
Assignment 5

G4360 Introduction to Theoretical Neuroscience

Two types of Ring networks: Bump attractors or an SSN

Once again, the things you have to do are in red.

Bump attractor: We will construct discrete dynamics on a grid along a ring from a

continuous model on a ring. In the continuous model (following Goldberg, Rokni &

Sompolinsky, Neuron 42:489-500 (2004)), θ is a continuous variable from 0 to 2π, r(θ) is

the response of the unit preferring orientation θ/2 (preferred orientation runs around the

ring from 0o to 180o), and h(θ) is its input, W(θ − θ′) is the connection between the units

preferring θ and θ′, and vth is a threshold for firing:

τ
dr(θ)

dt
= −r(θ) +

[∫ 2π

0

dθ′

2π
W (θ − θ′)r(θ′) + h(θ)− vth

]
+

(1)

Here, [x]+ is rectification: = x if x > 0, = 0 otherwise.

We move this to a grid of 180 grid positions around the ring, separated by ∆θ = 2π/180,

starting from θ = 0. The grid positions are θi, i = 1, . . . , 180. There is a single unit at each

position, which projects both positive and negative synapses. It has firing rate ri = r(θi),

and r is the resulting vector of rates, and similarly for hi and h; vth is the vector all of

whose elements are vth; and Wij = W (θi − θj)∆θ
2π

and W the resulting matrix, giving

dynamics

τ
dr

dt
= −r + [Wr + h− vth]+ (2)

We define W and h from

W (θ) = W0 + 2W1 cos(θ) (3)

h(θ) = h0 + 2h1 cos(θ − θh) (4)

Choose 1 < W1 < 2 and W0 +W1 < 2 with 0 < W0 < 1 (the dynamics lose stability if

W1 > 2 or W0 > 1 or, approximately, W0 +W1 > 2; for W1 < 1, there is no bump solution).

τ is arbitrary, it just sets the time units; you could set it to 10 msec, or just to 1.

To compute the dynamics, you could use simple Euler, found by replacing dr
dt

with
r(t+∆t)−r(t)

∆t
: r(t+ ∆t) = (1− ∆t

τ
)r(t) + ∆t

τ
[Wr(t) + h− vth]+ Using ∆t/τ = 0.1 should be

sufficient (you could check that cutting ∆t in half doesn’t noticeably change the outcome,

which is a decent check that your time step is small enough). You could alternatively use a

better method if you prefer.

1



a. First consider a uniform input, h1 = 0. Verify that for h0 < vth, even if you start with

a random initial condition of positive activations, the dynamics will decay to r = 0.

Simulate for a couple of values of h0 > vth, say h0 = vth + 1 and h0 = vth + 10. Verify

that if your initial rates are not all exactly equal but have any nonzero noise (positive

noise if the initial rates are otherwise zero), no matter how small, the dynamics will

evolve to a bump solution (they will probably evolve to a bump solution even for an

initial condition r = 0, due to numerical noise in the simulation). There is

“dynamical symmetry breaking”: the dynamics and the input are circularly

symmetric, but the circularly symmetric activity pattern (the uniform pattern) is

unstable to any small perturbation, and the bump solution, which breaks the circular

symmetry by choosing a particular location on the circle, is stable. For noisy initial

conditions the bump should appear at a random location (probably selected by where

some weighted sum over the initial noise in a local region is largest, but likely to

appear random to you), with a common shape and height for a given h0. How do the

shape and height change for the different values of h0?

b. Analytically, the bump activity should reach 0 at an angle ψ from the bump center,

where 2W1G1(ψ) = 1 and G1(ψ) = 1
2π

(
ψ − sin(2ψ)

2

)
, with 0 < ψ < π (this is the

analytic solution for continuous θ; might be slightly changed by going to a discrete

grid). Does this appear to agree with your simulations? (I will place in the course

directory a file, ring-model.pdf, that gives the analytics for those who are interested.)

c. Now add a weak tuned input h1, say h1 = 0.1(h0 − vth). Does this choose the bump

location? Does the bump appear to be otherwise similar or identical?

d. Finally, simulate with the same parameters except 0 < W1 < 1. Now you should find

that the uniform solution is stable, and there is no bump solution to a uniform input.

What steady state do you arrive at for a non-uniform input (nonzero h1), and how

does it compare to the bump solution for W1 > 1?

Additional things you might try (optional): explore the dynamics of the bumps in one or

both of two ways:

• For the case with h1 = 0: Add time-varying noise to the simulation, say adding some

small i.i.d. noise to each hi at each timestep, drawing the noise anew at each time

step. You should find that the steady-state bump will drift in location, roughly as a

random walk meaning the distance the bump travels over some time will grow as the

squareroot of the time;

• For a case with h1 > 0: After the steady state is reached in response to a tuned

stimulus centered at θi, instantaneously turn that stimulus off and turn on another

2



tuned stimulus of the same strength at a different location. How does the bump move

from one location to the other – does one bump shrink while the other grows, or does

the bump rotate from one position to the other? Does this depend on whether the

2nd bump is relatively near to or far from the first? How long does the change take?

Stabilized supralinear network (SSN): We’ll use the same grid of 180 positions on a

ring, but now there is an E and an I cell at each position. We’ll consider the ring to span

180o, representing a preferred orientation, so the grid points have spacing 1o. We use a

power-law input/output function. We use connectivity with no “Mexican hat”; we take the

four connectivity functions (E → E, E → I, I → E, I → I) to have the same width,

differing only in their strengths. We define these functions on the grid: the connection

between the unit of type Y (E or I) at position θj to the unit of type X at position θi is

WXY
ij = JXY e

−
Θ(θi,θj)2

2σ2
W (5)

Here, Θ() is the shortest distance around a circle defined by

Θ(θi, θj) = Min (|θi − θj| , 180o − |θi − θj|) (6)

For parameters, use JEE = 0.044, J IE = 0.042, JEI = 0.023, J II = 0.018, σW = 32o (this is

all following Rubin, Van Hooser and Miller, Neuron, 2015; see also Ahmadian, Rubin &

Miller, Neural Computation, 2013).

We take r =

(
rE

rI

)
, where rE and rI are the firing rates of the E and I cells respectively,

both ordered in the same way around the ring (e.g., from 1o to 180o). Our dynamical

equations are

TτE
dr

dt
= −r + k(Wr + h)n+ (7)

where (x)n+ is applied element by element and, for a given element xi, (xi)
n
+ = xni if xi > 0;

= 0, otherwise. We’ll take k = 0.04 and n = 2. Take τE = 20ms and take T to be a

diagonal matrix with entries 1 for the E cells and 1/2 for the I cells, i.e. τI = 10ms. (The

faster τI may not be necessary but helps to ensure stability).

For an input h of a stimulus with direction θ0, the input to both the E and the I units at θi

is hi = ce
−Θ(θi,θ0)2

2σ2
h . Here, c is a constant (c for ‘contrast’) that you will vary to vary the

strength of the stimulus. Take σh = 30o.

a. First, for a single stimulus of orientation of your choice θ0, simulate the response,

starting from an initial condition r = 0, for c = {1.25, 2.5, 5, 10, 20, 40}. Again, use

first-order Euler, a time step of 1ms should be fine. For each c, simulate until a

steady state is reached by some criterion (change per timestep gets sufficiently small).
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For the steady state, for the E unit and the I unit at the stimulus center, plot, as a

function of c:

• Their firing rate;

• Their feedforward input, their net recurrent input (E − I, where E is the

recurrent excitatory input and I is the recurrent inhibitory input, taken to have

a positive sign), and their total input (feedforward + net recurrent).

• The percent of the unit’s input that is feedforward or is recurrent, counting

recurrent input now as E + I and total input as FF + E + I

• For the recurrent input, the percent of it that is excitatory: E
E+I

You should see: saturation of excitatory firing rates; a transition from a

feedforward-dominated regime for weak input, to a recurrent-dominated regime for

stronger input; that for stronger input, the recurrent input largely cancels or

‘balances’ the feedforward input; and that the recurrent input becomes more

inhibition-dominated for stronger stimuli.

b. Now consider adding a 2nd stimulus 90o away from the first (i.e., on the opposite side

of the ring). By symmetry, that stimulus by itself should produce a response exactly

like the response to the θ0 stimulus, except shifted by 90o. So you don’t need to

simulate response to that stimulus alone; but simulate response to the two stimuli

shown at the same time, again for the given values of c (same c for both stimuli).

You know by symmetry that the responses must be identical at each stimulus center.

So, choosing the units at one of the stimulus centers, for the E and for the I units,

plot the ratio of their steady-state response when both stimuli are shown together, to

the sum of their steady-state responses to the two stimuli when each stimulus is

shown alone; that is, the ratio of the actual response to the response you would get if

responses to the two stimuli sum linearly. You should find that this ratio is > 1,

representing supralinear summation, for weaker inputs but < 1, representing

sublinear summation, for stronger inputs.

c. For at least some, if not all, of the c values, you probably want to plot, with preferred

orientation from 0o to 180o on the x axis, a curve of E unit responses vs. position x

on the ring, as follows: the sum of the two responses to each stimulus shown alone;

and the response to the two stimuli shown together. In another graph, plot the same

for the I unit. This will allow you to directly see the supralinear and sublinear

summation.

Other things you might want to try (optional):
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• Give a uniform input of varying strengths to the network; do you ever see

non-uniform solutions emerge? (you shouldn’t)

• Consider adding the two stimuli with different c values; you should see the emergence

of “winner-take-all” behavior, where the greater the difference between the c values

for the two different stimuli, the more the response to the weaker stimulus is

suppressed (relative to its response if shown alone with that c value) and the more the

response to the stronger stimulus approaches the response if it were shown by itself.
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