
This was written some years ago for an Advanced Topics in Theoretical Neuroscience

class, so it often says “Show that” – you can ignore that. I’ve filled in a few places where it

used to say that. This is just FYI, for those wanting more background on how to analytically

analyze the ring bump-attractor model.

The ring model.

As mentioned in class, the ring model is a workhorse of theoretical neuroscience, underlying

the many “bump attractor” models, so it is worth knowing. It played a role historically

in thinking about V1, though I don’t think it is a good model of V1. The idea is to have

a “Mexican hat” interaction – short-range excitation, long-range inhibition – with strong

recurrence, to stabilize a “bump” of activity of fixed width, wherever it appears. The input

selects where it appears but not its shape. The clever idea theoretically, developed by Haim

Sompolinsky, was to find a version of this idea that could be solved analytically.

As applied to V1, the idea was to have the bump live on the ring of preferred orientations;

the stimulus would choose the location of the bump but not its width, while the width of

the bump, determined by the cortical circuitry, would yield stimulus-invariant (and thus

contrast-invariant) orientation tuning. I don’t think it applies to V1 because (1) as we’ve

seen, the input already has contrast-invariant orientation tuning, once the DC is subtracted

away; and (2) it’s not true that orientation tuning is stimulus invariant – other stimulus

attributes, such as spatial frequency, that change the tuning of the input, correspondingly

change the tuning of cortical cells.

We start with a linear-threshold rate model. The neurons live on a ring of preferred

stimulus variables or “orientations”, θ. For V1, we should keep orientation between 0 and π,

but for simplicity we’ll let the ring go from 0 to 2π, this isn’t hard to change. The firing rate

of the neuron with preferred orientation θ is r(θ). Its inputs are inputs from other neurons,

mediated by connection weights W ; and external input I(θ) to the neuron at θ. The firing

rate moves exponentially toward its threshold-rectified inputs:

d

dt
r(θ) = −r(θ) +

[∫ 2π

0

dθ′

2π
W (θ − θ′)r(θ′) + I(θ)− T

]
+

(1)

Here T is the threshold; input less than T yields no output. The left side should be τ d
dt
r(θ)

but I’ve set τ = 1, which sets the time units.

I will sometimes write this more simply in vector notation as

d

dt
r = −r + [Wr + I−T]+ = −r + [h−T]+ (2)

where h ≡ Wr + I is the external input and T is the vector all of whose elements are T .

Here, the vector r (or I) can be thought of as having elements ri = r(θi), where the θi,
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i = 1, . . . , N , are a discretized version of the continous variable θ. Similarly, the matrix W

has elements Wij = W (θi − θj)∆θ
2π

where ∆θ is the interval between adjacent θi. A function

is just a continuum limit of a vector – the discrete indices become a continous variable –

and so we will use the simpler vector notation and the more complete function notation

interchangeably, although when it comes to calculation we will use functions.

Haim’s clever trick is to choose cosine-tuned weights and cosine-tuned inputs:

W (θ) = W0 + 2W1 cos(θ) (3)

I(θ) = I0 + 2I1 cos(θ − θI) (4)

Using cosine-tuned weights means that Wr only depends on the zeroeth and first harmonics

of r: letting r(θ) = r0 + 2r1 cos(θ − θr) + higher harmonics, the integral gives W0r0 +

2W1r1 cos(θ − θr):∫ 2π

0

dθ′

2π
cos(θ − θ′) cos(θ′ − θr) = (5)∫ 2π

0

dθ′

2π

ei(θ−θ
′) + e−i(θ−θ

′)

2

ei(θ
′−θr) + e−i(θ

′−θr)

2
(6)

=
1

4

(
ei(θ−θr) + e−i(θ−θr) +

∫ 2π

0

dθ′

2π
ei(θ+θr)e−i2θ

′
+ e−i(θ+θr)ei2θ

′
)

(7)

=
1

4

(
2 cos(θ − θr)−

1

2i

(
ei(θ+θr)(e−i4π − 1)− e−i(θ+θr)(ei4π − 1)

))
(8)

=
1

2
cos(θ − θr) (9)

Thus,∫ 2π

0

dθ′

2π
(W0 + 2W1 cos(θ − θ′))(r0 + 2r1 cos(θ′ − θr)) = W0r0 + 2W1r1 cos(θ − θr) (10)

As a result, h = Wr + I depends only on the zeroeth and first harmonics of r and is itself a

sinusoid plus an F0:

h(θ) = h0 + 2h1 cos(θ − θh) (11)

Clearly h0 = W0r0 + I0. h1 and θh are defined by

I1e
−iθI +W1r1e

−iθr = h1e
−iθh (12)

To see this, write the cosine in terms of complex exponentials to obtain:

I1(ei(θ−θI) + e−i(θ−θI)) +W1r1(ei(θ−θr) + e−i(θ−θr)) = h1(ei(θ−θh) + e−i(θ−θh)) (13)

or

eiθ
(
I1e
−iθI +W1r1e

−iθr − h1e
−iθh
)

+ e−iθ
(
I1e

iθI +W1r1hie
iθr − h1e

iθh
)

= 0 (14)
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This is of form eiθX + e−iθX∗ = 0, where X∗ means complex conjugate of X. To be true for

all θ, it must be the case that X = X∗ = 0. X = 0 gives Eq. 12.

Since the dynamics of r depend only on [Wr + I − T]+, they also depend only on the

zeroeth and first harmonics of r. Thus if we can solve for the these harmonics of r, then

we can derive a complete solution for r; in particular, the steady state value, rSS, is just a

rectified sinusoid, i.e. a “bump”: rSS = [WrSS + I−T]+ = [h−T]+.

Define the Fourier transform of a function f(θ) by

f̂n =

∫ 2π

0

dθ

2π
f(θ)einθ ≡ Fn[f(θ)] (15)

f(θ) =
∞∑

n=−∞

f̂ne
inθ ≡ F−1

n [f(θ)] (16)

Show (as always, don’t bother if it’s obvious to you) that if f(θ) = f0 + 2f1 cos(θ− θf ),
then f̂0 = f0, f̂1 = f1e

−iθf , and f̂−1 = f̂ ∗1 (where the ∗ indicates complex conjugate). Thus,

Eq. 12 just states that ĥ1 = Ĵ1r̂1 + Î1. More generally, show that ĥn = Ĵnr̂n + În, although

all of the terms (except the rn’s) are 0 for |n| > 1.

The dynamics for the nth harmonic are given simply by

d

dt
r̂n = −rn + Fn [[h−T]+] (17)

We solve this as follows:

• h0 − T > 2h1: the equation is linear: [h−T]+ = h−T. Thus Eq. 17 becomes simply

d

dt
r̂n = −r̂n + ĥn − δn0T (18)

= = −r̂n(1− Ŵn) + În − δn0T (19)

So the fixed point is În−δn0T

1−Ŵn
.

If Ŵn > 1, the equation for r̂n is unstable and r̂n grows exponentially away from the

fixed point, which is unstable;

If Ŵn < 1, r̂n is instantaneously exponentially decaying towards this fixed point, which

is stable, with time constant 1/(1− Ŵn).

• h0 − T < −2h1: [h]+ = 0 and r decays to 0.

The remainder of the problem is devoted to the interesting case: −2h1 < h0 − T < 2h1:

For this case, we define the angle ψ, which is the width of the activity bump, by cosψ =

−h0−T
2h1

. Thus, h(θ)− T = 2h1 (cos(θ − θh)− cosψ) and [h(θ)− T ]+ = 0 for |θ − θh| > ψ.

3



Compute F0 [[h(θ)− T ]+] and F1 [[h(θ)− T ]+] (F−1 is just the complex conjugate of

F1), using

Fn [[h(θ)]+ − T ] = 2h1

∫ θh+ψ

θh−ψ

dθ

2π
einθ [cos(θ − θh)− cosψ] (20)

= 2h1e
−inθh

∫ ψ

−ψ

dθ

2π
einθ [cos θ − cosψ] (21)

≡ 2h1e
−inθhGn(ψ) (22)

That is, solve for the functions G0(ψ), G1(ψ). You should find

G0(ψ) =
1

π
(sinψ − ψ cosψ) (23)

G1(ψ) =
1

2π

(
ψ − sin(2ψ)

2

)
(24)

Graph G0 and G1 over the range 0 ≤ ψ ≤ π to get a sense of how they behave. Both are

monotonically increasing, from 0 to 1 (G0) or from 0 to 1/2 (G1).

Note that we can rewrite the answers as follows:

F0 [[h(θ)]+ − T ] = 2h1G0(ψ) = (h0 − T )
−G0(ψ)

cosψ
= (h0 − T )

G0(ψ)

cos(ψ + π)
(25)

F1 [[h(θ)]+ − T ] = 2h1e
−iθhG1(ψ) = ĥ1 [2G1(ψ)] (26)

Verify that for ψ = π (no rectification) these become h0 − T and ĥ1, respectively, as they

should; while for ψ = 0, both are 0.

We can unify our dynamical equations for all conditions, using h1e
−iθh = ĥ1, as:

d

dt
r0 = −r0 +

W0r0 + I0 − T
cos(ψ + π)

G0(ψ) (27)

= −r0 + eiθh(W1r̂1 + Î1) [2G0(ψ)] , 0 < ψ < π (28)

d

dt
r̂1 = −r̂1 + (W1r̂1 + Î1) [2G1(ψ)] (29)

ψ = cos−1

(
−(h0 − T )

2h1

)
, |h0| < 2h1; (30)

= π, h0 − T > 2h1; (31)

= 0, h0 − T < −2h1; (32)

(33)

Write r̂1 = r1e
−iθr and Î1 = I1e

−iθI , multiply the equation for d
dt
r̂1 by eiθr , and separate

real and imaginary parts to obtain separate equations for d
dt
r1 and for d

dt
θr. We thus have

reduced the nonlinear dynamics to a set of 3 equations in the 3 real variables r0, r1, and θr.
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You should find that d
dt
θr ∝ sin(θI − θr), that is, θr evolves to the input angle θI . Show

that, once θr = θI , then θh = θr, h1 = W1r1 + I1, and the equations reduce to the following

two equations for the 2 real variables r0 and r1:

d

dt
r0 = −r0 +

W0r0 + I0 − T
cos(ψ + π)

G0(ψ) (34)

= −r0 + (W1r1 + I1) [2G0(ψ)] , 0 < ψ < π (35)

d

dt
r1 = −r1 + (W1r1 + I1) [2G1(ψ)] (36)

where

ψ = cos−1

(
−W0r0 + I0 − T

2(W1r1 + I1)

)
, |W0r0 + I0 − T | < 2(W1r1 + I1); (37)

= π, W0r0 + I0 − T > 2(W1r1 + I1); (38)

= 0, W0r0 + I0 − T < −2(W1r1 + I1) (39)

We now focus on understanding the steady-state solutions of these equations. Note that

in any steady state with 0 < ψ < π, r1/r0 = G1(ψ)/G0(ψ). We first consider the case of a

uniform suprathreshold input, I1 = 0 with I0 > T . Show that for W0 6= 1:

1. There is always a uniform steady-state solution with r1 = 0, ψ = π (write down the

solution for r0). This solution is unstable to perturbations of r0 for W0 > 1, stable for

W0 < 1.

2. There is also a “bump” solution specified by 2G1(ψ)W1 = 1 for W1 > 1, with 0 < ψ <

π. This represents a “spontaneous” emergence of an orientation-tuned response. For

this solution, write down the solutions for r0 and r1. Note that θr, the location of the

peak of the bump, is arbitrary – there is a solution for any choice of θr. (There are also

bump solutions for W1 = 1, with ψ = π; in this case, r1 may take any value consistent

with ψ = π, i.e. r0 > 2(r1 + I1).)

3. The uniform solution is unstable to perturbations of r1 for W1 > 1 – in this case, any

perturbation of r1 from zero leads to the bump solution (or else to instability). (For

W1 = 1, the uniform solution is just the choice r1 = 0 in the range of allowed bump

solutions – these solutions are all marginally stable to perturbations of r1). It is stable

to perturbations of r1 for W1 < 1.

4. Determine the conditions for stability of the bump solution. Linearize the dynamics

about the bump solution: show that if cosψ = −x, then d
dx
ψ = 1

sinψ
, d
dx
G0(ψ) = ψ

π
,

and d
dx
G1(ψ) = sinψ

π
. Use these to determine the dynamical equations to first order
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in ∆r0 and ∆r1 (defined as the perturbations of r0 and r1 from their bump-solution

values). I get that the matrix driving the linearized dynamics is

1

π

(
W0ψ − π 2W1 sinψ

W0 sinψ W1(ψ + sinψ cosψ)− π

)
(40)

Since W1 = 1
2G1(ψ)

, this can be rewritten

1

π

(
W0ψ − π 2π sinψ

ψ−sinψ cosψ

W0 sinψ 2π sinψ cosψ
ψ−sinψ cosψ

)
(41)

or
1

π

(
W0ψ − π 4π sinψ

2ψ−sin 2ψ

W0 sinψ 2π sin 2ψ
2ψ−sin 2ψ

)
(42)

To be stable, both eigenvalues of M should have negative real part, or equivalently

(for a 2× 2 real matrix), TraceM < 0 and detM > 0. The trace condition is

W0 <
π

ψ

(
1− 2 sin 2ψ

2ψ − sin 2ψ

)
=
π

ψ

(
1− sin 2ψ

2πG1(ψ)

)
(43)

For the determinant condition, I use 2ψ − sin 2ψ > 0 and note ψ sin 2ψ − 2 sin2 ψ =

−2πG0(ψ) sinψ which is < 0 for 0 < ψ < π, and find that it reduces to

W0 < −
cosψ

G0(ψ)
(44)

This requires cosψ ≤ 0 and so requires π/2 ≤ ψ ≤ π.

It’s quite possible I made a calculational error somewhere, so you should certainly check

these results. But assuming they’re correct: examining these conditions graphically, I

find that the determinant condition is always more stringent than the trace condition,

and more generally get the results shown in Fig. 1.

Now consider a more general input, that is, I1 ≥ 0. Show that:

1. There is a steady state with ψ = 0 (and r0 = r1 = 0) if and only if I0 + 2I1 < T ; this

state is stable.

2. There is a steady state with ψ = π, r0 > 0, r1 ≥ 0, if and only if W0 < 1, W1 < 1,

I0 − T > 0, and I0−T
1−W0

≥ 2I1
1−W1

; the latter condition just says r0 ≥ 2r1, as required for

a solution with ψ = π. This solution is stable if r0 > 2r1. (I haven’t worked out the

stability for r0 = 2r1.)
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Figure 1: Conditions for stability. X-axis: ψ. Red line: upper bound for W0 under Eq. 44.

Blue line: upper bound for W0 under Eq. 43. Green line: value of W1 = 1/2G1(ψ). As can

be seen, a stable bump solution arises only for 1 < W1 < 2, and requires W0 < X where X,

described by the red curve, ranges from 0 for W1 = 2 to 1 for W1 = 1. Empirically, it appears

that the condition for stability is approximately W1+W0 < 2, and indeed numerically adding

the red and green curves (not shown) yields a value that varies between 2.0 and 2.08.
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3. Characterize the “bump” solutions with 0 < ψ < π and I1 6= 0. This part of the

problem is open-ended . . .

The linearized dynamics is still given by Eq. 40 (show this if you didn’t show it in

general previously), giving the stability conditions

W0ψ +W1(ψ + sinψ cosψ) < 2π (45)

and

(W0ψ − π)(W1(ψ + sinψ cosψ)− π)− 2W0W1 sin2 ψ > 0 (46)

Starting with the expressions for the steady-state solutions for r0 and r1 in terms of ψ

and the parameters, use these in the expression for cosψ (Eq. 37) to find that either

cosψ = 0 (which implies I0 − T = 0, I1 > 0) or else ψ is implicitly defined by

(1− 2W1G1(ψ))− 2I1

I0 − T
(W0G0(ψ)− cosψ) = 0 (47)

Let κ = 2I1
I0−T , representing the degree of departure of the input from spatial homo-

geneity. For κ = 0 we recover the previous solution, G1(ψ) = 1
2W1

. An alternative

way to parameterize the input is as in Ben-Yishai and Sompolinsky, who set 2I1 = εI,

I0 = (1 − ε)I (they restrict to non-negative input, meaning 0 ≤ ε ≤ 0.5), and T = 1,

so that 2I1
I0−T = εI

I−1−εI = ε
1−ε−1/I

. Analyzing a somewhat different model, described

below, they argued that there is a robust regime where ψ shows little dependence on

I for I > 1 (“contrast-invariance” of tuning), and also shows little dependence on ε

for I � 1 (which is equivalent to T being negligible). For the present model, clearly ψ

will show little dependence on I for I � 1, but I don’t think either of the above two

claims will be true.

Numerically study the dependence of ψ on ε and I or on κ. If you’re ambitious, you

can, for example, do a scatterplot of stable solutions in the 3-D space of W0, W1 and

ψ for a range of values of κ, with different colors for different values of κ. Figures 2-3

give some snapshots of what I got for such scatterplots.

Note: Ben-Yishai and Sompolinsky (1995), who originated this model, used an input-

output function with a maximum as well as a minimum – max([h − T]+, β) in place of

[h − T]+. This seems to have made calculations much simpler. It allowed stable solutions

for large W1 and W0 (large relative to 1/β), allowing calculation in the large-W limit; these

solutions were essentially square bumps with ψ defined by h(θh±ψ) = T and a very narrow

transition from r(θh − ψ) = 0 to r(θh − (ψ − ε)) = β. These bump solutions also could be

much narrower than the stable bump solutions we found here for I1 = 0, which are restricted
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Figure 2: Different views of the locations of stable bump solutions (simultaneous solutions

of Eqs. 45-47) for different values of κ (indicated as ‘k’ in legend).
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Figure 3: More views of the locations of stable bump solutions (simultaneous solutions of

Eqs. 45-47) for different values of κ (indicated as ‘k’ in legend).
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to ψ ≥ π/2. I should probably have used that version . . . there’s a reason why they decided

to use it.

In Goldberg, Rokni, and Sompolinsky (2004), they analyze the present model (linear

threshold), but with a couple of differences: (1) W0 = 0; (2) The input is spatially white

noise with variance σ2, rather than being structured (orientation-tuned). They work out

the phase diagram for existence of bump solutions in the plane of σ and W1, They find, as

here for the case I1 = 0, that stable bump solutions only exist for 1 < W1 < 2, but the

range becomes more restricted (the lower bound on W1 increases) as the noise increases until

finally the bump solutions disappear.
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