
Not to be turned in: Computing with Gaussian probability distributions

This is not an assigned problem set, and nothing from this needs to be turned in. It is

just a set of problems you might want to work through to understand computations involving

multi-dimensional Gaussian distributions. It comes from an old problem set, so it reads like

a problem set, but this is just for you. It goes through the material taught in class (and so

some of it should be well known to you and just need skimming), but goes beyond it to show

how to do the integrals to compute arbitrary moments of a Gaussian as well as to normalize

the distribution. If you aim to be a theorist, you should know this material.

The things to actually do are in red, the rest is explanation or guidance.

Basic to many aspects of theory is understanding and being able to compute with Gaus-

sian distributions, so as part of this homework we’ll take some time to do basic computations

on Gaussians. Even where the homework doesn’t require you to do anything, you should

take the time to do whatever you need to do to prove to yourself or satisfy yourself that

what’s stated is true.

Notation: Where I use vectors and matrices, I will use boldface small letters, e.g. x to

represent vectors, and boldface capital letters, e.g. C, to represent matrices. x is a column

vector; its transpose xT is a row vector. Plain letters represent numbers, e.g. x is a scalar;

the ith element of the vector x is xi; the ijth element of the matrix C is Cij. Thus xyT is

a matrix with ijth element equal to xiyj; while xTy = x · y =
∑

i xiyi (for vectors of real

numbers).

One-dimensional Gaussian distributions and integrals:

You know the Gaussian distribution for a random variable z with mean m and standard

deviation σ:

P (z) =
1

(2πσ2)1/2
e−

1
2

(z−m)2

σ2 (1)

Compute the properties of the one-dimensional Gaussian distribution:

a. Show that the probability distribution is correctly normalized:
∫∞
−∞ P (z) dz = 1. Let-

ting p(z) = e−
1
2

(z−m)2

σ2 , you want to show that
∫∞
−∞ p(z) dz = (2πσ2)1/2. To do this (1)

Change variables z → x = z−m and note that the value of the integral is unchanged;

(2) Take the square of the integral:
∫∞
−∞ dx

∫∞
−∞ dy p(x)p(y) (where x and y both have

zero mean); (3) Consider x and y as the coordinates of a 2-d space, and change vari-

ables to polar coordinates r, θ: r =
√
x2 + y2, θ = tan−1(y/x), where r goes from 0

to ∞ and θ goes from 0 to 2π. Recall that dxdy = rdrdθ. (4) Do the θ integral; (5)

Transform variables r → p = r2. Note that rdr = 1
2
dp. (6) Do the p integral.
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b. Compute the first few moments of z. The nth moment of a random variable z is the

average of zn, which we’ll denote 〈zn〉 and which is equal to
∫∞
−∞ znP (z) dz. Define

x = z −m.

The first moment 〈z〉, is the mean. To compute the mean, note that 〈x〉 = 〈z〉 − m
(note that m is a constant so that m = 〈m〉), and show by symmetry that 〈x〉 = 0 (for

example, show that 〈−x〉 = 〈x〉).

For higher moments, it’s simpler to use the centered moments, the moments of x =

z −m. The second centered moment is the variance, 〈x2〉 =
∫∞
−∞ x2P (x) dx; the third

centered moment is called the skew, and the fourth the kurtosis. To compute these

moments, we use the fact that y = x
σ

is a zero-mean Gaussian variable with unit

variance. Thus, if we can compute the moments of y, e.g., 〈yn〉, then we can compute

the moments of z, e.g. by expanding the polynomial in the expression
〈(

z−m
σ

)n〉
= 〈yn〉,

and noting that m and σ are constants that can be taken out of the averages. For

example, multiplying both sides of the equation by σn tells us immediately that the

centered moments are 〈xn〉 = σn 〈yn〉; and expanding for n = 2 shows that 〈z2〉 =

m2 + σ2 〈y2〉 (verify all this for yourself).

To compute the moments of y, a useful trick1 is to compute
〈
eky
〉

= 1√
2π

∫∞
−∞ dy e−

1
2
y2+ky.

Then we can compute any moment as 〈yn〉 = dn

dkn

〈
eky
〉
|k=0, since each application of

d
dk

pulls down one factor of y into the integral defining
〈
eky
〉
, and doing this n times

and then setting k = 0 gives the integral that defines 〈yn〉.

To compute
〈
eky
〉
, you complete the square in the exponential by subtracting and

adding 1
2
k2; you’ll end up with e(y−k)2 , which you can integrate by using the change of

variable (y − k) → y; times e
1
2
k2 , which comes out of the integral, giving the answer

e
1
2
k2 . Carry out these steps if they’re not familiar to you.

Use all of this apparatus to show that 〈z〉 = m; 〈x2〉 = σ2; 〈x3〉 = 0; 〈x4〉 = 3σ4.

Note: since y = x/σ, we have also established that
〈
ekx/σ

〉
= e

1
2
k2 . Letting p = k/σ,

this in turn gives 〈epx〉 = e
1
2
p2σ2

. We could have computed this directly by completing

the square in the exponential of P (x) rather than P (y). By the same reasoning as

above, 〈xn〉 = dn

dpn
〈epx〉 |p=0. This gives the same answers as 〈xn〉 = σn 〈yn〉.

1This works for a Gaussian, but for other distributions
∫
dy ekyP (y) may not converge. A more general

trick is to compute
〈
eiky

〉
(where i =

√
−1), which is the Fourier transform of P (y) and is called the

characteristic function of y; and then the moments can be computed as 〈yn〉 = 1
in

dn

dkn

〈
eiky

〉
|k=0.
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Multi-dimensional Gaussian distributions:

The general form for a Gaussian distribution of an N −dimensional random variable s with

mean m and covariance matrix C (meaning that Cij = 〈(si −mi)(sj −mj)〉; in particular,

note that C is a symmetric matrix), is as follows:

P (s) =
1√

(2π)NDetC
e−

1
2

(s−m)TC−1(s−m) (2)

(C−1 means the matrix inverse of C). The determinant of a matrix C is the product of its

eigenvalues. (The matrix C can be any symmetric matrix that is positive definite, meaning

that all of its eigenvalues are greater than 0; as we will see later, the eigenvalues correspond

to variances, which must be positive.2 Given this assumption, we’ll show that C is in fact

the covariance matrix of s.) Verify that for N = 1 this reduces to the formula for a one-

dimensional Gaussian distribution (for N = 1, the determinant is just the value of the

matrix’s single element).

We again will compute the properties of this distribution. To do so, you need to under-

stand the following (please review any of this material that is not clear to you; my online

math notes are one source):

a. Because C is a symmetric matrix, it has a complete basis of real orthonormal eigen-

vectors eµ with corresponding real eigenvalues λµ, µ = 1, . . . , N (I’ll use Greek letters,

e.g. µ, ν, to label the eigenvector basis, and Roman letters, e.g. i, j, for indices in the

original basis). This means that Ceµ = λµeµ for all µ and eµ · eν = δµν for all µ and ν

(δµν is the Kronecker delta function, equal to 1 if µ = ν and 0 otherwise).

b. Let U be the matrix whose columns are the eigenvectors. Then UTU = 1 where 1 is the

identity matrix (to see this, note that the µνth element of UTU = 1 is the dot product of

the µth row of UT and the νth column of U, or in other words it is eµ ·eν and thus is δµν).

That is, UT is the inverse of U, so also UUT = 1. This is the definition of an orthogonal

matrix, which represents a rigid rotation and/or reflection without any stretching – all

angles between vectors and lengths of vectors are preserved under transformation by

U. (To show this, it suffices to show that U preserves all dot products, since length2

is the dot product of a vector with itself, while the cosine of the angle between two

vectors is their dot product divided by the product of their lengths. This is easy to

show: for any vectors x and y, Ux ·Uy = (Ux)TUy = xTUTUy = xTy = x · y.)

2Any covariance matrix is positive definite if the distribution includes the whole space: it is of the form〈
xxT

〉
, so for any eigenvector ei with eigenvalue λi, e

T
i

〈
xxT

〉
ei = eTi (λiei) = λi, but also eTi

〈
xxT

〉
ei =〈

(ei · x)2
〉
> 0.
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c. To transform to the eigenvector basis, we take any vector x→ UTx. If we write x in

the eigenvector basis as x =
∑

µ xµeµ, then xµ = eµ · x. The µth element of UTx is

eµ · x = xµ, so UTx gives the elements of x in the eigenvector basis.

d. As we’ll see, the eigenvalues λµ are the variances along the direction of eµ, so let’s

use σ2
µ for the eigenvectors: σ2

µ ≡ λµ. The statement Ceµ = σ2
µeµ for µ = 1, . . . , N

is equivalent to CU = UΣ where Σ is the diagonal matrix whose diagonal elements

are the eigenvalues, Σµν = δµνσ
2
µ. That is, C acts on the µth column of U, which is

eµ, to give σ2
µ times that column (if this is not clear: in indices, CU = UΣ becomes∑

j CijUjµ =
∑

j UijΣjµ =
∑

j Uijδjµσ
2
µ = Uiµσ

2
µ; since Ujµ is the jth element of eµ, this

can be rewritten as Cij(eµ)j = (eµ)iσ
2
µ, which is the index form of the vector equation

Ceµ = σ2
µeµ). We can rewrite this as C = UΣUT or Σ = UTCU. Σ is the form C

takes in the eigenvector basis, that is, when vectors are transformed by UT .

Similarly, Σ−1 = UTC−1U. Since Σ is diagonal, we know how to compute the matrix

inverse Σ−1, we simply invert each diagonal entry: it is the diagonal matrix with

the inverse eigenvalues on the diagonal. You can see this in at least two ways (1)

The inverse is preserved under change of basis; Σ is the representation of C in the

eigenvector basis, so Σ−1 is the representation of C−1 in the eigenvector basis. (2)

Equivalently, a definition of the inverse C−1 is that C−1eµ = 1
σ2
µ
eµ for µ = 1, . . . , N .

This leads to the same equations as for C except with inverse eigenvalues replacing

eigenvalues.

Then:

a. Show that in the eigenvector basis, v = UT s, the probability distribution becomes a

product of independent one-dimensional Gaussian distributions, one distribution for

the component along each eigenvector, with variance equal to the corresponding σ2
µ:

P (v) = ΠN
µ=1

1

(2πσ2
µ)

1
2

e
− 1

2

(vµ−〈vµ〉)2
σ2µ (3)

(Note: the notation ΠN
µ=1 means multiply the terms together for all µ’s from 1 to N ;

much like Σn
µ=1 means sum together the terms for all the µ’s.)

To show this, note that (sT −
〈
sT
〉
)C−1(s − 〈s〉) = (vT −

〈
vT
〉
)Σ−1(v − 〈v〉), which

can be shown for example by inserting 1 = UUT on each side of C−1 in the left term

(note that since v = UT s for each instance of v and s, the same relationship also

holds for their averages). You also need to remember that under transformation of

variables, probability distributions transform as P (s)dNs = P (v)dNv. If v = UT s, the

differentials transform in turn as dNv = |Det(UT )|dNs. Finally, all of the eigenvalues
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of an orthogonal matrix must have absolute value 1, since the matrix does not change

the length of any vector, so the determinant of an orthogonal matrix has absolute value

1.

Use this to show that the multi-dimensional Gaussian as written above is correctly

normalized,
∫
dNsP (s) = 1.

b. Set up the framework for computing the moments, and use to compute 〈xixj〉. A simple

way is to work in the eigenvector basis using zero-mean variables. Set x = s−〈s〉, t =

UTx = v−〈v〉, and show that
〈
ek·t
〉

=
〈
ek1t1+k2t2+...+kN tN

〉
=
〈
ek1t1

〉 〈
ek2t2

〉
. . .
〈
ekN tn

〉
=

e
1
2
k21σ

2
1e

1
2
k22σ

2
2 . . . e

1
2
k2Nσ

2
N = e

1
2
kTΣk. Rewrite this as

〈
ek

TUTx
〉

= e
1
2
kTΣk. Let p = Uk, to

find 〈ep·x〉 = e
1
2
pTUΣUTp = e

1
2
pTCp.

The moments can then be found as follows: write an arbitrary product of elements of x

as xixj . . . xk. Then 〈xixj . . . xk〉 = d
dpi

d
dpj

. . . d
dpk
〈ep·x〉 |p=0 = ( d

dpi

d
dpj

. . . d
dpk
e

1
2
pTCp)|p=0.

Use this to show that C is indeed the covariance of the distribution: 〈xixj〉 = Cij.

For the bold: use this to prove, or at least get a feel for, Wick’s theorem. The average

of a product of N elements of x is called an N -point function. Wick’s theorem states

that, for a Gaussian distribution, any N -point function for N even is equal to a sum,

over all distinct ways of grouping the N elements into pairs, of the products of the two-

point functions of the pairs (and for N odd, the N -point function is zero). For example:

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉+〈x1x3〉 〈x2x4〉+〈x1x4〉 〈x2x3〉 = C12C34 +C13C24 +C14C23.
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