I just wanted to briefly correct the point I got hung on re Lyapunov functions in today’s lecture. You’ll recall we had the equation

\[\frac{dv}{dt} = -v + Wf(v) + h \]

(1)

with \(W \) symmetric. We asserted the Lyapunov function

\[E = -\sum_i \int_0^{r_i} f^{-1}(x)dx + \frac{1}{2}r^TWr + h^Tr \]

(2)

In class, I got confused by the fact that there were vectors in the last two terms for \(E \) but only individual elements in the first term. The last two terms are scalars, unchanged by any coordinate transformation to orthonormal basis vectors (i.e., by an orthogonal transformation); but the first, which depends on individual elements of \(r \), depends on the coordinate system. But this is easily fixed; if the orthonormal basis vectors of the current coordinate system are \(e_i \), so that \(r = \sum_i r_ie_i \), then we can replace the first term with \(\sum_i \int_0^{r_i} e_i f^{-1}(x)dx \), which is invariant under orthogonal coordinate transformations. And then we can choose to do the calculation in the current coordinate system, in which case the equation for \(E \) becomes Eq. 2.