1. Consider the optimization problem:
min, f(z), where f(z) = 2* — 82% 4 3z + 16.

a) Plot f(z) between # = —3 and x = 3. Is this a convex problem?

b) Perform gradient descent for 2000 steps with a step size of n = 0.001, starting
at xg = 3. That is,

Tpt1 = Ty — ﬂf’(iﬁn)-

Plot the curve of (z,, f(x,)) on top of the plot you already generated. Does
this algorithm approach the global minimum?

¢) Now add random noise to the update. Use the following update rule:

Tpy1 = Tn — 77f'(37n) + gna

where &, is a Gaussian random variable with zero mean and variance o2. Let
oo = 0.2 and 0,11 = 0.9990,, so that the variance of the noise slowly decays.
Run this new algorithm several times — does it approach the global minimum?

2. Suppose a linear, hard-margin support vector machine must classify the points
r! = (—1,-2),r* = (1,3), and r* = (—1,0) into one class £ = 1, and the points
r!t = (2,-3), r° = (4,2) and r® = (1, —2) into another class £ = —1.

a) Plot the points belonging to the two classes (using two different colors) in a
2-d plane.

b) If w and 6 define a linear classifier ¢ = sign(w - r — ), write the set of
constraints that these parameters must satisfy if the classifier is to correctly
classify the points.

c¢) Write the expression for the parameters of the SVM solution in the standard
form for a quadratic optimization problem:

1
x" = argmin, éxTQx +cTx, st Ax <b.

That is, determine the values of the matrices (Q and A, and vectors ¢ and b,
that make this optimization problem equivalent to the optimal solution for the
SVM. Hint: x should be a length three vector corresponding to the parameters
that define the classifier.

c) Optional: Use a numerical solver such as MATLAB’s quadprog to find the
solution to this problem, and plot the classification boundary in the 2-d plane
from part (a).

d) Optional: We can define the “Lagrangian dual” of an optimization problem
that corresponds to maximizing over Lagrange multipliers rather than minimiz-
ing over x. Let’s do this for a linear, hard-margin SVM.



If we define Lagrange multipliers for the inequality constraints of an SVM, we
get a Lagrangian:

L(w,0,) = —WW Z)\ w -t —0)" —1].

The Lagrangian dual function is defined as:

GA) = 1n££(w g, ).
If A\, > 0 for each p, then G(X\) < f*, where f* is the minimum of w”w. This
is because each term in the sum over constraints in £ must be positive if A, > 0
and the constraint is satisfied. Thus, the maximum of GG gives us a lower bound

for f*.

By taking partial derivatives of £ with respect to w; and 6 and setting them
equal to zero, show that at the infimum:

W= Y Axtt =0, (1)
n
> At =0. (2)
W

Note that the first expression tells us that w is a sum over the r* for which
Au # 0: the “support vectors.”

e) Optional: Use the expressions you found in (d) and substitute them into £
to show that:

G(A) = ——Z)\ A 010V (x) T +Z)\“ (3)
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This implies that we can obtain a lower bound for f* with the following opti-
mization problem:

max——ZAAMV (ri)T +Z)\“ 5.t Z)\ =0, 2, >0 (4)
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In fact, because the original problem is convex, this lower bound is tight and
gives us the optimal SVM solution. This is an optimization over P variables,
where P is the number of data points (constraints), and is therefore an improve-
ment when there are fewer data points than dimensions. It also depends only
on the dot products (r*)Tr” rather than the rs explicitly, which leads naturally
to kernel methods, to be discussed later.



