Assignment 6

1. Suppose we have a firing-rate network as in Sompolinsky, Crisanti \& Sommers (1988) that evolves according to:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=-\mathbf{x}(t)+\mathbf{J} \phi(\mathbf{x}(t)), \tag{1}
\end{equation*}
$$

where \mathbf{J} is an $N \times N$ matrix of connections with $N=500$ and each element of \mathbf{J} is drawn from a normal distribution with standard deviation g / \sqrt{N}. Further assume that ϕ is the tanh function, applied to each element of the vector \mathbf{x}.
a) As discussed in class, the network dynamics linearized around the fixed point $\mathbf{x}=\mathbf{0}$ are:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=(-\mathbf{I}+\mathbf{J}) \mathbf{x}(t) \tag{2}
\end{equation*}
$$

Compute the eigenvalues of the matrix $-\mathbf{I}+\mathbf{J}$ numerically and make a scatter plot of their real and imaginary parts in the complex plane, for $g=0.9$ and $g=1.1$.
b) Simulate the linearized network (2) for 100 time units and plot the activity of 5 example neurons for $g=0.9, g=1.1$. Choose the initial condition $\mathbf{x}(0)$ to be a vector of elements each drawn from a standard normal distribution.
c) Do the same as part 2 but for 500 time units of the nonlinear network's dynamics. Also plot the behavior for $g=2$.
2. From Dayan \& Abbott: Simulate the responses of four interneurons in the cercal system of the cricket and check the accuracy of a simple population decoding scheme. In this system, there are four interneurons whose firing rate responses are dependent on the wind direction θ.
For a true wind direction θ the average firing rates of the four interneurons should be generated as $\mathrm{E}\left[r_{i}\right]=50 \mathrm{~Hz} \cdot f\left(\cos \left(\theta-\theta_{i}\right)\right)$, where f is rectified-linear $\left(f(x)=x\right.$ if $x>0, f(x)=0$ otherwise), and $\theta_{i}=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$ for $i=1,2,3,4$. The actual rates, r_{i}, are then obtained by adding to these mean rates a random number chosen from a Gaussian distribution with zero mean and a standard deviation of 5 Hz (set any rates that come out negative to zero). Assume the noise is independent across neurons.

From these rates, construct the x and y components of the population vector:

$$
\begin{equation*}
x=\sum_{i=1}^{4} r_{i} \cos \left(\theta_{i}\right), y=\sum_{i=1}^{4} r_{i} \sin \left(\theta_{i}\right) \tag{3}
\end{equation*}
$$

and, from the direction of this vector, compute an estimate $\theta_{\text {est }}$ of the wind direction. Average the squared difference $\left(\theta-\theta_{\text {est }}\right)^{2}$ over 1000 trials. The square root of of this quantity is the error. Plot the error as a function of θ over the range $\left[-90^{\circ}, 90^{\circ}\right]$.

