.378729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378729


Nomenclature

αi Short for population to which cell i belongs

χ Linear response matrix of the low-dimensional circuit

∆α Variance of the input to population α

κ and ν low rank vectors that compose σ

Λ2
α Variance in the population α

ω Low-dimensional connectivity matrix

ΠL Diagonal matrix with entries κ

ΠR Diagonal matrix with entries ν

Σ Optogenetic targeting matrix

σαβ matrix of the standard deviations of the weight matrix W

τ Time constant

ξ Power in a threshold power law input-output function

A Diagonal matrix with factors to transform calcium to rates

B Measuring matrix

c Contrast value, usually normalized to 1

E Error function

F Diagonal matrix with the derivatives of f at the fixed point of the high-dimensional circuit

f Input-output function /nonlinearity

f ′ Derivative of f

h External inputs to the network

J Jacobian

k Normalized entries of the low-dimensional linear response matrix χ

mα Mean firing rate in population α for high-D model

N Number of neurons in the high-D system

n Number of populations (different cell-types) in the network

Nα Number of neurons in population α

Pα Distribution of activity over population α

qα Fraction of cells in population α : Nα/N

R Linear response of the high-D system

r Activity, rα is the activity in population α

R0 Linear response of the high-D system in the absence of disorder

T Diagonal matrix of time constants
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uα Mean input to population α

vα Second moment of the activity distributions in population α

W Weight matrix of the high-dimensional model

wαβ Mean connection strength form population β to population α

wαβ

i j Weight connecting neuron j in population β to neuron i in population α

W0 matrix of entries wαβ

z Input current

f′ Diagonal matrix with the derivatives of f at the fixed point of the low-dimensional circuit

HFP Homogeneous fixed point

high-D High-dimensional (i.e. N dimensional) model, with 4 populations

low-D Low-dimensional (i.e. 4-dimensional) model
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