
Problem Set: Hebbian Learning

1. Formulation of constraints. Start with the equation for the evolution of synaptic weights

w onto one postsynaptic cell: τw
d
dtw = f(w). We want to constrain the dynamics to live on

a constraint surface c · w = k for some constraint vector c and constant k. For example if

c is proportional to the vector of all 1’s, the constraint conserves the sum over the weights,∑
iwi. Note that c is perpendicular to the constraint surface: along the constraint surface,

the value of c ·w is not changed, meaning that the constraint surface consists locally of the

directions perpendicular to c.

To achieve this constraint, we subtract from f(w) a vector in the direction s, where s is some

subtracted vector with s · c > 0. We will take these vectors to have unit length, |c| = |s| = 1.

Note that if s = c, the constraint is enforced by perpendicular projection onto the constraint

surface.

We assume we start on the constraint surface, so we just have to constrain the derivative

vector to point along the constraint surface, that is, to have no c component: c · d
dtw = 0.

(a) Formulate the constrained equation that eliminates the c component of f(w) by sub-

traction of a multiple of s. This will be of the form τw
d
dtw = f(w)−λs (c · f(w)). What

is λ to enforce the constraint? (Hint: see footnote1.) You might want to also solve this

geometrically: consider a two-D space, draw the constraint line that contains w, with its

normal vector c; and draw the derivative vector f(w) arising from w on the constraint

surface, and the vector λs that moves from the derivative back to reach the constraint

surface, and determine the value of λ.

Note that if s is a constant this is subtractive normalization (the constraint is enforced

by subtracting a fixed amount from each synapse); while if s ∝ w, this is multiplicative

normalization (the constraint is enforced by subtracting the weight times a constant,

which is equivalent to multiplying the weights by 1 minus that constant).

(b) Form the projection operator P = 1− scT

sTc
where 1 is the identity matrix. Directly show

that this is a projection operator, i.e. that P2 = P. Also show this as follows: show that

P projects out the c component of any vector v, i.e. cTPv = 0; and that if cTv = 0,

then Pv = v. Therefore P(Pv) = Pv for any vector v, hence P2 = P. Show that the

constrained dynamics can be rewritten τw
d
dtw = Pf(w).

(c) Show that the constraint w · w = k can be enforced by using c = s = ŵ, where

ŵ = w/|w|, which is both multiplicative normalization and perpendicular projection

onto the constraint surface.

(d) Let n be the vector of all 1’s, so that w · n =
∑

iwi, and let n̂ = n/|n|. Consider

subtractive normalization by perpendicular projection, with c = s = n̂. Show that if w

1Hint: Dot both sides with c, this must give 0.

1

is on the constraint surface given by w · n̂ = wn, then w = Pw+wnn̂. For f(w) = Cw,

then the equation τw
d
dtw = PCw becomes τw

d
dtw = PCPw + wnPCn.

2. Lagrange multipliers. Suppose we are given an energy function E(w) that we want to

minimize subject to some constraint g(w) = 0. As discussed in class, the Lagrange multiplier

method says to modify E to Ec(w) = E(w)−λg(w). You then minimize Ec(w) with respect

to w, by solving ∇wEc(w) = 0, and then choose λ to enforce the constraint. (Note, you

only need to include the w-dependent terms in g(w), any other terms are irrelevant to the

derivative.)2

Consider weight dynamics that does gradient descent in E, ∇wE = − d
dtw. For example,

if E = −1
2w

TCw with C symmetric, this gives d
dtw = Cw. Then we know that d

dtE =

(∇wE)
(
d
dtw

)
= −

(
d
dtw

)2 ≤ 0 (strictly < 0 except where d
dtw = 0, i.e. at a fixed point), so

if E is bounded from below, it is a Lyapunov function.

Suppose we want to minimize E subject to a constraint g1(w) = w · n − k or a constraint

g2(w) = w · w − k, and we use gradient descent dynamics to minimize Ec(w). Compared

to the unconstrained gradient descent dynamics ∇wE = − d
dtw, show that gradient descent

dynamics on Ec adds a constraint that is enforced by locally perpendicular projection onto

the constraint surface. Verify that it gives the constraints that we worked out in the first

problem for the following cases: for g(w) = w · n− k it gives the subtractive constraint, and

for g(w) = w ·w − k it gives the multiplicative constraint on w ·w.

3. Eigenvectors. In class we saw that simple Hebbian dynamics can lead to an unconstrained

equation d
dtw = Cw where C is a symmetric matrix representing some measure of correlations

in the inputs. We imagine the inputs are arranged in 2-D space, and that Cij depends only

on the spatial distance between inputs i and j. The spatial arrangement of the inputs may

be irregular, but we assume that inputs are dense enough that we can convert to a regular

spatial grid by averaging the weights in each pixel of our regular grid. We let r be a two-

dimensional position on our grid, v(r) represent the average weight in the pixel associated

with r (so v is a vector with components v(r), just as w was a vector with components wi),

and A(r) be the density of such synapses. Thus A(r)v(r) is the total synaptic strength in

the given pixel. We let C(r, r′) represent the average correlation between the inputs at r

and at r′, which we assume depends only on |r − r′| so we write this as C(r − r′), or as

C(d) where d represents the distance between two inputs. Then our equation in terms of the

individual weights, d
dtwi =

∑
j Cijwj , becomes d

dtv(r) =
∑

r′ C(r−r′)A(r′)v(r′) We can make

2Recall from class that the effect of the Lagrange multiplier is to set ∇wE(w) ∝ ∇wg(w) rather than = 0. That

is, the LaGrange multiplier says that the derivative of E(w), rather than being 0, can be nonzero but must be locally

perpendicular to the constraint surface. Said another way, the component of ∇wE(w) along the constraint surface

must be 0; w must be a local minimum of E(w) on the constraint surface, but we don’t care if we could make E(w)

smaller by moving off the constraint surface. We then choose λ to make sure we’re on the correct constraint surface,

i.e. that g(w) = 0 rather than g(w) = q 6= 0.

2

this symmetric under interchange of r and r′ by changing coordinates to t(r) =
√
A(r)v(r),

yielding d
dt t(r) =

∑
r′

√
A(r)C(r− r′)

√
A(r′)t(r′).

Consider a square N ×N grid of inputs, with N an odd number so the center is well-defined

(say, N = 21), and call the center r = 0. You could either let A(r) = A(|r|) be a Gaussian

with standard deviation in the range 1/2-1/4 of the grid radius rg = (N −1)/2, or set A(r) to

be uniform over a circle of radius rg and zero outside; doing one of these is sufficient, unless

you’re curious to try both. Consider two cases for the correlation function: C(r) = C(|r|)
will be either a Gaussian, or a difference of Gaussians with the negative Gaussian having

2− 4 times wider standard deviation than the positive (and each Gaussian normalized by its

variance so the excitatory and inhibitory Gaussians have equal 2D integrals), with standard

deviation of the inhibitory Gaussian in the same range as for the arbor function, and standard

deviation of the excitatory Gaussian the same in both cases.

Numerically compute the eigenfunctions of the unconstrained operator in each case. It’s

simplest to use the symmetric representation. You have an effective interaction L(r, r′) =√
A(r)C(r − r′)

√
A(r′). Because space is two-dimensional, t is a matrix and L has four

indices. You want to unfold t to be a one-dimensional array of synapses, correspondingly

compute a matrix version of L which is the interaction between each pair of synapses (a

symmetric matrix), and compute the eigenvectors of this matrix. You then want to fold the

eigenvectors back up to see what they look like in two dimensions, and convert them back to

the v representation.

Plot the eigenvectors corresponding to the top ten or so eigenvalues, and note their eigenval-

ues. They should look like a product of a radial function and an angular function. Verify that

the modes (I use ’mode’ as another word for ’eigenvector’) with angular nodes have approxi-

mately zero summed weight, where summed weight is the product of the number of synapses

at a point times their average value, or
∑

rA(r)ev(r) =
∑

r

√
A(r)et(r) where ev and et are

the eigenvector in the v or t basis respectively.3 (The summed weight would be exactly zero

if our interaction L(r, r′) were circularly symmetric; but it will only approximately sum to

zero, because the circular symmetry is only approximate on the square grid.) Verify that

the modes without angular nodes typically have non-zero summed weight when C is a single

Gaussian; what about when C is a difference of Gaussians? For the case that C is a single

Gaussian, verify that the eigenvalues are ordered so that adding a node always lowers the

eigenvalue. (Optional: For the case that C is a difference of Gaussians, verify that the spatial

periodicity of the leading eigenvectors is roughly equal to the period corresponding to the

peak of the Fourier transform of C(r). If you’re not comfortable with Fourier transforms,

you could just note that the spatial period of the receptive field is similar to that of C(r).)

3Note: the eigenvector ev is a product of a radial and an angular function and A(r) only depends on the radial

variable, so multiplying the eigenvector ev(r) by A(r) only modifies the radial function. The angular function with

at least one angular node ensures zero sum at each radial position, so the multiplication by A(r) actually does not

alter whether modes with angular nodes are zero-sum.

3

Show that the sum of (i) the mode with n > 0 radial nodes and no angular nodes and (ii)

the mode with n + 1 radial nodes and two angular nodes gives an oriented, simple-cell-like

receptive field. (You can show this for a single choice of n > 0.) These two modes should be

roughly degenerate (have roughly the same eigenvalue); if they were exactly degenerate, then

their sum would also be an eigenvector with the same eigenvalue, and so we could consider

the simple-cell-like receptive field to be an eigenvector.

Now compute the eigenvectors for the subtractively constrained version of the operator. We

constrain the total weight,
∑

rA(r)v(r) or
∑

r

√
A(r)t(r), so in the t representation the

constraint vector is c ∝
√
A where A is the vector with elements A(r) and the squareroot

is understood to be applied element-by-element to the vector. Verify that
∑

r

√
A(r)t(r) is

conserved by the equation

d

dt
t(r) =

√
A(r)

∑
r′

[
C(r− r′)

√
A(r′))−

∑
r′′ A(r′′)C(r′′ − r′)

√
A(r′)∑

sA(s)

]
t(r′) (1)

i.e. that under this equation d
dt

∑
r

√
A(r)t(r) = 0. Show that the operator multiplying t(r′)

on the right is PL where L is defined above and P = 1−
√
A
√
A

T

√
A

T√
A

.

Which modes are modified by the constraint? How are they and their eigenvalues modified?

Are all modes now zero-sum?

You should find: the modes with angular nodes, which were zero-sum without the constraint,

are still eigenvectors of the constrained operator. This is because they pass through the

constraint unchanged, so if they are eigenvectors of L, they are eigenvectors of PLP. As for

the modes without angular nodes: you should find that this mode with a given number of

radial nodes is converted to another mode with the same number of radial nodes and the same

eigenvalue but is now zero-sum; except that the mode with no nodes, angular or radial, which

had the largest eigenvalue in the unconstrained case, is not zero-sum but now has eigenvalue

0 (and may be modified by the constraint). The modes without angular nodes must span the

same subspace with the constraint as they did without the constraint, because all the other

modes are unchanged; but they do so with a set of zero-sum vectors, plus one non-zero-sum

vector with eigenvalue zero.

If you want to venture into this in more detail, it is analyzed in a 1990 paper by myself and

David MacKay, which I will put on the web site; and a lot of related material on the role of

constraints is covered in a subsequent 1994 paper that we wrote, that I will also put there.

4. Optional: Simulate the dynamics. This is just if you want to explore further, and see

how the outcome of the dynamics relates to the eigenvectors you have computed.

You will want to start with a random initial condition, say weights v(r) uniformly distributed

between 0.8 and 1.2.

Things to potentially explore:

4

• If you multiplicatively constrain (at each timestep, after modifying the weights according

to the unconstrained equation, multiply all synapses by a common factor to restore the

weight sum to the constrained level), your final weight vector will be proportional to the

principal eigenvector. If you don’t allow weights to go negative (stop negative changes

in weights at 0, before multiplicatively renormalizing), this will modify the result for the

difference-of-Gaussians C, but not for the Gaussian C.

• If you simulate the subtractively constrained equation: if you have a lower weight limit

at zero, weights will evolve until only one weight is nonzero. So you probably want to

have an upper limit, say at 4, as well as a lower limit at 0. In this case all, or all but one,

synapse will go to either the upper or the lower limit. However you run into a problem

in this case: if you update weights according to the subtractively constrained dynamics,

and then set all weights > 4 to 4 and all weights < 0 to 0, you will have changed the

weight sum. To compensate for this, you could do a last multiplicative renormalization,

multiplying all the weights that are not at upper or lower limits by a common factor to

restore the weight sum (and maybe cut off at 4 any that are pushed above 4; you could

iterate but maybe stop there). It starts to get klugy but it doesn’t qualitatively change

the results.

• Under the subtractively constrained dynamics, you will likely find that the final result

looks something like the principal eigenvector of the constrained operator, squashed up

against the weight limits. However, there is one caveat. For ease of notation let me write

A√ =
√
A and Â√ = A√/|A√|. Recall that w = Pw + wAÂ√ where wA = w · Â√.

Thus the dynamics can be written d
dtw = PLPw + wAÂ√. The eigenvectors and

eigenvalues of PL and PLP with nonzero eigenvalues are identical: if PLei = λiei,

then, multiplying both sides by P and recalling P2 = P, the left side is unchanged, so

the right side is unchanged, so if λi 6= 0, then Pei = ei (meaning that ei is zero sum), and

therefore PLPei = PLei = λiei. It’s a more complicated argument but PL and PLP

both have one eigenvector with zero eigenvalue and in both cases it is non-zero-sum with

no angular or radial nodes. So for practical purposes the eigenvectors and eigenvalues

of PLP and PL are identical. But the remaining term, wnÂ√, has no angular nodes

and so it is a linear combination of the eigenvectors of PLP with no angular nodes.

As a constant contributor to d
dtw it gives a boost to the growth of those modes. That

boost becomes less and less relevant as the leading modes get bigger and bigger, since

at each time point they contribute something to d
dtw proportional to their amplitude,

whereas the boosting term does not change over time. So if the weight limits are far

enough away from the initial condition that the leading modes have room to grow, then

the boosting term will have little effect on the dynamics and the principal constrained

eigenvector should dominate. However, if there is less room, one of the modes without

angular nodes might get boosted into the winning position even if it is not the principal

eigenvector.

5

