
Assignment 4

1. Linearizing a nonlinear feedforward network
Consider a one-layer feedforward network with input x, connection matrix W ,
and output r = f(Wx). By taking partial derivatives of the elements of r with
respect to those of x, show that, if ∆x = x − x0 is small, then ∆r = r − r0 =
r− f(Wx0) can be approximated as:

∆r ≈ DW∆x, (1)

where D is a diagonal matrix. What are the elements of D?

2. A random nonlinear firing rate network
Suppose we have a nonlinear firing-rate network that evolves according to:

ẋ(t) = −x(t) +Wf(x(t)), (2)

where W is an N×N matrix of connections with N = 500 and each element of W
drawn from a normal distribution with standard deviation g/

√
N (in MATLAB,

W = g*randn(N)/sqrt(N)). Further assume that f is the tanh function, applied
to each element of the vector x.
1) As discussed in class, the network dynamics linearized around the fixed point
x = 0 are:

ẋ(t) = (−I +W )x(t). (3)

Compute the eigenvalues of the matrix −I+W numerically and make a scatter
plot of their real and imaginary parts in the complex plane, for g = 0.9 and
g = 1.1.
2) Simulate the linearized network for 100 time units and plot the activity of 5
example neurons for g = 0.9, g = 1.1. Choose the initial condition x(0) to be a
vector of elements each drawn from a standard normal distribution.
3) Do the same as part 2 but for 500 time units of the nonlinear network’s
dynamics. Also plot the behavior for g = 2.

3. Optional: Analysis of the FitzHugh-Nagumo model
The FitzHugh-Nagumo model is a 2-dimensional neuron model that evolves
according to:

v̇ = v − v3/3− w + I (4)
τẇ = v + a− bw. (5)
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The v variable represents membrane voltage, w a recovery variable that provides
negative feedback to v, and I the magnitude of externally applied current.
Assume τ = 12.5, a = 0.7, b = 0.8.
1) Set ẇ = 0 and v̇ = 0 to obtain a cubic polynomial in v whose solution
determines the location of the fixed point. Write a function that finds the
(v, w) pair corresponding to this fixed point.
2) Simulate the system for different values of external current I and plot the
time evolution of the voltage variable v. Set the initial condition to be close to
the fixed point found in part 1, but with a depolarized voltage. Find values of
I that correspond to quiescence and to repetitive spiking.
3) Write down the Jacobian for the two-dimensional linearized system.
4) Using the function you wrote in part 1, find the eigenvalues of the linearized
system evaluated at the fixed point and use this to determine the value of I for
which the fixed point becomes unstable. Check that this matches the behavior
you observe in your simulations.
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