
1. Consider the optimization problem:

minxf(x), where f(x) = x4 − 8x2 + 3x+ 16.

a) Plot f(x) between x = −3 and x = 3. Is this a convex problem?
b) Perform gradient descent for 2000 steps with a step size of η = 0.001, starting
at x0 = 3. That is,

xn+1 = xn − ηf ′(xn).

Plot the curve of (xn, f(xn)) on top of the plot you already generated. Does
this algorithm approach the global minimum?
c) Now add random noise to the update. Use the following update rule:

xn+1 = xn − ηf ′(xn) + ξn,

where ξn is a Gaussian random variable with zero mean and variance σ2
n. Let

σ0 = 0.2 and σn+1 = 0.999σn so that the variance of the noise slowly decays.
Run this new algorithm several times – does it approach the global minimum?

2. Suppose a linear, hard-margin support vector machine must classify the points
r1 = (−1,−2), r2 = (1, 3), and r3 = (−1, 0) into one class ℓ = 1, and the points
r4 = (2,−3), r5 = (4, 2) and r6 = (1,−2) into another class ℓ = −1.
a) Plot the points belonging to the two classes (using two different colors) in a
2-d plane.
b) If w and θ define a linear classifier ℓ = sign(w · r − θ), write the set of
constraints that these parameters must satisfy if the classifier is to correctly
classify the points.
c) Write the expression for the parameters of the SVM solution in the standard
form for a quadratic optimization problem:

x∗ = argminx

1

2
xTQx+ cTx, s.t Ax ≤ b.

That is, determine the values of the matrices Q and A, and vectors c and b,
that make this optimization problem equivalent to the optimal solution for the
SVM. Hint: x should be a length three vector corresponding to the parameters
that define the classifier.
c) Optional: Use a numerical solver such as MATLAB’s quadprog to find the
solution to this problem, and plot the classification boundary in the 2-d plane
from part (a).
d) Optional: We can define the “Lagrangian dual” of an optimization problem
that corresponds to maximizing over Lagrange multipliers rather than minimiz-
ing over x. Let’s do this for a linear, hard-margin SVM.
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If we define Lagrange multipliers for the inequality constraints of an SVM, we
get a Lagrangian:

L(w, θ,λ) =
1

2
wTw −

∑
µ

λµ[(w · rµ − θ)ℓµ − 1].

The Lagrangian dual function is defined as:

G(λ) = inf
w,θ

L(w, θ,λ).

If λµ ≥ 0 for each µ, then G(λ) ≤ f ∗, where f ∗ is the minimum of wTw. This
is because each term in the sum over constraints in L must be positive if λµ ≥ 0
and the constraint is satisfied. Thus, the maximum of G gives us a lower bound
for f ∗.
By taking partial derivatives of L with respect to wi and θ and setting them
equal to zero, show that at the infimum:

w −
∑
µ

λµr
µℓµ = 0, (1)∑

µ

λµℓ
µ = 0. (2)

Note that the first expression tells us that w is a sum over the rµ for which
λµ ̸= 0: the “support vectors.”
e) Optional: Use the expressions you found in (d) and substitute them into L
to show that:

G(λ) = −1

2

∑
µ,ν

λµλνℓ
µℓν(rµ)T rν +

∑
µ

λµ. (3)

This implies that we can obtain a lower bound for f ∗ with the following opti-
mization problem:

max
λ

−1

2

∑
µ,ν

λµλνℓ
µℓν(rµ)T rν +

∑
µ

λµ, s.t.
∑
µ

λµℓ
µ = 0, λµ ≥ 0. (4)

In fact, because the original problem is convex, this lower bound is tight and
gives us the optimal SVM solution. This is an optimization over P variables,
where P is the number of data points (constraints), and is therefore an improve-
ment when there are fewer data points than dimensions. It also depends only
on the dot products (rµ)T rν rather than the rs explicitly, which leads naturally
to kernel methods, to be discussed later.
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