
Assignment 9
1. Learning to classify random patterns using a perceptron

Simulate a perceptron to estimate the maximal number of random patterns
that can be correctly classified. The patterns to be classified are vectors of
binary activities. More specifically, ξµi = ±1 is the activity of neuron i
for pattern µ. The ξµi variables are random and uncorrelated (i.e. set them
randomly to either +1 or -1 with equal probability). When one of these
patterns is imposed to the N input neurons, the output is:

y = sign

 N∑
j=1

wjξ
µ
j − θ


where wj are the weights and θ is a threshold. For each pattern the de-
sired output yµ which indicates the class to which the pattern belongs, is
also chosen randomly. Determine the parameters wj and θ using the per-
ceptron learning rule discussed in the class, so that the perceptron produces
the desired output yµ when pattern ξµj is imposed to the inputs.

The procedure is to start from one pattern, randomly chosen, say pattern
ν. Compute the corresponding y and compare it the desired yν . If it is the
same, then do not modify the parameters. Otherwise, use the perceptron
learning rule to update the parameters:

wj → wj + αyνξνj

θ → θ − αyν

Repeat the same procedure at least 100 times the number of total patterns p.
Start with N = 100 and p = 10 to test the program: plot the fraction of cor-
rectly classified patterns as a function of the number of learning iterations.
It should quickly converge to 1 (i.e. the fraction of errors should to zero).

Then choose ten values of N between 100 and 1000 and for each value of
N determine pmax, the maximum number of correctly classified patterns.
To determine pmax, start from a small p and progressively increase it until
the error does not go to zero (e.g when the minimal fraction of errors never
goes below 10% during all the 100p learning iterations).

Plot pmax vs N and show that it is approximately linear.

1

Rectangle

FreeText
8



2. Non-linearly separable patterns

Build now a new perceptron that has 2N input neurons. Construct correlated
inputs as follows: take the p random patterns of the previous exercise, and
concatenate pairs of input vectors. For example one input could be ξµi , ξνi ,
which is a vector with 2N components whose the first N components are
ξµi and the components from N + 1 to 2N are the ξνi s. When you consider
all possible pairs of random vectors, you get highly correlated input pat-
terns (e.g. ξ1i , ξ

2
i will be similar/correlated to ξ1i , ξ

3
i ). These patterns could

describe a representation in which half of the neurons encode one feature of
a sensory stimulus (e.g. the color of an object) and the other half another
feature (e.g. the shape). The two subpopulations of neurons would be ”spe-
cialized” in the sense that they encode one feature without being affected
by the other.

For p patterns, there will be p2 possible pairs. Consider all possible pairs for
small p (e.g. p = 5). Try now to train a perceptron to classify the patterns
using random desired ys, as in the previous exercise (use a different random
y for each pair of inputs, and the learning procedure of the previous exer-
cise). Show that even when N is very large (it can be arbitrarily large), the
fraction of errors typically never goes to zero (repeat the experiment many
times for different choices of random patterns). Show that the situation gets
even worse when p increases. That indicates that non-linear separability is
not a pathological situations, but it is what typically happens in ”realistic”
situations, like the one studied in this exercise.

The classification of these correlated patterns is similar to the XOR problem
discussed in the class. The patterns are low dimensional and for large p the
majority of random classification problems are non-linearly separable.

3. Advanced: in the case of non-linearly separable patterns described in the
previous exercise, determine the dimensionality of the input patterns (when
all pairs of random patterns are considered) and show that it is much smaller
than the maximal dimensionality, especially when p becomes large. The
dimensionality can be estimated using the matlab function that performs
Principal Component Analysis.

4. Advanced: solving the problem of non linear separability with mixed selec-
tivity neurons

Introduce M additional neurons make them part of the input vector (the

2



total number of input neurons would be M + 2N ). Denote the activity of
these additional neurons with si, with i = 1, ...,M . si = 1 if ξi = 1 AND
ξj = 1, otherwise si = −1. i and j are random indexes denoting two input
neurons, with i = 1, ..., N and j = N + 1, ..., 2N .

The si neurons are mixing non linearly the inputs that come from the two
components of the input. In other words, they exhibit mixed selectivity
to the ”features” represented by the two components of the input. With a
number of si units that is comparable to p2, it should be now possible to
solve the random classification problem of the previous exercise.

Show that the error actually goes to zero as M grows and that it is much
smaller than in the case in which the M mixed selectivity neurons are re-
placed with non-mixing neurons (e.g. neurons si = ξµi ).

Replace the si neurons with randomly connected neurons (i.e. neurons that
are connected with random gaussian weights to 10 randomly selected ξ neu-
rons). Shows that also in this case the problem can be solved. The number
of randomly connected neurons will also have to scale as p2.

3


